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Abstract

Consider a hierarchical network in which each node periodically issues a request for an object
drawn from a fixed set of unit-size objects. Suppose further that the following conditions are satisfied:
the frequency with which each node accesses each object is known; each node has a cache of known
capacity; any cache can be accessed by any node; any request is satisfied by the closest node with
a copy of the desired object, at a cost proportional to the distance between the accessing node
and the closest copy. In such an environment, it is desirable to fill the available cache space with
copies of objects in such a way that the average access cost is minimized. We provide both exact
and approximate polynomial-time algorithms for this hierarchical placement problem. Our exact
algorithm is based on a reduction to min-cost flow, and does not appear to be practical for large
problem sizes. Thus we are motivated to search for a faster approximation algorithm. Our main
result is a simple constant-factor approximation algorithm for the hierarchical placement problem
that admits an efficient distributed implementation.

1 Introduction

Cooperative caching [14] is an emerging paradigm in the design of scalable high-performance distributed
systems. In traditional caching schemes, the primary function of a cache is to act as a fast intermediate
storage between a client or a collection of clients and the servers. In such schemes, each request is
satisfied by the cache associated with the requesting node or by the server of the requested object.
Moreover, the storage decisions made by one cache are independent of those made by other caches in
the system. The defining characteristic of cooperative caching schemes, on the other hand, is that the
caches cooperate in serving one another’s requests as well as in storage decisions.

A number of recent studies have discussed the benefits of cooperative caching for distributed file
systems and large-scale information systems such as digital libraries and the World Wide Web. These
studies include analytical results (e.g., [3, 22]), simulation experiments (e.g., [8, 16, 17, 28]) and pro-
totypes and products (e.g., Harvest [9, 11], xF'S [1]). The widely deployed and studied Harvest cache
system [9], employs a hierarchical arrangement of object caches to improve access performance. In
the Squid cache system [30], which is a successor to Harvest, the caches cooperate via the Internet
Cache Protocol [31] to serve one another’s misses and thus reduce overall traffic. Recent experimental
work of [28] also indicates the potential for significant performance gains by cooperative caching on
the Internet. In the context of local-area networks, the xFS system [1] utilizes cooperative caches to
obtain a serverless file system. While the appropriate level of cooperation depends on the kind and
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scale of the application, it is evident from these studies that cooperative caching will play a significant
role in future information systems.

This paper studies an important component of cooperative caching schemes, which we refer to as
placement. A cooperative caching scheme can be loosely divided into three components: placement,
search, and consistency. The placement component determines where to place the copies of the objects.
The search component directs each request to an appropriate copy of the requested object. Finally,
the consistency component maintains the desired level of consistency among the various copies of an
object.

In [3], Awerbuch, Bartal, and Fiat study a general on-line cooperative caching problem on arbitrary
networks and present a polylog(n)-competitive algorithm, where n is the number of nodes in the
network. Their result is impressive in that it addresses the search, placement, and consistency problems
in a general adversarial setting. However, the time and space bounds established may exceed optimal
by a polylogarithmic factor. In this paper, we study a special case of cooperative caching with the
aim of developing simple algorithms that obtain near-optimal (e.g., constant-factor approximation)
solutions. We focus our attention on the placement component of cooperative caching and develop
placement algorithms for a class of networks that we refer to as hierarchical networks. Our definition
of hierarchical networks, which is based on the ultrametric cost model used in [20], is motivated by the
fact that modern wide-area networks tend to admit natural hierarchical decompositions. In fact, the
existence of a hierarchical decomposition is implicit in several previous studies (e.g., see [11, 29, 30]).

1.1 The problem

We address the following placement problem for hierarchical networks. Let ¥ denote a set of unit-size
objects and let size(u) denote the cache size at node u. We are given for each node u and each object
1 the access frequency for ¢ at u. Further assume that for any node u and object ¥, the cost of
satisfying an access request for ¢ originating at u is given by the communication cost between u and
v, where v is the closest node (with respect to the communication cost function) that holds a copy of
1. The objective of a placement algorithm is to determine a placement of object copies in the node
caches subject to space constraints such that the average access cost over all nodes and all objects is
minimized. See Section 2 for a formal statement of the problem.

Our problem formulation is most suitable for applications in which writes are infrequent and changes
in the access pattern over short time intervals are moderate. Infrequent writes imply a low overhead
in maintaining consistency among the copies of an object, allowing us to separate the concerns of
consistency and placement. Moderate changes in the access pattern can be addressed by invoking the
placement algorithm at regular intervals. Finally, we consider our assumption that each request is
satisfied by the nearest copy of the requested object. This assumption is justified by the existence of
algorithms for the search component that direct each request to a nearby, if not the nearest, copy of
the requested object [4, 16, 25, 29]. Another useful idea in this regard is the summary cache protocol
of [16] in which each cache maintains a synopsis of the contents of nearby caches so that it can redirect
a request to a nearby copy (if one exists) in the event of a cache miss.

As indicated above, we restrict our attention to unit-sized objects. It is worth noting that there
are applications in which it is reasonable to reduce the case of arbitrary-sized objects to the unit-
sized case by splitting each object of size k into k unit-size fragments, and then placing the fragments
independently. In other applications, such a reduction may not be appropriate; thus it remains an
interesting open problem to extend our results to the case of arbitrary-sized indivisible objects.

1.2 Our results

We first present a polynomial-time exact algorithm for the hierarchical placement problem based on
a reduction to minimum-cost flow. Our reduction, described in Section 3, generalizes the approach of
Leff, Wolf, and Yu [22], who solved the problem for the special case of a single-level hierarchy. While
the algorithm of Section 3 runs in polynomial time, the degree of the polynomial is sufficiently high to



make the algorithm largely impractical.

Thus, we focus on the goal of developing a fast, simple constant-factor approximation algorithm for
the hierarchical placement problem that admits an efficient distributed implementation. In Section 4.1
we consider a natural bottom-up greedy algorithm, but find that this algorithm has approximation
ratio ©(n). The lower bound proof leads us to a natural refinement of the greedy algorithm, the
amortizing algorithm, described in Section 4.2. Like the greedy algorithm, the amortizing algorithm
starts with a placement in which the cache of each node holds the locally optimal set of objects. The
algorithm then iteratively improves the placement in a bottom-up manner as the nodes cooperate and
share information about the access frequencies across larger regions of the network.

Our main result is that the amortizing algorithm achieves a constant-factor approximation for the
hierarchical placement problem. (The constant factor is less than 14.) An important characteristic of
the amortizing algorithm is that it can be implemented efficiently, even in a distributed setting. We
discuss such an implementation towards the end of the paper.

It is worth noting that the recent results on the approximation of general metrics by tree metrics [5,
6, 12] imply that any hierarchical placement algorithm can be used to obtain a placement algorithm
for general metrics giving up an extra O(lognloglogn) factor in the approximation.

1.3 Related work

Dowdy and Foster [15] initiated the study of cooperative caching in the context of allocating files in a
distributed network [15]. A sequence of results [2, 7, 23] obtained improved algorithms for centralized
as well as distributed file allocation. These results, however, did not consider cache capacities at
the individual nodes. As mentioned earlier in this section, Awerbuch, Bartal, and Fiat [3] provide a
polylog(n)-competitive on-line algorithm for the general placement problem under the assumption that
the size of each cache in the on-line algorithm is polylog(n) times more than the size in the optimal
algorithm. In contrast, we obtain an optimal centralized and a constant-factor approximate distributed
algorithm for the off-line version of the problem on hierarchical networks without any blowup in the
cache sizes.

In [22], Leff, Wolf, and Yu study the placement problem for a network of workstations, which they
model as a single-level hierarchy. In addition to providing an optimal centralized algorithm for this
case, they give heuristics for a distributed solution. These heuristics, however, make use of particular
properties of a single-level hierarchy that are not applicable in an arbitrary hierarchical setting.

By adopting a communication model based on a fixed cost function, we endeavor to separate the
concerns of caching (a higher-level operation) from routing (a lower-level operation). In contrast, some
recent papers have incorporated routing issues into caching by either combining the two problems or
making use of available routing information. For example, the algorithms developed in [18, 26, 32]
tend to cache copies of an object in nodes that either lie on or are close to the path along which the
object is being transferred. Routing information is also used in the placement algorithms developed
in [24], where the primary aim is to minimize the network congestion that may occur when requests and
their responses are routed within the network. We also remark that cost models have been adopted in
uniprocessor caching systems to model scenarios in which the costs incurred in the retrieval of objects
on cache misses may vary from one object to another [10, 19, 33].

With regard to uniprocessor caching schemes, recent research has addressed the challenge of de-
signing cache replacement policies that take into account the differing costs incurred in the retrieval of
objects on cache misses. This has led to studies formulating generalizations of the traditional unipro-
cessor caching problems that account for the differing costs [10, 19, 33].

In a recent experimental study [21], Korupolu and Dahlin evaluate the practical performance of
several placement and replacement algorithms for cooperative caching. Their simulation experiments
demonstrate that, in practice, both our greedy placement algorithm as well as our amortizing placement
algorithm are in fact very close to the optimal.



We remark that the placement problem can be viewed as an instance of facility location with
multiple types of facilities and constraints on the number of facilities that can be located at a point.
To the best of our knowledge, this multiple facilities location problem has not been studied previously.
For a survey of results related to facility location, see [13, 27].

1.4 Organization of the paper

The remainder of the paper is organized as follows. Section 2 gives a formal definition of the hierarchical
placement problem. Section 3 give a polynomial-time exact algorithm for the hierarchical placement
problem based on a reduction to minimum-cost flow. Section 4 presents the greedy and amortizing
algorithms. Section 5 presents the analysis of the amortizing algorithm. Section 6 contains the proof of
the main technical lemma. Section 7 presents an efficient distributed implementation of the amortizing
algorithm.

The technical sections of this paper involve a large number of definitions and lemmas. In several
places we provide a series of definitions along with a number of basic “facts” that follow from these
definitions. These facts encapsulate certain properties of the definitions that are used in subsequent
parts of the paper. In order to keep the presentation focused on the more interesting and challenging
aspects of our work, we have omitted the proofs of these facts. The reader should not have any difficulty
convincing her- or himself of the correctness of these facts, though in some cases it may be a tedious
exercise.

2 Preliminaries

In this section, we formally define the hierarchical placement problem. To simplify the exposition, we
define this problem with respect to a fixed tuple (¥, V), distance, frequency, size, penalty), where ¥ is a
set of unit-size read-only objects, V is a set of nodes, distance : V xV — R, frequency : V x ¥ — R,
size : YV — N, and penalty is a real number. We assume that the set of nodes V forms a hierarchy as
defined in Section 2.1. We assume that penalty is at least as large as diameter(V), where for any set
of nodes U, diameter(U) is defined as the maximum value of distance(u,v) over all nodes v and v in
V. The hierarchical placement problem is defined in Section 2.2.

2.1 Hierarchies

We now inductively define the notion of a hierarchy. For any node w in V), the singleton set {u} is
a hierarchy iff distance(u,u) = 0. A set of nodes U such that |U| > 1 is a hierarchy iff there is a
partition of U into k£ > 1 disjoint hierarchies «;, 0 < i < k, such that distance(u,v) = diameter(U)
(resp., distance(u,v) < diameter(U)) for all nodes u in o; and v in a; for which i # j (resp., i = j).
A hierarchy corresponding to a set of nodes U is atomic iff |U| = 1. Note that for any non-atomic
hierarchy «, the aforementioned partition is unique. For any non-atomic hierarchy a with associated
partition {a; : 0 < ¢ < k}, we define each hierarchy «; as a child of the hierarchy o, and we define
the parent of each «;, denoted parent(c;), as . We inductively define the notion of a descendant of a
hierarchy « as follows: A hierarchy [ is a descendant of a hierarchy « iff « = 8 or 3 is a descendant
of some child of a. A descendant 3 of « is proper iff o # .

Hierarchies can be used to model a large class of distributed networks. For example, a homogeneous,
k-node local-area network may be modeled as a single-level hierarchy. In fact, this is precisely the model
used in [1, 22] in the study of caching schemes for networks of workstations. Furthermore, it seems
plausible that some nontrivial hierarchy should provide a reasonable first-order model for a complex,
heterogeneous wide-area network such as the Internet.

Hierarchies can also be used to model multi-level storage; we can introduce a hierarchy for each
level of storage and incorporate the disparate speeds of the different levels in the distance function.
As a simple example, consider a machine with two levels of storage (e.g., memory and disk) having
local access latencies a and b, a < b. This machine may be modeled as a hierarchy with diameter b
and two children: (i) an atomic hierarchy with zero access frequencies and storage capacity equal to



that of the slow level of storage, and (ii) a hierarchy with diameter a and two atomic children, one
with zero access frequencies and storage capacity equal to that of the fast level of storage, and another
with zero storage and access frequencies equal to those of the original machine. This approach can be
generalized to capture both network and cache latencies in a heterogeneous distributed network with
caches of varying speeds.

