
Maximally Concurrent ProgramsRAJEEV JOSHI and JAYADEV MISRAThe University of Texas at AustinAugust 17, 1999AbstractTypically, program design involves constructing a program, P , thatimplements a given speci�cation, S; that is, the set P of executions of Pis a subset of the set S of executions satisfying S. In many cases, we seeka P that not only implements S but for which P = S. Then, every exe-cution satisfying the speci�cation is a possible execution of the program;we call P maximal for the speci�cation S. We argue in this paper thattraditional speci�cations of concurrent programs are incomplete withoutsome maximality requirement because they can often be implemented ina sequential fashion. Additionally, a maximal solution can be re�ned toa variety of programs each appropriate for execution on a di�erent com-puting platform.In this paper, we suggest a method for proving the maximality of aprogram with respect to a given speci�cation. Even though we provefacts about possible executions of programs there is no need to appealto branching time logics; we employ a fragment of linear temporal logicfor our proofs. The method results in concise proofs of maximality formany non-trivial examples. The method may also serve as a guide inconstructing maximal programs.1 IntroductionTraditionally, a program speci�cation is given by safety and progress properties.A safety property { of the form that no two neighbors eat simultaneously in adining philosophers solution { is used to exclude certain undesirable executionsequences. A speci�cation with safety properties alone can be implemented by aprogram that does nothing; then, the safety constraints have been implementedby excluding all non-trivial executions. Therefore, it is necessary to specifyprogress properties { of the form that some hungry philosopher eats eventually{ requiring that some execution sequences be included. Safety and progressrequirements are su�cient for specifying non-trivial sequential programmingtasks, but they are not su�cient for concurrent program design, because, forinstance, in the case of the dining philosophers the solution may allow only onephilosopher to eat at a time, thus eliminating all concurrency. We propose a1

new class of properties, called maximality properties, to ensure that only themost concurrent executions are included. Thus, the sequential solution to thedining philosophers problem will be unacceptable as a solution since it wouldnot meet the maximality requirement.Program design, typically, involves constructing a program, P , that imple-ments a given speci�cation, S; that is, the set P of executions of P is a subsetof the set S of executions satisfying S. For instance, given a speci�cation togenerate an in�nite sequence of natural numbers any program that generatesa sequence of zeroes implements the speci�cation. So does the program thatgenerates the natural numbers in sequence. In many cases, we seek an programP that not only implements S { i.e., P � S { but for which P = S. Then everyexecution satisfying the speci�cation S is a possible execution of P ; we call Pmaximal for speci�cation S. For instance, the program that generates a streamof zeroes is not maximal for the speci�cation to generate an in�nite sequence ofnatural numbers, nor is the scheduler that allows a single philosopher to eat ata time.There are at least three reasons why we are interested in maximal solutions.First, as we have remarked in the �rst paragraph, we exploit maximality toeliminate undesirable solutions for a given speci�cation, that restrict concur-rency, for instance. A maximal solution does not restrict concurrency; in fact,it allows maximal concurrency.Second, we often simulate an artifact by a program and the latter has tosimulate all behaviors of the former; in this case, the simulation program hasto be maximal for the speci�cation of the artifact. In section 4.3, we considera faulty channel that may lose, duplicate or reorder messages sent along it; amaximal program for simulation of this device is required in order to studythe correctness of senders and receivers that communicate over such channels,particularly, if we use model checking[5] to prove the correctness of some (�nite)state system.The third reason for designing maximal solutions is that we often develop(and prove correct) such a solution, and then re�ne it { by eliminating a certaindegree of non-determinism, for instance { to obtain an program that is actuallyimplemented. This strategy may be easier than developing the implementedprogram directly. A single maximal program for a problem may be the basisfor a family of interrelated programs, each of which may be appropriate fora di�erent computing platform. We show several re�nements of a maximalsolution for task scheduling in section 5.5.A maximal solution is, typically, non-deterministic; in many cases the non-determinism is unbounded.Overview of the paper In this paper, we suggest a method for proving themaximality of a program with respect to a given speci�cation. Given a program,P , that is to be proven maximal, we have to show that any sequence of states, �,meeting the speci�cation is a possible output of the program. We �rst constructa constrained program, P 0, from P and �; the constrained program retains2

the structure of P , but its actions are restricted by guards and augmented byassignments to certain auxiliary variables. Next, we show that all fair executionsof P 0 produce � and that any such execution corresponds to a fair execution ofP ; hence, � is a possible output of P .Even though we prove facts about possible executions of programs there is noneed to appeal to branching time logics; we employ a fragment of linear temporallogic for our proofs. The method seems to be quite e�ective in practice, resultingin concise proofs for non-trivial examples such as fair unordered channel ofsection 4.2 and task scheduler of section 5. The proposed method may alsoserve as a guide in constructing maximal programs from speci�cations.2 Programs and their Speci�cations2.1 Programming ModelWe adopt the programming model of UNITY[4]. A program has a set of vari-ables that de�ne its state, an initial condition which is a predicate over programstates, and a set of actions, where each action is a total function over programstates. 1A program execution is an in�nite sequence of the form �0A0�1:::�iAi�i+1::where each �i is a program state and Ai is an action; �0 satis�es the initialcondition and �i+1 = Ai(�i). Each execution satis�es the following fairnessrequirement: each action appears in�nitely often in an execution.We employ the following notation to describe the programming examplesin this paper. The initial condition is de�ned in an initially section where theinitial values of some of the variables are declared; the uninitialized variableshave arbitrary initial values. The actions are written as guarded commands,preceded optionally by a label, as in� :: g ! s.Execution of � has no e�ect in a state if g does not hold in that state; otherwises is executed. We assume that execution of s terminates from any state whereg is de�ned.As an example, consider the following program that has two integer variablesx; n. Program FairNaturalvar x; n: integerinitially n := 0�:: n := n+ 1�:: x; n := n; 0end fFairNaturalgWe claim that once x is non-negative it remains non-negative, and x isin�nitely often positive. We prove these claims in the section 2.2. Additionally,1In section 4, we weaken the condition that each action is a total function; we allow actionsto be non-deterministic. 3

we show in section 3.4 that any sequence of states satisfying these two propertiesis the result of some execution of this program. Thus, this program is maximalfor the speci�cation that requires generation of an in�nite sequence of naturalnumbers. 2Stuttering Each program contains skip as an action; this action will not beshown explicitly in the program. The e�ect of executing skip is to leave theprogram state unchanged; thus, the state is repeated in an execution. The onlyfairness requirement in executing skip is that it can be executed consecutivelyonly a �nite number of times; however, there is no obligation to execute it at all.Therefore, each segment of the execution in which the same state is repeateddue to execution of skip is �nite in length. Such a �nite segment will be calleda stuttering sequence. The notion of stuttering is due to Lamport[6].Interaction with an Environment An environment that interacts withFairNatural will, typically, \call" � to receive the next value of x. The pro-gramming model in this paper does not support procedure calls. A more generalmodel, such as Seuss[10], would allow � to be called as a procedure. Then, theoutput of the program is the sequence of values of x returned to the caller. Inour current model, however, we can encode the interaction with the environmentas follows: introduce a counter c that records the number of executions (i.e.,calls upon) �; that is, the action � increments c. A possible output sequenceof this program is a sequence of states (c0; x0); :::; (ci; xi); ::, where ci = i + 1.The goal of maximality is to show that any such sequence is a possible outputof this program.2.2 Speci�cationsA speci�cation is a set of program properties. We use the following operatorsof UNITY to specify the properties; see appendix A for a short summary and[8, 9] for details. In the following, p; q are predicates over the program statesand s is quanti�ed over the actions of the program.2.2.1 SafetySafety properties are expressed using co and its derivatives. Property p co qholds for a program if in every execution a state in which p holds is followed bya state in which q holds. A program has the property stable p if p continuesto hold once it becomes true, and invariant p holds in a program if p is alwaystrue. See the appendix for details.Note: If p co q holds for a program then p) q. This may be seen as follows.From p co q, p) wp:s:q for all actions s in the program. Since skip is one ofthe actions, p) wp:skip:q, that is, p) q.4

