
An Optimal Minimum Spanning Tree AlgorithmSeth Pettie and Vijaya RamachandranDepartment of Computer SciencesThe University of Texas at AustinAustin, TX 78712seth@cs.utexas.edu, vlr@cs.utexas.eduAugust 4, 1999UTCS Technical Report TR99-17AbstractWe present a deterministic algorithm to �nd a minimum spanning forest of an edge-weightedundirected graph. On a graph with n vertices and m edges, the algorithm runs in timeO(T �(m;n)) where T � is the decision-tree complexity of the problem. This time bound isprovably optimal as a function of n and m. The algorithm is quite simple, and can be imple-mented on a pointer machine.The exact function describing the running time of our algorithm is not known at present.The current best bounds known for T � (and hence the running time of our algorithm) areT �(m;n) =
(m) and T �(m;n) = O(m � �(m;n) � log�(m;n)), where �, a certain naturalinverse of Ackermann's function, is an extremely slow-growing function.1 IntroductionThe minimum spanning tree (MST) problem has been studied for much of this century and yetdespite its apparent simplicity, the problem is still not fully understood. The �rst algorithms for�nding MSTs were published in 1926 and 1930 by Bor�uvka [Bor26] and Jarn��k [Jar30] and for manyyears the only progress made on the MST problem was in rediscovering these algorithms. Bor�uvka'salgorithm was rediscovered by Choquet [Cho38], Florek et al. [FLPSZ51], and Sollin [BG65], andboth Prim [Prim57] and Dijkstra [Dij59] give descriptions of Jarn��k's algorithm, together with someimportant implementation details. (See [GH85] for a history of the MST problem.) Kruskal [Kr56]presented an algorithm that matched previous algorithms in terms of simplicity but did not improveon the O(m log n) time bound �rst established by Bor�uvka. Here m and n are the number of edgesand vertices in the graph.The m log n barrier was broken in the mid-1970s by O(m log log n) time algorithms by [Yao75]and Cheriton and Tarjan [CT76]. The MST problem saw no new developments until the mid-1980swhen Fredman and Tarjan [FT87] used Fibonacci heaps (presented in the same paper) to give analgorithm running in O(m�(m;n)) time1; in the worst case this algorithm runs in O(m log� n)time2. Soon thereafter Gabow et al. [GGST86] re�ned this algorithm to obtain a running timeof O(m log �(m;n)). Then recently Chazelle [Chaz97] presented an MST algorithm running in1By de�nition, �(m;n) = minfi : log(i) n � mn g; here log(1) n = log n; log(i+1) n = log log(i) n.2log� n = minfi � 1 : log(i) n � 1g. 1

time O(m�(m;n) log �(m;n)), where � is a certain inverse of Ackermann's function which growsextremely slowly. This algorithm uses a data structure called the Soft Heap [Chaz98]. This is thefastest algorithm to date, although it is not known to be optimal.All algorithms mentioned thus far require a relatively weak model of computation. Each canbe implemented on a deterministic pointer machine model [Tar79] which does not allow pointerarithmetic, hence certain techniques such as table lookup cannot be used, and in which the onlyoperations allowed on edge weights are binary comparisons. If more powerful models of computationare used then �nding minimum spanning trees can be done even faster. Under the assumption thatedge weights are integers, Fredman and Willard [FW90] showed that on a unit-cost RAM in whichthe bit-representation of edge weights may be manipulated, the MST can be computed in lineartime. Karger et al. [KKT95] considered a unit-cost RAM with access to a stream of random bitsand showed that with high probability, the MST can be computed in linear time, even if edgeweights are only subject to comparisons. Buchsbaum et al. [BKRW98] recently showed that therandomized algorithm of [KKT95] can be made to run on a pointer machine.It is still unknown whether these more powerful models are necessary to compute the MST inlinear time. However, in this paper we give a deterministic MST algorithm that runs on a pointermachine and is provably optimal; speci�cally, we prove that our algorithm runs inO(T �(m;n)) time,where T �(m;n) is the number of edge-weight comparisons needed to determine the MST on anygraph withm edges and n vertices. This implies that any future algorithm for computing MST thatperforms f(m;n) edge-weight comparisons (for some function f) demonstrates that our algorithmperforms O(f(m;n)) operations in total; note that the cost incurred by using data structures whichrequire super-linear time to maintain (such as union-�nd), may be exempted. Further, if one isable to show that the MST problem can be solved with no more than f(m;n) comparisons throughany type of reasoning, including a nonconstructive proof, this would imply that our algorithm runsin O(f(m;n)) time.Although our algorithm is optimal, its precise running time is not known at this time. Inview of Chazelle's algorithm [Chaz97] we can state that the running time of our algorithm isO(m � �(m;n) � log�(m;n)). Clearly, its running time is also