2.2 The hierarchical placement problem

Having fixed the tuple (¥, V), distance, frequency, size, penalty) as specified at the beginning of Section 2,
any descendant of the hierarchy V determines an instance of the hierarchical placement problem. We
now present a sequence of definitions leading up to the definition of the hierarchical placement problem.

It is convenient to extend the definitions of the functions frequency and size to act on hierarchies.
For any hierarchy a and any object ¢, we define frequency(ca, ) as the sum of frequency(u, ) over all
nodes u in a. For any hierarchy o, we define size(a) as the sum of size(u) over all nodes in a. The
following definitions involving hierarchies will also prove to be useful. For any proper descendant o of V,
we define miss(c) as diameter (parent(a)). For the hierarchy V itself, we define miss(V) as penalty. For
any hierarchy a and any object ¢, we define value(a, ) as frequency(a, ) - (miss(a) — diameter(c)).

A copy is a pair (o, ) where « is a hierarchy and v is an object. A copy («, %) is concrete iff a
is atomic. A set of copies is concrete iff it is a set of concrete copies. A refinement of a set of copies
P is a set of copies @ for which |P| = |Q| and there exists a bijection ¢ : P — @ such that for all
p = (o, ¢) in P, the copy ¢(p) = (B,¢) for some descendant 8 of a. A concrete set of copies P is
feasible iff |{(a,9) € P : ¢ € ¥}| < size(a) for each atomic hierarchy o in V. A non-concrete set of
copies is feasible iff it admits a feasible concrete refinement. A placement is a pair (o, P) where « is
a hierarchy, P is a set of copies, and each copy in P is of the form (3,v) for some descendant 3 of
a. For any placement A = (o, P), we define Hierarchy(A) and Copies(A) as a and P, respectively.
For any hierarchy «, a placement A is a a-placement iff Hierarchy(A) = a. A placement A is concrete
(resp. feasible) iff Copies(A) is concrete (resp., feasible). A placement (a, P) is a refinement of a
placement (3,Q) iff « = B and P is a refinement of ). For any placement A and any descendant « of
Hierarchy(A), we define restrict(A, «) as the placement («, P) where P is the set of all copies (3, )
in Copies(A) such that 3 is a descendant of .

Fact 2.1 For any hierarchy «, an a-placement A is feasible iff | Copies(restrict(A, 3))| < size(B3) for
all descendants 3 of «. |

For any placement A and object 1, a copy p is an (A, )-copy iff p belongs to Copies(A) and has
associated object ¢. For any placement A and object 1, we define count(A, 1) as the number of (4, ¢)-
copies. For any placement A, we define Missing(A) as the set of all objects ¥ such that count(A, ) = 0.
For any placement A, node u in Hierarchy(A), and object ¥, we define latency(A, u,1) as follows: If
¥ belongs to Missing(A), then latency(A,u,v) = miss(Hierarchy(A)); otherwise, latency(A,u, ) is
the minimum value of diameter(a) over all descendants a of Hierarchy(A) such that u belongs to
a and count(restrict(A,«),v) > 0. Note that if A is a refinement of B, then latency(A4,u,) <
latency(B,u,). For any placement A, we define the cost of A, denoted cost(A), as the sum of
frequency(u, ) - latency(A, u,v) over all nodes u in Hierarchy(A) and all objects ¢ in ¥. Given a
hierarchy «, the hierarchical placement problem is to find a feasible concrete a-placement of minimum
cost. We remark that if A is a refinement of B, then cost(A) < cost(B); it follows that some minimum-
cost feasible a-placement is concrete.

The following fact can be proven by induction on the structure of hierarchy a.

Fact 2.2 For any a-placement A, cost(A) is equal to the sum, over all objects ¥ and all descendants
B of a such that count(restrict(A, 3),v) =0, of value(s3,).



A placement A is said to be empty iff Copies(A) is the empty set. The next fact is a corollary of
the previous one.

Fact 2.3 For any empty a-placement A, cost(A) is equal to the sum, over all objects 1 and all de-
scendants B of a, of value(S3,1).

3 A reduction to minimum-cost flow

In this section we reduce a given instance « of the hierarchical placement problem to a corresponding
instance G of the minimum-cost low problem. If the hierarchy « is atomic then the placement problem
is trivial; our presentation assumes that « is non-atomic.

The minimum-cost flow instance G, is constructed as follows. The vertex set consists of the
following: a vertex (3 for every atomic descendant 3 of «; a vertex (1, 3) for every object ¢ and non-
atomic descendant 3 of «; a source s and sink ¢. The edge set consists of four types of edges: for each
atomic descendant 3 of o and each object 1, there is a unit-capacity edge ((¢, parent(3)), 3) with cost
—wvalue(B,1); for each non-atomic proper descendant (3 of o and each object 1, there are two parallel
edges ((¢, parent(B)), (¢, B)) with capacities 1 and oo, and costs —value(3, 1) and 0, respectively; for
each object 1, there are two parallel edges (s, (¢, a)) with capacities 1 and oo, and costs —wvalue(c, 1)
and 0, respectively; for each atomic descendant (3 of «, there is an edge (3, t) with capacity size(3) and
cost 0.

The next two lemmas imply that an integral minimum-cost flow in G, corresponds to a feasible
concrete a-placement of minimum cost.

Lemma 3.1 For every feasible concrete a-placement A, there is an integral flow in G, with cost equal
to cost(A) minus the cost of the empty a-placement.

Proof:  For any hierarchy 3, let Ag denote the placement restrict(A,B3). We construct the de-
sired flow as follows. For each edge ({1, parent(3)),(3), we set the flow to 1 if count(Ag,v) > 0,
and to 0 otherwise. For each unit-capacity edge ((v, parent(B)), (¥, 3)), we set the flow to 1 if
count(Ag,v) > 0, and to 0 otherwise. For each infinite-capacity edge ((v,parent(3)), (v, 3)), we
set the flow to max{0, count(Ag,) — 1}. For each unit-capacity edge (s, (¢, )), we set the flow to
L if count(Aq,) > 0, and to 0 otherwise. For each infinite-capacity edge (s, (¢, «)), we set the flow
to max{0, count(Ay, 1) — 1}. For each edge (f3,t), we set the flow to the sum over all objects ¥ of
count(Ag, ).

It remains to prove that the above flow is feasible and has the stated cost. We first establish
feasibility. Clearly, the flow assigned to each edge obeys the corresponding capacity constraints. We
now consider the flow conservation constraints. For each atomic descendant 3 of «, the flow along the
edge (B,t) is 3 count(Ap,). This equals the sum, over all objects 1, of the flows along the edge
from (1, parent(3)) to B. For each non-atomic descendant [ of «, and for each object 1, the total
flow coming into (1, §) equals the total flow along the two parallel edges, which is count(Ag, ). The
total flow coming out of (¢, 3) is the sum, over all children « of 3, of the flow along the two parallel
edges ((¢,8), (¥,7)). This flow equals 3, count(A,,), which equals count(Ag,v). This completes
the proof of the feasibility of the flow.

To establish the cost bound, we first note that the flow incurs a cost of —value(3, ) for every object
¥ and every descendant [ of a such that count(Ag,v) > 0. Furthermore, Facts 2.2 and 2.3 imply that
the cost of A is equal to the cost of the empty a-placement minus the sum, over all objects v and all
decendants § of o such that count(Ag,1) > 0, of value(5,1). The claimed cost bound follows. [ |

Lemma 3.2 For every integral minimum-cost flow with cost ¢ in G, there is a feasible concrete
a-placement A such that cost(A) is equal to the cost of the empty a-placement plus c'.



Proof: Given an integral minimum-cost flow in G, we define a corresponding concrete a-placement
A as follows: For any atomic descendant 3 of a and any object ¥, Copies(A) includes the concrete
copy (B,v) iff the flow along edge ({4, parent((3)),3) is 1. (Note that A is concrete and feasible.)
It remains to establish the cost bound. To do so, we make the following key observation regarding
the flows on adjacent parallel arcs. Let ey and e; denote the parallel edges with capacities 1 and
00, respectively, between a pair of vertices. If the flow along e; is positive, then the flow along eq
is 1. Otherwise, transferring a unit of flow from e; to ey would yield another feasible flow with
smaller cost, a contradiction. It follows that if count(restrict(A,3),¢) > 0 for some atomic (resp.,
non-atomic) proper descendant 3 of «, then the flow along the unit-capacity edge ((¢, parent(3)), 3)
(resp., ((1, parent(B)), (v, B))) is 1. Similarly, if count(A, ) > 0, then the flow along the unit-capacity
edge (s, (1, a)) is 1. Hence the cost of the flow is the sum, over all objects 1 and all descendants (3
of a such that count(restrict(A, 3),v) > 0, of —value(B, ). The desired cost bound now follows from
Facts 2.2 and 2.3. |

4 An approximation algorithm

While the algorithm of Section 3 computes an optimal solution to the hierarchical placement problem,
its run-time complexity is prohibitively high, at least quadratic in the product of the number of nodes
n and the number of objects m. This motivates us to seek a faster approximation algorithm. Two
candidate algorithms are presented in this section. The first algorithm, which we refer to as the greedy
algorithm, uses a natural local improvement heuristic. We show, however, that the greedy algorithm
has an approximation ratio of ©(n). The lower bound proof leads us to a variant of the greedy algorithm
that we refer to as the amortizing algorithm. Section 5 establishes that the amortizing algorithm is a
constant-factor approximation algorithm. Section 7 outlines an efficient distributed implementation of
the amortizing algorithm.

Given any feasible non-concrete placement A, the following simple procedure can be used to obtain
a feasible concrete refinement of A. Note that Copies(A) contains a copy p of the form (¢, ) for some
non-atomic hierarchy a and object ¥. Using Fact 2.1, we conclude that there exists a child 3 of « for
which | Copies(restrict(A, 3))| < size(3). Hence we can obtain a feasible refinement of A by removing
p from Copies(A) and replacing it with the copy (53,%). Repeated application of this argument yields
a concrete refinement of A. (Remark: For any feasible placement A, a minimum-cost feasible concrete
refinement of A can be obtained by solving a suitably defined weighted matching problem.)

The greedy and amortizing placement algorithms described in Sections 4.1 and 4.2, respectively,
each compute a placement A that is feasible but not necessarily concrete. The refinement procedure
of the preceding paragraph may then be applied to obtain a feasible concrete placement B such that
cost(B) < cost(A).

The greedy and amortizing algorithms, though well-defined for arbitrary hierarchies, are only in-
tended to be directly applied to hierarchies that are “A-separated” for some constant A > 1. A hierarchy
U is A-separated iff miss(V') > X - diameter(V') for every descendant V' of U. It is straightforward to
show that any c-approximation algorithm for the A-separated hierarchical placement problem implies
a cA-approximation algorithm for the hierarchical placement problem. (The main idea is to transform
the given hierarchy into a A-separated hierarchy by rounding up all distances to the nearest integral
power of A\.) Thus, for the purposes of obtaining a constant-factor approximation algorithm, we may
assume without loss of generality that the input hierarchy is A-separated for an arbitrary constant
A> 1

4.1 The greedy placement algorithm

For any placement A and any copy p in Copies(A), we define min-benefit(A, p) as the amount by which
cost(A) would increase if p were removed from Copies(A). Given a placement A for which Copies(A) is
nonempty, the greedy elimination rule removes from Copies(A) the copy p minimizing min-benefit(A, p);



Swapping Procedure: Swap(A,p)
e Set Copies(A) to (Copies(A) — {p}) U {(Hierarchy(A), candidate(A))}.

Figure 1: The swapping procedure. The input is a placement A and a copy p in Copies(A).

Greedy Algorithm

¢ Combining. Initialize Hierarchy(A) to a. If o is atomic, initialize Copies(A)
to {(a,9) : ¥ € S}, where S is an arbitrarily chosen subset of ¥ of size size(c).
Otherwise, initialize Copies(A) to Up<;<x Copies(A;), where the A;’s are the place-
ments previously computed at the k children of a.

e Swapping.  While benefit(A, victim(A)) < wvalue(c, candidate(A)), call
Swap (A, victim(A)).

Figure 2: The greedy algorithm. We assume that the children, if any, of a given hierarchy « have
already been processed, and describe the computation associated with a.

this copy is denoted wvictim(A). (Ties may be broken in an arbitrary consistent manner. For example,
we could assign a unique integer ID to each copy, and use these IDs to break ties. Such tie-breaking
conventions will be assumed throughout the remainder of the paper without further comment.)

In the following definitions, let A denote a placement, let ¢ denote an object, let k denote
|Copies(A)|, let Ag = A, let A;+1 denote the placement (Hierarchy(A), Copies(A;) — {victim(4;)}),
0 < i < k, let p denote an (A, )-copy, and let j denote the maximum value of i such that p be-
longs to Copies(A;). We define benefit(A,p) as min-benefit(A;,p); note that benefit(A, victim(A)) =
min-benefit(A, victim(A)) and min-benefit(A,p) < benefit(A,p). (Remark: The remaining defini-
tions in this paragraph are not necessary for understanding the greedy placement algorithm. It
is simply convenient to present them now.) The copy p belongs to the set Primary(A) iff there
is no other (Aj,v¢)-copy. We define Secondary(A) as Copies(A) — Primary(A). For any place-
ment A, we define secondary-victim(A) as the copy p in Secondary(A) minimizing benefit(A,p). If
Secondary(A) is empty, then secondary-victim(A) is undefined and it is convenient to assume that
benefit(A, secondary-victim(A)) = 0.

