
Placement Algorithms forHierarchical Cooperative Caching�Madhukar R. Korupoluy C. Greg Plaxton� Rajmohan RajaramanzJune 22, 1999AbstractConsider a hierarchical network in which each node periodically issues a request for an objectdrawn from a �xed set of unit-size objects. Suppose further that the following conditions are satis�ed:the frequency with which each node accesses each object is known; each node has a cache of knowncapacity; any cache can be accessed by any node; any request is satis�ed by the closest node witha copy of the desired object. In such an environment, it is desirable to �ll the available cache spacewith copies of objects in such a way that the average access cost is minimized. We provide both exactand approximate polynomial-time algorithms for this hierarchical placement problem. Our exactalgorithm is based on a reduction to min-cost
ow, and does not appear to be practical for largeproblem sizes. Thus we are motivated to search for a faster approximation algorithm. Our mainresult is a simple constant-factor approximation algorithm for the hierarchical placement problemthat admits an e�cient distributed implementation.1 IntroductionCooperative caching [14] is an emerging paradigm in the design of scalable high-performance distributedsystems. In traditional caching schemes, the primary function of a cache is to act as a fast intermediatestorage between a client or a collection of clients and the servers. In such schemes, each request issatis�ed by the cache associated with the requesting node or by the server of the requested object.Moreover, the storage decisions made by one cache are independent of those made by other caches inthe system. The de�ning characteristic of cooperative caching schemes, on the other hand, is that thecaches cooperate in serving one another's requests as well as in storage decisions.A number of recent studies have discussed the bene�ts of cooperative caching for distributed �lesystems and large-scale information systems such as digital libraries and the World Wide Web. Thesestudies include analytical results (e.g., [3, 22]), simulation experiments (e.g., [8, 16, 17, 28]) and pro-totypes and products (e.g., Harvest [9, 11], xFS [1]). The widely deployed and studied Harvest cachesystem [9], employs a hierarchical arrangement of object caches to improve access performance. Inthe Squid cache system [30], which is a successor to Harvest, the caches cooperate via the InternetCache Protocol [31] to serve one another's misses and thus reduce overall tra�c. Recent experimentalwork of [28] also indicates the potential for signi�cant performance gains by cooperative caching onthe Internet. In the context of local-area networks, the xFS system [1] utilizes cooperative caches toobtain a serverless �le system. While the appropriate level of cooperation depends on the kind and�A preliminary version of this paper appears in Proceedings of the 10th Annual ACM-SIAM Symposium on DiscreteAlgorithms, 1999, pages 586{595.yDepartment of Computer Science, University of Texas, Austin, TX 78712. Supported by NSF grant CCR{9504145.Email: fmadhukar,plaxtong@cs.utexas.edu.zCollege of Computer Science, Northeastern University, Boston, MA 02115. Part of this work was done while theauthor was at DIMACS, which is an NSF Science and Technology Center, funded under contract STC{91{19999 andpartially supported by the New Jersey Commission on Science and Technology. Email: rraj@ccs.neu.edu.1

scale of the application, it is evident from these studies that cooperative caching will play a signi�cantrole in future information systems.This paper studies an important component of cooperative caching schemes, which we refer to asplacement. A cooperative caching scheme can be loosely divided into three components: placement,search, and consistency. The placement component determines where to place the copies of the objects.The search component directs each request to an appropriate copy of the requested object. Finally,the consistency component maintains the desired level of consistency among the various copies of anobject.In [3], Awerbuch, Bartal, and Fiat study a general on-line cooperative caching problem on arbitrarynetworks and present a polylog(n)-competitive algorithm, where n is the number of nodes in thenetwork. Their result is impressive in that it addresses the search, placement, and consistency problemsin a general adversarial setting. However, the time and space bounds established may exceed optimalby a polylogarithmic factor. In this paper, we study a special case of cooperative caching with theaim of developing simple algorithms that obtain near-optimal (e.g., constant-factor approximation)solutions. We focus our attention on the placement component of cooperative caching and developplacement algorithms for a class of networks that we refer to as hierarchical networks. Our de�nitionof hierarchical networks, which is based on the ultrametric cost model used in [20], is motivated by thefact that modern wide-area networks tend to admit natural hierarchical decompositions. In fact, theexistence of a hierarchical decomposition is implicit in several previous studies (e.g., see [11, 29, 30]).1.1 The problemWe address the following placement problem for hierarchical networks. Let 	 denote the set of objectsand let size(u) denote the cache size at node u. We are given for each node u and each object theaccess frequency for at u. Further assume that for any node u and object , the cost of satisfying anaccess request for originating at u is given by the communication cost between u and v, where v is theclosest node (with respect to the communication cost function) that holds a copy of . The objectiveof a placement algorithm is to determine a placement of object copies in the node caches subject tospace constraints such that the average access cost over all nodes and all objects is minimized. SeeSection 2 for a formal statement of the problem.Our problem formulation is most suitable for applications in which writes are infrequent and changesin the access pattern over short time intervals are moderate. Infrequent writes imply a low overheadin maintaining consistency among the copies of an object, allowing us to separate the concerns ofconsistency and placement. Moderate changes in the access pattern can be addressed by invoking theplacement algorithm at regular intervals. Finally, we consider our assumption that each request issatis�ed by the nearest copy of the requested object. This assumption is justi�ed by the existence ofalgorithms for the search component that direct each request to a nearby, if not the nearest, copy ofthe requested object [4, 16, 25, 29]. Another useful idea in this regard is the summary cache protocolof [16] in which each cache maintains a synopsis of the contents of nearby caches so that it can redirecta request to a nearby copy (if one exists) in the event of a cache miss.1.2 Our resultsWe �rst present a polynomial-time exact algorithm for the hierarchical placement problem based ona reduction to minimum-cost
ow. Our reduction, described in Section 3, generalizes the approach ofLe�, Wolf, and Yu [22], who solved the problem for the special case of a single-level hierarchy. Whilethe algorithm of Section 3 runs in polynomial time, the degree of the polynomial is su�ciently high tomake the algorithm largely impractical.Thus, we focus on the goal of developing a fast, simple constant-factor approximation algorithm forthe hierarchical placement problem that admits an e�cient distributed implementation. In Section 4.1we consider a natural bottom-up greedy algorithm, but �nd that this algorithm has approximationratio
(n). The lower bound proof leads us to a natural re�nement of the greedy algorithm, the2

amortizing algorithm, described in Section 4.2. Like the greedy algorithm, the amortizing algorithmstarts with a placement in which each the cache of each node holds the locally optimal set of objects.The algorithm then iteratively improves the placement in a bottom-up manner as the nodes cooperateand share information about the access frequencies across larger regions of the network.Our main result, shown in Section 5, is that the amortizing algorithm achieves a constant-factorapproximation for the hierarchical placement problem. (The constant factor is less than 14.) The proofof our main technical lemma appears in Section 6. In Section 7, we describe an e�cient distributedimplementation of the amortizing algorithm.It is worth noting that the recent results on the approximation of general metrics by tree metrics [5,6, 12] imply that any hierarchical placement algorithm can be used to obtain a placement algorithmfor general metrics giving up an extra O(log n log log n) factor in the approximation.1.3 Related workDowdy and Foster [15] initiated the study of cooperative caching in the context of allocating �les in adistributed network [15]. A sequence of results [2, 7, 23] obtained improved algorithms for centralizedas well as distributed �le allocation. These results, however, did not consider cache capacities atthe individual nodes. As mentioned earlier in this section, Awerbuch, Bartal, and Fiat [3] provide apolylog(n)-competitive on-line algorithm for the general placement problem under the assumption thatthe size of each cache in the on-line algorithm is polylog(n) times more than the size in the optimalalgorithm. In contrast, we obtain an optimal centralized and a constant-factor approximate distributedalgorithm for the o�-line version of the problem on hierarchical networks without any blowup in thecache sizes.In [22], Le�, Wolf, and Yu study the placement problem for a network of workstations, which theymodel as a single-level hierarchy. In addition to providing an optimal centralized algorithm for thiscase, they give heuristics for a distributed solution. These heuristics, however, make use of particularproperties of a single-level hierarchy that are not applicable in an arbitrary hierarchical setting.By adopting a communication model based on a �xed cost function, we endeavor to separate theconcerns of caching (a higher-level operation) from routing (a lower-level operation). In contrast, somerecent papers have incorporated routing issues into caching by either combining the two problems ormaking use of available routing information. For example, the algorithms developed in [18, 26, 32]tend to cache copies of an object in nodes that either lie on or are close to the path along which theobject is being transferred. Routing information is also used in the placement algorithms developedin [24], where the primary aim is to minimize the network congestion that may occur when requests andtheir responses are routed within the network. We also remark that cost models have been adopted inuniprocessor caching systems to model scenarios in which the costs incurred in the retrieval of objectson cache misses may vary from one object to another [10, 19, 33].With regard to uniprocessor caching schemes, recent research has addressed the challenge of de-signing cache replacement policies that take into account the di�ering costs incurred in the retrieval ofobjects on cache misses. This has led to studies formulating generalizations of the traditional unipro-cessor caching problems that account for the di�ering costs [10, 19, 33].In a recent experimental study [21], Korupolu and Dahlin evaluate the practical performance ofseveral placement and replacement algorithms for cooperative caching. Their simulation experimentsdemonstrate that, in practice, both our greedy placement algorithm as well as our amortizing placementalgorithm are in fact very close to the optimal.We remark that the placement problem can be viewed as an instance of facility location withmultiple types of facilities and constraints on the number of facilities that can located at a point. Tothe best of our knowledge, this multiple facilities location problem has not been studied previously.For a survey of results related to facility location, see [13, 27].3

2 PreliminariesIn this section, we formally de�ne the hierarchical placement problem. To simplify the exposition, wede�ne this problem with respect to a �xed tuple (;V; distance ; frequency ; size; penalty), where 	 is aset of unit-size read-only objects, V is a set of nodes, distance : V � V ! R, frequency : V �	 ! R,size : V ! N, and penalty is a real number. We assume that the set of nodes V forms a hierarchy asde�ned in Section 2.1. We assume that penalty is at least as large as diameter (V), where for any setof nodes U , diameter (U) is de�ned as the maximum value of distance(u; v) over all nodes u and v inV. The hierarchical placement problem is de�ned in Section 2.2.2.1 HierarchiesWe now inductively de�ne the notion of a hierarchy. For any node u in V, the singleton set fug isa hierarchy i� distance(u; u) = 0. A set of nodes U such that jU j > 1 is a hierarchy i� there is apartition of U into k > 1 disjoint hierarchies �i, 0 � i < k, such that distance(u; v) = diameter (U)(resp., distance(u; v) < diameter (U)) for all nodes u in �i and v in �j for which i 6= j (resp., i = j).Note that for any non-singleton hierarchy �, this partition is unique. For any non-singleton hierarchy� with associated partition f�i : 0 � i < kg, we de�ne each hierarchy �i as a child of the hierarchy �,and we de�ne the parent of each �i, denoted parent (�i), as �. We inductively de�ne the notion of adescendant of a hierarchy � as follows: A hierarchy � is a descendant of a hierarchy � i� � = � or �is a descendant of some child of �. A descendant � of � is proper i� � 6= �.Hierarchies can be used to model a large class of distributed networks. For example, a homogeneous,k-node local-area network may be modeled as a single-level hierarchy. In fact, this is precisely the modelused in [1, 22] in the study of caching schemes for networks of workstations. Furthermore, it seemsplausible that some nontrivial hierarchy should provide a reasonable �rst-order model for a complex,heterogeneous wide-area network such as the Internet.Hierarchies can also be used to model multi-level storage; we can introduce a hierarchy for eachlevel of storage and incorporate the disparate speeds of the di�erent levels in the distance function.As a simple example, consider a machine with two levels of storage (e.g., memory and disk) havinglocal access latencies a and b, a < b. This machine may be modeled as a hierarchy with diameter band two children: (i) a singleton hierarchy with zero access frequencies and storage capacity equal tothat of the slow level of storage, and (ii) a hierarchy with diameter a and two singleton children, onewith zero access frequencies and storage capacity equal to that of the fast level of storage, and anotherwith zero storage and access frequencies equal to those of the original machine. This approach can begeneralized to capture both network and cache latencies in a heterogeneous distributed network withcaches of varying speeds.2.2 The hierarchical placement problemHaving �xed the tuple (;V; distance ; frequency ; size; penalty) as speci�ed at the beginning of Section 2,any descendant of the hierarchy V determines an instance of the hierarchical placement problem. Wenow present a sequence of de�nitions leading up to the de�nition of the hierarchical placement problem.It is convenient to extend the de�nitions of the functions frequency and size to act on hierarchies.For any hierarchy � and any object , we de�ne frequency(�;) as the sum of frequency(u;) over allnodes u in �. For any hierarchy �, we de�ne size(�) as the sum of size(u) over all nodes in �. Thefollowing de�nitions involving hierarchies will also prove to be useful. For any proper descendant � of V,we de�ne miss(�) as diameter (parent (�)). For the hierarchy V itself, we de�ne miss(V) as penalty . Forany hierarchy � and any object , we de�ne value(�;) as frequency(�;) � (miss(�)� diameter (�)).A copy is a pair (�;) where � is a hierarchy and is an object. A copy (�;) is concrete i� � issingleton. A set of copies is concrete i� it is a set of concrete copies. A re�nement of a set of copiesP is a set of copies Q for which jP j = jQj and there exists a bijection � : P ! Q such that for allp = (�;) in P , the copy �(p) = (�;) for some descendant � of �. A concrete set of copies P is4