(m).2 PreliminariesThe input is an undirected graph G = (V;E) where each edge is assigned a distinct real-valuedweight. The minimum spanning forest (MSF) problem asks for a spanning acyclic subgraph ofG having the least total weight. In this paper we assume for convenience that the input graphis connected, since otherwise we can �nd its connected components in linear time and then solvethe problem on each connected component. Thus the MSF problem is identical to the minimumspanning tree problem.It is well-known that one can identify edges provably in the MSF using the cut property, andedges provably not in the MSF using the cycle property. The cut property states that the lightestedge crossing any partition of the vertex set into two parts must belong to the MSF. The cycleproperty states that the heaviest edge in any cycle in the graph cannot be in the MSF.2.1 Boruvka stepsThe earliest known MSF algorithm is due to Bor�uvka [Bor26]. The algorithm is quite simple: Itproceeds in a sequence of stages, and in each stage it executes a Bor�uvka step on the graph G, whichidenti�es the set F consisting of the minimum-weight edge incident on each vertex in G, adds these2

edges to the MSF (since they must be in the MSF by the cut property), and then forms the graphG1 = GnF as the input to the next stage, where GnF is the graph obtained by contracting eachconnected component formed by F . This computation can be performed in linear time. Sincethe number of vertices reduces by at least a factor of two, the running time of this algorithm isO(m log n), where m and n are the number of vertices and edges in the input graph.Our optimal algorithm uses a procedure called Boruvka2(G;F;G0). This procedure executestwo Boruvka steps on the input graph G and returns the contracted graph G0 as well as the set ofedges F identi�ed for the MSF during these two steps.2.2 Dijsktra-Jarn��k-Prim AlgorithmAnother early MSF algorithm that runs inO(m log n) time is the one by Jarn��k [Jar30], re-discoveredby Dijkstra [Dij59] and Prim [Prim57]. We will refer to this algorithm as the DJP algorithm. Briey,the DJP algorithm grows a tree T , which initially consists of an arbitrary vertex, one edge at atime, choosing the next edge by the following simple criterion: Augment T with the minimumweight edge (x; y) such that x 2 T and y 62 T . By the cut property, all edges in T are in the MSF.Lemma 2.1 Let T be the tree formed after the execution of some number of steps of the DJPalgorithm on a graph G. Let x and y be vertices in T , let w and z be vertices not in T , and let(x;w) and (y; z) be edges in G�T . If f is the edge of maximum weight on the path in T connectingx and y, then the weight of f cannot be larger than the weights of both (x;w) and (y; z).Proof: Let f = (a; b) and let the path P in T connecting x and y consist of a path from x to a,followed by edge f , followed by a path from b to y.Consider the step in which f was chosen to be added to the DJP tree and assume w.l.o.g. thatat this time a is in the tree and b is not. Let P 0 be the subpath of P that is present in the treeat this step, and let its endpoints be a and c. If c 6= x then the next edge in P incident on c hassmaller cost than f and is eligible to be picked in this step, hence f would not be chosen in thisstep. Hence c = x. But then f must have smaller weight than edge (x;w), since (x;w) is eligibleto be picked at this step. 22.3 The Dense Case AlgorithmOur algorithm will switch to another MSF algorithm when the graph becomes su�ciently dense,allowing its MSF to be computed in linear time by one of several existing algorithms. Here densityrefers to the edge-to-vertex ratio. The procedure DenseCase(G;F) takes as input a graph G andreturns the MSF F of G. Our algorithm guarantees DenseCase will be called on graphs of density
(log(3) n), thus the algorithms presented in [FT87, GGST86, Chaz97] could be used as DenseCasesince each runs in linear time for that density.2.4 Soft HeapThe main data structure used by our algorithm is the Soft Heap [Chaz98]. The Soft Heap is a kindof priority queue that gives us an optimal tradeo� between accuracy and speed. It supports thefollowing operations:
3

� MakeHeap(): returns an empty soft heap.� Insert(S; x): insert item x into heap S.� Findmin(S): returns item with smallest key in heap S.� Delete(S; x): delete x from heap S.� Meld(S1; S2): create new heap containing the union of items stored in S1 and S2,destroying S1 and S2 in the process.All operations take constant amortized time, except for Insert, which takes O(log(1�)) time.However, the values of some keys may be increased, corrupting the associated items and potentiallycausing later Findmins to report the wrong answer. The guarantee is that after n Insert operations,no more than �n corrupted items are in the heap. Note that because of deletes, the proportion ofcorrupted items could be much greater than �. The following result in shown in [Chaz98].Lemma 2.2 Fix any parameter 0 < � < 1=2, and beginning with no prior data, consider a mixedsequence of operations that includes n inserts. On a Soft Heap the amortized complexity of each op-eration is constant, except for insert, which takes O(log(1=�)) time. At most �n items are corruptedat any given time.3 A Key Lemma and Procedure3.1 A Robust Contraction LemmaIt is well known that if T is a tree of MSF edges, we can contract T into a single vertex whilemaintaining the invariant that the MSF