2.2.2 ProgressThe elementary progress operator, en, or ensures, has the following informalmeaning. If p holds at any point in the computation it will continue to hold aslong as q does not hold, and eventually q holds. Further, there is one (atomic)action which is guaranteed to establish q starting in any p-state; see the appendixfor a formal de�nition.Progress properties are described using leads-to (written as 7!): p 7! qmeans that any state in which p holds is eventually followed by a state in whichq holds. This operator is de�ned inductively, as shown in the appendix.Proofs in this paper appeal to a number of derived rules that are given in[8, 9]; see [1, 11] for mechanical proofs of some these rules.Example: Program FairNatural of section 2.1 has the following properties.stable x � 0,true 7! x > 0To prove that stable x � 0 is a property, we have to show that both actions� and � preserve x � 0; this follows from the program text. The progressproperty may be proven as follows. First, show that invariant n � 0. Then,true en n > 0 , program text, and invariant n � 0true 7! n > 0 , promotion rule (1)n > 0 en x > 0 , program textn > 0 7! x > 0 , promotion ruletrue 7! x > 0 , transitivity on (1) and the above3 MaximalityGiven a program P and a speci�cation S it is possible to show that P satis�esS (i.e., P meets all the properties in S) using the UNITY logic[9, 8] (as outlinedin section 2.2). To prove maximality, we show that any sequence that satis�esS may be obtained from an execution of P , in the sense described below. First,we de�ne what it means for an in�nite sequence of states, �, � = �0; �1; :::, tosatisfy S. Sequence � satis�es S if it satis�es each property in S, as describedbelow. We consider only the following types of properties in S: initially p,p co q and p 7! q. In the following description, p(�i) means that p holds inthe state �i.� satis�es initially p means p(�0) holds.� satis�es p co q means (8i :: p(�i)) q(�i+1)).� satis�es p 7! q means (8i :: (9j : i � j : p(�i)) q(�j))).Given an execution � of a program and an in�nite sequence of states, �,over a subset of the variables, V , of the program we say that � reduces to � if� corresponds to a subsequence of the states of � as follows:5

1. Variables in V have the same values in the corresponding states.2. �0 corresponds to �0.3. Let �i; �i+1 correspond to �s; �t. (Note that s < t since � correspondsto a subsequence of � .) Then(8j : s � j < t : �s and �j have the same values in variables V).Thus, if we remove the action names from � , retain only the values in vari-ables V and remove some number of states from each �nite segment of repeatingstates then we get �. For the program FairNatural , the fragment of the execu-tion sequence (1; 0)�(1; 1)�(1; 2)�(2; 0)�(2; 1)�(1; 0) {where each state is a pairof values, of (x; n){ reduces to the fragment 121, and also to 1121, over variablex.De�nition: Program P is maximal for speci�cation S provided P satis�es Sand for any sequence � satisfying S there is an execution � of P such that �reduces to �.3.1 Constrained ProgramWe next describe a method to prove maximality of a program P for a speci�-cation S. Let � be a sequence of states that satis�es S; we have to show thatsome execution of P reduces to �. Our strategy is to construct a constrainedprogram P 0 such that all executions of P 0 reduce to �, and all executions of P 0correspond to fair executions of P , in the sense to be de�ned later.The constrained program P 0 is constructed from P as follows.1. New variables, called chronicles, are introduced in P 0. Chronicles encodethe given state sequence �. They are not altered in the constrained pro-gram; their values are only read. There may be several chronicles, onecorresponding to each variable of P , to encode the sequence of values thata variable assumes in a computation.2. Additional variables, called auxiliary variables, are introduced in P 0. Aux-iliary variables are used in the proof. A special auxiliary variable, thatwe call a point, is introduced that shows the position in the chronicle thatmatches the current state of P 0.3. The variables of P are retained in P 0; they are called original variables.4. An action � of P is modi�ed to�0 :: g ! � ; �where g is a guard that may name any variable of P 0 and �, which isoptional, may assign only to the auxiliary variables. Action �0 is an aug-mented action corresponding to � and g is the augmenting guard of �0.Augmenting an action may eliminate some of the executions of P .Note: If � has a guard h then, e�ectively, �0 has guard g ^ h.6

5. Constrained program P 0 may also include superposed actions of the formg ! � where g names any variable of P 0 and � assigns only to the auxiliaryvariables.6. Initialization in P 0 assigns the same values to the variables as in P . Ad-ditionally, auxiliary variables and other variables of P may be assignedvalues.Note that in P 0 no assignment is made to the chronicles; they may ap-pear only in guards and other tests. Auxiliary variables appear only in guards(and other tests) and in assignments to themselves. Original variables of P areassigned values exactly as they were assigned in P , except that some of thevariables that were uninitialized in P may be initialized in P 0.Example Consider the program FairNatural of section 2.1. To prove its max-imality for the speci�cationstable x � 0,true 7! x > 0pick an arbitrary sequence X that satis�es the speci�cation. That is,(8i :: Xi � 0) Xi+1 � 0), and(8i :: (9j : i � j : Xj > 0)).Now, construct a constrained version of the program, FairNatural 0, thatincludes the chronicle X and an auxiliary variable j denoting the point. Theaugmented actions corresponding to � and � are �0 and �0. There are nosuperposed actions.Program FairNatural 0var x; n: integer; X : sequence of integer; j: integerinitially n := 0; x := X0; j := 1�0:: n < Xj ! n := n+ 1�0:: n = Xj ! x; n := n; 0; j := j + 1end fFairNatural 0gWe claim that in every fair execution of FairNatural 0 the sequence of valuesassigned to x is X , i.e., invariant j > 0 ^ x = Xj�1. We also show that everyfair execution of FairNatural 0 corresponds to a fair execution of FairNatural .Hence, X is the outcome of a possible execution of FairNatural .Remarks on the Constrained Program The following example shows thata constrained programmay not be executable. Given below is a program, choice ,that has an integer variable x and a boolean b. Neither variable is initialized. Ifb is true then x only increases, and if b is false then eventually x increases andalso, eventually, x decreases. 7