feasible i� jf(�;) 2 P : 2 	gj � size(�) for each singleton hierarchy � in V. A non-concrete setof copies is feasible i� it admits a feasible concrete re�nement. A placement is a pair (�; P) where �is a hierarchy, P is a set of copies, and each copy in P is of the form (�;) for some descendant � of�. For any placement A = (�; P), we de�ne Hierarchy(A) and Copies(A) as � and P , respectively.For any hierarchy �, a placement A is a �-placement i� Hierarchy(A) = �. A placement A is concrete(resp. feasible) i� Copies(A) is concrete (resp., feasible). A placement (�; P) is a re�nement of aplacement (�;Q) i� � = � and P is a re�nement of Q. For any placement A and any descendant � ofHierarchy(A), we de�ne restrict(A;�) as the placement (�; P) where P is the set of all copies (�;)in Copies(A) such that � is a descendant of �. The following lemma is straightforward to prove.Lemma 2.1 For any hierarchy �, an �-placement A is feasible i� jCopies(restrict(A; �))j � size(�)for all descendants � of �.For any placement A and object , a copy p is an (A;)-copy i� p belongs to Copies(A) and hasassociated object . For any placement A and object , we de�ne count(A;) as the number of (A;)-copies. For any placement A, we de�neMissing(A) as the set of all objects such that count(A;) = 0.For any placement A, node u in Hierarchy(A), and object , we de�ne latency(A; u;) as follows: If belongs to Missing(A), then latency(A; u;) = miss(Hierarchy(A)); otherwise, latency(A; u;) isthe minimum value of diameter (�) over all descendants � of Hierarchy(A) such that u belongs to� and count(restrict(A;�);) > 0. Note that if A is a re�nement of B, then latency(A; u;) �latency(B; u;). For any placement A, we de�ne the cost of A, denoted cost(A), as the sum offrequency(u;) � latency(A; u;) over all nodes u in Hierarchy(A) and all objects in 	. Given ahierarchy �, the hierarchical placement problem is to �nd a feasible concrete �-placement of minimumcost. We remark that if A is a re�nement of B, then cost(A) � cost(B); it follows that some minimum-cost feasible �-placement is concrete.A set of placements is de�ned to be comparable i� each placement in the set has the same associatedhierarchy. Two placements A and B are de�ned to be coupled i� they are comparable and count(A;) =count(B;) for all objects . A triple of placements (A;B;C) is de�ned to be nice i� A, B, and Care comparable and A and B are coupled.3 A reduction to minimum-cost
owIn this section we reduce a given instance � of the hierarchical placement problem to a correspondinginstance G� of the minimum-cost
ow problem. If the hierarchy � is singleton then the placementproblem is trivial; our presentation assumes that � is non-singleton.The minimum-cost
ow instance G� is constructed as follows. The vertex set consists of thefollowing: a vertex � for every singleton descendant � of �; a vertex h ; �i for every object anddescendant � of �; a source s and sink t. The edge set consists of four types of edges: for eachsingleton descendant � of � and each object , there is a unit-capacity edge (h ; parent (�)i; �) with cost�value(�;); for each non-singleton proper descendant � of � and each object , there are two paralleledges (h ; parent (�)i; h ; �i) with capacities 1 and 1, and costs �value(�;) and 0, respectively; foreach object , there are two parallel edges (s; h ;�i) with capacities 1 and 1, and costs �value(�;)and 0, respectively; for each singleton descendant � of �, there is an edge (�; t) with capacity size(�)and cost 0.Let c denote the sum, over all nodes u in � and all objects in 	, of frequency(u;) �miss(�). Thenext two lemmas imply that an integral minimum-cost
ow in G� corresponds to a feasible concrete�-placement of minimum cost.Lemma 3.1 For every feasible concrete �-placement A, there is an integral
ow in G� with cost equalto cost(A)� c.Proof: For any hierarchy �, let A� denote the placement restrict(A; �). We construct the desired
ow as follows. For each edge (h ; parent (�)i; �), we set the
ow to 1 if count(A� ;) > 0, and to 05

otherwise. For each unit-capacity edge (h ; parent (�)i; h ; �i), we set the
ow to 1 if count(A�;) >0, and to 0 otherwise. For each in�nite-capacity edge (h ; parent (�)i; h ; �i), we set the
ow tomaxf0; count (A� ;) � 1g. For each edge (s; h ;�i), we set the
ow to 1 if count(A� ;) > 0, andto 0 otherwise. For each edge (�; t), we set the
ow to the sum over all objects of count(A�;). Itis straightforward to prove that the above
ow is feasible and has cost equal to cost(A)� c.Lemma 3.2 For every integral minimum-cost
ow with cost c0 in G�, there is a feasible concrete�-placement A such that cost(A) = c+ c0.Proof: Given an integral minimum-cost
ow in G�, we de�ne a corresponding concrete �-placementA as follows: For any singleton descendant � of � and any object , Copies(A) includes the concretecopy (�;) i� the
ow along edge (h ; parent (�)i; t) is 1. (Note that A is concrete and feasible.) Itremains to establish that cost(A) = c + c0. To establish this, we make the following key observationregarding the
ows on adjacent parallel arcs. Let e0 and e1 denote the parallel edges with capacities 1and 1, respectively, between a pair of vertices. If the
ow along e1 is positive, then the
ow along e0is 1. Otherwise, transferring a unit of
ow from e1 to e0 would yield another feasible
ow with smallercost, a contradiction. It follows that if count(restrict(A; �);) > 0 for some proper descendant � of�, then the
ow along edge (h ; parent (�)i; h ; �i) is 1, and hence there is an appropriate negativecontribution to the cost of the
ow.4 An approximation algorithmWhile the algorithm of Section 3 computes an optimal solution to the hierarchical placement problem,its run-time complexity is prohibitively high, at least quadratic in the product of the number of nodesn and the number of objects m. This motivates us to seek a faster approximation algorithm. Twocandidate algorithms are presented in this section. The �rst algorithm, which we refer to as the greedyalgorithm, uses a natural local improvement heuristic. We show, however, that the greedy algorithmhas an approximation ratio of
(n). The lower bound proof leads us to a variant of the greedy algorithmthat we refer to as the amortizing algorithm. Section 5 establishes that the amortizing algorithm is aconstant-factor approximation algorithm. Section 7 outlines an e�cient distributed implementation ofthe amortizing algorithm.Given any feasible non-concrete placement A, the following simple procedure can be used to obtaina feasible concrete re�nement of A. Note that Copies(A) contains a copy p of the form (�;) forsome non-singleton hierarchy � and object . Using Lemma 2.1, we conclude that there exists a child� of � for which jCopies(restrict (A; �))j < size(�). Hence we can obtain a feasible re�nement of Aby removing p from Copies(A) and replacing it with the copy (�;). Repeated application of thisargument yields a concrete re�nement of A. (Remark: For any feasible placement A, a minimum-costfeasible concrete re�nement of A can be obtained by solving a suitably de�ned weighted matchingproblem.)The greedy and amortizing placement algorithms described in Sections 4.1 and 4.2, respectively,each compute a placement A that is feasible but not necessarily concrete. The re�nement procedureof the preceding paragraph may then be applied to obtain a feasible concrete placement B such thatcost(B) � cost(A).The greedy and amortizing algorithms, though well-de�ned for arbitrary hierarchies, are only in-tended to be directly applied to hierarchies that are \�-separated" for some constant � > 1. A hierarchyU is �-separated i� miss(V) � � � diameter (V) for every descendant V of U . It is straightforward toshow that any c-approximation algorithm for the �-separated hierarchical placement problem impliesa c�-approximation algorithm for the hierarchical placement problem. (The main idea is to transformthe given hierarchy into a �-separated hierarchy by rounding up all distances to the nearest integralpower of �.) Thus, for the purposes of obtaining a constant-factor approximation algorithm, we may6

Swapping Procedure: Swap(A; p)� Set Copies(A) to (Copies(A)� fpg) [f(Hierarchy(A); candidate(A))g.Figure 1: The swapping procedure. The input is a placement A and a copy p in Copies(A).assume without loss of generality that the input hierarchy is �-separated for an arbitrary constant� > 1.4.1 The greedy placement algorithmFor any placement A and any copy p in Copies(A), we de�ne min-bene�t(A; p) as the amount by whichcost(A) would increase if p were removed from Copies(A). Given a placement A for which Copies(A) isnonempty, the greedy elimination rule removes from Copies(A) the copy pminimizingmin-bene�t(A; p);this copy is denoted victim(A). (Ties may be broken in an arbitrary consistent manner. For example,we could assign a unique integer ID to each copy, and use these IDs to break ties. Such tie-breakingconventions will be assumed throughout the remainder of the paper without further comment.)In the following de�nitions, let A denote a placement, let denote an object, let k denotejCopies(A)j, let A0 = A, let Ai+1 denote the placement (Hierarchy(A);Copies(Ai) � fvictim(Ai)g),0 � i < k, let p denote a (A;)-copy, and let j denote the maximum value of i such that p belongs toCopies(Ai). We de�ne bene�t(A; p) as min-bene�t(Aj ; p). The copy p belongs to the set Primary(A)i� there is no other (Aj ;)-copy. We de�ne Secondary(A) as Copies(A)�Primary(A). For any place-ment A, we de�ne secondary-victim(A) as the copy p in Secondary(A) minimizing bene�t(A; p). IfSecondary(A) is empty, then secondary-victim(A) is unde�ned and it is convenient to assume thatbene�t(A; secondary-victim(A)) =1.In order to facilitate the next de�nition, we assume that Missing(A) is nonempty for any placementA. This assumption is made without loss of generality since the set of objects 	 can be augmentedwith arbitrarily many dummy objects for which the associated access frequencies are all zero. For anyplacement A, we de�ne candidate(A) as the object inMissing(A) maximizing value(Hierarchy(A);).The swapping procedure of Figure 1 is used in all of our approximation algorithms for the hierar-chical placement problem. Lemma 2.1 implies that if the placement passed to the swapping procedureis feasible, then the updated placement is also feasible.The proofs of the following six lemmas are all straightforward and hence are omitted.Lemma 4.1 For any placement A such that Copies(A) is nonempty, and any p in Copies(A), we havebene�t(A; victim(A)) � bene�t(A; p).Lemma 4.2 For any placement A and any object such that there is at least one (A;)-copy, aunique (A;)-copy p belongs to Primary(A) and bene�t(A; p) � bene�t(A; q) for all (A;)-copies q.Lemma 4.3 Let � denote a �-separated hierarchy for some � > 1, let A denote an �-placement, andlet p denote a (A;)-copy in Copies(A). Then bene�t(A; p) � ���1 � value(�;).Lemma 4.4 (Delete) Let p denote victim(A) (resp., secondary-victim(A)) for some placement A, andlet A0 denote the placement (Hierarchy(A);Copies(A) � fpg). Then the following conditions hold forall q in Copies(A0): bene�t(A; q) = bene�t(A0; q); q belongs to Primary(A) (resp., Secondary(A)) i� qbelongs to Primary(A0) (resp., Secondary(A0)).Lemma 4.5 (Insert) Let � denote a hierarchy, let A denote an �-placement, let denote an objectin Missing(A), let p denote the copy (�;) and let A0 denote the placement (�;Copies(A) [fpg).7