In order to facilitate the next definition, we assume that Missing(A) is nonempty for any placement
A. This assumption is made without loss of generality since the set of objects ¥ can be augmented
with arbitrarily many dummy objects for which the associated access frequencies are all zero. For any
placement A, we define candidate(A) as the object ¥ in Missing(A) maximizing value(Hierarchy(A), ).

The swapping procedure of Figure 1 is used in all of our approximation algorithms for the hierar-
chical placement problem. Fact 2.1 implies that if the placement passed to the swapping procedure is
feasible, then the updated placement is also feasible.

The greedy algorithm is presented in Figure 2. It is straightforward to prove that the greedy
algorithm terminates, and that the placement A computed by the greedy algorithm is feasible. It
is natural to ask whether the greedy algorithm is a constant-factor approximation algorithm for the
hierarchical placement problem. Below we provide a negative answer to this question by constructing
an n-node hierarchy o for which the placement computed by the greedy algorithm has cost exceeding
the optimal by an Q(n) factor.

We label n nodes from 0 to n — 1 and construct the hierarchy a = oy, 1 as follows. First, we create
a hierarchy a; with two atomic children corresponding to nodes 0 and 1. Then, for ¢ running from 2



to n — 1, we create a hierarchy «; with two children: the hierarchy «; ;1 constructed previously and an
atomic hierarchy containing node ¢. The cache size of each node is 1. We define the distance function
between the nodes in such a way that diameter(a;) equals ni~!, 1 < i < n. The penalty, which is
required to be at least as large as diameter(a), is set to n™ '. We assign nonzero frequencies to n
objects ¥, 0 < i < n. For node 0, frequency(0,1;) = 1/n*, 0 < i < n. For node 1, frequency(1,;) is 1
if 7 is 0, and 0 otherwise. For node j, 2 < j < n, frequency(j, ;) is 0 for all i.

For this example, the set of copies associated with an optimal feasible concrete a-placement A
consists of ({0}, o), ({1},%1), and ({i},%;), 2 < i < n. The cost of A is 2 —1/n since latency(A4,0,¢;)
is n'~1 1 < i < n, and latency(A,1,%) is 1. In contrast, we claim that the cost of the greedy a-
placement is n — 1. (Furthermore, any refinement of this a-placement also has cost n — 1.) It can
be shown by induction that, for each hierarchy a;, 1 < ¢ < n, the set of copies associated with the
greedy o;-placement consists of ({0},40), ({1},%0), and (o, %;-1), 2 < j < i. The cost of the greedy
a-placement B is n — 1 since latency(B,0,1;) is n’ for 1 < i < n. We conclude that the approximation
ratio of the greedy algorithm is Q(n).

We now sketch a proof that the preceding lower bound is tight, that is, the approximation ratio of
the greedy algorithm is ©(n). To establish the O(n) upper bound, we begin by making the following
claim. Let A and B denote two a-placements such that the following conditions hold: A contains k
copies of some object ¥ and no copies of any other object; B contains ¢ copies of the same object
1 and no copies of any other object; £ < k. If by,...,br denotes the sequence of benefits, sorted in
nonincreasing order, associated with the k copies of ¢ in A, then we claim that the cost of the placement
B is at least » ,;<1 b;. It is easy to prove the claim by induction on the structure of the hierarchy a.
Using this claim one can establish the following lemma. Let A denote the placement computed by the
greedy algorithm for some hierarchy «. Then the cost of any a-placement is at least as large as the
sum, over all objects ¢ in Missing(A), of value(a, ). We now use the lemma to complete the proof as
follows. By Fact 2.2, the cost of the greedy a-placement is equal to the sum, over all descendants 8 of
a and all objects @ in Missing(restrict(A, 3)), of value(a, ). Since the number of descendants 3 of «
is at most 2n — 1, it follows from the lemma that the cost of the greedy a-placement is at most 2n — 1
times the cost of the optimal a-placement. (Remark: By a slight refinement of this argument, it can
be shown that the greedy approximation ratio is at most the depth of the hierarchy «.)

In the sections that follow we develop a fast constant-factor approximation algorithm for the hier-
archical placement problem. In doing so, we will make use of a number of basic facts related to the
definitions given earlier in this section. These facts are formally stated below.

Fact 4.1 For any placement A such that Copies(A) is nonempty, and any p in Copies(A), we have
benefit(A, victim(A)) < benefit(A,p). [ |

Fact 4.2 For any placement A and any object ¢ such that there is at least one (A,)-copy, there is a
unique (A,1)-copy p in Primary(A), and this copy p further satisfies benefit( A, p) > value(Hierarchy(A), )
and benefit(A,p) > benefit(A, q) for all (A,v)-copies q. [ |

Fact 4.3 For any a-placement A, the cost of A is equal to the cost of the empty a-placement minus
the sum, over all copies p in Copies(A), of benefit(A,p).

Fact 4.4 (Insert) Let o denote a hierarchy, let A denote an a-placement, let i denote an object
in Missing(A), let p denote the copy (a,v), and let A" denote the placement («, Copies(A) U {p}).
Then p belongs to Primary(A"), benefit(A',p) = value(a, 1), and the following claims hold for all q in
Copies(A): benefit(A,q) = benefit(A’,q); q belongs to Primary(A) (resp., Secondary(A)) iff q belongs
to Primary(A") (resp., Secondary(A')). |

Fact 4.5 (Delete) Let p denote victim(A) (resp., secondary-victim(A)) for some placement A, and let
A" denote the placement (Hierarchy(A), Copies(A) — {p}). Then the following conditions hold for all



q in Copies(A'): benefit(A,q) = benefit(A',q); q belongs to Primary(A) (resp., Secondary(A)) iff q
belongs to Primary(A') (resp., Secondary(A')). [ |

Fact 4.6 (Combine) Let o denote a non-atomic hierarchy with k children o;, 0 < i < k, let A; denote
an a;-placement, 0 < i < k, and let A denote the placement (o, Up<i<r Copies(A;)). For any object 1
such that there is at least one (A,v)-copy, let p denote the unique (A,1)-copy in Primary(A), and let
x denote benefit(A,p) — value(a, ). Then for any i, 0 < i < k, and any (A4;, ¥)-copy q, the following
claim holds: If p = q then benefit(A;, q) = x; otherwise, benefit(A,q) = benefit(A4;,q) < x. [ |

4.2 The amortizing placement algorithm
The lower bound argument given in Section 4.1 leads us to consider a natural variant of the greedy
algorithm that we call the amortizing algorithm. The amortizing algorithm is presented in Figure 3.
The high-level intuition underlying the algorithm is as follows. When deciding which copies to exchange
at a given stage, it can be difficult to decide whether to swap out a secondary copy with high benefit
in favor of a primary copy (of a missing object) with low benefit. In such a case, the greedy algorithm
prefers to keep the secondary copy because it has higher benefit, but as we have seen, this approach
can fail because it waits too long to swap in missing objects. An alternative strategy is to always prefer
primary copies over secondary copies, but it is easy to devise scenarios in which this strategy fails. (Note
that such a strategy can be misled by introducing a large number of objects with access frequencies
tending to zero.) In the amortizing algorithm, we pursue a more balanced strategy: we use the miss cost
incurred at the current level to “justify” the removal of certain secondaries. The underlying intuition
is that since we have already committed to paying the miss cost, we can afford to incur a similar cost
in order to make room for additional primary copies to be swapped in. Unfortunately, this intuition is
far from a complete proof. The main difficulty is that the miss cost we are willing to pay may be much
higher than that which is paid by an optimal placement. The main goal of the rest of the paper is to
prove that the amortizing algorithm is a constant-factor approximation algorithm for the hierarchical
placement problem.

It is straightforward to prove that the amortizing algorithm terminates and that the placement
A computed by the amortizing algorithm is feasible. An efficient distributed implementation of the
amortizing algorithm is given in Section 7. It is particularly noteworthy that the amortized swapping
loop executed at each non-atomic hierarchy is highly parallelizable.

5 Analysis of the amortizing algorithm

In this section we prove our main result, namely, that the cost of the placement constructed by the
amortizing algorithm is within a constant factor of optimal. To facilitate our analysis, we introduce
another placement algorithm that we call the bridging algorithm. The bridging algorithm computes
three feasible placements that we refer to as the amortizing, arbitrary, and bridging placements, re-
spectively. The amortizing placement is identical to that computed by the amortizing algorithm. The
arbitrary placement is simply an arbitrary concrete placement. The bridging placement depends on
the choice of the arbitrary placement, and is designed to ensure that the cost of the bridging placement
can be relatively easily compared to that of the amortizing and arbitrary placements. In particular,
we establish our main theorem via the following two main steps. First, we prove that the cost of the
amortizing placement is at most that of the bridging placement. Second, we prove that the cost of the
bridging placement is within a constant fraction of the cost of the arbitrary placement.

5.1 The bridging algorithm
In this section, we present the bridging algorithm which is used to analyze the amortizing algorithm.
We begin with some definitions.

A set of placements is said to be comparable iff all the placements in the set have the same associated
hierarchy. For any placement A and copy p = (a,%) in Copies(A), we define Region(A,p) as the
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Amortizing Algorithm

e Combining. This step is the same as the combining step of the greedy algorithm,
except that we also initialize an auxiliary potential variable ®. If a is atomic,
then @ is set to 0. Otherwise, ® is set to the sum of the potentials ®;, 0 <1 < k,
computed at the k children of «.

e Local Initialization. Initialize A to the sum over all objects ¢ in Missing(A)
of value(a, ).

e Amortized Swapping. This step is similar to the swapping step of the greedy
algorithm, except that the potential ® is used to reduce the benefits of certain
secondary copies.

1. Let ¢ = benefit(A, secondary-victim(A)), let y = benefit(A, victim(A)), and
let z = value(a, candidate(A)).

2. If x — ® < min(y, z) then call Swap(A, secondary-victim(A)), subtract z from
A, set ® to max(0,® — x), and goto line 1.

3. If y < z, then call Swap(A, victim(A)), add y — z to A, and goto line 1.

e Potential Update. Add A to .

Figure 3: The amortizing algorithm. We assume that the children, if any, of a given hierarchy o have
already been processed, and describe the computation associated with a.

set of nodes u such that latency(A,u,1) would increase if p were removed from Copies(A); it is
straightforward to prove that Region(A,p) is a hierarchy. For any comparable placements A and B,
we define Min-matched(A, B) as the set of all p = («,%) in Copies(A) for which there is a copy
q = (B,%) in Copies(B) such that [ is a descendant of Region(A,p). We define Min-unmatched(A, B)
as Copies(A) — Min-matched(A, B).

In the following definitions, let A and B denote two comparable placements, let i) denote an object,
and let P (resp., @) denote the set of all (A, 1))-copies in Min-matched (A, B) (resp., Min-unmatched(A, B)).
If there are one or more (A,1)-copies, then we define quasivictim(A, B,1)) as follows: If @ is empty
(resp., nonempty), then quasivictim(A, B, 1)) is the copy p in P (resp., @) minimizing min-benefit(A,p).
For the remaining definitions in this paragraph, let & denote the number of (A, )-copies, let Ay = A,
let A;+1 denote the placement (Hierarchy(A), Copies(A;) — {quasivictim(A;, B,¢)}), 0 <i < k, let p
denote a (A, 1)-copy, and let j denote the maximum value of ¢ such that p belongs to Copies(A4;). We
define quasibenefit(A, B,p) as min-benefit(A;,p). The copy p belongs to the set Quasiprimary(A, B)
iff j = k — 1. We define Quasisecondary(A, B) as Copies(A) — Quasiprimary(A, B). The copy p be-
longs to the set Matched(A, B) iff p belongs to Min-matched(A;, B). We define Unmatched(A, B) as
Copies(A) — Matched(A, B). Note that if p belongs to Min-matched(Ay, B) where 0 < £ < j then p
belongs to Min-matched(A;, B) for all ¢ such that £ <i < j.

The following six facts are analogous to Facts 4.1, through 4.6.

