Verification of a Concurrent Deque Implementation

Robert D. Blumofe C. Greg Plaxton Sandip Ray
Department of Computer Science, University of Texas atust
{rdb, pl axt on,sandi p}@s. ut exas. edu

June 1999

Abstract

We prove the correctness of the concurrent deque compohameoent implementation of the work-stealing
algorithm. Specifically, we prove that this concurrent deoplementation is synchronizable. Synchronizability
is a weaker condition than the more traditional notion ofadability. Our concurrent deque implementation
is not serializable, but its synchronizability makes itfmignt for use in the work-stealing algorithm. Whereas
serializability requires that concurrent method invomasiappear as if they are executed atomically in some serial
order, synchronizability allows some invocations to ap@eaf they are executed atomically at exactly the same
time.

1 Introduction

In this paper we prove the correctness of the concurrentedagplementation given in [1] as a component of the
work-stealing thread-scheduling algorithm. This impleta¢ion is nonblocking, meaning that slow or preempted
processes cannot prevent other processes from makingepsof@]. No mutual exclusion is used. This nonblocking
property makes this implementation ideal for use in muttigammed multiprocessors in which processes can be
preempted at arbitrary times by the operating system kernel

A deque or double-ended queue, is a data structure that maintafimte sequence of items and supports
insertion or removal of an item at either end of the sequenie.refer to these two ends as bottom and top. A
deque implementation is a set of methods, one for each obtiredieque operations. We refer to these methods as
pushBott om popBott om pushTop, andpopTop. One or more processes manipulate the deque by invoking
these methods. A nonblocking concurrent deque allows teeution of two or more method invocations to be
arbitrarily interleaved.

The nonblocking concurrent deque implementation of [1]sdo@ provide a true concurrent deque as defined in
the preceding paragraph, as it only specifies methods fee thirthe four deque operations, and it restricts the set of
processes allowed to invoke each of these methods. Sp#gifibes concurrent deque implementation is subject to
the following assumptions and limitations:

1. The set of processes allowed to access the deque corisastgngleownerand some number dhieves
2. The owner invokes theushBot t omandpopBot t ommethods only.
3. Thieves invoke theopTop method only.

For the sake of brevity, in the rest of the paper we will useténes deque to refer to a concurrent deque subject to
the above restrictions.

This research is supported in part by the Defense AdvancsédReh Projects Agency (DARPA) under Grant F30602-978066iom the
U.S. Air Force Research Laboratory. In addition, Greg Riax$ supported by the National Science Foundation undent@@R—-9504145.
Multiprocessor computing facilities were provided thrbumgenerous donation by Sun Microsystems.

We introduce “synchronizability”, a new correctness ci#t¢hat is weaker than the more traditional notion of
serializability [3], and we prove that our nonblocking dedmplementation is synchronizable. Whereas serializ-
ability requires that concurrent method invocations appeaf they are executed atomically in some serial order,
synchronizability allows some invocations to appear adsdf/tare executed atomically at exactly the same time. The
semantics of these method invocations are defined by a symuing specification. In the case of our deque, multiple
popTop invocations can appear to occur at exactly the same timewaed they do, our synchronous specifica-
tion dictates that if the deque is nonempty, then one of thmaecations returns the topmost item and all others
returnNI L, even if the deque contains more than one item. This synidaoitity turns out to be sufficient for the
work-stealing algorithm [1]. Our deque implementation ¢ serializable, and we are not aware of a serializable
nonblocking deque implementation that is either as simplsdast as our synchronizable one.

The remainder of this paper is organized as follows. Se@idtroduces some basic terminology. Section 3
gives two specifications of a deque: a serial specificatimhaaaynchronous specification. Section 4 presents the
nonblocking deque implementation of [1]. Section 5 provesdorrectness of this implementation with respect to
the synchronous specification of Section 3.

2 Basic Terminology

In this section, we define the terms that provide the framkvi@r our proof. We begin by defining a “program”
as a set of “methods.” In our proof, we shall be concerned wiffrogram whose methods gueshBott om
popBot t om andpopTop. We then define an “execution” as an interleaving of metheddations by the various
processes. Next, we define a “behavior” as the observableoshetlls and returns in an execution. We then define
what it means for a program to be “correct” in terms of its hétia. Finally, we provide two lemmas that are used
in our proof.

Before defining programs and methods, we first define a “systmma set of processes and a set of states.
Each state is broken into a single shared state and one orprigaée states — one private state for each process.
Formally, asystem® is a set ofprocessegrocesses(®), a set ofshared-stateshared (®), and a set of functions
from processes(®) to private(®), whereprivate(®) is a set ofprivate-states Such a function assigns a private
state to each process. shateof ® is a shared-state and a function frgmcesses(®) to private(®). Throughout
the remainder of the paper, we assume a fixed sygtem

A program is a set of methods, and we define a method by bredtkingp a set of “actions.” Each action
corresponds to a contiguous sequence of one or more instraéh the method’s implementation code. An “event”
is the execution of an action by a process, and we assumesittakgent is atomic. A sequence of events constitutes
a program execution. In addition to a set of actions, a mektasdseveral other components. A set of “start” states
specifies the states in which the method can be invoked. Aablerg” relation specifies which actions can be
executed by which processes in which states. A “transitfonttion specifies how the state is updated when an
action is executed. Finally, a method has a set of argumenesees that specify the allowable arguments.

Formally, aprogramII is a set of methodsethods (1), and amethodr € II is a set ofstart statesstart(r), a
set ofactionsactions(7), a set ofargument sequencesrgs(w), anenabling relationenabled (), and atransition
function trans (7). The enabling relation is a relation ovéttions(w) x logs(II) x processes(®). The setlogs(IT)
will be defined and the interpretation of the enabling relatwill be explained shortly. The transition function
is a function fromactions(m) x args(mw) to the set of functions oveprivate(®) x shared(®). The transition
function specifies how the state is updated when a processtesean action with an appropriate argument sequence.
Specifically, when a process executes an action with an ppate argument sequence, the transition function, when
applied to that action and argument sequence, gives a dumnatierprivate(®) x shared (®). This function is then
applied to the private-state of the process and the sh&agli® generate a new private-state for that process and a
new shared-state.