Greedy Algorithm� Combining. Initialize Hierarchy(A) to �. If � is singleton, initialize Copies(A)to f(�;) : 2 Sg, where S is an arbitrarily chosen subset of 	 of size size(�).Otherwise, initialize Copies(A) to [0�i<kCopies(Ai), where the Ai's are the place-ments previously computed at the k children of �.� Swapping. While bene�t(A; victim(A)) < value(�; candidate(A)), callSwap(A; victim(A)).Figure 2: The greedy algorithm. We assume that the children, if any, of a given hierarchy � havealready been processed, and describe the computation associated with �.Then p belongs to Primary(A0), bene�t(A0; p) = value(�; p), and the following claims hold for all q inCopies(A): bene�t(A; q) = bene�t(A0; q); q belongs to Primary(A) (resp., Secondary(A)) i� q belongsto Primary(A0) (resp., Secondary(A0)).Lemma 4.6 (Combine) Let � denote a non-singleton hierarchy with k children �i, 0 � i < k, let Aidenote an �i-placement, 0 � i < k, and let A denote the placement (�;[0�i<kCopies(Ai)). For anyobject such that there is at least one (A;)-copy, let p denote the unique (A;)-copy in Primary(A),and let x denote bene�t(A; p) � value(�;). Then for any i, 0 � i < k, and any (Ai;)-copy q, thefollowing claim holds: If p = q then bene�t(Ai; q) = x; otherwise, bene�t(A; q) = bene�t(Ai; q) � x.The greedy algorithm is presented in Figure 2. Using Lemmas 4.4 and 4.5, it is straightforwardto establish termination of the swapping loop; it follows that the greedy algorithm terminates. It isstraightforward to prove that the placement A computed by the greedy algorithm is feasible.One might conjecture the greedy algorithm to be a constant-factor approximation algorithm for thehierarchical placement problem. Unfortunately, this conjecture is false; below we construct an n-nodehierarchy � for which the placement computed by the greedy algorithm has cost exceeding the optimalby a �(n) factor.We label n nodes from 0 to n� 1 and construct the hierarchy � = �n�1 as follows. First, we createa hierarchy �1 with two singleton children corresponding to nodes 0 and 1. Then, for i running from 2to n� 1, we create a hierarchy �i with two children: the hierarchy �i�1 constructed previously and asingleton hierarchy containing node i. The cache size of each node is 1. We de�ne the distance functionbetween the nodes in such a way that diameter (�i) equals ni�1, 1 � i < n. The penalty , which isrequired to be at least as large as diameter (�), is set to nn�1. We assign nonzero frequencies to nobjects i, 0 � i < n. For node 0, frequency(0; i) = 1=ni, 0 � i < n. For node 1, frequency(1; i) is 1if i is 0, and 0 otherwise. For node j, 2 � j < n, frequency(j; i) is 0 for all i.For this example, the set of copies associated with an optimal feasible concrete �-placement Aconsists of (f0g; 0), (f1g; 1), and (fig; i), 2 � i < n. The cost of A is 2� 1=n since latency(A; 0; i)is ni�1, 1 � i < n, and latency(A; 1; 0) is 1. In contrast, we claim that the cost of the greedy �-placement is n � 1. (Furthermore, any re�nement of this �-placement also has cost n � 1.) It canbe shown by induction that, for each hierarchy �i, 1 � i < n, the set of copies associated with thegreedy �i-placement consists of (f0g; 0), (f1g; 0), and (�j ; j�1), 2 � j � i. The cost of the greedy�-placement B is n� 1 since latency(B; 0; i) is ni for 1 � i < n. We conclude that the approximationratio of the greedy algorithm is
(n).
8

Amortizing Algorithm� Combining. This step is the same as the combining step of the greedy algorithm,except that we also initialize an auxiliary potential variable �. If � is singleton,then � is set to 0. Otherwise, � is set to the sum of the potentials �i, 0 � i < k,computed at the k children of �.� Local Initialization. Initialize � to the sum over all objects in Missing(A)of value(�;).� Amortized Swapping. This step is similar to the swapping step of the greedyalgorithm, except that the potential � is used to reduce the bene�ts of certainsecondary copies.1. Let x = bene�t(A; secondary-victim(A)), let y = bene�t(A; victim(A)), andlet z = value(�; candidate(A)).2. If x�� � min(y; z) then call Swap(A; secondary-victim(A)), subtract z from�, set � to max(0;�� x), and goto line 1.3. If y < z, then call Swap(A; victim(A)), add y � z to �, and goto line 1.� Potential Update. Add � to �.Figure 3: The amortizing algorithm. We assume that the children, if any, of a given hierarchy � havealready been processed, and describe the computation associated with �.4.2 The amortizing placement algorithmThe construction given at the end of Section 4.1 leads us to consider a natural variant of the greedyalgorithm that we call the amortizing algorithm. The amortizing algorithm is presented in Figure 3.Using Lemmas 4.4 and 4.5, it is straightforward to establish termination of the amortized swappingloop; it follows that the amortizing algorithm terminates. It is straightforward to prove that theplacement A computed by the amortized algorithm is feasible.An e�cient distributed implementation of the amortizing algorithm is given in Section 7. It isparticularly noteworthy that the amortized swapping loop executed at each non-singleton hierarchy ishighly parallelizable.5 Analysis of the amortizing algorithmIn this section we prove our main result, namely, that the cost of the placement constructed by theamortizing algorithm is within a constant factor of optimal. To facilitate our analysis, we introduce an-other placement algorithm that we call the bridging algorithm. The bridging algorithm computes threecomparable feasible placements that we refer to as the amortizing, arbitrary, and bridging placements,respectively. The amortizing placement is identical to that computed by the amortizing algorithm.The arbitrary placement is simply an arbitrary concrete placement. The construction of the bridgingplacement depends on the choice of the arbitrary placement, and is designed to ensure that the costof the bridging placement can be relatively easily compared to that of the amortizing and arbitraryplacements. In particular, we establish our main theorem via the following two main steps. First, weprove that the cost of the amortizing placement is at most that of the bridging placement. Second, weprove that the cost of the arbitrary placement is at least some constant fraction of that of the bridgingplacement. 9

5.1 The bridging algorithmFor any placement A and copy p = (�;) in Copies(A), we de�ne Region(A; p) as the set of nodesu such that latency(A; u;) would increase if p were removed from Copies(A); it is straightfor-ward to prove that Region(A; p) is a hierarchy. For any comparable placements A and B, we de-�ne Min-matched(A;B) as the set of all p = (�;) in Copies(A) for which there is a copy q =(�;) in Copies(B) such that � is a descendant of Region(A; p). We de�ne Min-unmatched(A;B) asCopies(A)�Min-matched (A;B).In the following de�nitions, let A and B denote two comparable placements, let denote an object,and let P (resp., Q) denote the set of all (A;)-copies inMin-matched(A;B) (resp.,Min-unmatched(A;B)).If there are one or more (A;)-copies, then we de�ne quasivictim(A;B;) as follows: If Q is empty(resp., nonempty), then quasivictim(A;B;) is the copy p in P (resp., Q) minimizingmin-bene�t(A; p).For the remaining de�nitions in this paragraph, let k denote the number of (A;)-copies, let A0 = A,let Ai+1 denote the placement = (Hierarchy(A);Copies(Ai)�fquasivictim(Ai; B;)g), 0 � i < k, let pdenote a (A;)-copy, and let j denote the maximum value of i such that p belongs to Copies(Ai). Wede�ne quasibene�t(A;B; p) as min-bene�t(Aj ; p). The copy p belongs to the set Quasiprimary(A;B)i� j = k � 1. We de�ne Quasisecondary (A;B) as Copies(A) � Quasiprimary(A;B). The copy p be-longs to the set Matched (A;B) i� p belongs to Min-matched(Aj ; B). We de�ne Unmatched (A;B) asCopies(A)�Matched (A;B).The next six lemmas are analogous to Lemmas 4.1, 4.2, 4.3, 4.4, 4.5, and 4.6, respectively. Theproofs are all straightforward and hence are omitted.Lemma 5.1 Let A and B denote two comparable placements, let denote an object such that count(A;) >0, and let P (resp., Q) denote the set of all (A;)-copies in Matched (A;B) (resp., Unmatched (A;B)).Then if Q is empty (resp., nonempty), quasivictim(A;B;) belongs to P (resp., Q) and for all p in P(resp., Q), quasibene�t(A;B; quasivictim(A;B;)) � quasibene�t(A;B; p).Lemma 5.2 Let A and B denote two comparable placements, let denote an object such that count(A;) >0, and let P (resp., Q) denote the set of all (A;)-copies in Matched (A;B) (resp., Unmatched (A;B)).Then a unique (A;)-copy p belongs to Quasiprimary(A;B), p belongs to P unless P is empty, andquasibene�t(A;B; p) � quasibene�t(A;B; q) for all q in P (resp., Q).Lemma 5.3 Let � denote a �-separated hierarchy for some � > 1, let A and B denote two �-placements, and let p denote an (A;)-copy in Copies(A). Then quasibene�t(A;B; p) � ���1 �value(�;).Lemma 5.4 (Delete) Let A and B denote two comparable placements, let denote an object such thatcount(A;) > 0, and let A0 denote the placement (Hierarchy(A);Copies(A)�fquasivictim(A;B;)g).Then the following claims hold for all p in Copies(A0): quasibene�t(A;B; p) = quasibene�t(A0; B; p); pbelongs to Quasiprimary(A;B) (resp., Quasisecondary (A;B), Matched(A;B), Unmatched (A;B)) i� pbelongs to to Quasiprimary(A0; B) (resp., Quasisecondary (A0; B), Matched(A0; B), Unmatched (A0; B)).Lemma 5.5 (Insert) Let � denote a hierarchy, let A and B denote two �-placements, let denotean object in Missing(A), let p denote the copy (�;) and let A0 denote the placement (�;Copies(A) [fpg). Then p belongs to Quasiprimary(A0; B), quasibene�t(A0; B; p) = value(�; p), and the follow-ing claims hold for all q in Copies(A): quasibene�t(A;B; q) = quasibene�t(A0; B; q); q belongs toQuasiprimary(A;B) (resp., Quasisecondary(A;B), Matched(A;B), Unmatched (A;B)) i� q belongs toto Quasiprimary(A0; B) (resp., Quasisecondary (A0; B), Matched (A0; B), Unmatched (A0; B)).Lemma 5.6 (Combine) Let � denote a non-singleton hierarchy with k children �i, 0 � i < k, letAi and Bi denote two �i-placements, 0 � i < k, let A denote the placement (�;[0�i<kCopies(Ai)),10

Coupled Swapping Procedure: Swaps(A;B;C; p)� Let be such that p is a (A;)-copy.� Call Swap(A; p) and Swap(B; quasivictim(B;C;)).Figure 4: The coupled swapping procedure. The input is a nice triple of placements (A;B;C) and acopy p in Copies(A). Because A and B are coupled, candidate(A) = candidate(B) and hence the samecopy is inserted in both calls to the swapping procedure. It follows that the output triple (A;B;C) isnice.let B denote the placement (�;[0�i<kCopies(Bi)), let P denote [0�i<kMatched(Ai; Bi), let Q denote[0�i<kUnmatched (Ai; Bi), let denote an object such that count(A;) > 0, let p denote the unique(A;)-copy in Quasiprimary(A;B), and let x denote quasibene�t(A;B; p) � value(�;). Then thefollowing claims hold: if P is nonempty then p belongs to P ; quasibene�t(Ai; B; q) = x; p belongs toMatched(A;B) (resp., Unmatched (A;B)) i� count(B;) > 0 (resp., count(B;) = 0). Furthermore,for any i, 0 � i < k, and any (Ai;)-copy q di�erent from p, the following claims hold: q belongsto Matched(A;B) (resp., Unmatched (A;B)) i� q belongs to P (resp., Q); quasibene�t(A;B; q) =quasibene�t(Ai; Bi; q); if q belongs to Quasisecondary (Ai; Bi) then q belongs to Quasisecondary(A;B);if Q is empty or q belongs to Q then quasibene�t(A;B; q) � x.In the following de�nition, let (A;B;C) denote a nice triple of placements, let k = jCopies(A)j, letA0 = A and B0 = B, let Ai+1 denote the placement (Hierarchy(A);Copies(Ai) � fvictim(Ai)g), letBi+1 denote the placement (Hierarchy(B);Copies(Bi)� fquasivictim(Bi; C;)g) where denotes theobject associated with victim(Ai), 0 � i < k, let p denote a copy in Copies(B), and let j denote themaximum value of i such that p belongs to Copies(Bi). (Note that each triple (Ai; Bi; C), 0 � i < k,is nice.) We de�ne mate(A;B;C; p) as victim(Aj).The coupled swapping procedure of Figure 4 executes a pair of swaps, one involving each of thecoupled placements in a given nice triple. Lemmas 5.7 and 5.8 below are useful for analyzing thee�ect of a call to the coupled swapping procedure for which the parameter p is either victim(A) orsecondary-victim(A).Lemma 5.7 (Delete) Let p be equal to victim(A) (resp., secondary-victim(A)) for some placement Abelonging to a nice triple (A;B;C), let be such that p is an (A;)-copy, let A0 denote the placement(Hierarchy(A);Copies(A)�fvictim(A)g), and let B0 denote the placement (Hierarchy(B);Copies(B)�fquasivictim(A;B;)g). Then (A0; B0; C) is nice.Proof: Straightforward from Lemmas 4.4 and 5.4.Lemma 5.8 (Insert) Let (A;B;C) denote a nice triple of placements, let denote an object inMissing(A), let A0 and denote the placement (Hierarchy(A);Copies(A) [f(Hierarchy(A);)g), andlet B0 denote the placement (Hierarchy(B);Copies(B) [f(Hierarchy(B);)g). Then (A0; B0; C) isnice.Proof: Straightforward from Lemmas 4.5 and 5.5.Lemma 5.9 (Combine) Let � denote a non-singleton hierarchy with k children �i, 0 � i < k, let Ai,Bi, and Ci denote �i-placements such that (Ai; Bi; Ci) is nice, 0 � i < k, and let A, B, and C denotethe placements (�;[0�i<kCopies(Ai)), (�;[0�i<kCopies(Bi)), and (�;[0�i<kCopies(Ci)), respectively.Then (A;B;C) is nice. 11