Fact 5.1 Let A and B denote two comparable placements, let 1 denote an object such that count(A, ) >
0, and let P (resp., Q) denote the set of all (A,v)-copies in Matched(A, B) (resp., Unmatched(A, B)).
Then if Q is empty (resp., nonempty), quasivictim(A, B,1)) belongs to P (resp., Q) and for all p in P
(resp., Q), quasibenefit(A, B, quasivictim(A, B,v)) < quasibenefit(A, B, p). [ |

Fact 5.2 Let A and B denote two comparable placements, let 1 denote an object such that count(A, ) >
0, and let P (resp., Q) denote the set of all (A,1)-copies in Matched(A, B) (resp., Unmatched(A, B)).
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Then there is a unique (A, )-copy p in Quasiprimary(A, B), and this copy p further satisfies the follow-
ing three conditions: p belongs to P unless P is empty; quasibenefit(A, B,p) > value(Hierarchy(A),v);
quasibenefit(A, B,p) > quasibenefit(A, B, q) for all q in P (resp., Q). [ |

Fact 5.3 For any two comparable a-placements A and B, the cost of A is equal to the cost of the
empty a-placement minus the sum, over all copies p in Copies(A), of quasibenefit(A, B, p).

Fact 5.4 (Insert) Let o denote a hierarchy, let A and B denote two a-placements, let 1 denote an
object in Missing(A), let p denote the copy (a,) and let A’ denote the placement (a, Copies(A) U
{p}). Then p belongs to Quasiprimary(A’, B), quasibenefit(A', B,p) = value(c,p), and the follow-
ing claims hold for all q in Copies(A): quasibenefit(A, B,q) = quasibenefit(A',B,q); q belongs to
Quasiprimary (A, B) (resp., Quasisecondary(A, B), Matched(A, B), Unmatched(A, B)) iff q belongs to
to Quasiprimary(A', B) (resp., Quasisecondary(A', B), Matched(A', B), Unmatched(A', B)). [ |

Fact 5.5 (Delete) Let A and B denote two comparable placements, let 1p denote an object such that
count(A, ) >0, and let A’ denote the placement (Hierarchy(A), Copies(A) — { quasivictim (A, B,)}).
Then the following claims hold for all p in Copies(A'): quasibenefit(A, B,p) = quasibenefit(A’, B, p);
p belongs to Quasiprimary(A, B) (resp., Quasisecondary(A, B), Matched(A, B), Unmatched(A, B)) iff
p belongs to Quasiprimary(A', B) (resp., Quasisecondary(A', B), Matched(A’, B), Unmatched(A', B)).
|

Fact 5.6 (Combine) Let a denote a non-atomic hierarchy with k children o;, 0 < i < k, let A;
and B; denote two oj-placements, 0 < i < k, let A denote the placement (o, Up<i<r Copies(A;)), let
B denote the placement (o, Up<i<r Copies(B;)), let P denote Up<icpMatched(A;, B;), let Q denote
Uo<i<k Unmatched (A;, B;), let ¢ denote an object such that count(A,v) > 0, let p denote the unique
(A, )-copy in Quasiprimary(A, B), and let x denote quasibenefit(A, B,p) — value(a, ). Then the
following claims hold: if P is nonempty then p belongs to P; quasibenefit(A;, B,p) = x; p belongs to
Matched(A, B) (resp., Unmatched(A, B)) iff count(B,) > 0 (resp., count(B,1) = 0). Furthermore,
for any i, 0 < i < k, and any (A;i,)-copy q different from p, the following claims hold: q belongs
to Matched(A,B) (resp., Unmatched(A,B)) iff q belongs to P (resp., Q); quasibenefit(A,B,q) =
quasibenefit(A;, B;, q); if ¢ belongs to Quasisecondary(A;, B;) then q belongs to Quasisecondary(A, B);
if Q is empty or q belongs to Q then quasibenefit(A, B,q) < x. [ |

The next fact is used in Section 6.1.

Fact 5.7 Let A and B denote two comparable placements. Then |Unmatched(A, B)| > Copies(A)| —
| Copies(B)|. [ |

Two placements A and B are defined to be coupled iff they are comparable and count(A4,v) =
count(B, ) for all objects 1. A triple of placements (A, B,C) is defined to be nice iff A, B, and C
are comparable and A and B are coupled.

In the following definition, let (A, B, C') denote a nice triple of placements, let k = | Copies(A4)], let
Ao = A and By = B, let A;y; denote the placement (Hierarchy(A), Copies(A;) — {victim(A;)}), let
Bi+1 denote the placement (Hierarchy(B), Copies(B;) — { quasivictim(B;, C,1)}) where ¢ denotes the
object associated with victim(4;), 0 < i < k, let p denote a copy in Copies(B), and let j denote the
maximum value of i such that p belongs to Copies(B;). (Note that each triple (4;, B;,C), 0 < i < k,
is nice.) We define mate(A, B, C,p) as victim(A;).

The coupled swapping procedure of Figure 4 executes a pair of swaps, one involving each of the
coupled placements in a given nice triple. Lemmas 5.2 and 5.1 below are useful for analyzing the
effect of a call to the coupled swapping procedure for which the parameter p is either victim(A) or
secondary-victim (A).
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Coupled Swapping Procedure: Swaps(A, B, C,p)
e Let 1 be such that p is a (A, v)-copy.
e Call Swap(A,p) and Swap(B, quasivictim(B, C,1)).

Figure 4: The coupled swapping procedure. The input is a nice triple of placements (A, B,C) and a
copy p in Copies(A). Because A and B are coupled, candidate(A) = candidate(B) and hence the same
copy is inserted in both calls to the swapping procedure. It follows that the output triple (A4, B, C) is
nice.

Lemma 5.1 (Insert) Let (A,B,C) denote a nice triple of placements, let ¢ denote an object in
Missing(A), let A" denote the placement (Hierarchy(A), Copies(A) U {(Hierarchy(A),)}), and let B’
denote the placement (Hierarchy(B), Copies(B) U {(Hierarchy(B),v)}). Then (A', B',C) is nice.

Proof: Straightforward from Facts 4.4 and 5.4. |

Lemma 5.2 (Delete) Let p be equal to victim(A) (resp., secondary-victim(A)) for some placement A
belonging to a nice triple (A, B,C), let 1 be such that p is an (A, )-copy, let A" denote the placement
(Hierarchy(A), Copies(A)—{victim(A)}), and let B' denote the placement (Hierarchy(B), Copies(B)—
{quasivictim(A, B,¢)}). Then (A',B',C) is nice.

Proof: Straightforward from Facts 4.5 and 5.5. |

Lemma 5.3 (Combine) Let a denote a non-atomic hierarchy with k children o;, 0 < i < k, let A;,
B;, and C; denote ay-placements such that (A;, B;, C;) is nice, 0 < i < k, and let A, B, and C denote
the placements (o, Up<i< Copies(A;)), (o, Up<i<k Copies(B;)), and (o, Up<i<r Copies(C;)), respectively.
Then (A, B,C) is nice.

Proof: Straightforward from Facts 4.6 and 5.6. |

The bridging algorithm is presented in Figure 5. The program variables A, B, and C correspond
to the amortizing, bridging, and arbitrary placements, respectively.

The following lemma implies that the swaps associated with the bridging placement are well-defined.
Given this lemma, it is straightforward to prove that all of the placements associated with the bridging
algorithm are feasible. Furthermore, it is straightforward to prove that the amortizing placement
A computed by the bridging algorithm is the same as the placement computed by the amortizing
algorithm.

Lemma 5.4 After the combining step of the bridging algorithm, and after each iteration of the amor-
tized swapping loop of the bridging algorithm, (A, B,C) is nice.

Proof: Lemmas 5.2 and 5.1 imply that the claim cannot fail for the first time after an iteration of
the amortized swapping loop. We now argue that the claim cannot fail for the first time after the
combining step associated with some hierarchy a. If « is atomic, then A, B, and C are all equal and
the claim follows. If « is non-atomic then (A;, B;, C;) are nice, 0 < i < k, then Lemma 5.3 implies that
(A, B,C) is nice. The lemma follows since no other part of the code modifies A, B, or C. [ |
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Bridging Algorithm
o Combining. Initialize A and ® as in the amortizing algorithm. If « is atomic,
initialize B and C to A. Otherwise, initialize Hierarchy(B) (resp., Hierarchy(C))
to «, and initialize Copies(B) (resp., Copies(C)) to Up<i<i Copies(B;), where
the B;’s (resp., C;’s) are the bridging (resp., arbitrary) placements previously
computed at the k children of «.

e Local Initialization. Set A to 0 and T to Missing(A).

e Amortized Swapping. This step applies the same sequence of swaps to the
amortizing placement A as in the amortizing algorithm. Each of these swaps is
accompanied by a corresponding swap involving the bridging placement B. (For
a proof that the latter swaps are well-defined, see Lemma 5.4 below.)

1. Let @ = benefit(A, secondary-victim(A)), let y = benefit(A, victim(A)), and
let z = value(a, candidate(A)).

2. If x — ® < min(y, z) then call Swaps(A, B, C, secondary-victim(A)), set ® to
max(0,® — ), remove candidate(A) from T, and goto line 1.

3. If y < 2z, then call Swaps(A,B,C,victim(A)), add y to A, remove
candidate(A) from T, and goto line 1.

e Accounting. For each object ¢ in T, add value(a,v) to A and remove ¢ from
T.

e Potential Update. Add A to .

Figure 5: The bridging algorithm. We introduce this algorithm for the sole purpose of analyzing the
amortizing algorithm. We assume that the children, if any, of a given hierarchy « have already been
processed, and describe the computation associated with a.
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5.2 Cost comparison: amortizing versus bridging
In this section we compare the cost of the amortizing and bridging placements computed by the bridging
algorithm for a given hierarchy.

For any multiset of reals X, we define sum(X) as the sum of the elements of X. For any multiset of
reals X, and any integer ¢ such that 0 < i < |X|, we define Big(X,1) (resp., Little(X, 7)) as the multiset
consisting of the ¢ largest (resp., smallest) reals in X. For any two multisets of reals X and Y such that
|X| = |Y], we write X <Y to mean that the ith largest element of X is less than or equal to the ith
largest element of Y, 1 < i < |X|. A triple (X,Y, Z) is defined to be good iff the following conditions
hold: (i) X, Y, and Z are finite multisets of reals, (ii) |X| + |Y| = |Z|, (iii) X > Little(Z,|X|), (iv)
Y < Big(Z,|Y]), and (v) sum(X) + sum(Y) < sum(Z).

Fact 5.8 (Insert) For any real z, the triples ({z},{},{z}) and ({},{z}, {z}) are good. [ |

Fact 5.9 (Delete) Let (X,Y,Z) be good and assume that Z' = Big(Z,|Z| —1). If X is empty, then let
X'=X andY' = Big(Y,|Y| — 1). Otherwise, let X' = Big(X,|X|—1) and Y' =Y. In either case,
(X", Y',Z") is good. [ ]

Fact 5.10 (Combine: Merge) Let (X;,Y;, Z;) be good, 1 < i < k, and let X = Uj<i<3X;, ¥ =
Ur<i<kYi, and Z = Ui<i<xZ;. Then (X,Y,Z) is good. Furthermore, if Y is empty and x is the
mazimum element of X, then (X — {z},{x}, Z) is good. [ |

Fact 5.11 (Combine: Adjust) Let (X,Y,Z) be good and let w be a nonnegative real. Assume that z
is a mazimum element of Z and let Z' = (Z — {z}) U{w + z}. If Y is nonempty, then let X' = X
and Y' = (Y — {y}) U{w + y} where y is a mazimum element of Y. Otherwise, let Y' =Y and
X' = (X —{z})U{w+ z} where x is a mazimum element of X. In either case, (X', Y' Z') is good. M

Lemma 5.5 Let A, B, and C denote the corresponding program wvariables after the combining step
of the bridging algorithm, or after some iteration of the amortized swapping loop of the bridging
algorithm. Let X, Y, and Z denote the multisets {quasibenefit(B,C,p) : p € Unmatched(B,C)},
{quasibenefit(B,C,p) : p € Matched(B,C)}, and {benefit(A,p) : p € Copies(A)}, respectively. Then
(X,Y,Z) is good.

Proof: After the combining step, there are two cases to consider. If « is atomic, then A = B = C,
Unmatched (B, C) is empty, Matched(B,C) = Copies(A), and benefit(A,p) = quasibenefit(B, C,p) for
all p in Copies(A); the claim follows. If « is non-atomic, the claim follows by Facts 4.6, 5.6, 5.10,
and 5.11. (Remark: Fact 5.11 takes care of the increase in benefit/quasibenefit associated with the
primary/quasiprimary copy of each object.)

It remains to consider the effect of the pair of swapping operations (one applied to A, the other to
B) occurring in some iteration of the amortized swapping loop of the bridging algorithm. This pair of
swaps can be viewed as a pair of deletions followed by a pair of insertions. Facts 4.5, 5.5, and 5.9 imply
that the claim holds after the pair of deletions. Facts 4.4, 5.4, and 5.8 imply that the claim holds after
the pair of insertions. |

Lemma 5.6 For any hierarchy «, let A (resp., B) denote the amortizing (resp., bridging) placement
computed by the bridging algorithm. Then cost(A) < cost(B).

Proof:  From Lemma 5.5 and condition (v) in the definition of a good triple, it follows that

D pe Copies(B) quasibenefit(B,C,p) is at most > e Copies(A) benefit(A,p). The claim now follows by
Facts 4.3 and 5.3. ]
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5.3 Cost comparison: bridging versus arbitrary
In this section we compare the cost of the bridging and arbitrary placements computed by the bridging
algorithm for a given hierarchy. The following lemma is useful for our analysis.

