
A Randomized Time-Work Optimal Parallel Algorithm for Findinga Minimum Spanning ForestSeth Pettie and Vijaya RamachandranDepartment of Computer SciencesThe University of Texas at AustinAustin, TX 78712seth@cs.utexas.edu, vlr@cs.utexas.eduApril 27, 1999UTCS Technical Report TR99-13AbstractWe present a randomized algorithm to �nd a minimum spanning forest (MSF) in an undi-rected graph. With high probability, the algorithm runs in logarithmic time and linear work onan EREW PRAM. This result is optimal with respect to both work and parallel time, and isthe �rst provably optimal parallel algorithm for this problem under both measures.

0

1 IntroductionWe present a randomized parallel algorithm to �nd a minimum spanning forest (MSF) in an edge-weighted, undirected graph. On an EREW PRAM [KR90] our algorithm runs in expected loga-rithmic time and linear work in the size of the input; these bounds also hold with high probabilityin the size of the input. This result is optimal with respect to both work and parallel time, and isthe �rst provably optimal parallel algorithm for this problem under both measures.Here is a brief summary of related results. Following the linear-time sequential MSF algorithmof Karger, Klein and Tarjan [KKT95] (and building on it) came linear-work parallel MST algorithmsfor the CRCW PRAM [CKT94, CKT96] and the EREW PRAM [PR97]. The best CRCW PRAMalgorithm known to date [CKT96] runs in logarithmic time and linear work, but the time bound isnot known to be optimal. The best EREW PRAM algorithm known prior to our work is the resultof Poon and Ramachandran which runs in O(log n log log n2log� n) time and linear work. All ofthese algorithms are randomized. Recently a deterministic EREW PRAM algorithm for MSF wasgiven in [CHL99], which runs in logarithmic time with a linear number of processors, and hencewith work O((m + n) log n), where n and m are the number of vertices and edges in the inputgraph. It was observed by Poon and Ramachandran [PR98] that the algorithm in [PR97] could bespeeded up to run in O(log n � 2log� n) time and linear work by using the algorithm in [CHL99] as asubroutine (and by modifying the `Contract' subroutine in [PR97]).In this paper we improve on the running time of the algorithm in [PR97, PR98] to O(log n),which is the best possible, to within a constant factor, and we improve on the algorithm in [CKT96]by achieving the logarithmic time bound on the less powerful EREW PRAM.The structure of our algorithm is fairly simple. The most complex portion of our algorithm is thesubroutine calls it makes to the `CHL algorithm' for MSF [CHL99] (which we use as a black-box).As a result our algorithm can be used as a simpler alternative to several other parallel algorithms.1. For the CRCW PRAM we can replace the calls to the CHL algorithm by calls to a simplelogarithmic time, linear-processor CRCW algorithm such as the one in [AS87]. The resultingalgorithm runs in logarithmic time and linear work and is considerably simpler than the MSFalgorithm in [CKT96].2. As modi�ed for the CRCW PRAM, our algorithm is simpler than the linear-work logarithmic-time CRCW algorithm for connected components given in [Gaz91].3. Our algorithm improves on the EREW connectivity and spanning tree algorithms in [HZ94,HZ96] since we compute a minimum spanning tree within the same time and work bounds.Our algorithm is arguably simpler than the algorithms in [HZ94, HZ96].The rest of this paper describes and analyzes our algorithm. In the following we use the notationS + T to denote union of sets S and T , and we use S + e to denote the set formed by adding theelement e to the set S. We say that a result holds with high probability (or w.h.p.) in n if theprobability that it fails to hold is less than 1=nc, for any constant c > 0.2 The High-Level AlgorithmOur algorithm is divided into two phases along the lines of the CRCWPRAM algorithm of [CKT96].In Phase 1, the algorithm reduces the number of vertices in the graph from n to n=k vertices, wheren is the number of vertices in the input graph, and k = (log(2) n)2.y To perform this reductionyWe use log(r) n to denote the log function iterated r times, and log� n to denote the minimum r s.t. log(r) n � 1.1