of the contracted graph plus T gives the MSF for thegraph before contraction.In our algorithm we will �nd a tree of MSF edges T in a corrupted graph, where some of theedge weights have been increased due to the use of a Soft Heap. In the lemma given below we showthat useful information can be obtained by contracting certain corrupted trees, in particular thoseconstructed using some number of steps from the Dijkstra-Jarnik-Prim (DJP) algorithm.Before stating the lemma, we need some notation and preliminary concepts. Let V (G) and E(G)be the vertex and edge sets of G, and n and m be their cardinality, respectively. Let weightG(e)be the weight of edge e in graph G (G may be omitted if implied from context).For the following de�nitions, M and C are subgraphs of G. Denote by G *M a graph derivedfrom G by raising the weight of each edge in M by some amount (these edges are said to becorrupted). Let MC be the set of edges in M with exactly one endpoint in C. Let GnC denotethe graph obtained by contracting all connected components induced by C. To be very explicit,for each connected component C 0 of C, we add a new vertex c0 to G and reassign the endpoints ofedges with one or more endpoint in C 0. If x is an endpoint for some edge and x 2 C 0, that endpointis reassigned to c0. Finally we remove from G all vertices and edges in C.We de�ne a subgraph C of G to be DJP-contractible if the tree that results by executing theDJP algorithm on G for some number of steps, starting with a vertex in C, is a spanning tree forC.Lemma 3.1 Let M be a set of edges in a graph G. If C is a subgraph of G that is DJP-contractiblew.r.t. G *M , then MSF (G) is a subset of MSF (C) [MSF (GnC �MC) [MC .Proof: Each edge in C that is not in MSF(C) is the heaviest edge on some cycle in C. Since thatcycle exists in G as well, that edge is not in MSF(G). So we need only show that edges in GnCthat are not in MSF(GnC �MC) [MC are also not in MSF(G).4

Let H = GnC �MC . Our goal is to show that no edge in H� MSF(H) is in MSF(G).Let e be an edge in H� MSF(H). Then e must be the heaviest edge on the cycle X formed inH when e is added to MSF(H). In G the cycle X forms a path P whose end points, say x and y,are both in C; let these end edges in P be (x;w) and (y; z). In H we removed all corrupted edgeswith one end point in C. Hence both (x;w) and (y; z) are not in M .Let T be the spanning tree of C * M derived by the DJP algorithm, Q be the path in Tconnecting x and y, and f be the heaviest edge in Q. Notice that P [Q forms a cycle. The weightof e is larger than the weights of the other edges in the path P. Hence if e is in MSF(G), thenby the cycle property weightG*M (f) > weightG(e). But this requires weightG*M (f) to be greaterthan the weights of edges (x;w) and (y; z) since both of these edges have smaller weight than e.By Lemma 2.1 this is not possible. Hence e cannot be in MSF(G). 23.2 The Partition ProcedureOur algorithm uses the Partition procedure given below. This procedure �nds DJP-contractiblesubgraphs C1; : : : ; Ck in which edges are progressively being corrupted by the Soft Heap. Let MCicontain only those corrupted edges with one endpoint in Ci at the time it is completed.Each subgraph Ci will be DJP-contractible w.r.t a graph derived from G by several rounds ofcontractions and edge deletions. When Ci is �nished it is contracted and all incident corruptededges are discarded. By applying Lemma 3.1 repeatedly we see that after Ci is built, the MSF ofG is a subset of i[j=1MSF (Cj) [MSF 0@Gn i[j=1Cj � i[j=1MCj1A [i[j=1MCjBelow, arguments appearing before the semicolon are inputs; the outputs will be returned inthe other arguments. M is a set of edges and C=fC1; : : : ; Ckg is a set of subgraphs of G. No edgewill appear in more than one of M;C1; : : : ; Ck.Partition(G;maxsize; � ; M; C)All vertices are initially ``live''M := ;i := 0While there is a live vertexIncrement iLet Vi := fvg, where v is any live vertexCreate a Soft Heap consisting of v's edges (uses �)While all vertices in Vi are live and jVij < maxsizeRepeatFind and delete min-weight edge (x; y) from Soft HeapUntil y 62 Vi (Assume w.l.o.g. x 2 Vi)Vi := Vi [fygIf y is live then insert each of y's edges into the Soft HeapSet all vertices in Vi to be deadLet MVi be the corrupted edges with one endpoint in ViM :=M [MViG := G�MViDismantle the Soft HeapLet C := fC1; : : : ; Cig where Cz is the subgraph of G induced by VzExit. 5

Initially, Partition sets every vertex to be live. The objective is to convert each vertex to dead,signifying that it is part of a component Ci with � maxsize vertices and part of a conglomerateof � maxsize vertices, where a conglomerate is a connected component of the graph SE(Ci).Intuitively a conglomerate is a collection of Ci's linked by common vertices. This scheme forgrowing components is similar to the one given in [FT87].We grow the Ci's one at a time according to the DJP algorithm. In place of a correct heap, weuse a Soft Heap. A component is done growing if it reaches maxsize vertices or if it attaches itselfto an existing component. Clearly if a component does not reach maxsize vertices, it has linked toa conglomerate of at least maxsize vertices. Hence all its vertices can be