Lemma 5.7 Let A, B, and C denote the corresponding program wvariables after the combining step
of the bridging algorithm, or after some iteration of the amortized swapping loop of the bridging al-
gorithm. Let q belong to Copies(B), let p = mate(A,B,C,q), let x = benefit(A,p), and let y =
quasibenefit(B,C,q). If q belongs to Matched(B,C) (resp., Unmatched(B,C)) then © > y (resp.,

z<y).
Proof: Follows from Lemma 5.5 and conditions (iii) and (iv) in the definition of a good triple. W

We now state our main technical lemma. The proof of this lemma is given in Section 6.

Lemma 5.8 Let B (resp., C') denote the bridging (resp., arbitrary) placement computed by the bridging
algorithm for a given A-separated hierarchy. Then cost(B) < (1 + 22;) - cost(C). [ |

Given that the arbitrary placement is potentially an optimal placement, we conclude that the cost
of the bridging placement is within a constant factor of optimal.

5.4 The main theorem
Using Lemmas 5.6 and 5.8, we obtain the following result.

Lemma 5.9 For any \-separated hierarchy, the cost of the placement computed by the amortizing
algorithm is at most (1 + )\3—3‘1) times optimal. |

Recall that while the placement A computed by the amortizing algorithm is not necessarily concrete,
A can easily be refined to a concrete placement B such that cost(B) < cost(A), as discussed at the
beginning of Section 4. Lemma 5.9 assumes that the given hierarchy is A-separated as defined in
Section 4. If this is not the case, we first transform the given hierarchy into a A-separated hierarchy as
indicated in Section 4, introducing an extra factor of A into the approximation bound.

Theorem 5.1 For any hierarchy o and for any constant X > 1, the cost of the placement computed by
the amortizing algorithm is at most \ - (1 + )\3—3‘1) times optimal. |

The above approximation ratio is less than 13.93 for the optimal choice of A = 1 ++/3/2 ~ 1.866.

6 Proof of the main technical lemma

In this section we prove Lemma 5.8 which compares the cost of the bridging and the arbitrary place-
ments computed by the bridging algorithm. Throughout this section, we let A, B, and C denote
the program variables of the bridging algorithm corresponding to the amortizing, bridging, and arbi-
trary placements. Note that by Lemma 5.4, the triple (A, B, C) is nice and therefore Hierarchy(A) =
Hierarchy(B) = Hierarchy(C). We let o denote this common hierarchy, and furthermore if « is not
atomic we let oy, 0 < ¢ < k, denote the children of a. For conciseness, the above notational conventions
are assumed throughout this section without further repetition.

To facilitate the comparison of the bridging placement B with the arbitrary placement C, we
introduce and maintain another comparable placement D that is closely related to C.

The rest of this section is organized as follows. First, in Section 6.1 we introduce the notions of
“emulation” and “domination” to describe the relationship that we maintain between the placements
B, C, and D. In Section 6.2 we list the variables used to specify the state of the computation. In
Section 6.3 we list a number of invariants that are claimed to hold at particular points in the execution of
the bridging algorithm, and prove that Lemma 5.8 follows from these invariants. Finally, in Sections 6.4
through 6.9 we examine how the state is affected by each step of the algorithm, and prove that the
claimed invariants are indeed maintained.
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Pruning Procedure: Prune(D, B, p)
e Let 1) be such that p is a (B, )-copy.

e Update Copies(D) by removing all copies of the form (3,1), where 3 is a de-
scendant of Region(B,p).

Figure 6: The pruning procedure. The input is two comparable placements D and B, and a copy
p in Copies(B) such that p = quasivictim(B, D,v) belongs to Matched(B,D). This procedure is
used to modify the placement D whenever the placement B is modified by deleting the copy p from
Copies(B). (Remark: By Fact 6.1, if D is a (B, C)-emulator, then Matched(B,D) = Matched(B,C)
and quasivictim(B, D, ) = quasiwictim(B, C,).)

6.1 Emulation and domination

A placement D is said to be a (B, C)-emulator iff the following two conditions hold for all objects 1
and all descendants 3 of a: (1) if count(restrict(C, 3),v) = 0 then count(restrict(D, 3),1) = 0, and (ii)
if count(restrict(C, 3),¢) > 0 and count(restrict(B, 3),1) > 0 then count(restrict(D, 3),¢) > 0. Note
that C itself is a (B, C)-emulator. Furthermore, if D is a (B, C)-emulator, count(restrict(C, 3),1) > 0,
and count(restrict(B, 3),1) = 0, then there is no requirement on count(restrict(D, (3),).

Fact 6.1 If D is a (B, C)-emulator, then Matched(B,C) = Matched(B,D) and Unmatched(B,C) =
Unmatched(B, D). [ |

The next fact follows from the previous one and Fact 5.7.
Fact 6.2 If D is a (B, C)-emulator, then |Unmatched(B,C)| > |Copties(B)| — | Copies(D)|.

The placement B is said to dominate a comparable placement D iff the following condition holds for
all objects ¥ and for all descendants 3 of a: If count(restrict(B, 3),1) = 0 then count(restrict(D, 3),v) =
0. The following fact is immediate.

Fact 6.3 If B dominates D, then cost(B) < cost(D). [ |

We now introduce a slightly weakened version of domination. Given a set S of objects, the placement
B issaid to “S-dominate” a comparable placement D iff the following two conditions hold for all objects
¢ and for all descendants 3 of a: if ¢ does not belong to S and count(restrict(B, 3),1) = 0, then
count(restrict(D, 3),1) = 0; if ¢ belongs to S then count(B,) = 0, count(D,) = 1, and the unique
copy of ¢ in Copies(D) is (a,%). Note that the placement B dominates D iff B (-dominates D.
The following three facts will be used to prove that certain emulation and domination properties are
preserved during the execution of the bridging algorithm.

Fact 6.4 (Insert) Let S be an arbitrary set of objects such that B S-dominates D and D is a (B,C)-
emulator, let ¢ be any object in Missing(B) such that either » € S or count(C,v) = 0, let p denote
the copy (a,v), and let B' denote the placement (a, Copies(B) U{p}). Then D is a (B', C)-emulator,
and if ¢ S (resp., Y € S) then B’ S-dominates (resp., (S — {¢})-dominates) D. [ |

Fact 6.5 (Delete) Let S be an arbitrary set of objects such that B S-dominates D and D is a (B,C)-
emulator. For any object 1) such that there is at least one (B, 1)-copy, let p denote quasivictim(B, C, )
and let B' denote (a, Copies(B) — {p}). If p is in Unmatched(B,C), then let D' = D; otherwise, let
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D' denote the new value of D after a call to Prune(D,B,p). Then D' is a (B',C)-emulator and B’
S-dominates D'. Furthermore, if p belongs to Matched(B,C), then |Copies(D')| < |Copies(D)| — 1
and cost(D') < cost(D) + quasibenefit(B, C,p). [ |

Fact 6.6 (Combine) Assume that « is non-atomic and let B;, C;, and D; denote three a;-placements,
0 < i < k, such that D; is a (B;,C;)-emulator and B; dominates D;. Assume that B, C, and D
are equal to the placements (o, Up<i<r Copies(B;)), (o, Up<i< Copies(C;)), and (o, Up<i<k, Copies(D;)),
respectively. Further, let D' denote the placement (o, Copies(D) U P) where P is the set of copies
{(e,¥) : count(D, ) =0 A count(C,) > 0}. Then, D' is a (B, C)-emulator and B S-dominates D',
where S = {¢ : count(B,¥) =0 A count(D' 1) > 0}. [ |

6.2 State variables

In this section we specify the variables that are used to capture the state of the computation. In
addition to the program variables that appear in the pseudocode of Section 5.1, we also define a
number of auxiliary variables. Each auxiliary variable is classified as either independent or dependent.
We modify the values of the independent variables explicitly, in effect augmenting the pseudocode. The
value of each dependent auxiliary variable is determined by the values of the program variables and
the independent auxiliary variables. Below is a list of all state variables.

1. Program variables: Placements A, B, and C; potential ®; change in potential A; the set of
objects T.

2. Independent auxiliary variables: (i) the placement D; (ii) the nonnegative reals deficit,
surplus, newdeficit, and newsurplus; (iii) the nonnegative integers numdead and numlift; (iv) a
color, either red or blue, for each copy in Copies(B).

3. Dependent auxiliary variables: (i) numred, the number of copies that are colored red; (ii)
threshold, defined as min(max(0,z — ®),y) where z is benefit(A, secondary-victim(A)) and y
is benefit(A, victim(A)); (iii) the two sets of objects Ty = T N {Y : count(C,y) = 0} and
Ty =71 — Ty; (iv) the six sets of copies P,Q, R, P, Q, and R.

The last six sets partition the set Copies(B) as follows: P (resp., P) is the set of all blue copies
in Matched(B,C) that belong to Quasiprimary(B,C) (resp., Quasisecondary(B,C)); Q (resp.,
Q) is the set of all blue copies in Unmatched(B,C) that belong to Quasiprimary(B,C) (resp.,
Quasisecondary(B,C)); R (resp., R) is the set of all red copies in Unmatched (B, C) that belong
to Quasiprimary(B,C) (resp., Quasisecondary(B,C)). It is worth remarking that our coloring
mechanism guarantees that none of the copies in Matched (B, C) are colored red, and hence the
above six sets alone partition the set Copies(B).

6.3 The invariant properties
In this section, we list certain properties that are claimed to hold at various points in the execution of
the bridging algorithm.

Invariant 6.1 The following properties hold after the combining step of the bridging algorithm: (i) B
S-dominates D, where S = {1 : count(B,v) =0 A count(C,v) > 0}; (it) D is a (B, C)-emulator; (iii)
|Copies(D)| < |Copies(B)| — numdead; (iv) numred < numdead; (v) (1 + 522 )cost(C) > cost(D) —
deficit + surplus+ 3, .5, 3 quasibenefit(B, C,r)+3 . 2 quasibenefit (B, C, )+ e 3- value(a, 1),
where T = {1 : count(B,¥) =0 A count(C,¢) = 0}; (vi) deficit < min(®, el quasibenefit(B,C,r));
(vii) surplus > ® — deficit.
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Invariant 6.2 The following properties hold after the local initialization step, after each iteration of the
amortized swapping loop, and after each iteration of the accounting loop of the bridging algorithm: (i) B
Y ar-dominates D; (1) D is a (B, C)-emulator; (iii) | Copies(D)| < |Copies(B)|— (numdead + numlift);
(1v) numred < numdead; (v) (1+ )\3—3‘1)00315(0) > cost(D) — deficit + surplus — newdeficit + newsurplus +
Yreduo 3 quasibenefit(B,C,r) + 3 52 - quasibenefit(B,C,r) + X ycx,, 3 - value(a, ¥); (vi) deficit <
min(®, 3>, 5 quasibenefit(B,C,r)); (vii) surplus > ® — deficit; (viii) numlift = [{¢ : count(B,¢) =
0 A count(D,) =0 A count(C,v) > 0}|; (iz) newdeficit < A; (x) newdeficit < numlift - threshold;
(xi) newsurplus > A — newdeficit.

Invariant 6.3 The following properties hold after the potential update step of the bridging algorithm:
(i) B dominates D; (ii) D is a (B, C)-emulator; (i) |Copies(D)| < |Copies(B)|—(numdead +numlift);
(1v) numred < numdead; (v) (1+ )\33‘1)00315(0) > cost(D) — deficit + surplus — newdeficit + newsurplus +
ZTEQUQ 3 - quasibenefit(B,C,r); (vi) deficit < min(® — A, el quasibenefit(B,C,r)); (vit) surplus >
® — A — deficit; (viit) numlift = |{¢ : count(D,¢) =0 A count(C,¢) > 0}|; (iz) newdeficit < A; (z)
newdeficit < numlift - w, where w is such that each r € Q satisfies quasibenefit(B,C,r) > w and each
r € Q satisfies quasibenefit(B,C,r) — deficit > w; (xi) newsurplus > A — newdeficit.

The above invariants are established in Sections 6.4 through 6.9. Our main technical lemma follows
from Invariant 6.3.

Proof of Lemma 5.8: Property (i) of Invariant 6.3 along with Fact 6.3 implies that cost(B) <
cost(D). Moreover the fact that cost(D) < (1+ )\3—_)‘1)cost(0) follows from property (v) of Invariant 6.3
along with the following two inequalities: (a) deficit < 3.5 quasibenefit(B, C,r) and (b) newdeficit <
ZrEQUQ quasibenefit(B, C,r).