the algorithm uses the familiar recursion tree of depth log� n [CKT94, CKT96, PR97], which givesrise to O(2log� n) recursive calls, but the time needed per invocation in our algorithm is well belowO(log n=2log� n). Thus the total time for Phase 1 is O(log n). We accomplish this by requiringPhase 1 to �nd only a subset of the MSF. By contracting this subset of the MSF we obtain a graphwith O(n=k) vertices. Phase 2 then uses an algorithm similar to the one in [PR97], but needs norecursion due to the reduced number of vertices in the graph. Thus Phase 2 is able to �nd the MSFof the contracted graph in O(log n) time and linear work.We assume that edge weights are unique. As always, uniqueness can be forced by ordering thevertices, then ordering identically weighted edges by their end points.Here is a high-level description of our algorithm.High-Level(G)(Phase 1) Gt := For all v 2 G, retain the lightest k edges in edge-list(v)M := Find-k-Min(Gt; log� n)G0:=Contract all edges in G appearing in M(Phase 2) Gs:=Sample edges of G0 with prob. 1=pk = 1= log(2) nFs :=Find-MSF(Gs)Gf := Filter(G0; Fs)F :=Find-MSF(Gf)Return(M + F)Theorem 2.1 With high probability, High-Level(G) returns the MSF of G in O(log n) time using(m+ n)= log n processors.In the following sections we describe and analyze the algorithms for Phase 1 and Phase 2, andthen present the proof of the main theorem for the expected running time. We then obtain ahigh probability bound for the running time and work. When analyzing the performance of thealgorithms in Phase 1 and Phase 2, we use a time-work framework, assuming perfect processorallocation. This can be achieved with high probability to within a constant factor, using the load-balancing scheme in [HZ94], which requires superlinear space, or the linear-space scheme claimedin [HZ96]. We discuss processor allocation in Section 7 where we point out that a simple schemesimilar to the one in [HZ94] takes only linear space on the QRQW PRAM [GMR94], which isa slightly stronger model than the EREW PRAM. The usefulness of the QRQW PRAM lies inthe fact the algorithms designed on that model map on to general-purpose models such as QSM[GMR97] and BSP [Val90] just as well as the EREW PRAM. We then describe the performance ofour MSF algorithm on the QSM and BSP.3 Phase 1In Phase 1, our goal is to contract the input graph G into a graph with O(n=k) vertices. We do thisby identifying certain edges in the minimum spanning forest of G and contracting the connectedcomponents formed by these edges. The challenge here is to identify these edges in logarithmictime and linear work.Phase 1 achieves the desired reduction in the number of vertices by constructing a k-Min forest(de�ned below). This is similar to the algorithm in [CKT96]. However, our algorithm is considerablysimpler. We show that a k-Min forest satis�es certain properties, and we exploit these properties2

to design a procedure Bor�uvka-A, which keeps the sizes of the trees contracted in the various stagesof Phase 1 to be very small so that the total time needed for contracting and processing edges inthese trees is o(log n=2log� n). Phase 1 also needs a Filter subroutine, which removes `k-min light'edges. We show that we can use an MSF veri�cation algorithm on the small trees we constructto perform this step. The overall algorithm for Phase 1, Find-k-Min uses these two subroutines toachieve the stated reduction in the number of vertices within the desired time and work bounds.3.1 k-Min ForestPhase 1 uses the familiar `sample, contract and discard edges' framework of earlier randomizedalgorithms for the MSF problem [KKT95, CKT94, CKT96, PR97]. However, instead of computinga minimum spanning forest, we will construct the k-Min tree [CKT96] of each vertex (where k =(log(2) n)2). Contracting the edges in these k-Min trees will produce a graph with O(n=k) vertices.To understand what a k-Min tree is, consider the Dijkstra-Jarnik-Prim minimum spanning treealgorithm:Dijkstra-Jarnik-Prim(G)S := fvg (choose an arbitrary starting vertex v)T := ;Repeat until T contains the MST of GChoose minimum weight edge (a; b) s.t a 2 S, b 62 ST := T + (a; b)S := S + bThe edge set k-Min(v) consists of the �rst k edges chosen by this algorithm, when started atvertex v. A forest F is a k-Min forest of G if F � MSF(G) and for all v 2 G; k-Min(v) � F .Let PT (x; y) be the set of edges on the path from x to y in tree T , and let maxweightfAg bethe maximum weight in a set of edges A.For any forest F inG, de�ne an edge (a; b) inG to be F -heavy ifweight(a; b) > maxweightfPF (a; b)gand to be F -light otherwise. If a and b are not in the same tree in F then (a; b) is F-light.LetM be the k-Min tree of v. We de�ne weightv(w) to bemaxweightfPM (v; w)g if w appears ink-Min(v), otherwise weightv(w) = maxweightfk-Min(v)g. De�ne an edge (a; b) to be k-Min-heavyif weight(a; b) > maxfweighta(b);weightb(a)g, and to be k-Min-light otherwise.Claim 3.1 Let the measure weightv(w) be de�ned with respect to any k in the range [1..n]. Thenweightv(w) � maxweightfPMSF (v; w)g.Proof: There are two cases, when w falls inside the k-Min tree of v, and when it falls outside. If w isinside k-Min(v), then weightv(w) is the same as maxweightfPMSF (v; w)g since k-Min(v) �MSF .Now suppose that w falls outside k-Min(v) and weightv(w) > maxweightfPMSF (v; w)g. Theremust be a path from v to w in the MSF consisting of edges lighter than maxweightfk-Min(v)g.However, at each step in the Dijkstra-Jarnik-Prim algorithm, at least one edge in PMSF is eligibleto be chosen in that step. Since w 62 k-Min(v), the edge with weight maxweightfk-Min(v)g isnever chosen. Contradiction. 2LetK be a vector of n values, each in the range [1::n]. Each vertex u is associated with a value ofK, denoted ku. De�ne an edge (u; v) to beK-Min-light ifweight(u; v) < maxfweightu(v); weightv(u)g,where weightu(v) and weightv(u) are de�ned with respect to ku and kv respectively.3