Program choicevar x: integer; b: boolean�:: b! x := x+ 1�:: :b! x := x+ 1
:: :b! x := x� 1end fchoicegAny sequence X (encoding the successive values of x) that is non-decreasingand in which the adjacent elements di�er by 1 is a possible output of choice(ignoring stuttering). In creating a constrained program to prove this claim wehave to assign an initial value to b depending on X . However, no �nite pre�xof X can tell us how to initialize b: b has to be set true if and only if X is anincreasing sequence.initially b := (8i : i � 0 : Xi+1 = Xi + 1)Therefore, the constrained program is not executable.3.2 Proving MaximalityWe describe the proof steps required to establish the maximality of a programfor a given speci�cation. The constrained program inherits all safety propertiesof the original program since the assignments to the original variables are notmodi�ed. We have to establish the following facts in the constrained program.1. Chronicle Correspondence: Show that every fair execution of the con-strained program assigns a sequence of values to the original variables thatmatch the values in the chronicle.� (Safety) Show that the values of the original variables are identicalto those of the chronicle at the current point (recall that the point is,typically, given by an auxiliary variable, such as j in FairNatural).This proof obligation is stated as an invariant of the constrainedprogram.� (Progress) The current value of the point will be incremented even-tually. (This often follows from the progress proof for execution cor-respondence.)2. Execution Correspondence: Show that every fair execution of the con-strained program corresponds to a fair execution of the original programsuch that both executions compute the same values in the original vari-ables.� (Safety) The truth of the augmenting guard of each action is pre-served by all other actions. That is, the augmenting guard of �0 maybe falsi�ed by executing �0 only.8

This condition is met trivially if all augmenting guards are pairwisedisjoint; no guard can then be falsi�ed by the execution of anotheraction because the latter's guard is then false and its execution hasno e�ect.� (Progress) Show that each augmenting guard is true in�nitely often.Example For FairNatural 0 our proof obligations are as follows. The detailedproof is given in section 3.4 and appendix B.1. Chronicle Correspondence:(Safety) invariant j > 0 ^ x = Xj�1.(Progress) j = J 7! j = J + 1, for any natural J .2. Execution Correspondence:(Safety) n < Xj is preserved by �0, and n = Xj is preserved by �0. (Thesefollow because the guards are disjoint.)(Progress) true 7! n < Xj , true 7! n = Xj .3.3 Justi�cation for the Proof RulesThe chronicle correspondence rule establishes that the computation of the con-strained program P 0 matches the given chronicle. The safety requirement guar-antees the match at the current point and the progress requirement guaranteesthat successively longer pre�xes of the chronicle will be computed.Given that the execution correspondence conditions hold, we argue that forany fair execution � of P 0, � = �0A0�1:::�iAi�i+1::, there is a fair execution
 of P ,
 =
0B0
1:::
iBi
i+1:: such that � reduces to the sequence of states
0
1:::
i
i+1:: over the variables of P .We modify � by removing certain actions and states from it, as follows. Foreach action Ai in � that has an augmenting guard g, if g(�i) does not holdthen (�i = �i+1 in this case) remove �iAi from � . We show that the resultingsequence, � 0, is an in�nite sequence, and hence, an execution.>From the progress condition of execution correspondence, the augmentingguard, g, of an augmented action �0 is true in�nitely often; from the safety con-dition of execution correspondence, g remains true as long as �0 is not executed.Each action �0 is executed in�nitely often in a fair execution of P 0. Therefore,�0 is in�nitely often executed in a state where its augmenting guard, g, is true.Actions whose guards were false at the time of their execution were removedfrom � . Therefore � 0 contains every augmented action in�nitely often, and thecorresponding guard is then true. In a state where the augmenting guard g of�0 holds, �0 has the same e�ect on the original variables as the action � that itcorresponds to. (The superposed actions do not modify the original variables.)Therefore, � 0 is an execution of the constrained program and it corresponds toa fair execution,
, of the original program such that the sequence of states forthe original variables in � , � 0 and
 are identical.9

All computations of the constrained program, P 0, do not have counter-parts in P , the original program. In particular, if X is a sequence of zeroesthen FairNatural 0 computes X by executing the following sequence of actions,(�0�0)! ; in this execution, �0 has no e�ect and �0 computes the next value.However, the corresponding sequence, (��)! in FairNatural , does not computeX . The execution correspondence rule ensures that every fair execution of P 0corresponds to a fair execution of P that computes the same sequence of states(in the original variables of P). In FairNatural 0 the guard of �0, n < Xi, doesnot hold in�nitely often if X is a sequence of zeroes, and, hence, the executioncorrespondence rule does not apply.3.4 Proof of Maximality of FairNaturalWe state certain properties of FairNatural that are required in the maximalityproof; these properties follow from the program text and the complete proof ofmaximality is given in appendix B.P1. invariant j > 0 ^ n � Xj ^ x = Xj�1.P2. j = J co j = J _ (j = J + 1 ^ n = 0).P3. n � Xj ^Xj � n = K en (n � Xj ^Xj � n < K) _ n = Xj .P4. n = Xj ^ j = J en j = J + 1 ^ n = 0.We also have the following properties ofX from the speci�cation of FairNatural .(8i :: Xi � 0) Xi+1 � 0), and(8i :: (9j : i � j : Xj > 0)).Property P5, below, follows from the properties of X . Here, f(i) is thenext position beyond i where Xf(i) is positive. Such a position exists because(8i :: (9j : i � j : Xj > 0)).P5. There is a function, f , f : naturals! naturals, such thatf(i) > i and Xf(i) > 0, for all i.4 Random AssignmentA maximal solution is, typically, highly non-deterministic. In our previous ex-ample, FairNatural , we exploited the non-determinacy of action execution; anarbitrary natural number is computed because n is incremented an indetermi-nate number of times. In many cases, it is convenient to have non-determinacyin the code itself. To this end, we introduce random assignment that, essen-tially, assigns a random value to a variable; see section 9.4 of [2] for an axiomatictreatment of random assignment. We show the additional proof steps requiredto prove the constrained program when random assignments are replaced byspeci�c assignments. As an example, we treat a fair unordered channel in whichrandom assignments are essential in constructing the solution.10

4.1 The Form of Random AssignmentA random assignment statement is of the formx :=?and execution of this statement assigns a random value of the appropriate typeto x. There is no notion of fairness in this assignment; repeated execution ofthis statement may always assign the same value x.Random assignment is convenient for programming maximal solutions. How-ever, it can be simulated using the existing features of our programming model.For instance, the following program can be used to assign a random natural num-ber to x. The program is similar to FairNatural ; every execution of
 stores arandom natural number in x. The program is also maximal: any sequence ofnatural numbers may be assigned to x.Program RandomNaturalvar x; n: integerinitially n := 0�:: n := n+ 1�:: n > 0! n := n� 1
:: x := nend fRandomNaturalg4.1.1 Note on the Maximality of RandomNaturalThe proof of maximality of RandomNatural is similar to that of FairNatural ;so, we omit the proof. Note, however, that augmenting �; �;
 by the guardsn < Xj ; n > Xj ; n = Xj , where X is a given sequence of natural numbersas in FairNatural , is not su�cient for the proof of maximality. If X is anincreasing sequence, for instance, then n > Xj will never hold, and executioncorrespondence cannot be proven. Create a constrained program in which thecodes of the augmented actions �0 and �0 are executed at least once followingeach execution of
0. This can be implemented by having another auxiliaryvariable c, c 2 f0; 1; 2g, with the following meaning: c = 1 if the last executedaction is
0, and then �0 is executed and c is set to 2; if c = 2 then �0 is executedand c is set to 0; when c = 0 any of �0; �0;
0 may be executed. The constrainedprogram is shown below.Program RandomNatural 0var x; n: integer;X : sequence of integer;j: integer; c: f0,1,2ginitially n := 0; x := X0; c; j := 0; 1�0:: (c = 0 ^ n < Xj) _ c = 1! n := n+ 1; if c = 1 then c := 2�0:: (c = 0 ^ n > Xj) _ c = 2!n > 0! n := n� 1; c := 0
0:: c = 0 ^ n = Xj ! x := n; c := 1end fRandomNatural 0g 11