Inequality (a) above follows directly from property (vi). For inequality (b), we use Fact 6.2 to deduce
that |Unmatched (B, C)| is at least | Copies(B)|—|Copies(D)|, which in turn is at least numred +numlift
by properties (iii) and (iv). Therefore, |Q U Q|, the number of blue copies in Unmatched(B,C) is at
least numlift. Moreover property (x) implies that for each r € Q U Q, quasibenefit(B, C,r) > w, and
hence ZTEQUQ quasibenefit(B, C,r) > numlift - w > newdeficit. |

6.4 Local initialization step

In this section, we assume that Invariant 6.1 holds before the local initialization step, and prove that
Invariant 6.2 holds after the local initialization step.

e State change. Initialize T to Missing(B), and set A = newdeficit = newsurplus = numlift = 0.
e Dependent variables. Ty =Y N{¢ : count(C,v) =0} and Ty = T N { : count(C, 1) > 0}.

e Analysis. All properties of Invariant 6.2 either follow from the corresponding properties of Invari-
ant 6.1 or are trivially satisfied. Note that Y/ is equal to the set S in property (i) of Invariant 6.1
and Yy is equal to the set T' in property (v) of Invariant 6.1.

Thus Invariant 6.2 holds after the local initialization step.

6.5 Amortized swapping loop

In this section, we assume that Invariant 6.2 holds before an iteration of the amortized swapping loop,
and prove that it holds after the iteration. We treat each swap as an insertion followed by a deletion.
To facilitate this decomposition, we introduce a slightly stronger version of property (iii) which we call
property (iii)": |Copies(D)| < |Copies(B)| — 1 — (numdead + numlift). We first show in Section 6.5.1
that Invariant 6.2 and property (iii)’ hold after the insertion. Then in Section 6.5.2 we show that
Invariant 6.2 holds after the deletion.
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6.5.1 Insertion

In this section, we assume that Invariant 6.2 holds before an insertion, and prove that Invariant 6.2 and
property (iii)’ hold after the insertion. Let ¢ denote the incoming object candidate(B). For notational
convenience, we use unprimed (resp., primed) symbols to denote the values of variables before (resp.,
after) the insertion. If the value of a variable does not change then we use the unprimed symbol
throughout.

e State change. Let p denote the copy (a,1). Set Copies(A') = Copies(A) U {p}, Copies(B') =
Copies(B) U {p}, and T =T — {¢}. Set the color of p to blue.

e Dependent variables. If count(C,¢) > 0 then T, = Ty — {3} and P’ = PU{p}. Otherwise
Ty =Ty —{¢} and Q" = QU {p}.

o Inequalities. By Fact 5.4, quasibenefit(B’, C,p) = value(a, ) and for all copies g in Copies(B),
quasibenefit(B', C, q) = quasibenefit(B,C,q).

e Analysis. Properties (i) and (ii) follow from Fact 6.4. Property (iii)’ follows since |Copies(B)| =
| Copies(B')| — 1. Properties (iv) and (vii) through (xi) are not affected. Properties (v) and (vi)
follow from the above inequalities.

Thus Invariant 6.2 and property (iii)’ hold after the insertion.

6.5.2 Deletion

In this section, we assume that Invariant 6.2 and property (iii)’ hold before a deletion, and prove
that Invariant 6.2 holds after the deletion. Throughout this section, let ¢ denote the copy deleted
from A, let ¢ denote the object associated with ¢, and let p denote quasivictim(B, C,1). Note that
q is either secondary-victim(A) or victim(A) and q = mate(A, B,C,p). The copy p either belongs
to Quasiprimary(B,C) or Quasisecondary(B,C), and accordingly ¢ either belongs to Primary(A) or
Secondary(A). The deletion is handled differently in each case. Each case is further split into three
different subcases depending on the color of p and whether p is in Matched(B, C) or not.

For notational convenience, we use unprimed (resp., primed) symbols to denote the values of
variables before (resp., after) the deletion. If the value of a variable does not change then we use
the unprimed symbol throughout. In all cases below we use the result of Fact 5.5 that if B’ =
(c, Copies(B)—{p}) then for every copy r in Copies(B'), quasibenefit(B',C,r) = quasibenefit(B, C,r).

Case 1: p € Quasisecondary(B,C) = RUQUP

e Remark. In this case A, newdeficit, newsurplus, and numlift do not change. Hence properties (ix),
(x), and (xi) are not affected. However the placements B and D, along with the variables @,
deficit, surplus, and numdead may change. This affects properties (i) through (viii) and these
have to be restored. Of these, properties (i) and (ii) follow from Fact 6.5 while properties (iii),
(iv), and (viii) are easy to verify. The crucial properties to establish are (iv), (v), (vi), and (vii).

e State change. Set ®' = max (0, ® — benefit(4,q)).

o Analysis. Note that the RHS of (vii), as well as the first term in the RHS of (vi), is reduced by
min(®, benefit(A4,q)).

e Case 1.1: pe R
— State change. Set Copies(A') = Copies(A) — {q} and Copies(B') = Copies(B) — {p}.

— Dependent variables. R' = R — {p}, and numred’ = numred — 1.
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— Analysis. Properties (i), (ii), (iii), and (viii) hold and are not affected further.
— Case 1.1.1: deficit =0

* State change. None.
x Analysis. Properties (iv) and (v) are unaffected, while properties (vi) and (vii) are

directly satisfied. Hence all properties hold.

— Case 1.1.2: deficit > 0

* Remark. By property (vi) of Invariant 6.2, Q # 0.
x State change. Pick an arbitrary copy r from @ and color it red. Set deficit’ =

max (0, deficit — quasibenefit(B,C,r)) and surplus’ = surplus + quasibenefit(B,C,r).
Dependent variables. Q' = Q — {r}, R' = RU {r}, and numred’' = numred.
Inequalities. By Lemma 5.7, quasibenefit(B,C,r) > benefit(A, mate(A,B,C,r)) >
benefit(A, secondary-victim(A)) = benefit(A, q).

Analysis. For (iv), note that the LHS and the RHS are both unchanged. For (v),
note that the net change in the RHS is —deficit' + surplus’ + deficit — surplus — 3 -
quasibenefit(B, C,r), which is nonpositive. For (vi), note that the RHS is always non-
negative, and furthermore, if deficit’ is greater than zero then the decrease in the LHS
is quasibenefit(B,C,r)) while the decrease in the RHS is no more than this. For (vii),
note that the LHS increases by quasibenefit(B, C,r), which is an upper bound on the
cumulative increase in the RHS.

e Case 1.2: pc Q

State change. Set Copies(A') = Copies(A) — {q} and Copies(B') = Copies(B) — {p}.
Dependent variables. Q' = Q — {p}.

Analysis. Properties (i), (i), (iii), and (viii) hold and are not affected further. Property (iv)
also holds since the LHS and the RHS are both unchanged.

Case 1.2.1: deficit =0

x State change. None.
* Analysis. For (v) and (vii), note that the LHS is unchanged and the RHS only decreases.

For (vi), note that the LHS is zero and the RHS remains nonnegative.

Case 1.2.2: deficit >0
x State change. Set deficit’ = max(0, deficit — quasibenefit(B,C,p)) and surplus’ =

surplus + quasibenefit(B, C, p).

x Inequalities. By Lemma 5.7, quasibenefit(B, C,p) > benefit(4,q).
* Analysis. For (v), note that the net change in the RHS is —deficit’ + surplus’ + deficit —

surplus — 3 - quasibenefit(B, C,p), which is nonpositive. For (vi), note that the RHS is
always nonnegative, and furthermore, if deficit’ is greater than zero then the decrease
in the LHS is quasibenefit(B, C,p)) while the decrease in the RHS is no more than this.
For (vii), note that the LHS increases by quasibenefit(B, C,p), which is an upper bound
on the cumulative increase in the RHS.

e Case 1.3: pc P

— State change. Set Copies(A') = Copies(A) — {q} and Copies(B’) = Copies(B) — {p}. Set

D' to the new value of D after a call to Prune(D, B, p) and set numdead’ = numdead + 1.

— Dependent variables. P' = P — {p}.
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— Analysis. Properties (i), (ii), and (iii) follow from Fact 6.5 and are not affected further. Note
that the RHS of (iv) increases by one while the RHS of (v) increases by cost(D') — cost(D),
which is at most quasibenefit(B, C,p).

— Case 1.3.1: deficit =0
x Case 1.3.1.1: surplus > quasibenefit(B, C,p)

*

- State change. Set surplus’ = surplus — quasibenefit(B, C,p).

- Inequalities. By Lemma 5.7, quasibenefit(B, C,p) < benefit(A,q).

- Analysis. For (iv), note that the LHS does not change. For (v), note that the RHS
now reduces by quasibenefit(B,C,p) and hence the cumulative change is nonpos-
itive. For (vi), note that the LHS is zero. For (vii), note that the LHS reduces
by quasibenefit(B,C,p) while the RHS either becomes zero or reduces by at least
benefit(A, q).

Case 1.3.1.2: surplus < quasibenefit(B, C,p)

- Remark. By Fact 6.2 and property (ii), |Unmatched(B’', C)| is at least | Copies(B')|—
| Copies(D')|, which is at least numdead’ > numred+1, using properties (iii) and (iv).
Hence there exists at least one blue copy in | Unmatched (B, C)| and therefore |Q U
Q=1L

- State change. Pick an arbitrary copy r € Q U Q and color it red. Set surplus’ = 0.

. Dependent variables. If r is in Quasiprimary(B,C), then Q' = Q — {r} and R =
RU{r}. Otherwise Q' = Q—{r} and R' = RU{r}. Moreover numred’ = numred +1.

- Inequalities. By Lemma 5.7, quasibenefit(B,C,r) > benefit(A, mate(A, B,C,r)) >
benefit(A, victim(A)) > benefit(A, secondary-victim(A)) — ® = benefit(A,q) — & >
quasibenefit(B,C,p) — ®. So quasibenefit(B,C,r) + ® > quasibenefit(B, C,p), and
hence by property (vii), quasibenefit(B, C, r)+surplus > quasibenefit(B, C,p). More-
over, ® = 0, because by property (vii) and the preconditions for case 1.3.1.2,
® < surplus < quasibenefit(B,C,p) < benefit(4A,q).

- Analysis. For (iv), note that the LHS and the RHS both increase by one. For (v),
note that the RHS further reduces by at least quasibenefit(B, C, r)+ surplus which is
at least quasibenefit(B,C,p) by the above inequality; it follows that the net change
in the RHS of (v) is nonpositive. For (vi), note that the LHS is zero. For (vii), note
that the LHS and the RHS are both zero.

— Case 1.3.2: deficit >0

*

*

*

*

Remark. By property (vi), Q # 0.

State change. Pick an arbitrary copy r from @ and color it red. Set deficit' =
max (0, deficit — quasibenefit(B,C,r)) and surplus’ = surplus + quasibenefit(B,C,r).
Dependent variables. Q' = Q — {r}, R' = RU {r}, and numred’' = numred + 1.
Inequalities. By Lemma 5.7, quasibenefit(B,C,r) > benefit(A, mate(A,B,C,r)) >
benefit(A, secondary-victim(A)) = benefit(A, q) > quasibenefit(B,C,p).

Analysis. For (iv), note that the LHS and the RHS both increase by one. For (v),
note that the new change in the RHS is —deficit’ + surplus’ + deficit — surplus — 3 -
quasibenefit(B,C,r), which is at most —quasibenefit(B,C,p); it follows that the net
change in the RHS is nonpositive. For (vi), note that the RHS is always nonnega-
tive, and furthermore, if deficit’ is greater than zero then the decrease in the LHS is
quasibenefit(B, C,r)) while the decrease in the RHS is no more than this. For (vii),
note that the LHS increases by quasibenefit(B, C,r), which is an upper bound on the
cumulative increase in the RHS.
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Case 2: p € Quasiprimary(B,C) = RUQUP

e Remark. In this case, ®, deficit, surplus, and numdead do not change and numred can only
decrease. Hence properties (iv), (vi), and (vii) are not affected at all. However the placements B
and D, along with the variables A, newdeficit, newsurplus, and numlift may change. Hence the
remaining properties may change and have to be restored. Of these, (i) and (ii) will again follow
from Fact 6.5 while (iii) and (viii) are easy to verify. The crucial properties to establish are (v),
(ix), (x), and (xi).

e State change. Set A" = A + benefit(A, q).

e Analysis. Note that the RHS of (ix) and (xi) increases by benefit(A, q).

e Case 2.1: p€ R

— State change. Set Copies(A') = Copies(A) — {q} and Copies(B’) = Copies(B) — {p}. Set
newsurplus’ = newsurplus + quasibenefit(B, C, p).

— Dependent variables. R' = R — {p} and numred' = numred — 1.

— Inequalities. By Lemma 5.7, quasibenefit(B,C,p) > benefit(4, q).

— Analysis. Properties (i), (ii), (iii), (viii), and (ix) are easy to verify. For (v), note that the
change in the RHS is newsurplus’ —newsurplus —2- quasibenefit(B, C, p), which is nonpositive.