Lemma 3.1 Let H be a graph formed by sampling each edge in graph G with probability p. Theexpected number of edges in G that are K-Min-light in H is less than n=p, for any K.Proof: We show that any edge that is K-Min-light in G is also F -light where F is the MSF ofH. The lemma then follows from the sampling lemma of [KKT95] which states that the expectednumber of F -light edges in G is less than n=p. Let us look at any K-Min-light edge (v; w). ByClaim 3.1, weightv(w) � maxweightfPMSF (v; w)g, the measure used to determine F -lightness.Thus the criterion for K-Min-lightness, maxfweightv(w); weightw(v)g, must also be less than orequal to maxweightfPMSF (v; w)g. Restating this, if (v; w) is K-Min-light, it must be F -light aswell. 2We will use the above property of a k-Min forest to develop a procedure Find-k-Min(G; l). Ittakes as input the graph G and a suitable positive integer l, and returns a k-Min forest of G. Forl = log� n, it runs in logarithmic time and linear work. In the next few sections we describe somebasic steps and procedures used in Find-k-Min, and then present and analyze this main procedureof Phase 1.Since Phase 1 is concerned only with the k-Min tree of each vertex, it su�ces to retain only thelightest k edges incident on each vertex. Hence as stated in the �rst step of Phase 1 in algorithmHigh-Level in Section 2 we will discard all but the lightest k edges incident on each vertex since wewill not need them until Phase 2. This step can be performed in logarithmic time and linear workby a simple randomized algorithm that selects a sample of size pjLj from each adjacency list L,sorts this sample, and then uses this sorted list to narrow the search for the kth smallest elementto a list of size O(jLj3=4).3.2 Bor�uvka-A StepsIn a basic Bor�uvka step [Bor26], each vertex chooses its minimum weight incident edge, inducinga number of disjoint trees. All such trees are then contracted into single vertices, and uselessedges discarded. We will call edges connecting two vertices in the same tree internal and all othersexternal. All internal edges are useless, and if multiple external edges join the same two trees, allbut the lightest are useless.Our algorithm for Phase 1 uses a modi�ed Bor�uvka step in order to reduce the time bound too(log n) per step. All vertices are classi�ed as being either live or dead. After a modi�ed Bor�uvkastep, vertex v's parent pointer is p(v) = w, where (v; w) is the edge of minimum weight incident onv. In addition, each vertex has a threshold which keeps the weight of the lightest discarded edgeadjacent to v. The algorithm discards edges known not to be in the k-Min tree of any vertex. Thethreshold variable guards against vertices choosing edges which may not be in the MSF. A deadvertex v has the useful property (shown below) that for any edge (a; b) in k-Min(v), weight(a; b) �weight(v; p(v)), thus dead vertices need not participate in any more Bor�uvka steps.It is well-known that a Bor�uvka step generates a forest of pseudo-trees, where each pseudo-treeis a tree together with one extra edge that forms a cycle of length 2. In our algorithm we will assumethat a Bor�uvka step also removes one of the edges in the cycle so that it generates a collection ofrooted trees.The following three claims refer to any tree resulting from a modi�ed Bor�uvka step. Theirproofs are straightforward and are omitted.Claim 3.2 The sequence of edge weights encountered on a path from v to root(v) is monotonicallydecreasing.Claim 3.3 If depth(v) = d then d-Min(v) consists of the edges in the path from v to root(v).Furthermore, the weight of (v; p(v)) is greater than any other edge in d-Min(v).4

Claim 3.4 If the minimum-weight incident edge of u is (u; v), k-Min(u) � (k-Min(v) + (u; v)).Claim 3.5 Let T be a tree induced by a Bor�uvka step, and let T 0 be a subtree of T . If e is theminimum weight incident edge on T , then the minimum weight incident edge on T 0 is either e oran edge of T .Proof: Suppose, on the contrary that the minimum weight incident edge on T 0 is e0 62 T , andlet v and v0 be the end points of e and e0 which are inside T . Consider the paths P (P 0) from v(v0) to the root of T . By Claim 3.2, the edge weights encountered on P and P 0 are monotonicallydecreasing. There are two cases. If T 0 contains some, but not all of P 0, then e0 must lie along P 0.Contradiction. If T 0 contains all of P 0, but only some of P , then some edge e00 2 P is adjacent toT 0. Then w(e0) < w(e00) < w(e), also a contradiction. 2The procedure Bor�uvka-A(H; l; F) given below returns a contracted version of H with thenumber of live vertices reduced by a factor of l. Edges designated as parent pointers, which areguaranteed to be in the MSF of H, are returned in F . Initially F = ;.Bor�uvka-A(H; l; F)Repeat log l times: (log l modi�ed Bor�uvka steps)F 0 := ;For each live vertex vChoose min. weight edge (v; w)(1) If weight(v; w) > threshold(v), v becomes dead, stop elsep(v) := wF 0 := F 0 + (v;p(v))Each tree T induced by edges of F 0 is one of two types:If root of T is dead, then(2) Every vertex in T becomes dead (Claim 3.4)If T contains only live vertices(3) If depth(v) � k, v becomes dead (Claim 3.3)Contract the subtree of T made up of live verticesThe resulting vertex is live, has no parent pointer, andkeeps the smallest threshold of its constituent verticesF := F + F 0Lemma 3.2 If Bor�uvka-A designates a vertex as dead, its k-Min tree has already been found.Proof: Vertices make the transition from live to dead only at the lines indicated by a number. Byour assumption that we only discard edges that cannot be in the k-Min tree of any vertex, if thelightest edge adjacent to any vertex has been discarded, we know its k-Min tree has already beenfound. This covers line (1). The correctness of line (2) follows from Claim 3.4. Since (v; p(v)) isthe lightest incident edge on v, k-Min(v) � k-Min(p(v)) + (v; p(v)). If p(v) is dead, then v can alsobe called dead. Since the root of a tree is dead, vertices at depth one are dead, implying vertices atdepth two are dead, and so on. The validity of line (3) follows directly from Claim 3.3. If a vertex�nds itself at depth � k, its k-Min tree lies along the path from the vertex to its root. 2Lemma 3.3 After a call to Bor�uvka-A(H; k + 1; F), the k-Min tree of each vertex is a subset ofF . 5