designated dead. Uponcompletion of a component Ci, we discard the set of corrupted edges with one endpoint in Ci.The running time of the Partition procedure is dominated by the heap operations, which de-pend on �. Each edge is inserted into a Soft Heap no more than twice (once for each endpoint),and extracted no more than once. We can charge the cost of dismantling the heap to the insertoperations which created it, hence the total running time is O(m log(1�)). The number of discardededges is bounded by the number of insertions scaled by �, thus jM j � 2�m. Summarizing thespeci�cation of Partition, we have the following lemma.Lemma 3.2 Given a graph G, any 0 < � < 12 , and a parameter maxsize, Partition �nds edge-disjoint subgraphs M;C1; : : : ; Ck in time O(jE(G)j � log(1�)) while satisfying several conditions:a) For all v 2 V (G) there is some i s.t. v 2 V (Ci).b) For all i, jV (Ci)j � maxsize.c) For each connected component (i.e., conglomerate) P 2 Si Ci, jV (P)j � maxsize.d) jE(M)j � 2� � jE(G)je) MSF (G) � SiMSF (Ci) [MSF (Gn(SiCi)�M) [M4 The Optimal Algorithm4.1 OverviewHere is an overview of our optimal MSF algorithm.� In the �rst stage we �nd DJP-contractible subgraphs C1; C2; : : : ; Ck with their associated setof edges M = SiMCi , where MCi consists of corrupted edges with one endpoint in Ci.� In the second stage we �nd the MSF Fi of each Ci, and the MSF F0 of the contractedgraph Gn(Si Ci)�SiMCi . By Lemma 3.1, the MSF of the whole graph is contained withinF0 [Si(Fi [MCi). Note that at this point we have not identi�ed any edges as being in theMSF of the original graph G.� In the third stage we �nd some MSF edges, via Bor�uvka steps, and recurse on the graphderived by contracting these edges.We execute the �rst stage using the Partition procedure described above.We execute the second stage with optimal decision trees. Essentially, these are hardwiredalgorithms designed to compute the MSF of a graph using an optimal number of edge-weightcomparisons. In general, decision trees are much larger than the size of the problem that they solveand �nding optimal ones is very time consuming. We can a�ord the cost of building decision treesby guaranteeing that each one is extremely small. At the same time, we make each conglomerate6

formed by the Ci to be su�ciently large so that the MSF F0 of the contracted graph can be foundin linear time using the DenseCase algorithm.Finally, in the third stage, we have a reduction in vertices due to the Bor�uvka steps, and areduction in edges due to the application of Lemma 3.1. In our optimal algorithm both verticesand edges reduce by a constant factor, thus resulting in the recursive applications of the algorithmon graphs with geometrically decreasing sizes.4.2 Decision TreesAn MSF decision tree is a rooted tree having an edge-weight comparison associated with eachinternal node (i.e. weight(x; y) < weight(w; z)). Each internal node has exactly two children, onerepresenting that the comparison is true, the other that it is false. The leaves of the tree list o�the edges in some spanning tree. An MSF decision tree is said to be correct if the edge-weightcomparisons encountered on any path from the root to a leaf uniquely identify the spanning treeat that leaf as the MSF. A decision tree is said to be optimal if it is correct and there exists nocorrect decision tree with lesser depth.Let us bound the time needed to �nd all optimal decision trees for graphs of � r vertices bybrute force search. There are fewer than 2r2 such graphs and for each graph we must check allpossible decision trees bounded by a depth of r2. There are < r4 possibilities for each internal nodeand < r2r2+O(1) decision trees to check. To determine if a decision tree is correct we generate allpossible permutations of the edge weights and for each, solve the MSF problem on the given graph.Now we simultaneously check all permutations against a decision tree. First put all permutationsat the root, then move them to the left or right child depending on the truth or falsity of theedge-weight comparison w.r.t to each permutation. Repeat this step until all permutations reacha leaf. If for each leaf, all permutations sharing that leaf agree on the MSF, then the decision treeis correct. This process takes no longer than (r2 + 1)! for each decision tree. Setting r = log(3) nallows us to precompute all optimal decision trees in O(n) time.Observe that in the high-level algorithm we gave in section 4.1, if the maximum size of eachcomponent Ci is su�ciently small, the components can be organized into a relatively small numberof groups of isomorphic components (ignoring edge weights). For each group we use a single pre-computed optimal decision tree to determine the MSF of components in that group.In our optimal algorithm we will use a procedure DecisionTree(G;F), which takes as input acollection of graphs G, each with at most r vertices, and returns their minimum spanning forestsin F using the precomputed decision trees.5 The AlgorithmAs discussed above, the optimal MSF algorithm is as follows. First, precompute the optimaldecision trees for all graphs with � log(3) n vertices. Next, divide the input graph into subgraphsC1; C2; :::; Ck, discarding the set of corrupted edges MCi as each Ci is completed. Use the decisiontrees found earlier to compute the MSF Fi of each Ci, then contract each connected componentspanned by F1 [: : : [Fk (i.e., each conglomerate) into a single vertex. The resulting graph has� n= log(3) n vertices since each conglomerate has at least log(3) n vertices by Lemma 3.2. Thisallows us to use the DenseCase algorithm to compute its MSF F0 in time linear in m. At thispoint, by Lemma 3.1 the MSF is now contained in the edge set F0 [: : : [Fk [MC1 [: : : MCk . Onthis graph we apply two Bor�uvka steps, reducing the number of vertices by a factor of four, andthen compute recursively. The algorithm is given below.7