One action inactions(m) is designated as thaput action of . A second action is designated as theput
action of . The input action takes a specified number of arguments;ttadiractions take zero arguments. The
output action may return a value; no other action returnduevgRemark: We assume that the return value of the
output action, if any, is encoded in the state via the traorsfunction.)

To understand the enabling relation, we first define logmtsy@and executions. The set of lalys of a program
I1, denotedogs (I1), is the set of all pair$u, «) such that is a state and is an event sequence. Awentis a tuple
(m,%,p,n,r) wherer is a method ofl, ¢ is an action ofr, p is a processy is an argument sequencemfandr is
an optional return value. Such an event denotes the exaaftiactiony from methodr by proces. In addition,
if the action is the input action, thepspecifies its arguments, and if the action is the output actieenr specifies
its return value (if any). An event associated with an inpes., output) action isrologue(resp..epilogug. Any
event that is neither a prologue nor an epiloguelsist A log is a state and a sequence of events. Some logs are
executions.

Informally, a log(u,) is an execution of a program if the statés a start state of the program, amds an event
sequence that can be generated by processes executingdhenpr Formally, we define start states, executions, and
final states as follows. For any progrdm) we define the associated set of start states, denotet(II), as the
intersection over allr in methods(II) of start(m). We now inductively define both the set executionsof a
programII, denotedezecs(II), as well as thdinal stateof each execution in ezecs(II), denotedfinal (11, o).

e Every logo = (u,€), whereu belongs tostart(II) ande denotes the empty sequence, is an execution. For
such an executiofinal(Il, o) = u.

¢ For all executions = (u,) and all actions) such tha(vy, o, p) belongs tcenabled(w) for some method in
methods (II), the log(u, 3) is an execution, wherg@ is the event sequence obtained by appending to the event
sequencex any event of the form: = (7,4, p,n,r), wheren is a valid argument sequence (i.e.yifis an
input action them belongs toargs(); otherwise; is the empty sequence) ands an optional return value
(i.e.,r is present if and only if) is an output action that produces a return value, in whick daes value of
is determined by) and the current state). The stgteal (11, o) is determined by updating the private-state of
p and the shared-state according to the transition functiaf o

We can now understand the meaning of the enabling relation.af actior), an executiore = (u,), and
a proces®, if we have(y, o,p) € enabled(r), theniy can be executed by processn statefinal(I1, o). In other
words, if r is the method to whicly belongs, then for an event= (=, 1, p,n,r), the log(u, az) is an execution.
Note that we allow the enabling relation of a method to depenthe entire history of the execution. Of course, in
practice, the enabling relation of a method depends onlyertirrent state.

A method~ is defined to bdeasibleif and only if, for any actiony, executions, and procesp, membership
of the triple(, o, p) in enabled (7) depends only orp, p, and the private-state @fin final(IL, o). A programll is
feasibleif and only if each method imethods(I1) is feasible. In Section 5 of this paper we prove the corresstroé
a feasible program by reasoning about a collection of rélptegrams that are not feasible.

A program is “nonblocking” if every process always has anbdgth action. Formally, a prograii is non-
blocking if and only if, for all executionsr in ezecs(II), at least one action is enabled for each process in the state
final(IL, o).

A “trace” is an event sequence that is part of some executfeormally, the set ofracesof a programlI,
denotedtraces(II), is defined as the set of all event sequengesich thatezecs(II) contains an execution of the
form (u, Ba). Given two eventst andy in some tracex, we say thaty is the successonf = (resp.,z is the
predecessopf y) if and only if z andy have the same associated progessd z immediately precedeg in the
subsequence af consisting of all events associated with proces#\ trace isclosedif and only if the first event
associated with any process is a prologue and the last essmtiated with any process is an epilogue. An execution
(u, @) is closedif and only if « is closed.

We now define the “futures” of an execution and the “histdrads trace. Informally, the futures of an execution
o are those executions that extemdvith more events, and the histories of a tracare those executions that can
precedex. Formally, for any progranil and any executiom = (u,«) in ezecs(II), we define thefutures of
o, denotedfutures(II, o), as the set of all executior{s, a3) in execs(II). For any progranil and any tracey in
traces(IT), we define thdistoriesof «, denotedhistories(II,), as the set of all executioris, 3) such tha(u, Sa)
belongs toezecs(IT).

We shall focus our attention on programs that are “well-fedfin the sense that their executions have the
property that the events of each process occur in a reasooadgr. Formally, an execution vegell-formedif and
only if the following conditions hold: the predecessor ofle&pilogue is either a burst or a prologue with the same
associated method; the predecessor of each burst is ejphelogue or a burst with the same associated method; the
predecessor of each prologue is either an epilogue or daexist A progranil is well-formedif and only if each
execution inezecs(II) is well-formed.

We now define a behavior as the observable events — that iprotegues and epilogues — in an execution.
Formally, for any executior = (u,), we define thébehaviorof o, denotedbehavior(o), as the sequence of all
prologues and epilogues . For any progranil, we define thebehaviorsof II, denotedbehaviors(II), as the
set{behavior(o) : o € execs(I)}. A behavior iswell-formedif and only if the predecessor of each epilogue is
a prologue with the same associated method and the predecéssch prologue is either an epilogue or does not
exist. A behavior iclosedif and only if it is well-formed and each prologue has a susoes

The two types of behaviors with which we are most concernedarial behaviors and synchronous behaviors.
In a serial behavior, there is no interleaving of methodschHarologue is followed immediately by its successor
epilogue. In a synchronous behavior, multiple invocationa be “nested.” We interpret nested invocations as
occurring at the same time, hence the term “synchronousfméity, we define these behaviors as follows. A
behavior is arinvocation if and only if it is closed and has length 2. We inductively defthe set of alhested
behaviors as follows: The empty sequence is a nested behawid any behavior of the formay, wherezx is
a prologue,« is a nested behavior, andis the successor af, is a nested behavior. A behaviordsrial (resp.,
synchronou$ if and only if it is the concatenation of a number of invooat (resp., nested behaviors).