Proof: By Lemma 3.2, dead vertices already satisfy the lemma. After a single modi�ed Bor�uvkastep, the set of parent pointers associated with live vertices induce a number of trees. Let T (v)be the tree containing v. We assume inductively that after dlog ie modi�ed Bor�uvka steps, the(i� 1)-Min tree of each vertex in the original graph has been found (this is clearly true for i = 1).For any live vertex v let (x; y) be the minimum weight edge s.t. x 2 T (v); y 62 T (v). By theinductive hypothesis, the (i�1)-Min trees of v and y are subsets of T (v) and T (y) respectively. ByClaim 3.5, (x; y) is the �rst external edge of T (v) chosen by the Dijkstra-Jarnik-Prim algorithm,starting at v. As every edge in (i�1)-Min(y) is lighter than (x; y), (2(i�1)+1)-Min(v) is a subsetof T (v) [f(x; y)g [T (y). Since edge (x; y) is chosen in the (dlog ie + 1)th modi�ed Bor�uvka step,(2i � 1)-Min(v) is a subset of T (v) after dlog ie + 1 = dlog 2ie modi�ed Bor�uvka steps. Thus afterlog(k + 1) steps, the k-Min tree of each vertex has been found. 2Lemma 3.4 After b modi�ed Bor�uvka steps, the length of any edge list is bounded by kkb.Proof: This is true for b = 0. Assuming the lemma holds for b � 1 modi�ed Bor�uvka steps, thelength of any edge list after that many steps is � kkb�1 . Since we only contract trees of height < k,the length of any edge list after b steps is < (kkb�1)k = kkb . 2It is shown in the next section that our algorithm only deals with graphs that are the result ofO(log k) modi�ed Bor�uvka steps. Hence the maximum length edge list is kkO(log k) .The costliest step in Bor�uvka-A is calculating the depth of each vertex. After the minimumweight edge selection process, the root of each induced tree will broadcast its depth to all depth1 vertices, which in turn broadcast to depth 2 vertices, etc. Once a vertex knows it is at depthk � 1, it may stop, letting all its descendents infer that they are at depth � k. Interleaved witheach round of broadcasting is a processor allocation step. We account for this cost separately insection 7.Lemma 3.5 Let G1 have m1 edges. Then a call to Bor�uvka-A(G1; l; F) can be executed in timeO(kO(log k) + log l � logn � (m1=m)) with (m+ n)= log n processors.Proof: Let G1 be the result of b modi�ed Bor�uvka steps. By Lemma 3.4, the maximum degree ofany vertex after the ith modi�ed Bor�uvka step in the current call to Bor�uvka-A is kkb+i . Let us nowlook at the required time of the ith modi�ed Bor�uvka step. Selecting the minimum cost incident edgetakes time log kkb+i , while the time to determine the depth of each vertex is k � log kkb+i . Summingover the log l modi�ed Bor�uvka steps, the total time is bounded by Plog li kO(b+i) = kO(b+log l). Asnoted above, the algorithm performs O(log k) modi�ed Bor�uvka steps on any graph, hence the timeis kO(log k).The work performed in each modi�ed Bor�uvka step is linear in the number of edges. Summingover log l such steps and dividing by the number of processors, we arrive at the second term in thestated running time. 23.3 The Filtering StepThe Filter ForestConcurrent with each modi�ed Bor�uvka step, we will maintain a Filter forest, a structurethat records which vertices merged together at what time, and the edge weights involved. (Thisstructure appeared �rst in [King97]). If v is a vertex of the original graph, or a new vertexresulting from contracting a set of edges, there is a corresponding vertex �(v) in the Filter for-est. During a Bor�uvka step, if a vertex v becomes dead, a new vertex w is added to the Filter6