Let � = 1=8 (this is used by the Soft Heap in the Partition procedure).Precompute optimal decision trees for all graphs with � log(3) n0 vertices, where n0 is the numberof vertices in the original input graph.OptimalMSF(G)If E(G) = ; then Return(;)r := log(3) jV (G)jPartition(G; r; �; M; C)DecisionTree(C;F)Let k := jCj and let C = fC1; : : : ; Ckg, F = fF1; : : : ; FkgGa := Gn(F1 [: : : [Fk)�MDenseCase(Ga;F0)Gb := F0 [F1 [: : : [Fk [MBoruvka2(Gb;F 0; Gc)F := OptimalMSF(Gc)Return(F [F 0)Apart from recursive calls and using the decision trees, the computation performed by Opti-malMSF is clearly linear since Partition takes O(m log(1�)) time, and owing to the reduction invertices, the call to DenseCase also takes linear time. For � = 18 , the number of edges passed to the�nal recursive call is � m=4 + n=4 � m=2, giving a geometric reduction in the number of edges.Since no MSF algorithm can do better than linear time, the bottleneck, if any, must lie in usingthe decision trees, which are optimal by construction.More concretely, let T (m;n) be the running time of OptimalMSF. Let T �(m;n) be the optimalnumber of comparisons needed on any graph with n vertices and m edges and let T �(G) be theoptimal number of comparisons needed on a speci�c graph G. The recurrence relation for T is givenbelow. For the base case note that the graphs in the recursive calls will be connected if the inputgraph is connected. Hence the base case graph has no edges and one vertex, and we have T (0; 1)equal to a constant. T (m;n) � Xi T �(Ci) + T (m=2; n=4) + c1 �mIt is straightforward to see that if T �(m;n) = O(m) then the above recurrence gives T (m;n) =O(m). One can also show that T (m;n) = O(T �(m;n)) for many natural functions for T � (includingm � �(m;n) � log�(m;n)). However, to show that this result holds no matter what the functiondescribing T �(m;n) is, we need to establish some results on the decision tree complexity of theMSF problem, which we do in the next section.5.1 Some Results for MSF Decision TreesIn this section we establish some results on MSF decision trees that allow to establish our mainresult that OptimalMSF runs in O(T �(m;n)) time.Claim 5.1 T �(m;n) � m=2.Claim 5.2 For �xed m and n0 > n, T �(m;n0) � T �(m;n).8

Claim 5.3 For �xed n and m0 > m, T �(m0; n) � T �(m;n).Claim 5.1 is obviously true since every edge should participate in a comparison to determineinclusion in or exclusion from the MSF. Claim 5.2 holds since we can add isolated vertices to agraph, which obviously does not a�ect the MSF or the number of necessary comparisons. To seethat Claim 5.3 holds, we observe that we can add edges of very large cost to a graph withoutaltering its MSF.We now state a Condition that is used by Lemmas 5.5 and 5.6.Condition 5.4 The structure of G dictates that MSF(G) = MSF(C1) [: : :[MSF(Ck), whereC1; : : : ; Ck are edge-disjoint subgraphs of G.If C1; : : : ; Ck are the components returned by Partition, it can be seen that the graph SiCisatis�es Condition 5.4 since every simple cycle in this graph must be contained in exactly one ofthe Ci. To see this, consider any simple cycle and let i be the largest index such that Ci containsan edge in the cycle. Since each Ci shares no more than one vertex with Sj<iCj , this cycle cannotcontain an an edge from Sj<iCj.Lemma 5.5 If Condition 5.4 holds for G, then there exists an optimal MSF decision tree for Gwhich makes no comparisons of the form e < f where e 2 Ci; f 2 Cj and i 6= j.Proof: Consider a subset P of the permutations of all edge weights where for e 2 Ci; f 2 Cj andi < j, it holds that weight(e) < weight(f). Permutations in P have two useful properties whichcan be readily veri�ed. First, any number of inter-component comparisons shed no light on therelative weights of edges in the same component. Second, any spanning forest of a component isthe MSF of that component for some permutation in P.Now consider any optimal decision tree T for G. Let T 0 be the subtree of T which containsonly leaves that can be reached by some permutation in P. Each inter-component comparisonnode in T 0 must have only one child, and by the �rst property, the MSF at each leaf was deducedusing only intra-component comparisons. By the second property, T 0 must determine the MSF ofeach component correctly, and thus by Condition 5.4 it must determine the MSF of the graph Gcorrectly. Hence we can contract T 0 into a correct decision tree T 00 by replacing each one-child nodewith its only child. 