We define program correctness using “serializability” fressynchronizability”) which is defined as the ability
to transform any behavior into a correct serial (resp., Byormous) behavior via interchanging events. The inter-
change of two adjacent evenigndy (not necessarily from the same process) in a well-formedwiehconstitutes
avalid transpositionif and only if the resulting event sequence is a well-formetdvior and eithet is a prologue
ory is an epilogue. Note that an interchange in whidhk an epilogue ang is a prologue is not a valid transposition,
because we do not want to change non-overlapping methoddtigaos into overlapping ones. gerial (resp., syn-
chronous) specificatiordefines the set aforrectserial (resp., synchronous) behaviors. A behavigeisalizable
(resp.,synchronizablé if and only if it can be transformed to a correct serial (resynchronous) behavior via a
sequence of valid transpositions.

A program iscorrect with respect to a given serial (resp., synchronous) spatiiic if and only if it is well-
formed and for every execution in ezecs(II) there is an execution in futures(Il, o) such thatbehavior(r) is
serializable (resp., synchronizable).

For any epilogue occurring in some well-formed executioa d&fine theunning time of the method invocation
associated with the epilogue as the leastich that theth iterated predecessor of the epilogue is a prologue. For
any well-formed progranil and any methodr in methods(II), we define methodr to be constant-timeif and
only if there is a constant exceeding the running time aasediwith any epilogue af occurring in any execution
in ezecs(II). A programlII is constant-timeif and only if it is well-formed and every method imethods(II) is
constant-time. The proof of the following lemma is strafghwvard.

Lemma 1 A constant-time nonblocking prografh is correct with respect to a given serial (resp., synchra)ou
specification if every closed behaviorighaviors(II) is serializable (resp., synchronizable).

For any progranil and any pair of executions and in ezecs(II), we say thav and are congruentwith
respect tdl, denotedr = 7, if and only if

{behavior(o') : o' € futures(Il, o)} = {behavior(r'): 1" € futures(IL, 7)}.

For any progranil, any tracex in traces(II), and any set of traceX¥ contained intraces(II), we say that is
subsumedy X with respect tdI, denotech — X, if and only if for every executiofju, v) in histories(II,) there
is somes in X such thafu, y) belongs tohistories(I1, 3) and(u, ya) = (u,y3). (Remark: We definee — 3 as a
shorthand forx — {3}.) We make extensive use of the following basic lemma.

4

Lemma 2 For any programll, any tracesy, 3, and+ in traces(II), and any set of traceX in ¢races(II) such that
B — X, we havenfy — {ady: 0 € X}.

3 Deque Specification

A dequeis a program with three methodsushBot t om popBot t om andpopTop. ThepushBot t ommethod
takes a single noM L argument and does not return a value. PlagBot t omandpopTop methods both take
zero arguments and return a value. One process is desigastdowner of the deque; the owner invokes the
popBot t omandpushBot t ommethods only. Every other process ithéef; thieves invoke th@opTop method
only.

We now give an inductive definition of the set obrrect serial behaviors of a deque. In the following, the
variablesa and 3 denote serial behaviors.

1. The empty serial behavior is correct.
2. A serial behavior of the formu, wherep is apushBot t ominvocation, is correct if and only i is correct.

3. A serial behavior of the forma, wherey is apopBot t omor popTop invocation, is correct if and only if
the return value ofi is NI L and« is correct.

4. A serial behavior of the formuv 3, wherey is apushBot t ominvocation andv is apopBot t ominvoca-
tion, is correct if and only if the return value ofis equal to the argument gfanda is correct.

5. A serial behavior of the formva, wherey is apushBot t ominvocation andv is apopTop invocation, is
correct if and only if the return value ofis equal to the argument gfandc is correct.

6. A serial behavior of the fornrauré3, wherep and v are pushBot t ominvocations and is apopTop
invocation, is correct if and only tuév g is correct.

We now give an inductive definition of the setadrrectsynchronous behaviors of a deque.
1. Any correct serial behavior is a correct synchronous ieha

2. A synchronous behavior of the foraxpuy(, wherea and 3 are behaviorsg is apopTop prologue,u is a
popTop invocation returning a nohll L value, andy is the successor af, is correct if and only if the return
value associated withis NI L and the synchronous behavier3 is correct.

4 A Deque Implementation

The deque implementation of [1] is given in Figures 1 and ZJuFé 1 shows the instance variables, and Figure 2
shows the method implementations. All instance varialde®le in shared memory. The items are stored in an array
deq that is indexed from 0 and is assumed to be infinite in size. ifithex of the top item and the index below the
bottom item are stored in the variablesp andbot respectively. An additional variabteag is a “uniquifier” and

is required for correct operation. Theg andt op variables are implemented as fields of a strucage, and this
structure is assumed to fit within a single shared-memonytitat can be operated on atomically with load, store,
and compare-and-swap instructions. The compare-and-ssapction is described below.

In addition to the shared memory, the implementation assutvat each process has a private memory (e.g., a
register file). A standard set of atomic machine instrudismassumed to be available for manipulating the contents
of the private memories.