Bridging Algorithm� Combining. Initialize A and � as in the amortizing algorithm. If � is singleton,initialize B and C to A. Otherwise, initialize Hierarchy(B) (resp., Hierarchy(C))to �, and initialize Copies(B) (resp., Copies(C)) to [0�i<kCopies(Bi), wherethe Bi's (resp., Ci's) are the bridging (resp., arbitrary) placements previouslycomputed at the k children of �.� Local Initialization. Set � to 0 and � to Missing(A).� Amortized Swapping. This step applies the same sequence of swaps to theamortizing placement A as in the amortizing algorithm. Each of these swaps isaccompanied by a corresponding swap involving the bridging placement B. (Fora proof that the latter swaps are well-de�ned, see Lemma 5.10 below.)1. Let x = bene�t(A; secondary-victim(A)), let y = bene�t(A; victim(A)), andlet z = value(�; candidate(A)).2. If x�� � min(y; z) then call Swaps(A;B;C; secondary-victim (A)), set � tomax(0;� � x), remove candidate(A) from �, and goto line 1.3. If y < z, then call Swaps(A;B;C; victim(A)), add y to �, removecandidate(A) from �, and goto line 1.� Accounting. For each object in �, add value(�;) to � and remove from�.� Potential Update. Add � to �.Figure 5: The bridging algorithm. We introduce this algorithm for the sole purpose of analyzing theamortizing algorithm. We assume that the children, if any, of a given hierarchy � have already beenprocessed, and describe the computation associated with �.Proof: Straightforward from Lemmas 4.6 and 5.6.The bridging algorithm is presented in Figure 5. The program variables A, B, and C correspondto the amortizing, bridging, and arbitrary placements, respectively.The following lemma implies that the swaps associated with the bridging placement are well-de�ned.Given this lemma, it is straightforward to prove that all of the placements associated with the bridgingalgorithm are feasible. Furthermore, it is straightforward to prove that the amortizing placementA computed by the bridging algorithm is the same as the placement computed by the amortizingalgorithm.Lemma 5.10 After the combining step of the bridging algorithm, and after each iteration of the amor-tized swapping loop of the bridging algorithm, (A;B;C) is nice.Proof: Lemmas 5.7 and 5.8 imply that the claim cannot fail for the �rst time after an iteration ofthe amortized swapping loop. We now argue that the claim cannot fail for the �rst time after thecombining step associated with some hierarchy �. If � is singleton, then A, B, and C are all equal andthe claim follows. If � is non-singleton then (Ai; Bi; Ci) are nice, 0 � i < k, then Lemma 5.9 impliesthat (A;B;C) is nice. The lemma follows since no other part of the code modi�es A, B, or C.
12

5.2 Cost comparison: amortizing versus bridgingIn this section we compare the cost of the amortizing and bridging placements computed by the bridgingalgorithm for a given hierarchy.For any multiset of reals X, we de�ne sum(X) as the sum of the elements of X. For any multiset ofreals X, and any integer i such that 0 � i � jXj, we de�ne Big(X; i) (resp., Little(X; i)) as the multisetconsisting of the i largest (resp., smallest) reals in X. For any two multisets of reals X and Y such thatjXj = jY j, we write X � Y to mean that the ith largest element of X is less than or equal to the ithlargest element of Y , 1 � i � jXj. A triple (X;Y;Z) is de�ned to be good i� the following conditionshold: (i) X, Y , and Z are �nite multisets of reals, (ii) jXj + jY j = jZj, (iii) X � Little(Z; jXj), (iv)Y � Big(Z; jY j), and (v) sum(X) + sum(Y) � sum(Z).Lemma 5.11 For any real x, the triples (fxg; fg; fxg) and (fg; fxg; fxg) are good.Lemma 5.12 Let (X;Y;Z) be good and assume that Z 0 = Big(Z; jZj � 1). If X is empty, then letX 0 = X and Y 0 = Big(Y; jY j � 1). Otherwise, let X 0 = Big(X; jXj � 1) and Y 0 = Y . In either case,(X 0; Y 0; Z 0) is good.Lemma 5.13 Let (Xi; Yi; Zi) be good, 1 � i � k, and let X = [1�i�kXi, Y = [1�i�kYi, and Z =[1�i�kZi. Then (X;Y;Z) is good. Furthermore, if Y is empty and x is the maximum element of X,then (X � fxg; fxg; Z) is good.Lemma 5.14 Let (X;Y;Z) be good and let w be a nonnegative real. Assume that z is a maximumelement of Z and let Z 0 = (Z�fzg)[fw+zg. If Y is nonempty, then let X 0 = X and Y 0 = (Y �fyg)[fw + yg where y is a maximum element of Y . Otherwise, let Y 0 = Y and X 0 = (X � fxg) [fw + xgwhere x is a maximum element of X. In either case, (X 0; Y 0; Z 0) is good.Lemma 5.15 Let A, B, and C denote the corresponding program variables after the combining stepof the bridging algorithm, or after some iteration of the amortized swapping loop of the bridgingalgorithm. Let X, Y , and Z denote the multisets fquasibene�t(B;C; p) : p 2 Unmatched (B;C)g,fquasibene�t(B;C; p) : p 2 Matched(B;C)g, and fbene�t(A; p) : p 2 Copies(A)g, respectively. Then(X;Y;Z) is good.Proof: After the combining step, there are two cases to consider. If � is singleton, then A = B = C,Unmatched (B;C) is empty, Matched (B;C) = Copies(A), and bene�t(A; p) = quasibene�t(B;C; p) forall p in Copies(A); the claim follows. If � is non-singleton, the claim follows by Lemmas 4.6, 5.6, 5.13,and 5.14. (Remark: Lemma 5.14 takes care of the increase in bene�t/quasibene�t associated with theprimary/quasiprimary copy of each object.)It remains to consider the e�ect of the pair of swapping operations (one applied to A, the other toB) occurring in some iteration of the amortized swapping loop of the bridging algorithm. This pair ofswaps can be viewed as a pair of deletions followed by a pair of insertions. Lemmas 4.4, 5.4, and 5.12imply that the claim holds after the pair of deletions. Lemmas 4.5, 5.5, and 5.11 imply that the claimholds after the pair of insertions.Lemma 5.16 For any hierarchy �, let A (resp., B) denote the amortizing (resp., bridging) placementcomputed by the bridging algorithm. Then cost(A) � cost(B).Proof: Let c denote the cost of the empty �-placement, (�; fg), and note that cost(A) equalsc�Pp2Copies(A) bene�t(A; p) while cost(B) equals c�Pp2Copies(B) quasibene�t(B;C; p). The claimnow follows from Lemma 5.15 and condition (v) in the de�nition of a good triple.13

5.3 Cost comparison: bridging versus arbitraryIn this section we compare the cost of the bridging and arbitrary placements computed by the bridgingalgorithm for a given hierarchy. The following lemma is useful for our analysis.Lemma 5.17 Let A, B, and C denote the corresponding program variables after the combining stepof the bridging algorithm, or after some iteration of the amortized swapping loop of the bridging al-gorithm. Let q belong to Copies(B), let p = mate(A;B;C; q), let x = bene�t(A; p), and let y =quasibene�t(B;C; q). If q belongs to Matched(B;C) (resp., Unmatched (B;C)) then x � y (resp.,x � y).Proof: Follows from Lemma 5.15 and conditions (iii) and (iv) in the de�nition of a good triple.We now state our main technical lemma. The proof of this lemma is given in Section 6.Lemma 5.18 Let B (resp., C) denote the bridging (resp., arbitrary) placement computed by the bridg-ing algorithm for a given �-separated hierarchy. Then cost(B) � (1 + 3���1) � cost(C).Given that the arbitrary placement is potentially an optimal placement, we conclude that the costof the bridging placement is within a constant factor of optimal.5.4 The main theoremUsing Lemmas 5.16 and 5.18, we obtain the following result.Lemma 5.19 For any �-separated hierarchy, the cost of the placement computed by the amortizingalgorithm is at most (1 + 3���1) times optimal.Recall that while the placement A computed by the amortizing algorithm is not necessarily concrete,A can easily be re�ned to a concrete placement B such that cost(B) � cost(A), as discussed at thebeginning of Section 4. Lemma 5.19 assumes that the given hierarchy is �-separated as de�ned inSection 4. If this is not the case, we �rst transform the given hierarchy into a �-separated hierarchy asindicated in Section 4, introducing an extra factor of � into the approximation bound.Theorem 5.1 For any hierarchy � and for any constant � > 1, the cost of the placement computed bythe amortizing algorithm is at most � � (1 + 3���1) times optimal.The above approximation ratio is less than 13.93 for the optimal choice of � = 1 +p3=2 � 1:866.6 Proof of the main technical lemmaIn this section we prove Lemma 5.18 which compares the cost of the bridging and the arbitraryplacements computed by the bridging algorithm. Throughout this section, we let A, B, and Cdenote the program variables of the bridging algorithm corresponding to the amortizing, bridging,and arbitrary placements. Note that by Lemma 5.10, the triple (A;B;C) is nice and thereforeHierarchy(A) = Hierarchy(B) = Hierarchy(C). We let � denote this common hierarchy, and fur-thermore if � is not a singleton we let �i, 0 � i < k, denote the children of �. For conciseness, theabove notational conventions are assumed throughout this section without further repetition.To facilitate the comparison of the bridging placement B with the arbitrary placement C, weintroduce and maintain another comparable placement D that is closely related to C.The rest of this section is organized as follows. First, in Section 6.1 we introduce the notions of\emulation" and \domination" to describe the relationship that we maintain between the placementsB, C, and D. In Section 6.2 we list the variables used to specify the state of the computation.In Section 6.3 we list a number of invariants that are claimed to hold at particular points in theexecution of the bridging algorithm, and prove that Lemma 5.18 follows from these invariants. Finally,in Sections 6.4 through 6.9 we examine how the state is a�ected by each step of the algorithm, andprove that the claimed invariants are indeed maintained.14