For (x), note that there is no change in the LHS while the RHS can only increase. For (xi),
note that the LHS increases by quasibenefit(B, C, p) while the RHS increases by benefit(A, q).

e Case 2.2: pc Q
— State change. Set Copies(A') = Copies(A) — {¢q} and Copies(B') = Copies(B) — {p}. Set
newsurplus’ = newsurplus + quasibenefit(B, C, p).
— Dependent variables. Q' = Q — {p}.
— Inequalities. By Lemma 5.7, quasibenefit(B,C,p) > benefit(4, q).
— Analysis. Properties (i), (ii), (iil), (viii), and (ix) are easy to verify. For (v), note that the
change in the RHS is newsurplus’ —newsurplus —3- quasibenefit(B, C, p), which is nonpositive.

For (x), note that there is no change in LHS while the RHS can only increase. For (xi), note
that the LHS increases by quasibenefit(B, C,p) while the RHS increases by benefit(A, q).

e Case 2.3: pc P

— State change. Set Copies(A') = Copies(A) — {q} and Copies(B') = Copies(B) — {p}. Set
D' to the new value of D after a call to Prune(D,B,p). Set numlift’ = numlift + 1 and
newdeficit' = newdeficit + benefit(4, q).

— Dependent variables. P' = P — {p}.

— Inequalities. By Lemma 5.7, quasibenefit(B, C,p) < benefit(A, q) and benefit(A, q) = threshold.
By Fact 6.5, cost(D') — cost(D) < quasibenefit(B, C,p).

— Analysis. Properties (i), (ii), (iii), and (viii) hold. For (v), note that the change in RHS
is cost(D') — cost(D) — newdeficit’ + newdeficit, which is at most quasibenefit(B,C,p) —
benefit(A,q) and hence is nonpositive. For (ix), note that the LHS and the RHS both
change by the same amount. For (x), note that the LHS increases by benefit(A, ¢) while the
RHS increases by threshold. For (xi), note that the net change in the RHS is zero while the
LHS is unchanged.

Thus Invariant 6.2 holds after an iteration of the amortized swapping loop.
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6.6

Accounting loop

In this section, we assume that Invariant 6.2 holds before an iteration of the accounting loop, and
prove that it holds after the iteration. Let ¥ denote the object that is removed from the set T in this
iteration. For notational convenience, we use unprimed (resp., primed) symbols to denote the values
of variables before (resp., after) the iteration. If the value of a variable does not change then we use
the unprimed symbol throughout.

Remark. Since T = Ty U T py, ¥ belongs to either Yy or Y. The placement B and the variables
@, deficit, surplus, numdead, and numred do not change here. Hence properties (iv), (vi),
and (vii) are unaffected. However the placement D and the variables A, newdeficit, newsurplus,
and numlift may change. This affects the other properties and they have to be restored.

State change. Set Y =T — {¢} and A’ = A + value(c, ).
Analysis. Note that the RHS of (ix) and (xi) increase by value(a, ).
Case 1: ¢ € Ty

— Dependent variables. Tp; = Ty — {4}

— State change. Set newsurplus’ = newsurplus + value(a, ).

— Analysis. Properties (i), (ii), (iii), (viii), (ix), (x), and (xii) are easy to verify. For (v),
note that the change in the RHS is newsurplus’ — newsurplus — 3 - value(a, 1)), which is
nonpositive. For (xi), note that the LHS and the RHS each increase by the same amount.

Case 2: v € Ty

— Remark. We have count(B,) = 0 and, by property (i), count(D,v) = 1 where the corre-
sponding copy is (a, ). Furthermore, the definition of T, implies that count(C, ) > 0.

— Dependent variables. Th, = Tpr — 1.

— State change. Set Copies(D') = Copies(D) — {p}, where p = (a, ). Set newdeficit’ =
newdeficit + value(a, ) and numlift' = numlift + 1.

— Inequalities. We have cost(D') — cost(D) = value(a, 1)), and moreover since the object
was not swapped in, we have value(a, 1)) < threshold.
!

— Analysis. The modification of D preserves property (i) with respect to Y',, while prop-
erty (ii) is unaffected. Properties (iii) and (viii) hold due to the increase in numlift. For (v),
note that the change in the RHS is cost(D') — cost(D) — newdeficit' + newdeficit, which is
zero. For (ix), note that the LHS and the RHS both increase by the same amount. For (x),
note that the LHS increases by value(a, 1)) while the RHS increases by threshold. For (xi),
note that the net change in the RHS is zero while the LHS is unchanged.

Thus Invariant 6.2 holds after an iteration of the accounting loop.

6.7

Potential update step

In this section, we assume that Invariant 6.2 holds before the potential update step, and prove that
Invariant 6.3 holds after the step. We use unprimed (resp., primed) symbols to denote the values of
variables before (resp., after) the potential update step. If the value of a variable does not change then
we use the unprimed symbol throughout.

Remark. Note that T = Yy = Ty = 0.
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e Analysis. Property (i) of Invariant 6.3 follows from property (i) of Invariant 6.2 since Yy =
0. Properties (ii), (iii), (iv), (viii), (ix), and (xi) are same as the corresponding properties of
Invariant 6.2 and hold without change. Property (v) of Invariant 6.3 follows by dropping the last
two summation terms of property (v) in Invariant 6.2.

e State change. Set w = threshold.

e Analysis. Property (x) of Invariant 6.3 follows from property (x) of Invariant 6.2. By Lemma 5.7,
each r in Q satisfies quasibenefit(B, C,r) > benefit(A, mate(A, B, C,r)) > benefit(A, victim(A)) >
threshold = w. The same lemma implies that each copy r in Q satisfies quasibenefit(B,C,r)—& >
benefit(A, mate(A, B,C,r))—® > benefit(A, secondary-victim(A)) —® > threshold = w, and then
by property (vi) of Invariant 6.2, it follows that quasibenefit(B,C,r) — deficit > w.

e State change. Set ®' = @ + A.

e Analysis. Properties (vi) and (vii) follow from the corresponding properties of Invariant 6.2.

Thus Invariant 6.3 holds after the potential update step.

6.8 Combining step at an atomic hierarchy

In this section, we establish the base case of our proof by showing that Invariant 6.1 holds after the
combining step at an atomic hierarchy o.

e State change. Initialize A, B, C', and D to the same arbitrary a-placement and set ® = deficit =
surplus = numdead = 0. Set the color of all the copies in B to blue.

~ ~ -

e Dependent variables. Initialize the six dependent sets R, Q, P, R, Q, P using B, C, and the
colors of the copies in B. Set numred = 0.

o Inequalities. We have cost(C) = cost(D) > 3 ycq value(a, ), where T = {3 : count(B,9) =
count(C, 1) = 0}. Moreover, Q = Q = R = 0.

e Analysis. Properties (i) and (ii) follow directly from the definitions of domination and emulation,
while property (iii) follows directly. Properties (iv), (vi), and (vii) hold trivially. Property (v)
follows from the above inequalities.

Thus Invariant 6.1 holds after the combining step at an atomic hierarchy.

6.9 Combining step at a non-atomic hierarchy

In this section, we assume that « is a non-atomic hierarchy and that Invariant 6.3 holds after the
potential update step at each child ¢y, and prove that Invariant 6.1 holds after the combining step at
a. (Recall that a;, 0 < i < k, denote the children of a.) We use the subscript ¢ on the state variables
to denote the variable computed at the child «;.

1. State change. Initialize A = (o, Up<i< Copies(4;)), B = (a,Up<i<k Copies(B;)), and C =
(e, Up<i<k Copies(C;)). The color of the copies in Copies(B) does not change during this union
(i.e., each copy p in Copies(B;) retains the same color when it enters B.) Initialize numdead =
> o<i<k numdead;.

2. Dependent variables. Variable numred = ) q; p numred;.

3. State change. Initialize D = (a,Up<i<kCopies(D;)) and then for each object ¢ such that
count(C, ) > 0 and count(D,) =0, add a copy (¢, u) to Copies(D).

25



4. Analysis. Fact 6.6 guarantees that properties (i) and (ii) of Invariant 6.1 hold after this modi-
fication. Property (iii) is established in Lemma 6.2 below. Property (iv) follows by using prop-
erty (iv) of Invariant 6.3, and summing over all children of c. It remains to establish proper-
ties (v), (vi), and (vii) by choosing appropriate values for deficit and surplus. Before choosing
these values, we first write down expressions to relate the cost(C) to Y ;. cost(C;), and the

cost(D) to 3oy, cost(D;). Let T denote the set {t : count(C,) = 0}, or equivalently the set
{% : count(D, 1) = 0}. Clearly,

cost(C) = Z cost(C;) + Z value(a, ©), (1)

0<i<k wet
cost(D) = Z cost(D;) + Z value(a, ©). (2)
0<i<k wed

Moreover note that this set 7" is precisely the union of Ty, and the set of objects corresponding
to copies in R and (). This in conjunction with Lemma 6.1 below yields

A—1
Z value(a, 1) > Z value(a, ) + Z — quasibenefit(B, C,r). (3)
YeT YeTy reQUR

5. Dependent variables. Initialize the six dependent sets R, Q, P, R, Q, P using B, C, and the
colors on the copies in B.

6. Remark. By Fact 5.6, Q = U0§i<in + U0§i<in where Q; = Q, — Q

7. State change. For each i, 0 < i < k, set deficit; = deficit; + newdeficit; — (|Qi — Q4]) - w; and
surplus; = surplus; + newsurplus; + (|Q; — Qi) - w;.

8. Analysis. Using the above values of deficit; and surplus, we establish in Lemma 6.3 that

(1 + i) cost(C;) > cost(D;) — deficit; + surplus; +

A—1
Z 3 - quasibenefit(B;, C;, 1), (4)
reQ;uQ;
deficit; < min(®;, Z quasibenefit(B;, C;,r)), (5)
reQ;UQ;
surplus; > ®; — deficit;. (6)

9. State change. Initialize ®, deficit, and surplus to Y g<;j, i, o<icy deficit;, and Yo,y surplus;,
respectively.

10. Analysis. Summing Equations (4), (5), and (6) over all children «;, 0 < i < k, we obtain

A
Z (1 + 3_> cost(C;) > Z cost(D;) — deficit + surplus +

0<i<k A—1 0<i<k
Z 3 - quasibenefit(B,C,r), (7)
TEQ
deficit < min(®, Z quasibenefit(B, C,r)), (8)
TEQ
surplus > @ — deficit. (9)
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(Here we used the result of Fact 5.6 that Q= U0§i<in+U0§i<sz‘7 and that for each r € Q;UQ;,
quasibenefit(B;, C;,r) = quasibenefit(B, C,r).) Properties (vi) and (vii) are essentially the latter
two equations. Finally, we establish property (v) using Equations (1), (2), (3), and (7) as follows:

(1 + i) cost(C)

N\ —
= <1+i> 3" cost(C +Z <1+—> lue (e, 1)
= 1 _, cos value(a,
0<i<k
3\
> _
> Z cost(D;) — deficit + surplus + Z 3 - quasibenefit(B,C,r) + Z ( T 1) value(a, 1)
0<i<k reqQ el
3\
> cost(D) — deficit + surplus + Z 3 - quasibenefit(B,C,r) + Z ( ) value(a, )
reqQ pel
> cost(D) — deficit + surplus + Z 3 - quasibenefit(B,C,r) + Z 3 - value(a, V).
reQUQUR YETY

(The above four equations follow by using Equations (1), (7), (2), and (3), respectively.)

11. Conclusion. Thus Invariant 6.1 holds after the combining step.

Lemma 6.1 Let o denote a A-separated hierarchy for some A > 1, let A and B denote two -
placements, and let p denote an (A, 1)-copy in Copies(A). Then quasibenefit(A, B,p) < ﬁ-value(a, ).

Proof: Note that

value(a, ) = frequency(a, ) - (miss(a) — diameter(a))
1
> frequency(a, ) - miss(c) - (1 — X) .
Thus
quasibenefit(A, B,p) < frequency(a,)) - miss(ca)
A

< .

< 3T value(a, 1),
as required. |

Lemma 6.2 Suppose that properties (1ii) and (viii) of Invariant 6.3 hold for each child o; of o, and
that the placements B, C, and D and the variable numdead are initialized as indicated in the preceding
state change descriptions. Then property (iii) of Invariant 6.1 holds after the initialization.