The implementation assumes that the following atomic usitons are available to operate on shared memory:
load, store, and compare-and-swap. The compare-and-swapdtion,cas, operates as follows. It takes three
operands. The first operand is a private-memory &élir that holds the address of a shared-memory cell. The
second and third operands are private-memory callg, andnew, holding arbitrary values. Letlddr | denote the
shared-memory cell addresseddoydr . The instructioncas (addr, ol d, new) compares the value stored

5

Deque

deq
age |tag
to |
p \ O
O
bot [} 0

/

Figure 1: A deque object contains an arrayeq of items, a variabléot that is the index below the bottom item, and
a variableage that contains two fieldst op, the index of the top item, andag, a “uniquifier” needed to ensure correct
operation. All of these instance variables reside in sharechory. The variablage fits in a single cell of shared memory that
can be operated on with atomic load, store, and comparesaag-nstructions.

voi d pushBottom (Itemiten) Item popBottom)

1 load local Bot « bot 1 load |ocal Bot + bot
2 store item — deq[l ocal Bot] 2 if localBot = 0

3 localBot < localBot + 1 3 return NIL

4 store | ocal Bot — bot 4 |ocal Bot < localBot — 1
5 store |ocal Bot — bot
6 load item « deq[l ocal Bot]
7 load ol dAge «+ age

8

9

I tem popTop() if local Bot > ol dAge. top

1 |oad ol dAge « age return item

2 load | ocal Bot « bot 10 store 0 — bot

3 if local Bot < ol dAge.top 11 newAge.top « O

4 return NI L 12 newAge.tag ¢« oldAge.tag + 1
5 load item «+ deq[ol dAge. top] 13 if local Bot = ol dAge.top

6 newAge <« ol dAge 14 cas (age, ol dAge, newAge)
7 newAge.top « newAge.top + 1 15 if ol dAge = newAge

8 cas (age, ol dAge, newAge) 16 return item

9 if ol dAge = newAge 17 store newAge — age

10 return item 18 return NIL

11 return NL

Figure 2: The threedeque methods. The deque’s instance variablege, bot , anddeq, reside in shared memory; the
remaining variables in this code reside in the processi@mfimemory. Thé oad, st or e, andcas instructions operate
atomically. Eachr et ur n statement is assumed to assign the return value to a priagsbier et ur nVal ue.

in [addr] with the value stored il d, and if they are equalalddr] is swapped witmew. In this case, we say the
cas succeedsOtherwise, it loadsgdddr] into newwithout modifying faddr]. In this case, we say theas fails.
This whole operation — comparing and then either swappirgaiting — is performed atomically with respect to
all other memory operations. We can detect whethect®efails or succeeds by comparing the value storeal id
with the value stored inewafter thecas. If they are equal, then theas succeeded; otherwise, it failed.

The start states are those states in which = age. t op > 0 and no process has an outstanding deque method
invocation.

Color | Thief Program Counter Levels

S No outstandingpopTop invocation | [0, 16]
A Line 1 ofpopTop [0, 14]
B Line 2 ofpopTop [0, 0]
C Line 5 ofpopTop [0, 0]
D Line 8 ofpopTop [0, 0]
E Epilogue ofpopTop [0, 0]

Table 1: Colors corresponding to particular thief program coungdues.

5 Proof of Correctness

Let A, denote the deque of Section 4. The goal of the present sastioprove the correctness Af, with respect to
the synchronous specification of Section 3. It is straightéwd to prove thai\, is constant-time and nonblocking.
Thus, by Lemma 1, it remains only to prove that every closdthber inbehaviors(Ay) is synchronizable.

The sequence of events corresponding to the execution ofmatliyod consists of a prologue followed by a
sequence of bursts followed by an epilogue. The bursts éxéoet method body. For each methodriathods(Ay),
there is an action corresponding to each individual insiwacof the method body, that is, each burst executes a
single instruction. The fine-grained nature of the actiohAg allows for a large number of possible interleavings
of concurrent method invocations.

Instead of reasoning directly about the dedig we find it convenient to define a sequence of “new” deques
Ay, 1 < ¢ <16, each of which is based on the code of Figure 2, but where #rutarity of the actions associated
with each successivA, increases as a function 6f Our proof then proceeds in two stages. In the first stage, we
show that every closed behavior of degidg is a closed behavior ab,,;, 0 < ¢ < 16. In the second stage, we
prove the correctness df,4. The second stage is straightforward due to the approlyriEige-grained atomicity
of Aqg.

For the sake of brevity, we refer to the actions, eventsgrand executions associated with as/-actions
(-events (-traces and/-executions respectivelyp < ¢ < 16. We use the termd-congruent(resp.,/-subsumejlas
a shorthand for the phrase “congruent (resp., subsumeldyegpect ta\,.”

5.1 Processcolorsina 0-execution

For any thiefp and executiow = (u,) in ezecs(4Ay), we now inductively define theountof p with respect tas.
If «is the empty trace, then the countpofvith respect tar is —1. Otherwiseq is of the formgx for some traces
and event: and, letting:’ (resp.,i) denote the count gf with respect tqu, «) (resp.,(u, 3)), i’ is determined from
i as follows: ifi = —1 andz is a burst associated wighthat executes the load instruction on line 1pafpTop,
then:’ = 0; if ¢ > 0 andz writes the shared variabbge, theni’ = i + 1; if z is an epilogue associated withthen
i’ = —1; otherwise;’ = .

We now define a set afolors Table 1 (resp., Table 2) defines a set of colors correspgrtdiparticular thief
(resp., owner) program counter values. Table 3 (resp..eTépbefines the remaining thief (resp., owner) colors;
note that each of the latter color symbols corresponds (mpval of the subscript) to a unique thief (resp., owner)
program counter value. Furthermore, each of the colors lne¥e3 and 4 has an associated list of assertions. (See
Table 5 for the definitions of these assertions.)

Table 5 defines the state predicafgs0 < i < 15, and the execution predicat€ly and@;. In general, we say
that a state predicat® holds for a procesg with respect to a givefi-executions if and only if P holds forp in
statefinal(Ay, o).

Note that the assertions associated with thief colors arestidte predicateB;, 0 < i < 8, and the execution
predicate),. We say that), (i) holds for a thiefp with respect to a givefi-executione if and only if the count of
p with respect tar is equal toi. For any thiefp and0-executions, we say thap has color\ with respect tar if
and only if the program counter pfis consistent with\, and any assertions associated with coldrold for p with

Color

Owner Program Counter

Interval

No outstandingpopBot t omor pushBot t ominvocation

=
=

Line 1 ofpopBott om

Line 6 of popBot t om

Line 10 ofpopBot t om

Line 13 ofpopBot t om

Line 17 ofpopBot t om

Epilogue ofpopBot t om

Line 1 ofpushBot t om

Line 4 of pushBot t om

~ QN IO QW | ®»

Epilogue ofpushBott om

ISiEEEIEEEE=EEE
A SRS R RS A RS)

Table 2: Colors corresponding to particular owner program couvdéres.