Pruning Procedure: Prune(D;B; p)� Let be such that p is a (B;)-copy .� Update Copies(D) by removing all copies of the form (�;), where � is a de-scendant of Region(B; p).Figure 6: The pruning procedure. The input is two comparable placements D and B, and a copyp in Copies(B) such that p = quasivictim(B;D;) belongs to Matched(B;D). This procedure isused to modify the placement D whenever the placement B is modi�ed by deleting the copy p fromCopies(B). (Remark: By Lemma 6.1, if D is a (B;C)-emulator, then Matched(B;C) = Matched (B;C)and quasivictim(B;C;) = quasivictim(B;D;).)6.1 Emulation and dominationA placement D is said to be a (B;C)-emulator i� the following two conditions hold for all objects and all descendants � of �: (i) if count(restrict(C; �);) = 0 then count(restrict(D;�);) = 0, and (ii)if count(restrict(C; �);) > 0 and count(restrict (B; �);) > 0 then count(restrict (D;�);) > 0. Notethat C itself is a (B;C)-emulator. Furthermore, if D is a (B;C)-emulator, count(restrict(C; �);) > 0,and count(restrict(B; �);) = 0, then there is no requirement on count(restrict(D;�);). The nexttwo lemmas are straightforward and are stated without proof.Lemma 6.1 If D is a (B;C)-emulator, then Matched(B;C) = Matched(B;D) and Unmatched (B;C) =Unmatched (B;D).Lemma 6.2 If D is a (B;C)-emulator, then jUnmatched (B;C)j � jCopies(B)j � jCopies(D)j.The placement B is said to dominate a comparable placement D i� the following condition holds forall objects and for all descendants � of �: If count(restrict(B; �);) = 0 then count(restrict(D;�);) =0. The following lemma is immediate.Lemma 6.3 If B dominates D, then cost(B) � cost(D).We now introduce a slightly weakened version of domination. Given a set S of objects, the placementB is said to \S-dominate" a comparable placement D i� the following two conditions hold for all objects and for all descendants � of �: if does not belong to S and count(restrict(B; �);) = 0, thencount(restrict(D;�);) = 0; if belongs to S then count(B;) = 0, count(D;) = 1, and the uniquecopy of in Copies(D) is (�;). Note that the placement B dominates D i� B ;-dominates D. Thefollowing three lemmas will be used to prove that certain emulation and domination properties arepreserved during the execution of the bridging algorithm; these lemmas are straightforward and arestated without proof.Lemma 6.4 (Insert) Let S be an arbitrary set of objects such that B S-dominates D and D is a (B;C)-emulator, let be any object in Missing(B) such that either 2 S or count(C;) = 0, let p denotethe copy (�;), and let B0 denote the placement (�;Copies(B) [fpg). Then D is a (B0; C)-emulator,and if =2 S (resp., 2 S) then B0 S-dominates (resp., (S � f g)-dominates) D.Lemma 6.5 (Delete) Let S be an arbitrary set of objects such that B S-dominates D and D is a (B;C)-emulator. For any object such that there is at least one (B;)-copy, let p denote quasivictim(B;C;)and let B0 denote (�;Copies(B) � fpg). If p is in Unmatched (B;C), then let D0 = D; otherwise, let15

D0 denote the new value of D after a call to Prune(D;B; p). Then D0 is a (B0; C)-emulator and B0S-dominates D0. Furthermore, if p belongs to Matched(B;C), then jCopies(D0)j � jCopies(D)j � 1and cost(D0) � cost(D) + quasibene�t(B;C; p).Lemma 6.6 (Combine) Assume that � is non-singleton and let Bi, Ci, and Di denote three �i-placements, 0 � i < k, such that Di is a (Bi; Ci)-emulator and Bi dominates Di. Assume that B, C,and D are equal to the placements (�;[0�i<kCopies(Bi)), (�;[0�i<kCopies(Ci)), and (�;[0�i<kCopies(Di)),respectively. Further, let D0 denote the placement (�;Copies(D) [P) where P is the set of copiesf(�;) : count(D;) = 0 ^ count(C;) > 0g. Then, D0 is a (B;C)-emulator and B S-dominates D0,where S = f : count(B;) = 0 ^ count(D0;) > 0g.6.2 State variablesIn this section we specify the variables that are used to capture the state of the computation. Inaddition to the program variables that appear in the pseudocode of Section 5.1, we also de�ne anumber of auxiliary variables. Each auxiliary variable is classi�ed as either independent or dependent.We modify the values of the independent variables explicitly, in e�ect augmenting the pseudocode. Thevalue of each dependent auxiliary variable is determined by the values of the program variables andthe independent auxiliary variables. Below is a list of all state variables.1. Program variables: Placements A, B, and C; potential �; change in potential �; the set ofobjects �.2. Independent auxiliary variables: (i) the placement D; (ii) the nonnegative reals de�cit ,surplus , newde�cit , and newsurplus ; (iii) the nonnegative integers numdead and numlift ; (iv) acolor, either red or blue, for each copy in Copies(B).3. Dependent auxiliary variables: (i) numred , the number of copies that are colored red; (ii)threshold , de�ned as min(max(0; x � �); y) where x is bene�t(A; secondary-victim(A)) and yis bene�t(A; victim(A)); (iii) the two sets of objects �U = � \ f : count(C;) = 0g and�M = ���U ; (iv) the six sets of copies P̂ , Q̂, R̂, �P , �Q, and �R.The last six sets partition the set Copies(B) as follows: P̂ (resp., �P) is the set of all blue copiesin Matched(B;C) that belong to Quasiprimary(B;C) (resp., Quasisecondary (B;C)); Q̂ (resp.,�Q) is the set of all blue copies in Unmatched (B;C) that belong to Quasiprimary(B;C) (resp.,Quasisecondary (B;C)); R̂ (resp., �R) is the set of all red copies in Unmatched (B;C) that belongto Quasiprimary(B;C) (resp., Quasisecondary(B;C)). It is worth remarking that our coloringmechanism guarantees that none of the copies in Matched (B;C) are colored red, and hence theabove six sets alone partition the set Copies(B).6.3 The invariant propertiesIn this section, we list certain properties that are claimed to hold at various points in the execution ofthe bridging algorithm.Invariant 6.1 The following properties hold after the combining step of the bridging algorithm: (i) BS-dominates D, where S = f : count(B;) = 0 ^ count(C;) > 0g; (ii) D is a (B;C)-emulator; (iii)jCopies(D)j � jCopies(B)j � numdead; (iv) numred � numdead; (v) (1 + 3���1)cost(C) � cost(D) �de�cit+surplus+Pr2 �Q[Q̂ 3 �quasibene�t(B;C; r)+Pr2R̂ 2 �quasibene�t(B;C; r)+P 2T 3 �value(�;),where T = f : count(B;) = 0 ^ count(C;) = 0g; (vi) de�cit � min(�;Pr2 �Q quasibene�t(B;C; r));(vii) surplus � �� de�cit.
16

Invariant 6.2 The following properties hold after the local initialization step, after each iteration of theamortized swapping loop, and after each iteration of the accounting loop of the bridging algorithm: (i) B�M -dominates D; (ii) D is a (B;C)-emulator; (iii) jCopies(D)j � jCopies(B)j�(numdead+numlift);(iv) numred � numdead ; (v) (1+ 3���1)cost(C) � cost(D)�de�cit+surplus�newde�cit+newsurplus+Pr2 �Q[Q̂ 3 � quasibene�t(B;C; r) +Pr2R̂ 2 � quasibene�t(B;C; r) +P 2�U 3 � value(�;); (vi) de�cit �min(�;Pr2 �Q quasibene�t(B;C; r)); (vii) surplus � � � de�cit; (viii) numlift = jf : count(B;) =0 ^ count(D;) = 0 ^ count(C;) > 0gj; (ix) newde�cit � �; (x) newde�cit � numlift � threshold ;(xi) newsurplus � �� newde�cit.Invariant 6.3 The following properties hold after the potential update step of the bridging algorithm:(i) B dominates D; (ii) D is a (B;C)-emulator; (iii) jCopies(D)j � jCopies(B)j�(numdead+numlift);(iv) numred � numdead ; (v) (1+ 3���1)cost(C) � cost(D)�de�cit+surplus�newde�cit+newsurplus+Pr2 �Q[Q̂ 3 � quasibene�t(B;C; r); (vi) de�cit � min(���;Pr2 �Q quasibene�t(B;C; r)); (vii) surplus ����� de�cit; (viii) numlift = jf : count(D;) = 0 ^ count(C;) > 0gj; (ix) newde�cit � �; (x)newde�cit � numlift � w, where w is such that each r 2 Q̂ satis�es quasibene�t(B;C; r) � w and eachr 2 �Q satis�es quasibene�t(B;C; r)� de�cit � w; (xi) newsurplus � �� newde�cit .The above invariants are established in Sections 6.4 through 6.9. Our main technical lemma followsfrom Invariant 6.3.Proof of Lemma 5.18: Property (i) of Invariant 6.3 along with Lemma 6.3 implies that cost(B) �cost(D). Moreover the fact that cost(D) � (1+ 3���1)cost(C) follows from property (v) of Invariant 6.3along with the following two inequalities: (a) de�cit �Pr2 �Q quasibene�t(B;C; r) and (b) newde�cit �Pr2 �Q[Q̂ quasibene�t(B;C; r).Inequality (a) above follows directly from property (vi). For inequality (b), we use Lemma 6.2 todeduce that jUnmatched (B;C)j is at least jCopies(B)j�jCopies(D)j, which in turn is at least numred+numlift by properties (iii) and (iv). Therefore, j �Q[Q̂j, the number of blue copies in Unmatched (B;C)is at least numlift . Moreover property (x) implies that for each r 2 �Q [Q̂, quasibene�t(B;C; r) � w,and hence Pr2 �Q[Q̂ quasibene�t(B;C; r) � numlift � w � newde�cit .6.4 Local initialization stepIn this section, we assume that Invariant 6.1 holds before the local initialization step, and prove thatInvariant 6.2 holds after the local initialization step.� State change. Initialize � to Missing(B), and set � = newde�cit = newsurplus = numlift = 0.� Dependent variables. �U = � \ f : count(C;) = 0g and �M = � \ f : count(C;) > 0g.� Analysis. All properties of Invariant 6.2 either follow from the corresponding properties of Invari-ant 6.1 or are trivially satis�ed. Note that �M is equal to the set S in property (i) of Invariant 6.1and �U is equal to the set T in property (v) of Invariant 6.1.Thus Invariant 6.2 holds after the local initialization step.6.5 Amortized swapping loopIn this section, we assume that Invariant 6.2 holds before an iteration of the amortized swapping loop,and prove that it holds after the iteration. We treat each swap as an insertion followed by a deletion.To facilitate this decomposition, we introduce a slightly stronger version of property (iii) which we callproperty (iii)0: jCopies(D)j � jCopies(B)j � 1 � (numdead + numlift). We �rst show in Section 6.5.1that Invariant 6.2 and property (iii)0 hold after the insertion. Then in Section 6.5.2 we show thatInvariant 6.2 holds after the deletion. 17

6.5.1 InsertionIn this section, we assume that Invariant 6.2 holds before an insertion, and prove that Invariant 6.2 andproperty (iii)0 hold after the insertion. Let denote the incoming object candidate(B). For notationalconvenience, we use unprimed (resp., primed) symbols to denote the values of variables before (resp.,after) the insertion. If the value of a variable does not change then we use the unprimed symbolthroughout.� State change. Let p denote the copy (�;). Set Copies(A0) = Copies(A) [fpg, Copies(B0) =Copies(B) [fpg, and �0 = �� f g. Set the color of p to blue.� Dependent variables. If count(C;) > 0 then �0M = �M � f g and P̂ 0 = P̂ [fpg. Otherwise�0U = �U � f g and Q̂0 = Q̂ [fpg.� Inequalities. By Lemma 5.5, quasibene�t(B0; C; p) = value(�;) and for all copies q in Copies(B),quasibene�t(B0; C; q) = quasibene�t(B;C; q).� Analysis. Properties (i) and (ii) follow from Lemma 6.4. Property (iii)0 follows since jCopies(B)j =jCopies(B0)j � 1. Properties (iv) and (vii) through (xi) are not a�ected. Properties (v) and (vi)follow from the above inequalities.Thus Invariant 6.2 and property (iii)0 hold after the insertion.6.5.2 DeletionIn this section, we assume that Invariant 6.2 and property (iii)0 hold before a deletion, and provethat Invariant 6.2 holds after the deletion. Throughout this section, let q denote the copy deletedfrom A, let denote the object associated with q, and let p denote quasivictim(B;C;). Note thatq is either secondary-victim(A) or victim(A) and q = mate(A;B;C; p). The copy p either belongsto Quasiprimary(B;C) or Quasisecondary (B;C), and accordingly q either belongs to Primary(A) orSecondary(A). The deletion is handled di�erently in each case. Each case is further split into threedi�erent subcases depending on the color of p and whether p is in Matched (B;C) or not.For notational convenience, we use unprimed (resp., primed) symbols to denote the values ofvariables before (resp., after) the deletion. If the value of a variable does not change then we usethe unprimed symbol throughout. In all cases below we use the result of Lemma 5.4 that if B0 =(�;Copies(B)�fpg) then for every copy r in Copies(B0), quasibene�t(B0; C; r) = quasibene�t(B;C; r).Case 1: p 2 Quasisecondary(B;C) = �R [�Q [�P� Remark. In this case �, newde�cit , newsurplus , and numlift do not change. Hence properties (ix),(x), and (xi) are not a�ected. However the placements B and D, along with the variables �,de�cit , surplus , and numdead may change. This a�ects properties (i) through (viii) and thesehave to be restored. Of these, properties (i) and (ii) follow from Lemma 6.5 while properties (iii),(iv), and (viii) are easy to verify. The crucial properties to establish are (iv), (v), (vi), and (vii).� State change. Set �0 = max(0;�� bene�t(A; q)).� Analysis. Note that the RHS of (vii), as well as the �rst term in the RHS of (vi), is reduced bymin(�; bene�t(A; q)).� Case 1.1: p 2 �R{ State change. Set Copies(A0) = Copies(A)� fqg and Copies(B0) = Copies(B)� fpg.{ Dependent variables. �R0 = �R� fpg, and numred 0 = numred � 1.18