Note: The augmenting guard of �0 implies n > 0, since n > Xj) n > 0 and itcan be shown that invariant (c = 2) n > 0).4.1.2 General Form of Random AssignmentWe use a more general form of random assignmentx :=? st pwhere variable x is assigned any value such that predicate p holds after theassignment. It is the programmer's responsibility to ensure that this assignmentis feasible. A re�nement of this statement will assign a speci�c value to x thatsatis�es p. For instance, for integer xx :=? st (9i :: x = 2� i)assigns any even number to x, andx :=? st x > 0x, where 0x denotes the value of x before the assignmentincreases the value of x arbitrarily.4.1.3 Constraining Random AssignmentsIn constructing a constrained program a random assignment is replaced by aspeci�c assignment. Ifx :=? st p, is replaced byx := eit has to be shown that p holds after the assignment x := e.There is one caveat in constructing these proofs. Earlier, we had said thata constrained program inherits all safety properties of the original program.This is true only if the random assignments have been correctly constrained.Therefore, it can not be assumed that the constrained program inherits thesafety properties until the correctness of these assignments in the constrainedprogram have been shown. In particular, the proof of correctness of these as-signments can not assume any safety properties of the original program; anysuch assumption has to be proven explicitly in the constrained program.4.2 Fair Unordered ChannelIn order to illustrate proofs with random assignments we take the example ofa channel interposed between a sender and a receiver. A �rst-in-�rst-out (�fo)channel guarantees that the order of delivery of messages is the same as theorder in which they were put into the channel. In this section we consider afair unordered channel in which (1) the messages are delivered in random order,and (2) every message sent is eventually delivered. A �fo channel implementsboth requirements, but it is not maximal.This problem, couched as a message transmission problem, has a number ofother applications. In particular, the solution can be used to output all naturalnumbers in some order, and any order is possible. The solution can be usedas a fair scheduler for programs that have an in�nite number of actions, and itadmits any fair schedule. 12

We consider the following simpli�cation of the problem. A program has anin�nite input sequence x and it has to generate a sequence y that is a permu-tation of x; any permutation is a possible output. We assume further that theitems in x are distinct, which can be assured by appending a unique sequencenumber to each item of x. Then, every item in y corresponds to a uniqueitem in x, and vice versa. The speci�cation of the program is as follows: thesafety conditions state that every item in y is from x and that the elements iny are unique; the progress condition states that every item of x appears in yeventually.(8j :: (9i :: xi = yj)),(8i; j :: yi = yj) i = j), and(8i :: true 7! (9j :: xi = yj)).4.2.1 Maximal Solution for Fair Unordered ChannelOur solution consists of two actions, read and write. In the read action an itemis removed from x and stored in a set z; in the write action an item from z isremoved and appended to sequence y. It is not su�cient to remove a randomitem of z in write; then, the progress property may not hold. Therefore, weassociate a height, a natural number, with each item that is placed into z andin the write action remove any item with the smallest height from z. An itemis assigned any height greater than or equal to the value of variable t when it isadded to z; we describe below how t is computed.In the following program, imagine that the heights are kept in a separatearray and ch; dh are the heights of item c, d, respectively (since the items areall distinct this representation is unambiguous). Variables i; j are the numberof items read from x and written to y, respectively.Program FUnChvar i; j; t: integer; c: item; x; y: sequence of item;z: set of iteminitially i; j; t := 0; 0; 0; y := hi; z := �read:: c := xi; ch :=? st ch � t;z := z [fcg; i := i+ 1write:: z 6= �!c :=? st c 2 z ^ (8d : d 2 z : ch � dh);t; yj ; z; j := ch+ 1; c; z � fcg; j + 1end fFUnChgThe following properties hold for FUnCh.(8j :: (9i :: xi = yj)), and(8i :: true 7! (9j :: xi = yj)).We leave it to the reader to prove these properties. For the progress property,it has to be shown that each item u in z is selected eventually, as c, in write. Let13

p be the number of items in z whose height is less than t. Show that in the pair(uh+ 1� t; p), where uh is the height of u, both components are non-negative,the pair is una�ected by the execution of read, and it decreases lexicographicallywhenever an item is removed from z. Therefore, eventually, u is removed.4.2.2 The Constrained ProgramLet Y be any sequence that is a permutation of x, i.e.,(8j :: (9i :: xi = Yj)),(8i; j :: Yi = Yj) i = j), and(8i :: (9j :: xi = Yj)).We show that Y is a possible output of the program. A constrained programis shown below in which, in addition to the transformations described in section3.1, the random assignments have been replaced by speci�c assignments.Program FUnCh 0var i; j; t: integer; c: item; x; y; Y : sequence of item;z: set of iteminitially i; j; t := 0; 0; 0; y := hi; z := �read0:: Yj =2 z !c := xi; ch := k st c = Yk;z := z [fcg; i := i+ 1write0:: Yj 2 z !z 6= �!c := Yj ;t; yj ; z; j := ch+ 1; c; z � fcg; j + 1end fFUnCh 0gNotes: The assignment to ch in read0 is not a random assignment; there is aunique value Yk that matches xi. The augmenting guard of write0, Yj 2 z,implies the original guard, z 6= �.4.2.3 Proof of Maximality: InvariantsWe write x0:i to stand for the set fx0; x1; :::; xi�1g; thus, x0:0 is the empty set.The proofs of the following invariants are left to the reader.P1. invariant x0:i = z [y0:j .P2. invariant y0:j = Y0:j .P3. invariant (8d : d 2 z : d = Ydh ^ j � dh).P4. t = j.The proofs of P1, P2 are straightforward; these proofs use the fact that theitems in z are distinct. Proof of P3 needs some explanation. The action read0adds c to z where ch = k ^ c = Yk; hence, c = Ych. To see that j � ch in read0:it follows from P1 that xi =2 y0:j , hence, c = xi = Yk where j � k, i.e., j � ch.14