forest, as well as a directed edge (�(v); w) having the same weight as (v; p(v)). If live verticesv1; v2; : : : ; vj are contracted into a live vertex v, a vertex �(v) is added to the Filter forest in ad-dition to directed edges (�(v1); �(v)); (�(v2); �(v)); : : : ; (�(vj); �(v)), having the weights of edges(v1;p(v1)); (v2;p(v2)); : : : ; (vj ;p(vj)), respectively.The measures weightv(w) can be easily computed in the following way. Let Pf (x; y) be the pathfrom x to y in the Filter forest. If �(v) and �(w) are not in the same Filter tree, thenweightv(w) = maxweightfPf (�(v); root(�(v)))g andweightw(v) = maxweightfPf (�(w); root(�(w)))gIf v and w are in the same Filter tree, let LCA = LCA(�(v); �(w)), thenweightv(w) = weightw(v) = maxfmaxweightfPf (�(v);LCA)g;maxweightfPf (�(w);LCA)gIt is shown in [King97] that the heaviest weight in the path from u to v in the MSF is the sameas the heaviest weight in the path from �(u) to �(v) in the Filter forest (if there is such a path).Claim 3.6 The maximum weight on the path from �(v) to root(�(v)) is the same as the maximumweight edge in r-Min(v), for some r.Proof: If root(�(v)) is at height h, then it is the result of h Bor�uvka steps. Assume that theclaim holds for the �rst i < h Bor�uvka steps. After a number of contractions, vertex v of theoriginal graph is now represented in the current graph by vc. Let Tvc be the tree induced by theith Bor�uvka step which contains vc, and let e be the minimum weight incident edge on Tvc . Bythe inductive hypothesis, maxweightfPf (�(v); �(Tvc))g = maxweightfr0-Min(v)g for some r0. Aswas shown in the proof of Claim 3.5, all edges on the path from vc to edge e have weight at mostmaxfweight(vc; p(vc)); weight(e)g. Each of the edges (vc; p(vc)) and e has a corresponding edge inthe Filter forest, namely (�(vc); p(�(vc))) and (�(Tvc); p(�(Tvc))). Since both these edges are on thepath from �(v) to p(�(Tvc)), maxweightfPf (�(v); p(�(Tvc)))g = maxweightfr-Min(v)g for somer � r0. Thus the claim holds after i+ 1 Bor�uvka steps. 2The Filter StepIn a call to Filter(H;F) in Find-k-Min, we examine each edge e = (x; y) in H � F , and deletee from H if weight(e) > maxfweightv(w); weightw(v)g In order to carry out this test we canuse the O(log n) time, O(m) work MSF veri�cation algorithm of [KPRS97], where we modify thealgorithm for the case when x and y are not in the same tree to test the pairs (�(x); root(�(x))and (�(y); root(�(y)), and we delete e if both of these pairs are identi�ed to be deleted. Thiscomputation will take time O(log r) where r is the size of the largest tree formed.The procedure Filter discards edges that cannot be in the k-Min tree of any vertex. When itdiscards an edge (a; b), it updates the threshold variables of both a and b, so that threshold(a) isthe weight of the lightest discarded edge adjacent to a. If a's minimum weight edge is ever heavierthan threshold(a), k-Min(a) has already been found, and a becomes dead.Claim 3.7 Let H 0 be a graph formed by sampling each edge in H with probability p, and F be ak-Min forest of H 0. The call to Filter(H;F) returns a graph containing a k-Min forest of H, whoseexpected number of edges is n=p.Proof: For each vertex v, Claim 3.6 states thatmaxweightfPf (�(v); root(�(v)))g = maxweightfkv-Min(v) for some value kv. By building a vector K of such values, one for each vertex, we are ableto check for K-Min-lightness using the Filter forest. It follows from Lemma 3.1 that the expected7

number of K-Min-light edges in H is less than n=p. Now we need only show that a k-Min-lightedge of H is not removed in the Filter step. Suppose that edge (u; v) is in the k-Min tree of u inH, but is removed by Filter. If v is in the ku-Min tree of u (w.r.t. H 0), then edge (u; v) was theheaviest edge in a cycle and could not have been in the MSF, much less any k-Min tree. If v wasnot in the ku-Min tree of u (w.r.t. H 0), then weight(u; v) > maxweightfku-Min(u)g, meaning edge(u; v) could not have been picked in the �rst k steps of the Dijkstra-Jarnik-Prim algorithm. 23.4 Finding a k-Min ForestWe are now ready to present the main procedure of Phase 1, Find-k-Min. (Recall that the initialcall { given in Section 2 { is Find-k-Min(Gt; log� n), where Gt is the graph obtained from G byremoving all but the k lightest edges on each adjacency list.)Find-k-Min(H; i)Hc := Bor�uvka-A(H; (log(i�1) n)4; F)if i = 3, return(F)Hs := sample edges of Hc with prob. 1=(log(i�1) n)2Fs := Find-k-Min(Hs; i� 1)Hf := Filter(Hc; Fs)F 0 := Find-k-Min(Hf ; i� 1)Return(F + F 0)H is a graph with some vertices possibly marked as dead; i is a parameter that indicates thelevel of recursion (which determines the number of Bor�uvka steps to be performed and the samplingprobability).Lemma 3.6 The call Find-k-Min(Gt; log� n) returns a set of edges that includes the k-Min tree ofeach vertex in Gt.Proof: The proof is by induction on i.Base: i = 3. Then Find-k-Min(H; 3) returns F , which by Lemma 3.3 contains the k-min tree ofeach vertex.Induction Step: Assume inductively that Find-k-Min(H; i�1) returns the k-min tree ofH. Considerthe call Find-k-Min(H; i). By the induction assumption the call to Find-k-Min(Hs; i � 1) returnsthe k-min tree of each vertex in Hs. By Claim 3.7 the call to Filter(Hc; Fs) returns in Hf a set ofedges that contains the k-Min trees of all vertices in Hc. Finally, by the inductive assumption, theset of edges returned by the call to Find-k-min(Hf ; i� 1) contains the k-Min trees of all vertices inHf . Since F 0 contains the (log(i�1) n)-Min tree of each vertex in H, and Find-k-Min(H; i) returnsF + F 0, it returns the edges in the k-Min tree of each vertex in H. 2Claim 3.8 The following invariants are maintained at each call to Find-k-min. The number oflive vertices in H � n=(log(i) n)4, and the expected number of edges in H � m=(log(i) n)2, where mand n are the number of edges and vertices in the original graph.Proof: These clearly hold for the initial call, when i = log� n. By Lemma 3.3, the contractedgraph Hc has no more than n=(log(i�1) n)4 live vertices. Since Hs is derived by sampling edges withprobability 1=(log(i�1) n)2, the expected number of edges in Hs is � m=(log(i�1) n)2, maintainingthe invariants for the �rst recursive call. 8