{ Analysis. Properties (i), (ii), (iii), and (viii) hold and are not a�ected further.{ Case 1.1.1: de�cit = 0� State change. None.� Analysis. Properties (iv) and (v) are una�ected, while properties (vi) and (vii) aredirectly satis�ed. Hence all properties hold.{ Case 1.1.2: de�cit > 0� Remark. By property (vi) of Invariant 6.2, �Q 6= ;.� State change. Pick an arbitrary copy r from �Q and color it red. Set de�cit 0 =max(0; de�cit � quasibene�t(B;C; r)) and surplus 0 = surplus + quasibene�t(B;C; r).� Dependent variables. �Q0 = �Q� frg, �R0 = �R [frg, and numred 0 = numred .� Inequalities. By Lemma 5.17, quasibene�t(B;C; r) � bene�t(A;mate(A;B;C; r)) �bene�t(A; secondary-victim(A)) = bene�t(A; q).� Analysis. For (iv), note that the LHS and the RHS are both unchanged. For (v),note that the net change in the RHS is �de�cit 0 + surplus 0 + de�cit � surplus � 3 �quasibene�t(B;C; r), which is nonpositive. For (vi), note that the RHS is always non-negative, and furthermore, if de�cit 0 is greater than zero then the decrease in the LHSis quasibene�t(B;C; r)) while the decrease in the RHS is no more than this. For (vii),note that the LHS increases by quasibene�t(B;C; r), which is an upper bound on thecumulative increase in the RHS.� Case 1.2: p 2 �Q{ State change. Set Copies(A0) = Copies(A)� fqg and Copies(B0) = Copies(B)� fpg.{ Dependent variables. �Q0 = �Q� fpg.{ Analysis. Properties (i), (ii), (iii), and (viii) hold and are not a�ected further. Property (iv)also holds since the LHS and the RHS are both unchanged.{ Case 1.2.1: de�cit = 0� State change. None.� Analysis. For (v) and (vii), note that the LHS is unchanged and the RHS only decreases.For (vi), note that the LHS is zero and the RHS remains nonnegative.{ Case 1.2.2: de�cit > 0� State change. Set de�cit 0 = max(0; de�cit � quasibene�t(B;C; p)) and surplus 0 =surplus + quasibene�t(B;C; p).� Inequalities. By Lemma 5.17, quasibene�t(B;C; p) � bene�t(A; q).� Analysis. For (v), note that the net change in the RHS is �de�cit 0+ surplus 0+de�cit�surplus � 3 � quasibene�t(B;C; p), which is nonpositive. For (vi), note that the RHS isalways nonnegative, and furthermore, if de�cit 0 is greater than zero then the decreasein the LHS is quasibene�t(B;C; p)) while the decrease in the RHS is no more than this.For (vii), note that the LHS increases by quasibene�t(B;C; p), which is an upper boundon the cumulative increase in the RHS.� Case 1.3: p 2 �P{ State change. Set Copies(A0) = Copies(A) � fqg and Copies(B0) = Copies(B) � fpg. SetD0 to the new value of D after a call to Prune(D;B; p) and set numdead 0 = numdead + 1.{ Dependent variables. �P 0 = �P � fpg. 19

{ Analysis. Properties (i), (ii), and (iii) follow from Lemma 6.5 and are not a�ected further.Note that the RHS of (iv) increases by one while the RHS of (v) increases by cost(D0) �cost(D), which is at most quasibene�t(B;C; p).{ Case 1.3.1: de�cit = 0� Case 1.3.1.1: surplus � quasibene�t(B;C; p)� State change. Set surplus 0 = surplus � quasibene�t(B;C; p).� Inequalities. By Lemma 5.17, quasibene�t(B;C; p) � bene�t(A; q).� Analysis. For (iv), note that the LHS does not change. For (v), note that the RHSnow reduces by quasibene�t(B;C; p) and hence the cumulative change is nonpos-itive. For (vi), note that the LHS is zero. For (vii), note that the LHS reducesby quasibene�t(B;C; p) while the RHS either becomes zero or reduces by at leastbene�t(A; q).� Case 1.3.1.2: surplus < quasibene�t(B;C; p)� Remark. By Lemma 6.2 and property (ii), jUnmatched (B0; C)j is at least jCopies(B0)j�jCopies(D0)j, which is at least numdead 0 � numred + 1, using properties (iii)and (iv). Hence there exists at least one blue copy in jUnmatched (B;C)j and there-fore jQ̂ [�Qj � 1:� State change. Pick an arbitrary copy r 2 Q̂ [�Q and color it red. Set surplus 0 = 0.� Dependent variables. If r is in Quasiprimary(B;C), then Q̂0 = Q̂ � frg and R̂0 =R̂[frg. Otherwise �Q0 = �Q�frg and �R0 = �R[frg. Moreover numred 0 = numred+1.� Inequalities. By Lemma 5.17, quasibene�t(B;C; r) � bene�t(A;mate(A;B;C; r)) �bene�t(A; victim(A)) � bene�t(A; secondary-victim(A)) � � = bene�t(A; q) � � �quasibene�t(B;C; p) � �. So quasibene�t(B;C; r) + � � quasibene�t(B;C; p), andhence by property (vii), quasibene�t(B;C; r)+surplus � quasibene�t(B;C; p). More-over, �0 = 0, because by property (vii) and the preconditions for case 1.3.1.2,� � surplus < quasibene�t(B;C; p) � bene�t(A; q).� Analysis. For (iv), note that the LHS and the RHS both increase by one. For (v),note that the RHS further reduces by at least quasibene�t(B;C; r)+surplus which isat least quasibene�t(B;C; p) by the above inequality; it follows that the net changein the RHS of (v) is nonpositive. For (vi), note that the LHS is zero. For (vii), notethat the LHS and the RHS are both zero.{ Case 1.3.2: de�cit > 0� Remark. By property (vi), �Q 6= ;.� State change. Pick an arbitrary copy r from �Q and color it red. Set de�cit 0 =max(0; de�cit � quasibene�t(B;C; r)) and surplus 0 = surplus + quasibene�t(B;C; r).� Dependent variables. �Q0 = �Q� frg, �R0 = �R [frg, and numred 0 = numred + 1.� Inequalities. By Lemma 5.17, quasibene�t(B;C; r) � bene�t(A;mate(A;B;C; r)) �bene�t(A; secondary-victim(A)) = bene�t(A; q) � quasibene�t(B;C; p).� Analysis. For (iv), note that the LHS and the RHS both increase by one. For (v),note that the new change in the RHS is �de�cit 0 + surplus 0 + de�cit � surplus � 3 �quasibene�t(B;C; r), which is at most �quasibene�t(B;C; p); it follows that the netchange in the RHS is nonpositive. For (vi), note that the RHS is always nonnega-tive, and furthermore, if de�cit 0 is greater than zero then the decrease in the LHS isquasibene�t(B;C; r)) while the decrease in the RHS is no more than this. For (vii),note that the LHS increases by quasibene�t(B;C; r), which is an upper bound on thecumulative increase in the RHS. 20

Case 2: p 2 Quasiprimary(B;C) = R̂ [Q̂ [P̂� Remark. In this case, �, de�cit , surplus , and numdead do not change and numred can onlydecrease. Hence properties (iv), (vi), and (vii) are not a�ected at all. However the placementsB and D, along with the variables �, newde�cit , newsurplus , and numlift may change. Hencethe remaining properties may change and have to be restored. Of these, (i) and (ii) will againfollow from Lemma 6.5 while (iii) and (viii) are easy to verify. The crucial properties to establishare (v), (ix), (x), and (xi).� State change. Set �0 = �+ bene�t(A; q).� Analysis. Note that the RHS of (ix) and (xi) increases by bene�t(A; q).� Case 2.1: p 2 R̂{ State change. Set Copies(A0) = Copies(A) � fqg and Copies(B0) = Copies(B) � fpg. Setnewsurplus 0 = newsurplus + quasibene�t(B;C; p).{ Dependent variables. R̂0 = R̂� fpg and numred 0 = numred � 1.{ Inequalities. By Lemma 5.17, quasibene�t(B;C; p) � bene�t(A; q).{ Analysis. Properties (i), (ii), (iii), (viii), and (ix) are easy to verify. For (v), note that thechange in the RHS is newsurplus 0�newsurplus�2�quasibene�t(B;C; p), which is nonpositive.For (x), note that there is no change in the LHS while the RHS can only increase. For (xi),note that the LHS increases by quasibene�t(B;C; p) while the RHS increases by bene�t(A; q).� Case 2.2: p 2 Q̂{ State change. Set Copies(A0) = Copies(A) � fqg and Copies(B0) = Copies(B) � fpg. Setnewsurplus 0 = newsurplus + quasibene�t(B;C; p).{ Dependent variables. Q̂0 = Q̂� fpg.{ Inequalities. By Lemma 5.17, quasibene�t(B;C; p) � bene�t(A; q).{ Analysis. Properties (i), (ii), (iii), (viii), and (ix) are easy to verify. For (v), note that thechange in the RHS is newsurplus 0�newsurplus�3�quasibene�t(B;C; p), which is nonpositive.For (x), note that there is no change in LHS while the RHS can only increase. For (xi), notethat the LHS increases by quasibene�t(B;C; p) while the RHS increases by bene�t(A; q).� Case 2.3: p 2 P̂{ State change. Set Copies(A0) = Copies(A) � fqg and Copies(B0) = Copies(B) � fpg. SetD0 to the new value of D after a call to Prune(D;B; p). Set numlift 0 = numlift + 1 andnewde�cit 0 = newde�cit + bene�t(A; q).{ Dependent variables. P̂ 0 = P̂ � fpg.{ Inequalities. By Lemma 5.17, quasibene�t(B;C; p) � bene�t(A; q) and bene�t(A; q) =threshold . By Lemma 6.5, cost(D0)� cost(D) � quasibene�t(B;C; p).{ Analysis. Properties (i), (ii), (iii), and (viii) hold. For (v), note that the change in RHSis cost(D0) � cost(D) � newde�cit 0 + newde�cit , which is at most quasibene�t(B;C; p) �bene�t(A; q) and hence is nonpositive. For (ix), note that the LHS and the RHS bothchange by the same amount. For (x), note that the LHS increases by bene�t(A; q) while theRHS increases by threshold . For (xi), note that the net change in the RHS is zero while theLHS is unchanged.Thus Invariant 6.2 holds after an iteration of the amortized swapping loop.21