Thief Color Assertions Interval
Ay P, 15, 16]
A, -Py 15, 16]
B Py, Py, Qo(0) [1,15]
BO,l —|P0, Pl, Qo(O) [1,]_5]
B;,i>0 P2, Qo(i) [3, 16]
Bio,i >0 Py, P3, Qo(i) [1,2]
B;,i>0 Py, ~P3, Qo(7) [1,2]
Co Py, Py, Qo(0) [1,13]
C;,t1>0 Py, Qo(7) [1,13]
Dy Py, P5(0), Ps, Pr,Qo(0) | [1,2]
Di,i>0 P21Q0(7:) [1v2]
E Pq [1,16]
E, —Pg [1,16]

Table 3: The remaining thief colors. The assertions are defined liheTa.

Owner Color Assertions Interval
So,0 Py(0), P1o, P11(0), Q1 [1,16]
So Py(0), P11(0), P12, Q1 [1,16]

Si,i>0 Py (0) P11() [1,]_6]
Apyo Py(0), P1o, P11(0), Q1 [1,16]
Ap Py(0), P11(0), P12, Q1 [1, 16]

Ai’ 1 >0 PQ(O) P11() [1,]_6]
By Py(1), P11(—1), P13(0), Q1 [1,12]
B, Py(1), P11(0), P13(0) [1,11]

B;,i>1 Py(1), P11(i — 1), P13(0) [1,10]
Co Py(0), P11(—1), P13(0), 7 P14, Q1 [1,9]
Cl P1, P7, PQ(O), P13(0), P14 []_, 8]
Dg P5(1), Py(0), Pio, ~Py4, P15, Q1 [1,7]
D1 Pl,P5(1),P7,P9(0),P10,P14,P15 [1,6]
EO P5(].), PQ(O), P10, P15, Ql []_, 5]
F0,0 —|P3, PQ(O), P10, P11 (0), Ql [1,]_6]
Fo1 Py, Py(0), Pro, P11(0), Q1 [1,16]
Fy Pg, Py(0), P11(0), P12, Q1 [1,16]

Fi,i>0 Py, Py(0), P11 (i) [1,16]
Go Py, Py(0), P11(0), @1 [1,16]

Gi, 1 >0 P7, PQ(O), P11(Z) [1,]_6]
Hy Py(1), P11(0), Pi3(1), Q1 [1,4]

Hi’ 1 >0 Pg() P11() P13() []_,4]

IO PQ(O), P11(), P12, Ql [1,]_6]
I;i,i >0 Py(0), P11 (7) [1,16]

Table 4: The remaining owner colors. The assertions are definedile |

Predicate Definition

B bot > age.top

P age = ol dAge

P, age > ol dAge

by bot > ol dAge. top

P, deqlage. top] #N L
P5(i) newAge. tag = ol dAge. tag +1

P newAge. t op = ol dAge.top+1
Py item#£N L
Py returnVval ue #N L

Py(i) deq[j] #NIL,0 <age.top <j < bot +:
Py bot =0
Py (7) bot =age.top+:
Pis age.top >0
Py3(i) | ocal Bot =bot +i
Py | ocal Bot =age.top
Pis newAge.top =0
Qo) this thief has count
Q1 no thief has coloA, B0,0, Cy, 0rDy

Table 5: List of the predicates appearing in Tables 3 and 4. The pateli’, should be interpreted a@ge. tag >
ol dAge.tag Vv (age.tag =ol dAge.tag A age.top > ol dAge. t op)).

respect tas.

The assertions associated with the owner colors are the gtedlicatesd?;, Ps, andP;, 7 < ¢ < 15, and the
execution predicat€),. (Remark: It can be shown that, unlik®), @, is logically equivalent to a state predicate.
Having introduced the machinery of execution predicatebaiodleQ,, we find it convenient to trea); as an
execution predicate.) For aflyexecutiono, we say that the owner has coldwith respect tar if and only if the
owner program counter is consistent with and any assertions associated with coldnold for the owner with
respect tas.

5.2 A sequence of deques

The goal of this section is to define the setadctions associated with deque, 1 < £ < 16.

Table 6 defines a number of symbols corresponding to paaticdde blocks. We now define a setspfecial
actions and associate a unique identifying symbol with each special action. The code blocks of the special thief
(resp., owner) actions are defined in the second column dé Tafresp., Table 8).

The guard of each special action will be defined momentdfiby.the moment we simply point out that the guard
of each special actiott is at least as strong as the guard of @kaction corresponding to the first instruction in the
code block ofy. In other words, a special actiahis enabled for a given procegonly if the program counter gf
points to the first instruction of the code blockf It follows that a special action is enabled in a given statly o
if a corresponding sequence @fctions is applicable in that state. Using this obserwaitiductively, we conclude
that every execution involving only special actions cquoegls to a unique-execution. For each 1 < £ < 16, we
will define the set of-actions as some subset of the set of special actions. Tlkhg-execution corresponds to a
unique0-execution, and we can extend the color definitions of Sedid to/-executions as follows: The color of
a proces® with respect to ard-execution is defined as the colormwin the corresponding-execution.

Having extended the notion of process colof4executions, we are now able to define the guard of each $pecia
action. A special action is enabled for a procegswith respect to a givei-executiono if and only if the color of
p with respect tar is equal to the color specified in the third column Table 7gregable 8)

10

Symbol

Code Block

—

popTop prologue

Line 1 ofpopTop

Lines 2 to 4 ofpopTop

Lines 5to 7 ofpopTop

Lines 8 to 11 ofpopTop

popTop epilogue

popBot t omprologue

Lines 1to 5 ofpopBot t om

Lines 6 to 9 ofpopBot t om

Lines 10to 12 opopBot t om

Lines 13 to 16 opopBot t om

Lines 17 to 18 opopBot t om

popBot t omepilogue

pushBot t omprologue

Lines 1 to 3 ofpushBot t om

Line 4 ofpushBot t om

—| Q[||| |~—lalao|T|

pushBot t omepilogue

Table 6: List of symbols denoting particular code blocks.