By Lemma 3.1, the expected number of edges in Hf � n(log(i�1) n)2(log(i�1) n)4 = n=(log(i�1) n)2. Since Hfhas the same number of vertices as Hc, both invariants are maintained for the second recursive call.23.5 Performance of Find-k-MinLemma 3.7 Find-k-min(Gt; log� n) runs in expected time O(log n) and work O(m+ n).Proof: Since recursive calls to Find-k-min proceed in a sequential fashion, the total running timeis the sum of the local computation performed in each invocation. Aside from randomly samplingthe edges, which takes constant time and work linear in the number of edges, the local computationconsists of calls to Filter and Bor�uvka-A.In a given invocation of Find-k-min, the number of Bor�uvka steps performed on graph H is thesum of all Bor�uvka steps performed in all ancestral invocations of Find-k-min, i.e. Plog� ni=3 O(log(i) n),which is O(log(3) n). >From our bound on the maximum length of edge lists (Lemma 3.4), we caninfer that the size of any tree in the Filter forest is kkO(log(3) n) , thus the time needed for each mod-i�ed Bor�uvka step and each Filter step is kO(log(3) n). Summing over all such steps, the total timerequired is o(log n).The work required by the Filter procedure and each Bor�uvka step is linear in the number ofedges. As the number of edges in any given invocation is O(m=(log(i) n)2), and there are O(log(i) n)Bor�uvka steps performed in this invocation, the work required in each invocation is O(m= log(i) n)(recall that the i parameter indicates the depth of recursion). Since there are 2log� n�i invocationswith depth parameter i, the total work is given by Plog� ni=3 2log� n�iO(m= log(i) n), which is O(m).24 Phase 2Recall the Phase 2 portion of our overall algorithm High-Level:(the number of vertices in Gs is � n=k)Gs :=Sample edges of G0 with prob. 1=pk = 1= log(2) nFs :=Find-MSF(Gs)Gf := Filter(G0; Fs)F := Find-MSF(Gf)The procedure Filter(G;F) ([KPRS97]) returns the F -light edges of G. The procedure Find-MSF(G1), described below, �nds the MSF of G1 in time O(logn log(2) n (m1=m)), where m1 is thenumber of edges in G1. Because we call Find-MSF on graphs having expected size O(m= log(2) n),each call takes O(log n) time.The graphsGs andGf each have expectedm=pk = m= log(2) n edges. Gs is derived by samplingeach edge with prob 1=pk, and by the sampling lemma of [KKT95], the expected number of edgesin Gf is (m=k)=(1=pk) = m=pk.4.1 The Find-MSF ProcedureThe procedure Find-MSF(H) is similar to previous randomized parallel algorithms, except it usesno recursion. Instead, a separate base case algorithm is used in place of recursive calls. We alsouse slightly di�erent Bor�uvka steps, in order to reduce the work. These modi�cations are inspiredby [PR97] and [PR98] respectively. 9

As its Base-case, we use the algorithm of Chong, Han, and Lam [CHL99], which takes timeO(log n) using m+ n processors. By guaranteeing that it is only called on graphs of expected sizeO(m= log n), the running time remains O(log n) with (m+ n)= log n processors.Find-MSF(H)Hc = Bor�uvka-B(H; log2 n; F)Hs = Sample edges of Hc with prob. p = 1= log nFs = BaseCase(Hs)Hf = Filter(Hc; Fs)F 0 = BaseCase(Hf)Return(F + F 0)After the call to Bor�uvka-B, the graph Hc has < n= log2 n vertices. Since Hs is derived bysampling the edges of Hc with probability 1= log n, the expected number of edges to the �rstBaseCase call is O(m= log n). By the sampling lemma of [KKT95], the expected number of edgesto the second BaseCase call is < (n= log2 n)=(1= log n), thus the total time spent in these subcalls isO(log n). Assuming the size of H conforms to its expectation of O(m= log(2) n), the calls to Filterand Bor�uvka-B also take O(log n) time, as described below.The Bor�uvka-B(H; l; F) procedure returns a contracted version of H with � m=l vertices. Ituses a simple growth control schedule, designating vertices as inactive if their degree exceeds l. Wecan determine if a vertex is inactive by performing list ranking on its edge list for log l time steps.If the computation has not stopped after this much time, then its edge list has length > l.Bor�uvka-B(G; l; F)Repeat log l timesFor each vertex, let it be inactive if its edge listhas more than l edges, and active otherwise.For each active vertex vchoose min. weight incident edge eF = F + eUsing the edge-plugging technique, build asingle edge list for each induced tree (O(1) time)Contract all trees of inactive verticesThe last step takes O(logn) time; all other steps take O(log l) time, as they deal with edgelists of length O(l). Consequently, the total running time is O(log n + log2 l). For each iterationof the main loop, the work is linear in the number of edges. Assuming the graph conforms to itsexpected size of O(m= log(2) n), the total work is linear. The edge-plugging technique was �rst usedby Johnson & Metaxas [JM92], as well as the idea of a growth control schedule.5 Proof of Main TheoremProof: (of Theorem 2.1) The set of edges M returned by Find-k-Min is a subset of the MSF of G.By contracting the edges of M to produce G0, the MSF of G is given by the edges of M togetherwith the MSF of G0. The call to Filter produces graph Gf by removing from G0 edges known notto be in the MSF. Thus the MSF of Gf is the same as the MSF of G0. Assuming the correctnessof Find-MSF, the set of edges F constitutes the MSF of Gf , thus M + F is the MSF of G.10