The action write0 removes c from z provided ch is the smallest height. FromP3, all heights are distinct because all items in Y are distinct; furthermore, eachheight is at least j. From the guard, Yj 2 z, the height of Yj is the lowest andall other items in z have height exceeding j. Therefore, the incrementation of jin write0 preserves j � dh for each d in z. The proof of P4 is similar.4.2.4 Correctness of Implementation of Random AssignmentsWe have to show1. in read0: ch := k st c = Yk implements ch :=? st ch � t.2. in write0: c := Yj implements c :=? st c 2 z ^ (8d : d 2 z : ch � dh).Proof of (1) In read0, prior to the assignment we have from the invariant P1,x0:i = z [y0:j) fFrom P2, y0:j = Y0:j ; x is a permutation of Y gxi =2 Y0:j ^ (9k :: xi = Yk)) fPredicate calculusg(9k : k � j : xi = Yk)) fk above is unique since items of Y are distinct; c = xigch := k st c = Yk implements ch :=? st ch � j) fFrom P4, j = tgch := k st c = Yk implements ch :=? st ch � tProof of (2) We have to show after the assignment c := Yj that c 2 z ^ (8d :d 2 z : ch � dh). Applying the axiom of assignment, we have to show before theassignment that Yj 2 z ^ (8d : d 2 z : height of Yj � dh) holds. The �rst termin the consequent, Yj 2 z, follows from the guard of write0. For the remainingpart, (8d : d 2 z : height of Yj � dh)(fheight of Yj is j from P3g(8d : d 2 z : j � dh)(ffrom P3gtrue4.2.5 Proof of Chronicle and Execution Correspondence� (Safety) We have to show that y0:j = Y0:j , which follows from P2.� (Progress) We have to show that j = J 7! j = J + 1, for any natural J .Each execution of write0 increments j. From the progress proof of write0under execution correspondence the code of write0 is executed in�nitelyoften. Therefore, j increases without bound.The proof of execution correspondence is given in appendix C.15

4.3 Faulty ChannelWe consider a faulty channel that may lose messages, duplicate any message anunbounded (though �nite) number of times, and permute the order of messages.For any point in the computation, it is given that not all messages beyondthis point will be lost; otherwise, there can be no guarantee of any messagetransmission at all. This is similar to the fault model of a channel assumedin the Alternating Bit Protocol[12] (the di�erence being that in the latter, thechannel does not reorder messages). Such a protocol can be studied (provedcorrect) by encoding the communication between the sender and the receiverusing a maximal solution for the faulty channel. As we have remarked earlier, itis essential to have a maximal solution in this case, because a protocol must copewith any possible behavior of the channel. In this section, we sketch a maximalsolution for faulty channel, but we leave the actual program, correctness andmaximality proof to the reader. The maximality proof is similar to that for theFUnCh .We simulate a faulty channel using a bag b, analogous to the set z in FUnCh .The bag holds the messages that are to yet be delivered; it may hold severalcopies of the same message to simulate duplication, and the nature of a bagimplements out-of-order delivery. To simulate message loss and duplication, wecompute a count n whenever a message is added to b; the count is an arbitrarynatural number, denoting the number of times that the message is to be deliv-ered. If n = 0 for a message then it is immediately discarded (the message islost), and for n exceeding 0 the message is added n times to b. In order to imple-ment the requirement that not all messages are eventually lost, we require thatn become non-zero periodically. Clearly, FairNatural can be used to computen.5 A Task SchedulerIn this section, we consider a scheduling problem in which concurrency is essen-tial; the requirement of concurrency can be succinctly stated using maximality.The following scheduling problem is from [10]. We are given a �nite number oftasks and a compatibility relation among the tasks. Two tasks may be concur-rently executed provided they are compatible. It is given that an executing taskwill terminate eventually. The goal is to design a task scheduler that repeat-edly selects tasks for execution so that: (1) only compatible tasks are executedconcurrently, and (2) each task is executed in�nitely often.The following abstraction captures the essence of the scheduling problem.We are given a simple, �nite undirected graph in which there are no self-loops;the graph need not be connected. Each node in the graph is black or white; allnodes are initially white. In this abstraction, a node denotes a task and a blacknode an executing task. Two nodes are neighbors if they are incompatible, i.e.,not compatible. We are given that every black node becomes white eventually,i.e., each task terminates. It is required to devise a coloring (scheduling) strategy16

so that� No two neighbors are simultaneously black (i.e., only compatible tasksmay be executed simultaneously).� Every node becomes black in�nitely often.Note that the scheduler can only blacken nodes; it may not whiten a node.A simple scheduling strategy is to blacken a single node, wait until it iswhitened, and then blacken another node. Such a strategy implements the �rstrequirement trivially because there is at most one black node at any time. Thesecond requirement may be met by blackening the nodes in some �xed, round-robin order. Such a protocol, however, defeats the goal of concurrent executionof tasks. So, we impose the additional requirement that the scheduling strategybe maximal: any valid blackening of the tasks may be obtained from a possibleexecution of our scheduler. By suitable re�nement of our maximal scheduler wederive a centralized scheduler and a distributed scheduler, in section 5.5.5.1 Speci�cationLet b denote the set of black nodes at any stage in the execution. For sets x; yand a node v, we write x = y + v to denote that v =2 y ^ x = y [fvg.S0. initially b = �.S1. (8u; v : u neighbor v : :(u 2 b ^ v 2 b)).S2. b = B co b = B _ (9v :: b = B + v _ B = b+ v), for any B.S3. For all v, true 7! v 2 b and true 7! v =2 b.The speci�cation S0 is as would be expected; S1 states that neighbors arenever simultaneously black; S2 says that in a step at most one node changescolor. In S3, true 7! v =2 b is established by the tasks themselves (each taskterminates, and, hence, becomes white, eventually), and the scheduler has toimplement the remaining progress property, true 7! v 2 b.5.2 A Scheduling StrategyAssign a natural number, called height, to each node; let uh denote the heightof node u. The predicate u:low holds if the height of u is smaller than all of itsneighbors, i.e.,u:low � (8v : u neighbor v : uh < vh).The scheduling strategy is to set b to � initially, and the node heights in sucha way that neighbors have di�erent heights. Then, the following steps are re-peated.� (Blackening Rule) Eventually consider each node, v, for blackening; ifv =2 b ^ v:low holds then blacken v.17

� (Whitening Rule) Simultaneous with the whitening of a node v, increasevh to a value that di�ers from uh, for all neighbors u of v.Formally, the coloring strategy is described by the following program. Thereis an action add(v), for each node v, that adds v to b provided v =2 b ^ v:low.The termination of task v is simulated by remove(v), that removes v from band increases vh to a value that di�ers from uh, for all neighbors u of v.Program Schedulervar u; v: node; b: set of nodeinitially b = �; (8u; v : u neighbor v : uh 6= vh)h8v::add(v):: v =2 b ^ v:low ! b := b [fvgremove(v):: v 2 b ! b := b� fvg;vh :=? st vh > 0vh ^ (8u : u neighbor v : uh 6= vh)iend fSchedulergNote: 0vh is the value of vh before the assignment.5.3 Correctness of the Scheduling StrategyWe show that neighbors have di�erent heights at all times, i.e.,P0. invariant (8x; y : x neighbor y : xh 6= yh).Proposition P0 holds initially. If P0 holds prior to the execution of add(v)then it holds following the execution, because add(v) does not a�ect heights. IfP0 holds prior to the execution of remove(v) it holds afterwards, because onlyvh changes and vh 6= uh, for any neighbor u of v, following remove(v).Proof of S0 Follows from the initialization.Proof of S1 The coloring strategy described above maintains the followinginvariant: for all v, v 2 b) v:low. Observe that this proposition holdsinitially since all nodes are initially white. A blackening step (add) preservesthe proposition because v:low is a precondition for blackening. A whitening step(remove) preserves the proposition because the antecedent of the propositionbecomes false.>From this invariant, if u; v are both black then they are both low andfrom the de�nition of low, u; v are not neighbors. Therefore, neighbors are notsimultaneously black.Proof of S2 In add(v), the assignment b := b[fvg has the precondition v =2 b.In remove(v), the assignment b := b� fvg has the precondition v 2 b. Hence,S2 is satis�ed. 18