6.6 Accounting loopIn this section, we assume that Invariant 6.2 holds before an iteration of the accounting loop, andprove that it holds after the iteration. Let denote the object that is removed from the set � in thisiteration. For notational convenience, we use unprimed (resp., primed) symbols to denote the valuesof variables before (resp., after) the iteration. If the value of a variable does not change then we usethe unprimed symbol throughout.� Remark. Since � = �U [�M , belongs to either �U or �M . The placement B and the variables�, de�cit , surplus , numdead , and numred do not change here. Hence properties (iv), (vi),and (vii) are una�ected. However the placement D and the variables �, newde�cit , newsurplus ,and numlift may change. This a�ects the other properties and they have to be restored.� State change. Set �0 = �� f g and �0 = �+ value(�;).� Analysis. Note that the RHS of (ix) and (xi) increase by value(�;).� Case 1: 2 �U{ Dependent variables. �0U = �U � f g.{ State change. Set newsurplus 0 = newsurplus + value(�;):{ Analysis. Properties (i), (ii), (iii), (viii), (ix), (x), and (xii) are easy to verify. For (v),note that the change in the RHS is newsurplus 0 � newsurplus � 3 � value(�;), which isnonpositive. For (xi), note that the LHS and the RHS each increase by the same amount.� Case 2: 2 �M{ Remark. We have count(B;) = 0 and, by property (i), count(D;) = 1 where the corre-sponding copy is (�;). Furthermore, the de�nition of �M implies that count(C;) > 0.{ Dependent variables. �0M = �M � .{ State change. Set Copies(D0) = Copies(D) � fpg, where p = (�;). Set newde�cit 0 =newde�cit + value(�;) and numlift 0 = numlift + 1.{ Inequalities. We have cost(D0) � cost(D) = value(�;), and moreover since the object was not swapped in, we have value(�;) � threshold .{ Analysis. The modi�cation of D preserves property (i) with respect to �0M , while prop-erty (ii) is una�ected. Properties (iii) and (viii) hold due to the increase in numlift . For (v),note that the change in the RHS is cost(D0) � cost(D) � newde�cit 0 + newde�cit , which iszero. For (ix), note that the LHS and the RHS both increase by the same amount. For (x),note that the LHS increases by value(�;) while the RHS increases by threshold . For (xi),note that the net change in the RHS is zero while the LHS is unchanged.Thus Invariant 6.2 holds after an iteration of the accounting loop.6.7 Potential update stepIn this section, we assume that Invariant 6.2 holds before the potential update step, and prove thatInvariant 6.3 holds after the step. We use unprimed (resp., primed) symbols to denote the values ofvariables before (resp., after) the potential update step. If the value of a variable does not change thenwe use the unprimed symbol throughout.� Remark. Note that � = �U = �M = ;. 22

� Analysis. Property (i) of Invariant 6.3 follows from property (i) of Invariant 6.2 since �M =;. Properties (ii), (iii), (iv), (viii), (ix), and (xi) are same as the corresponding properties ofInvariant 6.2 and hold without change. Property (v) of Invariant 6.3 follows by dropping the lasttwo summation terms of property (v) in Invariant 6.2.� State change. Set w = threshold .� Analysis. Property (x) of Invariant 6.3 follows from property (x) of Invariant 6.2. By Lemma 5.17,each r in Q̂ satis�es quasibene�t(B;C; r) � bene�t(A;mate(A;B;C; r)) � bene�t(A; victim(A)) �threshold = w. The same lemma implies that each copy r in �Q satis�es quasibene�t(B;C; r)�� �bene�t(A;mate(A;B;C; r))�� � bene�t(A; secondary-victim(A))�� � threshold = w, and thenby property (vi) of Invariant 6.2, it follows that quasibene�t(B;C; r)� de�cit � w.� State change. Set �0 = �+�.� Analysis. Properties (vi) and (vii) follow from the corresponding properties of Invariant 6.2.Thus Invariant 6.3 holds after the potential update step.6.8 Combining step at a singleton hierarchyIn this section, we establish the base case of our proof by showing that Invariant 6.1 holds after thecombining step at a singleton hierarchy �.� State change. Initialize A, B, C, and D to the same arbitrary �-placement and set � = de�cit =surplus = numdead = 0. Set the color of all the copies in B to blue.� Dependent variables. Initialize the six dependent sets R̂, Q̂, P̂ , �R, �Q, �P using B, C, and thecolors of the copies in B. Set numred = 0.� Inequalities. We have cost(C) = cost(D) � P 2T value(�;), where T = f : count(B;) =count(C;) = 0g. Moreover, �Q = Q̂ = R̂ = ;.� Analysis. Properties (i) and (ii) follow directly from the de�nitions of domination and emulation,while property (iii) follows directly. Properties (iv), (vi), and (vii) hold trivially. Property (v)follows from the above inequalities.Thus Invariant 6.1 holds after the combining step at a singleton hierarchy.6.9 Combining step at a non-singleton hierarchyIn this section, we assume that � is a non-singleton hierarchy and that Invariant 6.3 holds after thepotential update step at each child �i, and prove that Invariant 6.1 holds after the combining step at�. (Recall that �i, 0 � i < k, denote the children of �.) We use the subscript i on the state variablesto denote the variable computed at the child �i.1. State change. Initialize A = (�;[0�i<kCopies(Ai)), B = (�;[0�i<kCopies(Bi)), and C =(�;[0�i<kCopies(Ci)). The color of the copies in Copies(B) does not change during this union(i.e., each copy p in Copies(Bi) retains the same color when it enters B.) Initialize numdead =P0�i<k numdead i.2. Dependent variables. Variable numred =P0�i<k numred i.3. State change. Initialize D = (�;[0�i<kCopies(Di)) and then for each object such thatcount(C;) > 0 and count(D;) = 0, add a copy (; u) to Copies(D).23

4. Analysis. Lemma 6.6 guarantees that properties (i) and (ii) of Invariant 6.1 hold after thismodi�cation. Property (iii) is established in Lemma 6.7 below. Property (iv) follows by usingproperty (iv) of Invariant 6.3, and summing over all children of �. It remains to establishproperties (v), (vi), and (vii) by choosing appropriate values for de�cit and surplus . Beforechoosing these values, we �rst write down expressions to relate the cost(C) to P0�i<k cost(Ci),and the cost(D) to P0�i<k cost(Di). Let T̂ denote the set f : count(C;) = 0g, or equivalentlythe set f : count(D;) = 0g: Clearly,cost(C) = X0�i<k cost(Ci) + X 2T̂ value(�;); (1)cost(D) = X0�i<k cost(Di) +X 2T̂ value(�;): (2)Moreover note that this set T̂ is precisely the union of �U , and the set of objects correspondingto copies in R̂ and Q̂. This in conjunction with Lemma 5.3 yieldsX 2T̂ value(�;) � X 2�U value(�;) + Xr2Q̂[R̂ �� 1� � quasibene�t(B;C; r): (3)5. Dependent variables. Initialize the six dependent sets R̂, Q̂, P̂ , �R, �Q, �P using B, C, and thecolors on the copies in B.6. Remark. By Lemma 5.6, �Q = [0�i<k �Qi + [0�i<k �Qi where �Qi = Q̂i � Q̂.7. State change. For each i, 0 � i < k, set de�cit 0i = de�cit i + newde�cit i � (jQ̂i � �Qij) � wi andsurplus 0i = surplus i + newsurplus i + (jQ̂i � �Qij) � wi.8. Analysis. Using the above values of de�cit 0i and surplus 0i, we establish in Lemma 6.8 that�1 + 3��� 1� cost(Ci) � cost(Di)� de�cit 0i + surplus 0i +Xr2 �Qi[�Qi 3 � quasibene�t(Bi; Ci; r); (4)de�cit 0i � min(�i; Xr2 �Qi[�Qi quasibene�t(Bi; Ci; r)); (5)surplus 0i � �i � de�cit 0i: (6)9. State change. Initialize �; de�cit , and surplus toP0�i<k �i,P0�i<k de�cit 0i, andP0�i<k surplus 0i,respectively.10. Analysis. Summing Equations (4), (5), and (6) over all children �i, 0 � i < k, we obtainX0�i<k�1 + 3��� 1� cost(Ci) � X0�i<k cost(Di)� de�cit + surplus +Xr2 �Q 3 � quasibene�t(B;C; r); (7)de�cit � min(�;Xr2 �Q quasibene�t(B;C; r)); (8)surplus � �� de�cit : (9)24

(Here we used the result of Lemma 5.6 that �Q = [0�i<k �Qi + [0�i<k �Qi, and that for each r 2�Qi [�Qi, quasibene�t(Bi; Ci; r) = quasibene�t(B;C; r).) Properties (vi) and (vii) are essentiallythe latter two equations. Finally, we establish property (v) using Equations (1), (2), (3), and (7)as follows:�1 + 3��� 1� cost(C)= �1 + 3��� 1� X0�i<k cost(Ci) +X 2T̂ �1 + 3��� 1� value(�;)� X0�i<k cost(Di)� de�cit + surplus +Xr2 �Q 3 � quasibene�t(B;C; r) +X 2T̂ �1 + 3��� 1� value(�;)� cost(D)� de�cit + surplus +Xr2 �Q 3 � quasibene�t(B;C; r) +X 2T̂ � 3��� 1� value(�;)� cost(D)� de�cit + surplus + Xr2 �Q[Q̂[R̂ 3 � quasibene�t(B;C; r) + X 2�U 3 � value(�;):(The above four equations follow by using Equations (1), (7), (2), and (3), respectively.)11. Conclusion. Thus Invariant 6.1 holds after the combining step.Lemma 6.7 Suppose that properties (iii) and (viii) of Invariant 6.3 hold for each child �i of �, andthat the placements B, C, and D and the variable numdead are initialized as indicated in the precedingstate change descriptions. Then property (iii) of Invariant 6.1 holds after the initialization.Proof: Note that jCopies(B)j = P0�i<k jCopies(Bi)j and jCopies(D)j = P0�i<k jCopies(Di)j + jT̂ jwhere T̂ = f : count(D;) = 0 ^ count(C;) > 0g. Using property (iii) of Invariant 6.3 to upperbound jCopies(Di)j, it follows that jCopies(D)j �P0�i<k(jCopies(Bi)j�numdead i�numlift i)+ jT̂ j =jCopies(B)j�numdead+(jT̂ j�P0�i<k numlift i). Moreover, jT̂ j �P0�i<k numlift i, since T̂ � [0�i<kT̂i,where T̂i = f : count(Di;) = 0 ^ count(Ci;) > 0g, and by property (viii) of Invariant 6.3,jT̂ij = numlift i. Thus property (iii) holds.Lemma 6.8 Suppose that Invariant 6.3 holds and let �Q be an arbitrary subset of Q̂. Let x and y betwo new variables that are set to de�cit+newde�cit�jQ̂� �Qj �w and surplus+newsurplus+ jQ̂� �Qj �w,respectively. Then the following three equations hold:�1 + 3��� 1� cost(C) � cost(D)� x+ y + Xr2 �Q[�Q 3 � quasibene�t(B;C; r); (10)x � min(�; Xr2 �Q[�Q quasibene�t(B;C; r)); (11)y � �� x: (12)Proof: Let j denote jQ̂j � j �Qj. Property (x) of Invariant 6.3 implies that each r 2 Q̂ satis�esquasibene�t(B;C; r) � w. Therefore�x+ y � �de�cit + surplus � newde�cit + newsurplus + Xr2Q̂� �Q 3 � quasibene�t(B;C; r):Equation (10) now follows from property (v) of Invariant 6.3. Equation (12) follows directly fromproperties (vii) and (x) of Invariant 6.3, since y = surplus + newsurplus + j � w � (���� de�cit) +(�� newde�cit) + j � w = �� x. 25