Earlier we have shown that each step of High-Level requires O(log n) time and work linear inthe number of edges. In the next two sections we show that w.h.p, the number of edges encounteredin all graphs during the algorithm is linear in the size of the original graph. 26 High Probability BoundsConsider a single invocation of Find-k-min(H; i), where H has m0 edges and n0 vertices. We wantto place likely bounds on the number of edges in each recursive call to Find-k-min, in terms of m0and i.For the �rst recursive call, the edges ofH are sampled independently with probability 1=(log(i�1) n)2.Call the sampled graph H1. By applying a Cherno� bound, the probability that the size of H1 isless than twice its expectation is 1� exp(�
(m0=(log(i�1) n)2)).Before analyzing the second recursive call, we recall the sampling lemma of [KKT95] which statesthat the number of F -light edges conforms to the negative binomial distribution with parametersn0 and p, where p is the sampling probability, and F is the MSF of H1. As we saw in the proof ofLemma 3.1, every k-Min-light edge must also be F -light. Using this observation, we will analyzethe size of the second recursive call in terms of F -light edges, and conclude that any bounds weattain apply equally to k-Min-light edges.We now bound the likelihood that more than twice the expected number of edges are F -light.This is the probability that in a sequence of more than 2n0=p
ips of a coin, with probability p ofheads, the coin comes up heads less than n0 times (since each edge selected by a coin toss of headsgoes into the MSF of the sampled graph). By applying a Cherno� bound, this is exp(�
(n0)).In this particular instance of Find-k-min, n0 � m=(log(i�1) n)4 and p = 1=(log(i�1) n)2, so theprobability that fewer than 2m=(log(i�1) n)2 edges are F -light is 1� exp(�
(m=(log(i�1) n)4)).Given a single invocation of Find-k-min(H; i), we can bound the probability that H has morethan 2log� n�im=(log(i) n)2 edges by exp(�
(m=(log(i) n)4)). This follows from applying the ar-gument used above to each invocation of Find-k-min from the initial call to the current callat depth log� n � i. Summing over all recursive calls to Find-k-min, the total number of edges(and thus the total work) is bounded by Plog� ni=3 22 log� n�2im=(log(i) n)2 = O(m) with probability1� exp(�
(m=(log(3) n)4)).The analysis of Phase 2 is entirely analogous and much simpler as it does not have to addressthe e�ect of recursive calls. We omit the details.The probability that our bounds on the time and total work performed by the algorithm fail tohold is exponentially small in the input size. However, this assumes perfect processor allocation.In the next section we show that the probability that work fails to be distributed evenly amongthe processors is less than 1=m!(1). Thus the overall probability of failure is very small, and thealgorithm runs in logarithmic time and linear work w.h.p.7 Processor AllocationAs stated in Section 2, the processor allocation needed for our algorithm can be performed bya fairly simple algorithm given in [HZ94] that takes logarithmic time and linear work but usessuper-linear space, or by a more involved algorithm claimed in [HZ96] that runs in logarithmictime and linear work and space. We show here that a simple algorithm similar in spirit to the onein [HZ94] runs in logarithmic time and linear work and space on the QRQW PRAM [GMR94]. TheQRQW PRAM is intermediate in power between the EREW and CRCW PRAM in that it allows11

concurrent memory accesses, but the time taken by such accesses is equal to the largest number ofprocessors accessing any single memory location.We assume that the total size of our input is n, and that we have q = n= log n processors.We group the q processors into q=r groups of size r = log n and we make an initial assignment ofO(r logn) elements to each group. This initial assignment is made by having each element choosea group randomly. The expected number of elements in each group is r logn and by a Cherno�bound, w.h.p. there are O(r logn) elements in each group. Vertices assigned to each group can becollected together in an array for that group in O(log n) time and O(n) work and space by usingthe QRQW PRAM algorithm for multiple compaction given in [GMR96], which runs in logarithmictime and linear work with high probability. (We do not need the full power of the algorithm in[GMR96] since we know ahead of time that each group has � c log2 n elements w.h.p., for a suitableconstant c. Hence it su�ces to use the heavy multiple compaction algorithm in [GMR96] to achievethe bounds of logarithmic time and linear work and space.)A simple analysis using Cherno� bounds shows that on each new graph encountered during thecomputation each group receives either < log n elements, or within a constant factor of its expectednumber of elements w.h.p. Hence in O(log log n) EREW PRAM steps each processor within a groupcan be assigned 1=(log n) of the elements in its group. This processor re-allocation scheme takesO(log logn) time per stage and linear space overall, and with high probability, achieves perfectbalance to within a constant factor. The total number of processor re-allocation steps needed byour algorithm is O(2log� n � k log k) = O(log n= log logn), hence the time needed to perform all ofthe processor allocation steps is O(log n) w.h.p.We note that the probability that processors are allocated optimally (to within a constantfactor) can be increased to 1�n�!(1) by increasing the group size r. Since we perform o((log(2) n)3)processor allocation steps, r can be set as high as n1=(log(2) n)3 without increasing the overall O(log n)running time. Thus the high probability bound on the number of items in each group beingO(r logn) becomes 1�n�!(1). It is shown in [GMR96] that the heavy multiple compaction algorithmruns in time O(log� n logm= log logm) time w.h.p. in m, for any m > 0. By choosing m =nlog log n= log� n, we obtain O(log n) running time for this initial step with probability 1 � n�!(1),which is also the overall probability bound for processor allocation.8 Adaptations to other Practical Parallel ModelsOur results imply good MSF algorithms for the QSM [GMR97] and BSP [Val90] models, whichare more realistic models of parallel computation than the PRAM models. Theorem 8.1 givenbelow follows directly from results mapping EREW and QRQW computations on to QSM given in[GMR97]. Theorem 8.2 follows from the QSM to BSP emulation given in [GMR97] in conjunctionwith the observation that the slowdown in that emulation due to hashing does not occur for ouralgorithm since the assignment of vertices and edges to processors made by our processor allocationscheme achieves the same e�ect.Theorem 8.1 An MSF of an edge-weighted graph on n nodes and m edges can be found inO(g log n) time and O(g(m + n)) work w.h.p, using O(m + n) space on the QSM with a simpleprocessor allocation scheme, where g is the gap parameter of the QSM.Theorem 8.2 An MSF of an edge-weighted graph on n nodes and m edges can be found on theBSP in O((L + g) log n) time w.h.p., using (m + n)= log n processors and O(m + n) space with asimple processor allocation scheme, where g and L are the gap and periodicity parameters of theBSP. 12