Action | Code Block| Guard| bot | age | deq | Interval
[[S [0, 16]
a a A R [0, 16]
a) abed Ay R |RW]| R (15, 16]
a) abed A, R R (15, 16]
b b B R [0, 1]
b070 b BO,O R [1, 13]
b071 bcd B0,1 R [1, 15]
bi,O’ 1 >0 b Bi,O R [1, 3]
bi,l’ 1 >0 bed Bi71 R [1, 3]
0.0 bed Bo,o R |RW| R [13,15]
b} bed B, R R R (3, 16]
bi,i>1 bed B; R R R (3, 14]
c c C R [0, 1]
C;, 3 > 0 C Ci R [1, 2]
o cd Co RW | R [2,13]
ci,i>0 cd C; R R [2,13]
d d D R/W [0, 1]
do d Dy R/W [1,2]
d;,;i >0 d D; R [1, 2]
]] E 0, 16]

Table 7: The special thief actions.

11

Action | Code Block| Guard| bot | age | deq | Interval
{ (S [0, 16]
a a A R/W [0, 1]
an,0 abede A070 R [1, 16]
ap a A() R/W [1, 12]
ai a A1 R/W [1, 12]
a;,t>1 a A; R/W [1, 10]
agp abede A RW | RIWW | R | [12,16]
al abede Ay RW | RW | R | [11,16]
al,i>1 abede A; RW | R R | [10,16]
b b B R R [0, 1]
bo b By R R [1,9]
b1 b B R R [1,8]
bi,t>1 bede B; R R [1,10]
o bede By W R R 9, 12]
bl bede B W | RIW R 8, 11]
c c C w [0, 1]
Co C CO W [1, 7]
C1 C Cl W [1, 6]
o cde Co W [7,9]
ch cde Cy W | RIW 6, 8]
d d D R/W [0, 1]
dy d Dy [1,5]
dl de D1 R/W [1, 6]
0 de Dy W [5, 7]
e e E W [0, 5]
)) F 0, 16]
{ { S [0, 16]
g g G R w [0,1]
650> 0 g G | R W[[L4]
gi,i>0 gh Gi R/W W 4, 16]
h h H W [0, 1]
hi,i>0 h H; W [1,4]
} } 1 0, 16]

Table 8: The special owner actions.

12

l ¢-Outgoing ¢-Incoming
1 | {a,b,c,d,g,h,b,c,d} | see caption
2 {Ci,di:iZO} {C;:iZO}

3 {bi,Oabi,l 11> 0} {b; 11> 0}

4 {gi,hi : 1 >0} {g; i >0}

5 {dy, e} {dy}

6 {cr,du} {c1}

7 {co,dp} {ch}

3 {b1,¢) {0}

9 {bo, co} {bo}

10 {ai,bi:i>1} {a%:i>1}

11 {1 o)

12 {‘107 ai, bil} {af)}

13 | {bgo}U{c}:i>0} {boo}

14 {bl:i>1}

15 {bo,0, o1} {ap, a1}

Table 9: The/-outgoing and-incoming/-actions,1 < ¢ < 16. The set ofl-incomingl-actions is too large to fit in the table;
it consists of all special actions for which the associatedi®ol is subscripted and unprimed.

¢ | Increment| Unemptying Decrement Emptying| Reset Aging Steal
2 hi,iZO ho ai,iZO al Co, C1 Cf),do,dl,e 06,d0
3 hi,iZO ho ai,iZO al Co, C1 06,d1,€ 06
4 | g hi,i>0 g0 ho a;,1>0 ai o, C1 cp, di, e c)
5 g:,i>0 90 a;, 1 >0 ai o, C1 ¢y, dy, dy, e ch
6 g:,,i>0 90 a;,1>0 al co,c1, ¢y | cp,ch,dpy, dy ch
7 gi,1>0 90 a;,1>0 al co, €, ¢4 o, €0y €4, dj ch
8 gi,1>0 90 a;,i>0 a 1,¢o ¢ | cp, b, ep, el ch
9| g,i=0 90 ai, 1> 0 a1 0,01, ¢0 | <0, bp, b1, <0 Co
10 gi,1>0 90 ag, a1, a;, aj, ¢ > 1 a1 0, b} g, by, by ch
11 gi,1>0 90 ag, a1, al, i >0 ai, aj al, by, by | cp,al, by, by ch
12 g, i>0 90 ag, a1, ai, i >0 ay, ay ag, ay, by | ¢y, ap, af, by ch
B3] ghiz0 % Wi 0 G ahdy g chabal | Pho cf
] giz0 % W i>0 & | b, | Bhpaha | bh
5] gis0 & P50 | abal | @b b, dh | 3 by
16 | ¢.,i>0 90 ai,i>0 al ag, ay ag, ag, a} ag

Table 10: Certain distinguished sets éfactions2 < ¢ < 16.

Thebot (resp.,age) column of Tables 7 and 8 indicates whether there exists aoution in which the associ-
ated action reads/writes the shared varidgé (resp.,age). Thedeq column of Tables 7 and 8 indicates whether
there exists an execution in which the associated actiaisfesaites some location of the shared ardsg.

Note that Tables 7 and 8 define an interval for each speci@radh special action) is an/-action if and only
if £ belongs to the interval af. An ¢-action is¢-outgoing (resp./-incoming) if and only if it is not an(¢ + 1)-
action (resp.{¢ — 1)-action). For the sake of convenience, Table 9 lists/to@tgoing and-incoming ¢-actions,
1</ <16.

For2 < ¢ < 16, Table 10 defines the setioicrement(resp.,decrementemptying reset aging, stea) ¢-actions.

13

Code Block| Current Color) New Color
[S A
a Ai, 0<:<1 BO,i
abcd A;;0<:<1 E;
b Bio >0 C;
bed B070 E()
bed B, i+j>0 E,
C Ci, 3 Z 0 Di
cd CU E()
cd C;,i>0 E;
d DO EO
d D;,i >0 E;
] E S

Table 11: This table shows the effect on the color of a thiadf a burst associated withfor which the associated code block
is as specified in the first column. Remark: A thief with cad(resp..E) either has coloA, or A; (resp..Eg or E;).