2Lemma 5.6 If Condition 5.4 holds for a graph G, then T �(G) =Pi T �(Ci).Proof: Given optimal decision trees Ti for the Ci we can construct a decision tree for G by replacingeach leaf of T1 by T2, and in general replacing each leaf of Ti by Ti+1 and by labeling each leaf ofthe last tree by the union of the labels of the original trees along this path. Clearly the height ofthis tree is the sums of the heights of the Ti, and hence T �(G) �Pi T �(Ci). So we need only provethat no optimal decision tree for G has height less than the sum of the heights of the Ti.Let T be an optimal decision tree for G that has no inter-component comparisons (as guaranteedby Lemma 5.5). We show that T can be transformed into a `canonical' decision tree T 0 for G ofthe same height as T , such that in T 0, all comparisons for Ci precede all comparisons for Ci+1, foreach i, and further, for each i, the subgraph of T 0 containing the comparisons within Ci consists ofa collection of isomorphic trees. This will establish the desired result since T 0 must contain a paththat is the concatenation of the longest path in an optimal decision tree for each of the Ci.We �rst prove this result for the case when there are only two components, C1 and C2. Assumeinductively that the subtrees rooted at all vertices at a certain depth d in T have been transformed9

to the desired structure of having the C1 comparisons occur before the C2 comparisons, and withall subtrees for C2 within each of the subtrees rooted at depth d being isomorphic. (This is triviallythe case when d is equal to the height of T .)Consider any node v at depth d� 1. If the comparison at that node is a C1 comparison, thenall C2 subtrees at descendent nodes must compute the same set of leaves for C2. Hence the subtreerooted at v can be converted to the desired format simply by replacing all C2 subtrees by one havingminimum depth (note that there are only two di�erent C2 subtrees { all C2 subtrees descendentto the left (right) child of v must be isomorphic). If the comparison at v is a C2 comparison, weknow that the C1 subtrees rooted at its left child x and its right child y must both compute thesame set of leaves for C1. Hence we pick the C1 subtree of smaller height (w.l.o.g. let its root bex) and replace v by x, together with the C1 subtree rooted at x. We then copy the comparison atnode v to each leaf position of this C1 subtree. For each such copy, we place one of the isomorphiccopies of the C2 subtree that is a descendant of x as its left subtree, and the C2 subtree that is adescendant of y as its right subtree. The subtree rooted at x, which is now at depth d � 1 is nowin the desired form, it computes the same result as in T , and there was no increase in the height ofthe tree. Hence by induction T can be converted into canonical decision tree of no greater height.Assume inductively that the result hold for up to k � 1 � 2 components. The result easilyextends to k components by noting that we can group the �rst k� 1 components as C 01 and let Ckbe C 02. By the above method we can transform T to a canonical tree in which the Ck comparisonsappear as leaf subtrees. We now strip the Ck subtrees from this canonical tree and then by theinductive assumption we can perform the transformation for remaining k � 1 components. 2Corollary 5.7 Let the Ci be the components formed by the Partition routine applied to graph G,and let G have m edges and n vertices. Then, Pi T �(Ci) � T �(G) � T �(m;n).Corollary 5.8 For any m and n, 2 � T �(m;n) � T �(2m; 2n)We can now solve the recurrence relation for the running time of OptimalMSF given in theprevious section.T (m;n) � Xi T �(Ci) + T (m=2; n=4) + c1 �m� T �(m;n) + T (m=2; n=4) + c1 �m (Corollary 5.7)� T �(m;n) + c � T �(m=2; n=4) + c1 �m (assume inductively)� T �(m;n)(1 + c=2 + 2c1) (Corollary 5.8 and Claims 5.1, 5.2)� c � T �(m;n) (for some c su�ciently large; this completes the induction)This gives us the desired theorem.Theorem 5.9 Let T �(m;n) be the decision tree complexity of the MSF problem on graphs with medges and n nodes. The algorithm OptimalMSF computes the MSF of a graph with m edges and nvertices deterministically in O(T �(m;n)) time.6 Avoiding Pointer ArithmeticWe have not precisely speci�ed what is required of the underlying machine model. Upon examina-tion, the algorithm does not seem to require the full power of a random access machine (RAM). No10

bit manipulation is used and arithmetic can be limited to just the increment operation. However, ifprocedure DecisionTree is implemented in the obvious manner it will require using a table lookup,and thus random access to memory. In this section we describe an alternate method of handling thedecision trees which can run on a pointer machine [Tar79], a model which does not allow randomaccess to memory. Our method is similar to that described in [BKRW98], but we ensure that thetime taken during a call to DecisionTree is linear in the size of the current input to DecisionTree.A pointer machine distinguishes pointers from all other data types. The only operations allowedon pointers are assignment, comparison for equality and dereferencing. Memory is organized intorecords, each of which holds some constant number of pointers and normal data words (integers,oats, etc.). Given a pointer to a particular record, we can refer to any pointer or data word in thatrecord in constant time. On non-pointer data, the usual array of logical, arithmetic, and binarycomparison operations are allowed.We �rst describe the representation of a decision tree. Each decision tree has associated with it ageneric graph with no edge weights. This decision tree will determine the MST of each permutationof edge weights for this generic graph. At each internal node of the decision tree are four pointers,the �rst two point to edges in the generic graph being compared and the second two point to theleft and right child of the node. Each leaf lists the edges in some spanning tree of the generic graph.Since a decision tree is a pointer-based structure, we can construct each precomputed decision tree(by enumerating and checking all possibilities) without using table lookups.We now describe our representation of the generic graphs. The vertices of a generic graph arenumbered in order by integers starting with 1, and the representation consists of a listing of thevertices in order, starting from 1, followed by the adjacency list for each vertex, starting with vertex1. Each generic graph will have a pointer to the root of its decision tree.Recall that we precomputed decision trees for all generic graphs with at most log(3) n0 vertices(where n0 is the number of vertices in the input graph whose MSF we need to �nd). The genericgraphs will be generated and stored in lexicographically sorted order. Note that with our represen-tation, in the sorted order the generic graphs will appear in nondecreasing order of the number ofvertices in the graph.Before using a decision tree on an actual graph (which must be isomorphic to the generic graphfor that decision tree), we must associate each edge in the actual graph with its counterpart in thegeneric graph. Thus a comparison between edge weights in the generic graph can be substitutedby the corresponding weights in the actual graph in constant time.On a random access machine, we can encode each possible graph in a single machine word (say,as an adjacency matrix), then index the generic graph in an array according to this representation.Thus given a graph we can �nd the associated decision tree in constant time. On a pointer machinehowever, converting a bit vector or an integer to a pointer is speci�cally disallowed.We now describe our method to identify the generic graph for each Ci e�ciently. We assumethat each Ci is speci�ed by the adjacency lists representation, and that each edge (x; y) has a pointerto the occurrence of (y; x) in y's adjacency list. Each edge also has a pointer to a record containingits weight. Let m and n be the number of edges and vertices in SiCi, and let r = log(3) n.We rewrite each Ci in the same form as the generic graphs, which we will call the numericalrepresentation. Let Ci have p vertices (note that p � r). We assign the vertices numbers from 1 top in the order in which they are listed in the adjacency lists representation, and we rewrite eachedge as a pair of such numbers indicating its endpoints. Each edge will retain the pointer to itsweight, but that is separate from its numerical representation.We then change the format for each graph as follows: Instead of a list of numbers, each in therange [1::r], we will represent the graph as a list of pointers. For this we initialize a linked list with11

r buckets, labeled 1 through r. If, in the numerical representation the number j appears, it will bereplaced by a pointer to the jth bucket.We transform a graph into this pointer representation by traversing �rst the list of vertices andthen the list of edges in order, and traversing the list of buckets simultaneously, replacing eachvertex entry, and the �rst vertex entry for each edge by a pointer to the corresponding bucket.Thus edge (x; y), also appearing as (y; x), will now appear as (ptr(x); y) and (ptr(y); x). We thenemploy the twin pointers to replace the remaining y and x with their equivalent pointers. Clearlythis transformation can be performed in O(m) time, where m is the sum of the sizes of all of theCi. We will now perform a lexicographic sort [AHU74] on the sequence of Ci's in order to grouptogether isomorphic components. With our representation we can replace each bucket indexingperformed by traditional lexicographic sort by an access to the bucket pointer that we have placedfor each element. Hence the running time for the pointer-based lexicographic sort is O(Pi `i+Lr)where `i is the length of the ith vector and L = maxif`ig [AHU74]. Since DecisionTree is calledwith graphs of size r = O(log(3) n), we have L = O(r2) and the sum of the sizes of the graphs isO(m). Hence the radix sort can be performed in O(m+ r3) = O(m+ n) time.Finally, we march through the sorted list of the Ci's and the sorted list of generic graphs,matching them up as appropriate. We will only need to traverse an initial sequence of the sortedgeneric graphs containing O(rr2) entries in order to match up the graphs. This takes time O(m+rr2) = O(m).7 ConclusionWe have presented a deterministic MSF algorithm that is provably optimal. The algorithm runson a pointer machine, and on graphs