Proof of S3 We show that every node becomes black in�nitely often in everyexecution. Suppose that there is a node x that becomes black only a �nite num-ber of times in a given execution. Each blackening and the subsequent whiteningincreases the height of a node. Therefore, if some neighbor y of x becomes blackin�nitely often then its height will eventually exceed x:h, establishing :y:low,and y will never be blackened subsequently. Hence, every neighbor of x is black-ened �nitely often. Applying this argument repeatedly, no node connected to xcan become black in�nitely often. Therefore, beyond some stage, q, in an exe-cution, all nodes in the component of the graph to which x belongs will remainwhite forever. Let v be a node with the smallest height in this component atq in the execution; since all nodes remain white beyond q their heights do notchange and v remains a node with the smallest height. Whenever v is consideredfor blackening beyond q, it will meet all the conditions for blackening (v is whiteand v:low holds); thus v will be blackened, contradicting the conclusion that vremains white forever beyond q.The proof by contradiction, given above, is typical of the style in which manyconcurrent algorithms are proven in the literature. We present an alternativeproof, based on the style of UNITY, that avoids arguments by contradiction;see appendix D.5.4 Proof of MaximalityLet z be a sequence of sets, denoting a possible sequence of values of b in anexecution; assume that z is stutter-free, i.e., successive values in z are distinct.Let z satisfy the speci�cation (S0, S1, S2, S3), i.e., (S00, S10, S20, S30) hold.S00. z0 = �.S10. For all i, (8u; v : u neighbor v : :(u 2 zi ^ v 2 zi)).S20. For all i, (9v :: zi+1 = zi + v _ zi = zi+1 + v).S30. For all v,(8i :: (9j : i � j : v 2 zj)), and (8i :: (9j : i � j : v =2 zj)).We create the following constrained program that includes a variable t, de-noting the current point of computation. The variable u:next is an abbreviationfor the next value, j, above t where u is in zj . Formally,u:next = (min j : j > t ^ u 2 zj : j).Program Scheduler 0var u; v: node; b: set of node; t: integerinitially b = �; t := 0; (8v :: vh = v:next)h8v::add0(v):: zt+1 = zt + v !v =2 b ^ v:low ! b := b [fvg; t := t+ 1remove0(v):: zt = zt+1 + v !v 2 b ! b := b� fvg; vh := v:next; t := t+ 1iend fScheduler 0g 19

5.4.1 Invariants of the Constrained ProgramThe following invariants hold for Scheduler 0. The variable v is quanti�ed overall nodes.P1. b = zt.P2. zvh = zvh�1 + vP3. (8u; v : u neighbor v : uh 6= vh).P4. v:next � vh ^ v:next > t.P5. (vh = v:next) � v =2 b.Proof of P1 Initially, b = �, t = 0, and from (S00) z0 = �. Each actionincrements t and modi�es b appropriately.Proof of P2 This follows from the text of Scheduler 0 and S20.Proof of P3 This property is similar to invariant P0 proved for Scheduler .However, we can not assert that this property is inherited by Scheduler 0 untilwe show that the random assignment is correctly implemented. Therefore, wehave to construct a new proof. Suppose uh = vh. Then, from P2zvh = zvh�1 + v ^ zuh = zuh�1 + u) fuh = vhgzuh = zuh�1 + v ^ zuh = zuh�1 + u) fSet theorygu = vThus, for distinct nodes u; v, uh 6= vh. Hence, the same result applies forneighbors u; v.Proof of P4 To see the �rst conjunct, note that initially, (8v :: vh = v:next).The only assignment to vh is vh := v:next in remove0(v); so v:next � vh ispreserved by this assignment. Also, v:next is monotone in t; therefore, v:nextnever decreases in Scheduler 0 because t never decreases.The second conjunct follows from the de�nition of v:next.Proof of P5 Initially P5 holds because b is � and (8v :: vh = v:next). First,we show that P5 is preserved by the execution of add0(v).De�ne v:next:i = (min j : j > i ^ v 2 zj : j). Thus, v:next = v:next:t.Rewrite condition P5 as (vh = v:next:t) � v =2 b. This holds as a postconditionof the assignmentsb := b [fvg; t := t+ 1provided vh 6= v:next:(t + 1) holds as a precondition. We show below thatthe precondition of add0(v), zt+1 = zt + v ^ v =2 b ^ v:low and P5, impliesvh 6= v:next:(t+ 1). 20

zt+1 = zt + v ^ v =2 b) fFrom the de�nition of v:next, (zt+1 = zt + v)) (v:next = t+ 1)gv:next = t+ 1 ^ v =2 b) fP5: (vh = v:next) � v =2 bgvh = t+ 1) ffrom de�nition, v:next:(t+ 1) > t+ 1gvh 6= v:next:(t+ 1)It can be shown that uh and u:next are una�ected by the execution ofadd0(v), for v 6= u. Also, from the text of remove0(v) it is seen that v =2b ^ (vh = v:next) is established.5.4.2 Rewriting the guard of add0(v)We show from the given invariants that the augmenting guard of add0(v), zt+1 =zt + v, implies the original guard, v =2 b ^ v:low. Hence, the original guard maybe dropped in the constrained program. This result is needed for the proof ofprogress in chronicle correspondence; see (2) of section 5.4.4.>From b = zt (see P1) and zt+1 = zt+v, we have v =2 b. We show that v:lowholds, i.e., for neighboring nodes u; v, vh < uh.zt+1 = zt + v) fb = zt from P1gv =2 b ^ v =2 zt ^ v 2 zt+1) fDe�nition of v:nextgv =2 b ^ v:next = t+ 1 ^ v =2 zt ^ v 2 zt+1) fFrom P5, (vh = v:next) � v =2 bgvh = t+ 1 ^ v =2 zt ^ v 2 zt+1) fGiven u; v are neighbors, v 2 zt+1) u =2 zt+1, from S10gvh = t+ 1 ^ v =2 zt ^ v 2 zt+1 ^ u =2 zt+1) fGiven v =2 zt ^ v 2 zt+1 ^ u =2 zt+1 from S20, u =2 ztgvh = t+ 1 ^ v =2 zt ^ v 2 zt+1 ^ u =2 zt ^ u =2 zt+1) ffrom P1 b = zt; from P5 (uh = u:next) � u =2 b; from P4 u:next > tgvh = t+ 1 ^ uh = u:next ^ u:next > t) fvh = t+ 1 ^ uh > t. Apply P3gvh < uh5.4.3 Correctness of the Implementation of Random AssignmentThe random assignmentvh :=? st vh > 0vh ^ (8u : u neighbor v : uh 6= vh)is implemented in the constrained program byvh := v:next.The precondition of the assignment, zt = zt+1+v and (from P1) b = zt, implythat v 2 b. Hence, from P4 and P5, vh < v:next prior to the assignment; now21