5.3 Establishing ¢-congruence of /¢-executions

Tables 1, 2, 3, and 4 define an interval for each color. A cal@ran/-color if and only if £ belongs to the interval
associated with\. It is straightforward to prove that for ayexecutions, each process has at most dreplor with
respect tar. An £-executions is £-nice if and only if each process has é&itolor with respect ter. The assignment
of colors to processes induced by &nice ¢-executione is called thel-coloring of o. The following lemma is
straightforward to prove.

Lemma 3 Every{-execution ig-nice,1 < ¢ < 16.

In order to carry out the full details of many of our proofsclias the proofs of Lemmas 3 and 4, it is useful
to understand the relationship between theloring of anl-execution(u, o) and thel-coloring of an “extended”
¢-execution(u, ax), wherez is anf-event. This relationship is summarized in Tables 11, 12143and 15.

Two ¢-executionss and + are compatibleif and only if the /-coloring of o is equal to the/-coloring of 7,
behavior(o) = behavior(r), and each of the following has the same valuginl(A,, o) as infinal (A, 7): bot,
age, and any private variable ateq array entry that is asserted to be non-NIL by some proceadlfei assertions
associated with thé-coloring).

We omit the proof of the following lemma, which is a straigint’ard (albeit lengthy) proof by induction.

Lemma 4 Any pair of/-compatible/-executions aré-congruent,l < /¢ < 16.

We will also need to establistrcongruence of certain pairs 0fexecutions. The following trivial lemma is
sufficient for our purposes.

Lemma 5 Any pair of0-executionsr andr such thatehavior (o) = behavior () andfinal(Ay, o) = final(Ay, 7)
are 0-congruent.

Lemma 5 is used in the proof of the following lemma. We omitpheof of Lemma 6, which is straightforward.
Lemma 6 Every closed-trace isO0-subsumed by a closddtrace.
Our main technical lemma follows.

Lemma 7 Every closed-trace is{-subsumed by a set of closgt+ 1)-traces,1 < ¢ < 16.

14

Table 12: This table shows the effect on the color of the owner of attforavhich the associated code block is as specified in

the first column.

Code Block| Current Color New Color

(S0,0 Ago

{ S i>0 A;
abcde AO,O FU,()
a A;,1>0 B;
abcde A;,0<i<1 Fy;
abede A i >1 F;_4
b By Co

b B, C1
bede Bi, 0 < 3 < 1 FO,i
bede B;,i>1 F;,_4
c C,0<i<l D;
cde C;,0<i<1 Fo;
d Dy Ey
de D, 0<i<1 Fo,;
€ E() FU,()

) FoporFpa 50,0

) F,i>0 S;

{ 50,0 Go

{ Si,i>0 G;

g Gii>0 H;
gh Gi,1>0 Iiya
h H;,i>0 Iin

¥ I;,i >0 Si

15

Thief Color | Unemptying| Emptying| Reset| Aging
S S S S S
A A A A A
A Ay AgorA;
A, Ay A, A,
Bo,o By, BigorB;;
Bo,1 By, By B
Co Co Co C,
C;,i>0 C; C; C; Ci+1
Dy Dy Dy D,
D;,i>0 D; D; D; D;y
E;,0<:<1 E; E; E; E;

Table 13: For2 < ¢ < 16 and)\ an/-color appearing in the first column, this table is usefuldetermining the effect on
the ¢-color A of a thiefp of an/-eventz associated with another process. tetenoted the action associated withlf 1 is
not an unemptying, emptying, reset, or aging action, theastno effect on thé-color of p. If ¢ is an unemptying action, the
effect is shown in the second column.ylfis an emptying action and not a reset action, then it is notgamgaaction and the
effect is shown in the third column. {f is an emptying action and a reset action, then it is also ameagtion and the effect
is given by the composition of the third, fourth, and fifth wmins (applying emptying first, reset second, and aging)thlfd

1 is a reset action and not an aging action, then it is not anygngpaction and the effect is given by the fourth column. If
1 is a reset action and an aging action but not an emptyingradti@n the effect is given by composing the fourth and fifth
columns (applying reset first and aging secondy I§ an aging action but not a reset action, then it is not an gimgaction
and the effect is given by the fifth column. Blank entries et certain situations cannot arise; for example, if edhief
has¢-color A, then an event associated with an unemptying action carueot.o

Thief Color| Increment| Decrement Reset| Aging

B;,i>0 B; B; B; Bii1
Bio,i >0 B, BiporB;; | B;1 | Bitip
B;1,:>0 | BjporB;, Bi1 Bi1 | Bit11

Table 14: For2 < ¢ < 16 and)\ an/-color appearing in the first column, this table is usefuldetermining the effect on
the ¢-color A of a thiefp of an/-eventz associated with another process. tetenoted the action associated withlf 1 is
not an increment, decrement, reset, or aging action, thessino effect on thé-color of p. If ¢ is an increment action, the
effect is shown in the second column.«fis a decrement action and not a reset action, then it is nogiaug action and the
effect is shown in the third column. {f is a decrement action and a reset action, then it is also ag agtion and the effect is
given by the composition of the third, fourth, and fifth colusnapplying decrement first, reset second, and aging tHird)
is a reset action and not an aging action, then it is not a desmeaction and the effect is given by the fourth column) I§ a
reset action and an aging action but not a decrement adtien the effect is given by composing the fourth and fifth calem
(applying reset first and aging second)z/lfs an aging action but not a reset action, then it is not a deen¢ action and the
effect is given by the fifth column.