with n vertices and m edges, its running time is O(T �(m;n)),where T �(m;n) is the decision tree complexity of the MSF problem on n-node, m-edge graphs.An intriguing aspect of our algorithm is that we do not know its precise running time. Thepresence of Chazelle's algorithm [Chaz97] shows that its running time is O(m�(m;n) log�(m;n)).This could conceivably be the correct bound for our algorithm | all that we can say at this timeis that the bound lies between this rather unwieldy upper bound and the obvious linear-time lowerbound.Since our time bound depends only on the decision tree complexity of the MSF problem, therunning time of our algorithm (and hence of the fastest MSF algorithm) depends only on thenumber of edge-weight comparisons needed to resolve this problem, and not on data structuralissues. Hence if the complexity of the problem turns out to be, say, �(m�(m;n)), the � will notbe due to the use of a data structure with that complexity, but rather due to the nature of edge-weight comparisons required. This also means that in order to determine the complexity of theMSF problem one can now look solely at its decision tree complexity without considering the datastructures needed to implement the other features of the algorithm. This could potentially simplifyproofs on the algorithmic complexity of the MST problem.Pinning down the function that describes the worst-case complexity of our algorithm is the mainopen question that remains for the sequential complexity of the MSF problem. One can also askfor the parallel complexity of this problem. Here, the randomized complexity of the MSF problemon the EREW PRAM was recently resolved in [PR99]. For deterministic parallel MSF algorithms,the time complexity on the EREW PRAM was resolved recently in [CHL99]. An open questionthat remains here is to obtain a deterministic parallel MSF algorithm with optimal work and timebounds. 12

References[AHU74] A. V. Aho, J. E. Hopcroft, J. D. Ullman. The Design and Analysis of Computer Algorithms.Addison-Wesley, 1974.[BG65] C. Berge, A. Ghouila-Houri. Programming, Games, and Transportation Networks. John Wiley, NewYork, 1965.[Bor26] O. Bor�uvka . O jist�em probl�emu minima�aln�im. Moravsk�e P�r�irodov�edeck�e Spole�cnosti 3, (1926), pp.37-58. (In Czech).[BKRW98] A. L. Buchsbaum, H. Kaplan, A. Rogers, J. R. Westbrook. Linear-Time Pointer-Machine Algo-rithms for Least Common Ancestors, MST Veri�cation, and Dominators. In Proc. of the 30th ACMSymposium on Theory of Computing, pp. 279{288, 1998.[Chaz97] B. Chazelle. A Faster Deterministic Algorithm for Minimum Spanning Trees. In FOCS '97, pp.22{31, 1997.[Chaz98] B. Chazelle. Car-Pooling as a Data Structuring Device: The Soft Heap. In ESA '98 (Venice), pp.35{42, Lecture Notes in Comp. Sci., 1461, Springer, Berlin, 1998.[Cho38] G. Choquet. Etude de certains r�eseaux de routes. Comptes Rendus Acad. Sci., 206 (1938), pp.310-313.[CHL99] K. W. Chong, Y. Han and T. W. Lam. On the parallel time complexity of undirected connectivityand minimum spanning trees. In Proc. SODA 1999, pp. 225-234.[CT76] D. Cheriton, R. E. Tarjan. Finding minimum spanning trees. In SIAM J. Comput. 5 (1976), pp.724{742.[Dij59] E. W. Dijkstra. A note on two problems in connexion with graphs. In Numer. Math., 1 (1959), pp.269-271.[FLPSZ51] K. Florek, L. Lukasziewicz, J. Perkal, H. Steinhaus, S. Zubrzycki. Sur la liaison et la divisiondes points d'un ensemble �ni. In Colloq. Math., 2 (1951), pp. 282{285[FT87] M. L. Fredman, R. E. Tarjan. Fibonacci heaps and their uses in improved network optimizationalgorithms. In J. ACM 34 (1987), pp. 596{615.[FW90] M. Fredman, D. E. Willard. Trans-dichotomous algorithms for minimum spanning trees and shortestpaths. In Proc. FOCS '90, pp. 719{725, 1990.[GGST86] H. N. Gabow, Z. Galil, T. Spencer, R. E. Tarjan. E�cient algorithms for �nding minimumspanning trees in undirected and directed graphs. In Combinatorica 6 (1986), pp. 109{122.[GH85] R. L. Graham, P. Hell. On the history of the minimum spanning tree problem. Annals of the Historyof Computing 7 (1985), pp. 43{57.[Jar30] V. Jarn�ik. O jist�em probl�emu minima�aln�im. Moravsk�e P�r�irodov�edeck�e Spole�cnosti 6, 1930, pp.57-63. (In Czech).[KKT95] D. R. Karger, P. N. Klein, and R. E. Tarjan. A randomized linear-time algorithm to �nd minimumspanning trees. Journal of the ACM, 42:321{328, 1995.[Kr56] J. B. Kruskal. On the shortest spanning subtree of a graph and the traveling salesman problem. InProc. Amer. Math. Soc. 7 (1956), pp. 48{50.13

[PR99] S. Pettie, V. Ramachandran. A Randomized Time-Work Optimal Parallel Algorithm for Finding aMinimum Spanning Forest To appear in Proc. RANDOM '99, also Tech. Report TR99-13, Univ. ofTexas at Austin, April 1999.[Prim57] R. C. Prim. Shortest connection networks and some generalizations. Bell System Technical Journal,36:1389-1401.[Tar79] R. E. Tarjan. A class of algorithms which require nonlinear time to maintain disjoint sets. In JCSS,18(2), pp 110{127, 1979.[Tar83] R. E. Tarjan. Data Structures and Network Algorithms. Society for Industrial and Applied Mathe-matics, 1983.[Yao75] A. Yao. An O(jEj log log jV j) algorithm for �nding minimum spanning trees. Information ProcessingLetters 4 (1975), pp. 21{23.

14