vh = v:next after the assignment, thus establishing vh > 0vh. The condition(8u : u neighbor v : uh 6= vh) follows from P3.5.4.4 Proof of Chronicle Correspondence1. (Safety) b = zt follows from P1.2. (Progress) t = N 7! t = N + 1, for any natural N : exactly one guardof Scheduler 0 holds at any stage in the computation because the guardsare disjoint and their disjunction is true. Execution of any action whoseguard is true increments t.5.4.5 Proof of Execution Correspondence1. (Safety) Guards of all the actions are disjoint.2. (Progress) We have to showtrue 7! zt+1 = zt + v, andtrue 7! zt = zt+1 + v.We sketch a proof. From S30 we can deduce that(8i :: (9j : i � j : zj+1 = zj + v)), and(8i :: (9j : i � j : zj = zj+1 + v)).>From (2) of section 5.4.4, t assumes values of successive natural numbers.Therefore, eventually, zt+1 = zt + v and also eventually, zt = zt+1 + v.5.5 Re�ning a Maximal Solution: Implementation of theScheduling StrategyWe consider the situation where each task (node) is executed on a separateprocessor. First, we show how a central scheduler may schedule the tasks giventhe compatibility relation. Next, we show how the scheduling may be distributedover the processors.5.5.1 Central schedulerA central scheduler maintains a list of nodes and their current colors and heights.Periodically, it scans through the nodes and blackens a node v provided v:low^v =2 b holds. Whenever it blackens a node it sends a message to the appropriateprocessor specifying that the selected task may be executed. Upon terminationof the task, the processor sends a message to the scheduler; the scheduler whitensthe corresponding node and increases its height, ensuring that no two neighborshave the same height. The scheduler may scan the nodes in any order, but everynode must be considered eventually.This implementation may be improved by maintaining a set, L, of nodesthat are both white and low, i.e., L contains all nodes v for which v =2 b ^v:lowholds. The scheduler blackens a node of L and removes it from L. Whenever a22

node x is whitened and its height increased, the scheduler checks x and all of itsneighbors to determine if any of these nodes qualify for inclusion in L; if somenode, y, quali�es then y is added to L. It has to be guaranteed that every nodein L is eventually scanned and removed; one possibility is to keep L as a queuein which additions are made at the rear and deletions from the front. Observethat once a node is in L it remains white and low until it is blackened.5.5.2 Distributed schedulerThe proposed scheduling strategy can be distributed so that each node blackensitself eventually if it is white and low. The nodes communicate by messages ofa special form, called tokens. Associated with each edge (x; y) is a token. Eachtoken has a value, a positive integer equal to jxh � yhj. This token is held byeither x or y, whichever has the smaller height.It follows then that a node that holds all incident tokens has a height thatis smaller than all of its neighbors; if such a node is white, it may color itselfblack. A node, upon becoming white, increases its height by a positive amountd, e�ectively reducing the value of each incident token by d (note that such anode holds all its incident tokens, and, hence, it can alter their values). Thequantity d should be di�erent from all token values so that neighbors will nothave the same height, i.e., no token value becomes zero after a node's height isincreased. If the value of token (x; y) becomes negative as a result of reducing itby d, indicating that the holder x now has greater height than y, then x resetsthe token value to its absolute value and sends the token to y.Observe that the nodes need not query each other for their heights, becausea token is eventually sent to a node of a lower height. Also, since the tokenvalue is the di�erence in heights between neighbors, it is possible to bound thetoken values whereas the node heights are unbounded over the course of thecomputation. Initially, token values have to be computed and the tokens haveto be placed appropriately based on the heights of the nodes. There is no needto keep the node heights explicitly from then on.We have left open the question of how a node's height is to be increasedwhen it is whitened. The only requirement is that neighbors should never havethe same height. A particularly interesting scheme is to increase a node's heightbeyond all its neighbors' heights whenever it is whitened; this amounts to send-ing all incident tokens to the neighbors when a node is whitened. Under thisstrategy, the token values are immaterial: a white node is blackened if it holdsall incident tokens and upon being whitened, a node sends all incident tokensto the neighbors. Assuming that each edge (x; y) is directed from the token-holder x to y, the graph is initially acyclic, and each blackening and whiteningmove preserves the acyclicity. This is the strategy that was employed in solvingthe distributed dining philosophers problem by Chandy and Misra [3]; a blacknode is eating and a white node is hungry; constraint (S1) is the well-knownrequirement that neighboring philosophers do not eat simultaneously. Our cur-rent problem has no counterpart of the thinking state, which added a slightcomplication to the solution in [3]. The tokens are called forks in that solution.23

6 SummaryWe have described the notion of maximality, which rules out implementationswith insu�cient nondeterminism. A maximal program for a given speci�ca-tion has (upto stuttering) all the behaviors admitted by the speci�cation. Weshowed several examples of maximal solutions, including a fair unordered bu�erand a fair task scheduler. Notions similar to maximality have been studiedelsewhere in the literature, e.g., the various
avors of bisimulation due to Mil-ner and others[7]. However, unlike bisimulation, which relates two programs,our notion of maximality relates a program written using guarded-commandswith a speci�cation written in a UNITY-like temporal logic. Finally, note thatalthough we have concerned ourselves here only with showing maximality, ourproof method may be used with any given set of behaviors, to show that a givenprogram admits all those behaviors.Acknowledgements This paper has been enriched by comments and sug-gestions from the PSP research Group at the University of Texas at Austin.Edsger W. Dijkstra provided one of the early proofs of maximality, of the fairunordered channel considered in section 4.2.A Summary of UNITY logicThe UNITY logic, a fragment of linear temporal logic, has proof rules for rea-soning about properties of programs. A short summary is given here; consult[8, 9] for details.A.1 SafetyThe fundamental safety operator of UNITY is constrains, or co for short. Theproperty p co q asserts that in any execution a state satisfying p is alwaysfollowed by a state satisfying q. In order to model stuttering steps p is requiredto imply q. The co operator and its derivative operators are de�ned as follows,where s is quanti�ed over the actions of the program.p co q � (8s :: p) wp:s:q)stable p � p co pinvariant p � initially p and stable pA predicate is stable if it remains true once it becomes true. A predicate isinvariant if it is stable and it holds in all initial program states. Observe thatp ^ :q co p _ q is a property of a program if from any state where p holds itcontinues to hold until q holds; if q never holds then p holds for ever.The Substitution Axiom The operation of a program is over the reachablepart of its state space. The UNITY proof rules, however, do not refer to the setof reachable states explicitly. Instead, the following substitution axiom is used24

to restrict attention to the reachable states: if invariant p is a property of aprogram then p may be replaced by true in any context.A.2 ProgressThe elementary progress operator, en, used in this paper has the followinginformal meaning. If p holds at any stage in the computation it will continueto hold as long as q does not hold, and q holds eventually. Further, there isone (atomic) action which guarantees to establish q starting in any p-state.Formally,p en q �= (p ^ :q co p _ q) ^ (9 s :: (p ^ :q)) wp:s:q)where s is quanti�ed over all the actions of the program.Given p en q, from the second conjunct in its de�nition, there is an action ofthe program that establishes q starting in any state in which p^:q holds; fromthe �rst conjunct, once p holds it continues to hold at least until q is established.Therefore, starting in a state in which p holds q will eventually be established.Most of the progress properties of UNITY are expressed using the ; (leads-to) operator, a binary relation on state predicates. It is the transitive, disjunc-tive closure of the ensures relation, i.e., the strongest relation satisfying thefollowing three conditions:(promotion) p en qp 7! q(transitivity) p 7! q; q 7! rp 7! r(disjunction) In the following, S is any set of predicates.(8 p : p 2 S : p 7! q)(9 p : p 2 S : p) 7! qDerived Rules for leads-to There are several derived rules for reasoningabout the progress properties. Here, we mention only the ones used in thispaper.� implicationp) qp 7! q� lhs-strengthening, rhs-weakeningp 7! qp0 ^ p 7! q ;p 7! q _ q0 25