References[AS87] B. Awerbuch, Y. Shiloach. New connectivity and MSF algorithms for shu�e-exchange networksand PRAM. IEEE Trans. Computers, vol. C-36, 1987, pp. 1258-1263.[Bor26] O. Bor�uvka . O jist�em probl�emu minima�aln�im. Moravsk�e P�r�irodov�edeck�e Spole�cnosti 3, (1926), pp.37-58. (In Czech).[CHL99] K. W. Chong, Y. Han and T. W. Lam. On the parallel time complexity of undirected connectivityand minimum spanning trees. In Proc. SODA 1999.[CKT94] R. Cole, P.N. Klein, and R.E. Tarjan. A linear-work parallel algorithm for �nding minimumspanning trees. In Proc. SPAA, 1994, pp. 11{15.[CKT96] R. Cole, P.N. Klein, and R.E. Tarjan. Finding minimum spanning trees in logarithmic time andlinear work using random sampling. In Proc. SPAA, 1996, pp. 213{219.[Dij59] E.W. Dijkstra. A note on two problems in connexion with graphs. In Numer. Math., 1 (1959), pp.269-271.[Gaz91] H. Gazit An optimal randomized parallel algorithm for �nding connected components in a graph.SIAM J. Comput., vol. 20, 1991, pp. 1046-1067.[GMR94] P.B. Gibbons, Y. Matias, and V. Ramachandran. The QRQW PRAM: Accounting for contentionin parallel algorithms. In Proc. SODA, 1994, pp. 638{648.[GMR96] P. B. Gibbons, Y. Matias, and V. Ramachandran. E�cient low-contention parallel algorithms. InJour. Comput. Systems Sciences, vol. 53, 1996, pp. 395-416.[GMR97] P. B. Gibbons, Y. Matias, and V. Ramachandran. Can a shared-memory model serve as a bridgingmodel for parallel computation? In Proc. SPAA, 1997, pp. 72{83.[HZ94] S. Halperin and U. Zwick. An optimal randomized logarithmic time connectivity algorithm for theEREW PRAM. In Proc. SPAA, 1994, pp. 1-10.[HZ96] S. Halperin and U. Zwick. Optimal randomized EREW PRAM algorithms for �nding spanningforests and for other basic graph connectivity problems. In Proc. SODA, 1996, pp. 438{447, 1996.[Jar30] V. Jarn�ik. O jist�em probl�emu minima�aln�im. Moravsk�e P�r�irodov�edeck�e Spole�cnosti 6, 1930, pp.57-63. (In Czech).[JM92] D. B. Johnson and P. Metaxas. Connected components in O(log3=2 n) parallel time for CREWPRAM. Jour. Comput. Sys. Sciences, vol. 54, 1997, pp. 227{242.[King97] V. King. A simpler minimum spanning tree veri�cation algorithm. Algorithmica, vol. 18, 1997, pp.263-270.[KKT95] D. R. Karger, P. N. Klein, and R. E. Tarjan. A randomized linear-time algorithm to �nd minimumspanning trees. Journal of the ACM, 42:321{328, 1995.[KPRS97] V. King, C. K. Poon, V. Ramachandran, and S. Sinha. An optimal EREW PRAM algorithm forminimum spanning tree veri�cation. Information Processing Letters, 62(3):153{159, 1997.[KR90] R.M. Karp and V. Ramachandran. Parallel algorithms for shared-memory machines. In Handbookof Theoretical Computer Science, Vol. A, 1990, pp. 869-941. Elsevier Science, The Netherlands.[PR97] C. K. Poon, V. Ramachandran. A randomized linear work EREW PRAM algorithm to �nd aminimum spanning forest. Proc ISAAC, 1997, pp. 212.-222.13

[PR98] C. K. Poon, V. Ramachandran. Private communication, 1998.[Val90] L. G. Valiant. A bridging model for parallel computation. Communications of the ACM, 33(8):103{111, 1990.[Prim57] R.C. Prim. Shortest connection networks and some generalizations. Bell System Technical Journal,36:1389-1401.

14