It remains to establish Equation (11). The �rst part (i.e., x � �), follows directly from prop-erties (vi) and (viii), which imply that de�cit � � � � and newde�cit � �, respectively. For thesecond part, we �rst establish that j �Q + �Qj � (numlift � j). By Lemma 6.2, jUnmatched (B;C)jis at least jCopies(B)j � jCopies(D)j which, by properties (iii) and (v) of Invariant 6.3, is at leastnumred + numlift . Hence the number of blue copies in Unmatched (B;C) (i.e., jQ̂j + j �Qj) is at leastnumlift . It follows that j �Qj+ j �Qj � numlift � j. Now by property (x) of Invariant 6.3, each r 2 �Q hasquasibene�t(B;C; r)�de�cit � w. Moreover, each r 2 Q̂ satis�es quasibene�t(B;C; r) � w. Therefore,Xr2 �Q[�Q quasibene�t(B;C; r) � de�cit + (numlift � j) � w � de�cit + newde�cit � j � w = x: (13)(For the second inequality, we use property (ix) of Invariant 6.3.) This establishes Equation (11), thusproving the lemma.7 An e�cient distributed implementationThe main strength of the amortizing algorithm is that, in contrast with the
ow-based algorithmof Section 3, it admits a fast distributed implementation. In this section, we brie
y sketch such animplementation. The techniques employed are not particularly novel. The main point we wish toemphasize is that while the pseudocode of Section 4.2 may appear to be inherently sequential, in factthe algorithm is highly parallelizable.The amortizing algorithm determines a placement for the given hierarchy � in a bottom-up man-ner. During the computation, the current placement, along with associated control information, isdistributed across the nodes of the network. We begin by describing how this information is organized.For each object and each descendant � of �, we designate a node in � as the manager for in�, denoted manager (�;). For load balancing purposes, this manager is chosen at random from �,where the probability of choosing a particular node u is size(u)=size(�). For each descendant � of �,we choose a node uniformly at random from � and designate it as the leader of �, denoted leader (�).The current �-placement A is distributed across the nodes in � in the following natural manner. Forevery object , the manager (�;) stores frequency(�;) along with a bit indicating whether belongsto Missing(A). If belongs to Missing(A), then manager (�;) also stores value(�;). Otherwise,for each copy p = (�;) in Copies(A), the manager (�;) maintains the bene�t(A; p) along with a bitindicating whether p belongs to Primary(A). The variables � and � are maintained by the leader of�. We note that a suitably random selection of managers and leaders ensures that the �-placement Ais distributed across the nodes in � in a balanced manner with high probability.As mentioned earlier, the amortizing algorithm pseudocode of Section 4.2 may appear to be inher-ently sequential. In particular, in the amortized swapping loop, the placement is modi�ed one swapat a time, and the number of swaps could be large. Moreover, the desired swaps, which satisfy some\global" objective, are determined from a distributed placement. Fortunately, as we discuss below, allof the steps in the algorithm can be expressed in terms of instances of a simple pre�x sum operationfor any given node ordering. (We stress that for the pre�x sum operations used in our implementation,the particular ordering of the nodes is not important. In fact, this ordering is allowed to change fromone invocation of the operation to another. Consequently, the pre�x sum operation can be e�cientlyimplemented on any spanning tree.)Let us now consider the process of computing a �-placement A at a non-singleton hierarchy � withk children �i, 0 � i < k. Let Ai denote the �i-placement computed by the amortizing algorithm.The amortizing algorithm proceeds in four steps: the combining step, the local initialization step, theamortized swapping loop, and the potential update step.In the combining step, A is set to (�;[0�i<kAi). This requires no movement of copies in ourdistributed storage; however there are three computations that are implicit in the description of thealgorithm in Section 4.2 that need to be performed. These are the calculation of bene�t(A; p) for26

each copy p in Primary(A), the calculation of value(�;) for each object in Missing(A), and theadjustment of the bit for each copy p in Primary(Ai)� Primary(A). Lemma 4.6 describes how thesebene�ts and values change during the combining step. The computations for each object are per-formed by manager (�;), manager (�i;) for 0 � i < k, and by manager (�;) for each copy (�;) in[0�i<kPrimary(Ai). The computation of the potential � is a simple summation involving the leaderof � and the leaders of the �i's.The local initialization step of the amortizing algorithm involves summation over a subset of nodesin the hierarchy �. This can be implemented e�ciently using pre�x sums in a straightforward manner.We now turn to the amortized swapping loop. We implement this loop as an amortization phasefollowed by a swapping phase. (For the rest of this discussion, we say that a copy p is a secondaryi� it belongs to Secondary (A).) Let X denote the list of secondaries in A, sorted according to theirbene�ts in nonincreasing order. Let � denote the value of the potential after the combining step. In theamortization phase, we determine the largest pre�x X 0 of X such that the sum of the bene�ts of copiesin X 0 is at most �. (The copies in X 0 are guaranteed to be swapped out in the amortized swappingloop.) Thus, the amortization phase corresponds to a selection problem. Similarly, the swapping phasecorresponds to the following abstract selection problem. Let X and Y denote two lists of numberssorted in nondecreasing and nonincreasing orders, respectively. (The lists X and Y correspond to thebene�ts of the copies in the placement, and the values of the objects missing from the placement,respectively.) Our goal is to determine a largest pre�x X 0 of X and a pre�x Y 0 of Y such that jX 0jequals jY 0j and no element of X 0 is greater than any element of Y 0.While the amortization and swapping phases are straightforward to perform sequentially, in thedistributed setting the lists are partitioned across the nodes and thus are not available in sorted order.We would like to avoid explicitly sorting these lists, since sorting would require costly large-scalemovement of list elements across the network. Moreover, we would like to perform the amortizationand swapping steps \in place", that is, without moving the list elements. We now brie
y describean e�cient distributed recursive implementation of the amortization phase; a similar approach can beused for the swapping phase. If jXj � 1 the problem is trivial. Otherwise, we �rst select a splitteramong the secondaries in X. Second, we determine the set Z of those secondaries in X with bene�tat most that of the splitter. Third, we sum up the bene�ts of the secondaries in Z. Finally, in amanner that depends on whether the sum exceeds the given potential �, we de�ne a new instanceof the problem with fewer elements and recurse. Standard probabilistic arguments can be used toestablish a logarithmic bound on the depth of recursion. Moreover, each level of the recursion can beimplemented using simple distributed operations such as broadcast and sum. We remark that a moree�cient implementation can be obtained by using a large number of splitters to partition the list ofsecondaries.The potential update step is straightforward to implement e�ciently. In the computation of theplacement for a hierarchy �, the combining step requires a constant number of messages per primarystored in the hierarchy and for each leader. The amortized swapping loop and the local initializationstep each require O(log(size(�))) pre�x sum operations. The top-down pass that is used to convertthe placement to a concrete placement can be easily implemented within the same complexity boundsas for the bottom-up amortizing algorithm.References[1] T. E. Anderson, M. D. Dahlin, J. N. Neefe, D. A. Patterson, D. S. Rosselli, and R. Y. Wang.Serverless network �le systems. In Proceedings of the 15th Symposium on Operating SystemsPrinciples, pages 109{126, 1995.[2] B. Awerbuch, Y. Bartal, and A. Fiat. Competitive distributed �le allocation. In Proceedings ofthe 25th Annual ACM Symposium on Theory of Computing, pages 164{173, May 1993.27

[3] B. Awerbuch, Y. Bartal, and A. Fiat. Heat & Dump: Competitive distributed paging. In Pro-ceedings of the 34th Annual IEEE Symposium on Foundations of Computer Science, pages 22{31,November 1993.[4] B. Awerbuch and D. Peleg. Online tracking of mobile users. Journal of the ACM, 37:1021{1058,1995.[5] Y. Bartal. On approximating arbitrary metrics by tree metrics. In Proceedings of the 37th AnnualIEEE Symposium on Foundations of Computer Science, pages 184{193, October 1996.[6] Y. Bartal. Probabilistic approximation of metric spaces and its algorithmic applications. InProceedings of the 30th Annual ACM Symposium on Theory of Computing, pages 161{168, May1998.[7] Y. Bartal, A. Fiat, and Y. Rabani. Competitive algorithms for distributed data management.In Proceedings of the 24th Annual ACM Symposium on Theory of Computing, pages 39{50, May1992.[8] M. A. Blaze. Caching in large-scale distributed �le systems. Technical Report TR-397-92, Depart-ment of Computer Science, Princeton University, January 1993. PhD Thesis.[9] C. M. Bowman, P. B. Danzig, D. R. Hardy, U. Manber, and M. F. Schwartz. The Harvestinformation discovery and access system. In Proceedings of the 2nd International World WideWeb Conference, pages 763{771, October 1994.[10] P. Cao and S. Irani. Cost-aware WWW proxy caching algorithms. In Proceedings of the 1997USENIX Symposium on Internet Technology and Systems, pages 193{206, December 1997.[11] A. Chankhunthod, P. Danzig, C. Neerdaels, M. Schwartz, and K. Worrell. A hierarchical Internetobject cache. In Proceedings of the USENIX 1996 Technical Conference, pages 22{26, January1996.[12] M. Charikar, C. Chekuri, A. Goel, and S. Guha. Rounding via trees: Deterministic approxima-tion algorithms for group Steiner trees and k-median. In Proceedings of the 30th Annual ACMSymposium on Theory of Computing, pages 106{113, May 1998.[13] G. Cornu�ejols, G. L. Nemhauser, and L. A. Wolsey. The uncapacitated facility location problem.In P. Mirchandani and R. Francis, editors, Discrete Location Theory, pages 119{171. Wiley, NewYork, NY, 1990.[14] M. D. Dahlin, R. Y. Wang, T. E. Anderson, and D. A. Patterson. Cooperative caching: Usingremote client memory to improve �le system performance. In Proceedings of the First Symposiumon Operating Systems Design and Implementation, pages 267{280, November 1994.[15] D. Dowdy and D. Foster. Comparative models of the �le assignment problem. ACM ComputingSurveys, 14:287{313, 1982.[16] L. Fan, P. Cao, J. Almeida, and A. Z. Broder. Summary cache: A scalable wide-area Webcache sharing protocol. In Proceedings of the 1998 ACM SIGCOMM Conference on Applications,Technologies, Architectures, and Protocols for Computer Communication, pages 254{265, August1998.[17] J. S. Gwertzman and M. Seltzer. The case for geographical push-caching. In Proceedings of the5th Workshop on Hot Topics in Operating Systems, pages 51{57, May 1995.28

[18] A. Heddaya and S. Mirdad. WebWave: Globally load balanced fully distributed caching of hot pub-lished documents. In Proceedings of the 17th International Conference on Distributed ComputingSystems, pages 160{168, May 1997.[19] S. Irani. Page replacement with multi-size pages and applications to Web caching. In Proceedingsof the 29th Annual ACM Symposium on Theory of Computing, pages 701{710, May 1997.[20] D. Karger, E. Lehman, F. T. Leighton, M. Levine, D. Lewin, and R. Panigrahy. Consistent hashingand random trees: Distributed caching protocols for relieving hot spots on the World Wide Web.In Proceedings of the 29th Annual ACM Symposium on Theory of Computing, pages 654{663, May1997.[21] M. R. Korupolu and M. Dahlin. Coordinated placement and replacement for large-scale distributedcaches. In Proceedings of the IEEE Workshop on Internet Applications, July 1999. To appear.[22] A. Le�, J. L. Wolf, and P. S. Yu. Replication algorithms in a remote caching architecture. IEEETransactions on Parallel and Distributed Systems, 4:1185{1204, 1993.[23] C. Lund, N. Reingold, J. Westbrook, and D. Yan. On-line distributed data management. In J. vanLeeuwen, editor, Proceedings of the 2nd Annual European Symposium on Algorithms, LectureNotes in Computer Science, volume 855, pages 202{214. Springer-Verlag, 1994.[24] B. M. Maggs, F. Meyer auf der Heide, B. V�ocking, and M. Westermann. Exploiting localityfor data management in systems of limited bandwidth. In Proceedings of the 38th Annual IEEESymposium on Foundations of Computer Science, pages 284{293, October 1997.[25] C. G. Plaxton, R. Rajaraman, and A. W. Richa. Accessing nearby copies of replicated objectsin a distributed environment. In Proceedings of the 9th Annual ACM Symposium on ParallelAlgorithms and Architectures, pages 311{320, June 1997.[26] M. Rabinovich, I. Rabinovich, and R. Rajaraman. Dynamic replication on the Internet. TechnicalReport HA6177000{980305{01-TM, AT&T Labs { Research, April 1998.[27] D. B. Shmoys, �E. Tardos, and K. Aardal. Approximation algorithms for facility location problems.In Proceedings of the 29th Annual ACM Symposium on Theory of Computing, pages 265{274, May1997.[28] R. Tewari, M. Dahlin, H. M. Vin, and J. S. Kay. Beyond hierarchies: Design considerationsfor distributed caching on the Internet. Technical Report TR{98{04, Department of ComputerScience, University of Texas at Austin, January 1998.[29] M. van Steen, F. J. Hauck, and A. S. Tanenbaum. A model for worldwide tracking of distributedobjects. In Proceedings of the 1996 Conference on Telecommunications Information NetworkingArchitecture (TINA 96), pages 203{212, September 1996.[30] D. Wessels. Squid Internet object cache. Available at URL http://squid.nlanr.net/Squid, January1998.[31] D. Wessels and K. Cla�y. Internet Cache Protocol (ICP), version 2, request for comments rfc{2187.Available at URL http://ds.internic.net/rfc/rfc2186.txt, September 1997.[32] O. Wolfson, S. Jajodia, and Y. Huang. An adaptive data replication algorithm. ACM Transactionson Database Systems, 22:255{314, 1997.[33] N. E. Young. On-line �le caching. In Proceedings of the 9th Annual ACM-SIAM Symposium onDiscrete Algorithms, pages 82{86, January 1998.29