� cancellationp 7! q _ r ; r 7! sp 7! q _ s� PSP p 7! q ; r co bp ^ r 7! (q ^ b) _ (:r ^ b)� Induction: In the following M is a total function mapping program statesto a well-founded set (W;�).h8 m : m 2W :: p ^ M = m 7! (p ^M � m) _ qip 7! qIn this paper we have used induction over natural numbers only.B Proof of FairNatural from section 3.4B.1 Proof of chronicle correspondence1. (Safety) invariant j > 0 ^ x = Xj�1 follows from P1.2. (Progress) j = J 7! j = J + 1, for any natural J :true 7! n = Xj , see (2) of section B.2j = J co j = J _ (j = J + 1 ^ n = 0), P2j = J 7! (n = Xj ^ j = J) _ (j = J + 1 ^ n = 0), PSP applied to the above twon = Xj ^ j = J 7! j = J + 1 ^ n = 0, promotion rule of 7! on P4j = J 7! j = J + 1 ^ n = 0 , cancellation on the above two (*)j = J 7! j = J + 1 , weakening the rhsB.2 Proof of execution correspondence1. (Safety) The guards, n < Xj and n = Xj , are disjoint.2. (Progress) true 7! n = Xj :n � Xj ^Xj � n = K 7! (n � Xj ^Xj � n < K) _ n = Xj, promotion rule of 7! on P3n � Xj 7! Xj = n , inductiontrue 7! n = Xj , substitution axiom with invariant n � Xj26

3. (Progress) true 7! n < Xj :j = J 7! j = f(J)� 1 , induction on (2) of section B.1j = f(J)� 1 7! j = f(J) ^ n = 0, let J be f(J)� 1 in (*) of section B.1j = J 7! j = f(J) ^ n = 0 , transitivity on the above twoj = J 7! n < Xj , j = f(J)) Xj > 0true 7! n < Xj , disjunction over all JC Proof of execution correspondence for FairUnordered ChannelSee section 4.2.5 for the proof of chronicle correspondence. The proof of execu-tion correspondence follows.� (Safety) The augmenting guards, Yj =2 z and Yj 2 z, are disjoint.� (Progress of read0) true 7! Yj =2 z:Yj 2 z en Yj =2 z , from program textYj 2 z 7! Yj =2 z , promotion rule of 7!Yj =2 z 7! Yj =2 z , implication rule of 7!true 7! Yj =2 z , disjunction of the above two� (Progress of write0) true 7! Yj 2 z: Let Yj = xk. For any n,Yj =2 z ^ k � j = n en k � j < n , from program textYj =2 z ^ k � j = n 7! k � j < n , promotion rule of 7!Yj =2 z 7! Yj 2 z , inductiontrue 7! Yj 2 z , similar to the proof for read0D Proof of progress, (S3), for the task schedulerIn section 5.3, we argued that (S3) holds. A proof using UNITY logic follows.It is required to prove that every node becomes black eventually, i.e., for all x,true 7! x 2 b. De�ne the relative height of node x, x:rh, to be the sum of theheight di�erences of x and all its neighbors of lower heights, i.e.,x:rh = (+y : x neighbor y ^ x:h > y:h : x:h� y:h)The following properties can be proven directly from the program text; each7! property is indeed an ensures property. For all x; y; n,27

1. x:low 7! x 2 b.2. x:rh = n ^ (x neighbor y) ^ y:low7! (x:rh = n) ^ (x neighbor y) ^ y 2 b.3. x:rh = n ^ (x neighbor y) ^ y 2 b 7! x:rh < n.We give an informal argument for the validity of these three properties. Anode's height does not change as long as it remains white. Therefore, if x is lowand white then it remains low (because its neighbors' heights can only increase)and white, until blackened. Eventually, x is considered for blackening and thenblackened, establishing property (1). Proof of (2) is similar: the node y of thelowest height among the neighbors of x will eventually be black and until thenx:rh is unchanged. Property (3) says that that node y, as described above, willeventually become white and then x:rh is decreased because the height of y isincreased. The proof of true 7! x 2 b follows.x:rh = n ^ (x neighbor y) ^ y:low7! (x:rh = n) ^ (x neighbor y) ^ y 2 b, From (2)x:rh = n ^ (x neighbor y) ^ y:low 7! x:rh < n, transitivity with (3)x:rh = n ^ (9y :: (x neighbor y) ^ y:low) 7! x:rh < n, disjunction over all yx:rh = n ^ :x:low 7! x:rh < n, using Invariant P0 and the de�nition of lowx:rh = n ^ x:low 7! x 2 b , strengthening the left side of (1)x:rh = n 7! x:rh < n _ x 2 b, disjunction of the above twotrue 7! x 2 b , induction on the aboveReferences[1] Flemming Andersen, Kim Dam Petersen, and Jimmi S. Pettersson. Pro-gram Veri�cation using HOL-UNITY. In HUG'93: HOL User's GroupWorkshop, volume 780 of LNCS, pages 1{17. Springer{Verlag, 1993.[2] Krzysztof R. Apt and Ernst-R�udiger Olderog. Veri�cation of Sequentialand Concurrent Programs. Springer{Verlag, 1997.[3] K. M. Chandy and J. Misra. The drinking philosophers problem. ACMTransactions on Programming Languages and Systems, 6(4):632{646, 1984.[4] K. Mani Chandy and Jayadev Misra. Parallel Program Design: A Foun-dation. Addison Wesley, 1988.[5] E.M. Clarke, E. A. Emerson, and A. P. Sistla. Automatic veri�cation of�nite-state concurrent systems using temporal logic speci�cations. ACMTransactions on Programming Languages and Systems, 8(2):244{263, April1986. 28

[6] Leslie Lamport. What good is temporal logic? In R. E. A. Mason, editor,Information Processing 83: Proceedings of the IFIP 9th World Congress,pages 657{668, Paris, Sep 1983. IFIP, North-Holland.[7] R. Milner. Communication and Concurrency. International Series in Com-puter Science, C. A. R. Hoare, Series Editor. Prentice-Hall International,London, 1989.[8] Jayadev Misra. A logic for concurrent programming: Progress. Journal ofComputer and Software Engineering, 3(2):273{300, 1995.[9] Jayadev Misra. A logic for concurrent programming: Safety. Journal ofComputer and Software Engineering, 3(2):239{272, 1995.[10] Jayadev Misra. A discipline of multiprogramming, work in progress, ftpaccess at ftp://ftp.cs.utexas.edu/pub/psp/seuss/discipline.ps.Z,1996.[11] Lawrence C. Paulson. Mechanizing UNITY in Isabelle. Technical Report467, Computer Laboratory, University of Cambridge, May 1999.[12] R. A. Scantlebury, K. A. Bartlett, and P.T. Wilkinson. A note on reliablefull-duplex transmission over half-duplex links. Communications of theACM, 12(5):260{261, May 1969.

29