16

Owner Color| Steal
So,0
So
Si, 1 >0 Sz_l
Ao
Ag
Ai’ 1 >0 Az—l
By
B;,i>0 Bi_1
Co
1 Co
Dy
D, Dy
Ey
Fp;, 0<i<1
Fo,
Fy
F;,i>0 F;_
Go
Gi;yi>0 Gi_1
Hy
Hi’ 1 >0 Hi—l
Iy
Ii’ 1 >0 Ii—l

Table 15: For2 < ¢ < 16 and\ an/-color appearing in the first column, this table is usefuldetermining the effect on the
Z-color \ of the owner of arf-eventz associated with a thief. Let denoted the action associated withIf v is not a steal

action, then it has no effect on tliecolor of the owner. I is a steal action, the effect is shown in the second columaniB
entries assert that certain situations cannot arise; fameie, if the owner ha&color Sy o, theny cannot be a steal action.

17

Proof: Fix ¢,1 < ¢ < 16, let R denote the set of rewrite rules specified by Tables 16 and rlthi®value of?,
and leta denote an arbitrary closefdtrace. It is straightforward to prove that a finite sequeoicapplications of
the rewrite rules iR can be used to obtain a set of clogelacesX such thatx is /-subsumed by and no action
associated with an event in a traceXfis £-outgoing. The claim then follows immediately, since a ¢eld)/-trace
containing na/-outgoing actions is also a (closed)+ 1)-trace. [

In Lemmas 8 and 9 below, we use the term “synchronizable” tanrisynchronizable with respect to the
synchronous specification of Section 3.” The following leai® straightforward to prove using the three rewriting
rules in Table 18.

Lemma 8 Every closed behavior ibehaviors(Aig) is synchronizable.
Lemmas 6, 7, and 8 together imply the following result.
Lemma 9 Every closed behavior ibehaviors(Ag) is synchronizable.
As observed at the beginning of this section, Lemma 9 imgligsmain result.
Theorem 10 The deque of Section 4 is correct with respect to the synolspecification of Section 3.

Acknowledgments

The authors benefited greatly from discussions with mendfaise UT Austin formal methods group.

References

[1] Nimar S. Arora, Robert D. Blumofe, and C. Greg Plaxton. rddd scheduling for multiprogrammed multiprocessors.
In Proceedings of the Tenth Annual ACM Symposium on Paraltgrthms and Architectures (SPAA)ages 119-129,
Puerto Vallarta, Mexico, June 1998.

[2] M. P. Herlihy and J. M. Wing. Linearizability: A correadss condition for concurrent object&dCM Transactions on
Programming Languages and Syste463-492, 1990.

[3] J. Misra. Axioms for memory access in asynchronous haréwystemsACM Transactions on Programming Languages
and Systems:142-153, 1986.

18

¢ | Rewriting Rule Conditions
1 |b—{bi;:i>00<j<1}
c—{c;:i1>0}
d—{d;:i>0}
a — {a070} U {ai 11> 0}
b—{b;:i>0}
¢ — {co,c1}
d— {d(), dl}
g—{9i:1>0}
h — {h;:i >0}
2 Cidi — C; 1 >0
cip — ey i >0, ~aging ()
cith — Peiy i >0, aging(v)
3 | bj1 = bl i>0
bi,oc; — b; 1 >0
pe; — i i >0, ~aging ()
e = ey i > 1, aging(y)
4 gihi — gé 1>0
giY = i i >0, ~aging(p)
gicf] — cf)gi_l 1 >0
5 doe — d6
dop — pdy
d106 — 06d0
6 C1d1 — Cll
c1p — pey —aging(p)
C106 — 06C0
7 | cody — ¢
cop — pCo —aging(p)
8 | bic) — b}
bip — by —aging(¢)
b106 — 06b0
9 | bocy — by
boy — pbo
10 | a;b; — a; 1 >1
aip = pa; i > 1, ~aging(¢)

aicg — c{]ai_l

1 >1

19

Table 16: Rewriting rules used in the proof of Lemma 7. For a given gali, each rule of the forrx — (3 (resp.,a — X)
signifies that the trace is /-subsumed by the trage(resp., set of traceX). Each owner action appearing in a trace denotes
a burst associated with the owner. Each thief action appgani a trace denotes a burst associated with an arbitrag§. thi
The action variable denotes a thief action. Some of the rules involve more thantbief action; in such cases, we rely on
the following conventions to indicate whether two actions iatended to be associated with the same thief, or witleifit
thieves: (i) the action variablg, when used to denote a thief action, corresponds to a difféhéef than any other symbol

in the trace, (ii) multiple explicitly specified thief actie appearing in the same rule (including the conditions@oxf the
rule) are understood to be associated with the same thieépexhat a “hat” superscript denotes a different thief.aliyn the
predicatezging(¢) holds if and only ify) is an aging/-action. See Table 10 for a list of agidigactions.

¢ | Rewriting Rule Conditions
11 | a1b] — af
by — bl ¢ ¢ {a boa}U{b;cj:i>0}
bO,lbll — b’lbll
biby — bbb}, 1>0
c;by — bici i>0
ab’lb’l — bllab(),l
bl — bl i >0, —aging(¥)
Yb; — bl_,9 i > 1, aging(¥)
12 | agby — ay
a1c6 — C:]a(]
2% = By 7 % {8 bos, &b} U (bl 7 0]
b071b6 — b&b’l
pcobp — Cobpy pF#a
A i>0
c;by — bycp g i>0
abbbll — b:]ab(),l
aé{) 6b’2 — ébb&ab()’l
Yb} — bl i >0, —aging(¥)
Yb; — bi 19 i > 1, aging(9)
13 b07006 — b670
e — ¢y i >0, ~aging(v)
e, — ci_qy i > 1, aging(1)
bo,0% — Pboy —aging(¢)
bgoc) — ¥by aging ()
14 | ¥b] — bly i > 0, —aging ()
¥bi — bi_1¢ i > 1, aging()
15 | abg o — ag
abo,l — a’l
a) — Ya —aging(t))

Table 17: Additional rewriting rules used in the proof of Lemma 7. $ee caption of Table 16 for some notational remarks.

Rewriting Rule| Conditions
al) — ya —aging ()
¥b} — by —aging ()
ayb; — a) ¥ €{ap, a1}

Table 18: Rewriting rules used in the proof of Lemma 8. See the capifdfable 16 for some notational remarks.

20