Proof: Note that | Copies(B)| = Yg<;x | Copies(B;)| and |Copies(D)| = Yo<icy | Copies(D;)| + |T|
where T = {4 : count(D,y) =0 A cgunt(C, ¥) > 0}. Using property (iii) of Invariant 6.3 to upper
bound |Copies(D;)|, it follows that | Copies(D)| < > 2g<; 1 (| Copies(B;)| — numdead; — numlift,) + |T'| =
| Copies(B)|—numdead+(|T|— o<, numlift;). Moreover, 17| < So<icr numlift;, since T C Up<icr T,
where T; = {4 : count(D;, 1)) =0 A count(Cy,v) > 0}, and by_property (viii) of Invariant 6.3,
|T;| = numlift;. Thus property (iii) holds. [ |
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Lemma 6.3 Suppose that Invariant 6.3 holds and let Q be an arbitrary subset of Q Let © and y be
two new variables that are set to deficit+ newdeficit —|Q — Q|- w and surplus + newsurplus +|Q — Q|- w,
respectively. Then the following three equations hold:

<1+)\3—_)‘1> cost(C) > cost(D)—xz+y+ Y 3-quasibenefit(B,C,r), (10)
reQu@
rz < min(9P, Z quasibenefit(B, C,r)), (11)
reQuUQ
y > ¢ —u. (12)

Proof: Let j denote |Q| — |Q|. Property (x) of Invariant 6.3 implies that each r € Q satisfies
quasibenefit(B, C,r) > w. Therefore

—x + y < —deficit + surplus — newdeficit + newsurplus + Z 3 - quasibenefit(B,C,r).
reQ-Q

Equation (10) now follows from property (v) of Invariant 6.3. Equation (12) follows directly from
properties (vii) and (x) of Invariant 6.3, since y = surplus + newsurplus + j - w > (® — A — deficit) +
(A — newdeficit) +j - w =& — .

It remains to establish Equation (11). The first part (i.e., x < @), follows directly from prop-
erties (vi) and (viii), which imply that deficit < ® — A and newdeficit < A, respectively. For
the second part, we first establish that |Q + Q| > (numlift — j). By Fact 6.2, |Unmatched(B,C)|
is at least |Copies(B)| — |Copies(D)| which, by properties (iii) and (v) of Invariant 6.3, is at least
numred + numlift. Hence the number of blue copies in Unmatched(B,C) (ie., |Q| + |Q|) is at least
numlift. Tt follows that |Q| + |Q| > numlift — j. Now by property (x) of Invariant 6.3, each r € Q has
quasibenefit(B, C,r) — deficit > w. Moreover, each r € Q satisfies quasibenefit(B,C,r) > w. Therefore,

Z quasibenefit(B,C,r) > deficit + (numlift — j) - w > deficit + newdeficit — j - w = x. (13)
reQuUQ

(For the second inequality, we use property (ix) of Invariant 6.3.) This establishes Equation (11), thus
proving the lemma. |

7 An eflicient distributed implementation

The main strength of the amortizing algorithm is that, in contrast with the flow-based algorithm
of Section 3, it admits a fast distributed implementation. In this section, we briefly sketch such an
implementation. The techniques employed are not particularly novel. The main point we wish to
emphasize is that while the pseudocode of Section 4.2 may appear to be inherently sequential, in fact
the algorithm is highly parallelizable.

The amortizing algorithm determines a placement for the given hierarchy « in a bottom-up man-
ner. During the computation, the current placement, along with associated control information, is
distributed across the nodes of the network. We begin by describing how this information is organized.

For each object 1 and each descendant 8 of o, we designate a node in 3 as the manager for ¢ in
B, denoted manager(8,1). For load balancing purposes, this manager is chosen at random from f3,
where the probability of choosing a particular node u is size(u)/size(3). For each descendant (3 of «,
we choose a node uniformly at random from 3 and designate it as the leader of 3, denoted leader(3).

The current a-placement A is distributed across the nodes in « in the following natural manner. For
every object ¢, the manager(a, 1) stores frequency(a, ) along with a bit indicating whether ¢ belongs
to Missing(A). If ¢ belongs to Missing(A), then manager(a, ) also stores value(a,1)). Otherwise,
for each copy p = (B,v) in Copies(A), the manager([3,1) maintains the benefit(A,p) along with a bit
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indicating whether p belongs to Primary(A). The variables ® and A are maintained by the leader of
a. We note that a suitably random selection of managers and leaders ensures that the a-placement A
is distributed across the nodes in « in a balanced manner with high probability.

As mentioned earlier, the amortizing algorithm pseudocode of Section 4.2 may appear to be inher-
ently sequential. In particular, in the amortized swapping loop, the placement is modified one swap
at a time, and the number of swaps could be large. Moreover, the desired swaps, which satisfy some
“global” objective, are determined from a distributed placement. Fortunately, as we discuss below, all
of the steps in the algorithm can be expressed in terms of instances of a simple prefix sum operation
for any given node ordering. (We stress that for the prefix sum operations used in our implementation,
the particular ordering of the nodes is not important. In fact, this ordering is allowed to change from
one invocation of the operation to another. Consequently, the prefix sum operation can be efficiently
implemented on any spanning tree.)

Let us now consider the process of computing a a-placement A at a non-atomic hierarchy o with
k children oy, 0 < ¢ < k. Let A; denote the a;-placement computed by the amortizing algorithm.
The amortizing algorithm proceeds in four steps: the combining step, the local initialization step, the
amortized swapping loop, and the potential update step.

In the combining step, A is set to (a,Up<i<rA;). This requires no movement of copies in our
distributed storage; however there are three computations that are implicit in the description of the
algorithm in Section 4.2 that need to be performed. These are the calculation of benefit(A,p) for
each copy p in Primary(A), the calculation of value(a, ) for each object 1 in Missing(A), and the
adjustment of the bit for each copy p in Primary(A;) — Primary(A). Fact 4.6 describes how these
benefits and values change during the combining step. The computations for each object ¥ are per-
formed by manager(c, v), manager(a;, ) for 0 < i < k, and by manager(53, 1) for each copy (3, ) in
U0§i<kPrimary(Ai). The computation of the potential ® is a simple summation involving the leader
of o and the leaders of the «;’s.

The local initialization step of the amortizing algorithm involves summation over a subset of nodes
in the hierarchy «. This can be implemented efficiently using prefix sums in a straightforward manner.

We now turn to the amortized swapping loop. We implement this loop as an amortization phase
followed by a swapping phase. (For the rest of this discussion, we say that a copy p is a secondary
iff it belongs to Secondary(A).) Let X denote the list of secondaries in A, sorted according to their
benefits in nonincreasing order. Let @ denote the value of the potential after the combining step. In the
amortization phase, we determine the largest prefix X’ of X such that the sum of the benefits of copies
in X' is at most ®. (The copies in X’ are guaranteed to be swapped out in the amortized swapping
loop.) Thus, the amortization phase corresponds to a selection problem. Similarly, the swapping phase
corresponds to the following abstract selection problem. Let X and Y denote two lists of numbers
sorted in nondecreasing and nonincreasing orders, respectively. (The lists X and Y correspond to the
benefits of the copies in the placement, and the values of the objects missing from the placement,
respectively.) Our goal is to determine a largest prefix X’ of X and a prefix Y’ of Y such that | X’|
equals |Y'| and no element of X' is greater than any element of Y.

While the amortization and swapping phases are straightforward to perform sequentially, in the
distributed setting the lists are partitioned across the nodes and thus are not available in sorted order.
We would like to avoid explicitly sorting these lists, since sorting would require costly large-scale
movement of list elements across the network. Moreover, we would like to perform the amortization
and swapping steps “in place”, that is, without moving the list elements. We now briefly describe
an efficient distributed recursive implementation of the amortization phase; a similar approach can be
used for the swapping phase. If |X| < 1 the problem is trivial. Otherwise, we first select a splitter
among the secondaries in X. Second, we determine the set Z of those secondaries in X with benefit
at most that of the splitter. Third, we sum up the benefits of the secondaries in Z. Finally, in a
manner that depends on whether the sum exceeds the given potential ®, we define a new instance
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of the problem with fewer elements and recurse. Standard probabilistic arguments can be used to
establish a logarithmic bound on the depth of recursion. Moreover, each level of the recursion can be
implemented using simple distributed operations such as broadcast and sum. We remark that a more
efficient implementation can be obtained by using a large number of splitters to partition the list of
secondaries.

The potential update step is straightforward to implement efficiently. In the computation of the
placement for a hierarchy «, the combining step requires a constant number of messages per primary
stored in the hierarchy and for each leader. The amortized swapping loop and the local initialization
step each require O(log(size(a))) prefix sum operations. The top-down pass that is used to convert
the placement to a concrete placement can be easily implemented within the same complexity bounds
as for the bottom-up amortizing algorithm.

References
[1] T. E. Anderson, M. D. Dahlin, J. N. Neefe, D. A. Patterson, D. S. Rosselli, and R. Y. Wang.

Serverless network file systems. In Proceedings of the 15th Symposium on Operating Systems
Principles, pages 109-126, 1995.

[2] B. Awerbuch, Y. Bartal, and A. Fiat. Competitive distributed file allocation. In Proceedings of
the 25th Annual ACM Symposium on Theory of Computing, pages 164-173, May 1993.

[3] B. Awerbuch, Y. Bartal, and A. Fiat. Distributed paging for general networks. Journal of Algo-
rithms, 28:67-104, 1998.

[4] B. Awerbuch and D. Peleg. Online tracking of mobile users. Journal of the ACM, 37:1021-1058,
1995.

[56] Y. Bartal. On approximating arbitrary metrics by tree metrics. In Proceedings of the 37th Annual
IEEE Symposium on Foundations of Computer Science, pages 184-193, October 1996.

[6] Y. Bartal. Probabilistic approximation of metric spaces and its algorithmic applications. In
Proceedings of the 30th Annual ACM Symposium on Theory of Computing, pages 161-168, May
1998.

[7] Y. Bartal, A. Fiat, and Y. Rabani. Competitive algorithms for distributed data management.
Journal of Computer and Systems Sciences, 51:341-358, 1995.

[8] M. A. Blaze. Caching in large-scale distributed file systems. Technical Report TR-397-92, Depart-
ment of Computer Science, Princeton University, January 1993. PhD Thesis.

9] C. M. Bowman, P. B. Danzig, D. R. Hardy, U. Manber, and M. F. Schwartz. The Harvest
information discovery and access system. In Proceedings of the 2nd International World Wide
Web Conference, pages 763-771, October 1994.

[10] P. Cao and S. Irani. Cost-aware WWW proxy caching algorithms. In Proceedings of the 1997
USENIX Symposium on Internet Technology and Systems, pages 193-206, December 1997.

[11] A. Chankhunthod, P. Danzig, C. Neerdaels, M. Schwartz, and K. Worrell. A hierarchical Internet
object cache. In Proceedings of the USENIX 1996 Technical Conference, pages 22-26, January
1996.

[12] M. Charikar, C. Chekuri, A. Goel, and S. Guha. Rounding via trees: Deterministic approxima-
tion algorithms for group Steiner trees and k-median. In Proceedings of the 30th Annual ACM
Symposium on Theory of Computing, pages 106-113, May 1998.

30



[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

23]

[24]

[25]

[26]

[27]

G. Cornuéjols, G. L. Nemhauser, and L. A. Wolsey. The uncapacitated facility location problem.
In P. Mirchandani and R. Francis, editors, Discrete Location Theory, pages 119-171. Wiley, New
York, NY, 1990.

M. D. Dahlin, R. Y. Wang, T. E. Anderson, and D. A. Patterson. Cooperative caching: Using
remote client memory to improve file system performance. In Proceedings of the First Symposium
on Operating Systems Design and Implementation, pages 267-280, November 1994.

D. Dowdy and D. Foster. Comparative models of the file assignment problem. ACM Computing
Surveys, 14:287-313, 1982.

L. Fan, P. Cao, J. Almeida, and A. Z. Broder. Summary cache: A scalable wide-area Web
cache sharing protocol. In Proceedings of the 1998 ACM SIGCOMM Conference on Applications,
Technologies, Architectures, and Protocols for Computer Communication, pages 254-265, August
1998.

J. S. Gwertzman and M. Seltzer. The case for geographical push-caching. In Proceedings of the
5th Workshop on Hot Topics in Operating Systems, pages 51-b7, May 1995.

A. Heddaya and S. Mirdad. WebWave: Globally load balanced fully distributed caching of hot pub-
lished documents. In Proceedings of the 17th International Conference on Distributed Computing
Systems, pages 160-168, May 1997.

S. Irani. Page replacement with multi-size pages and applications to Web caching. In Proceedings
of the 29th Annual ACM Symposium on Theory of Computing, pages 701-710, May 1997.

D. Karger, E. Lehman, F. T. Leighton, M. Levine, D. Lewin, and R. Panigrahy. Consistent hashing
and random trees: Distributed caching protocols for relieving hot spots on the World Wide Web.
In Proceedings of the 29th Annual ACM Symposium on Theory of Computing, pages 654—663, May
1997.

M. Korupolu and M. Dahlin. Coordinated placement and replacement for large-scale distributed
caches. In Proceedings of the IEEE Workshop on Internet Applications, pages 62-71, July 1999.

A. Leff, J. L. Wolf, and P. S. Yu. Replication algorithms in a remote caching architecture. JEEE
Transactions on Parallel and Distributed Systems, 4:1185-1204, 1993.

C. Lund, N. Reingold, J. Westbrook, and D. Yan. On-line distributed data management. In J. van
Leeuwen, editor, Proceedings of the 2nd Annual European Symposium on Algorithms, volume 855
of Lecture Notes in Computer Science, pages 202-214. Springer-Verlag, 1994.

B. M. Maggs, F. Meyer auf der Heide, B. Vocking, and M. Westermann. Exploiting locality
for data management in systems of limited bandwidth. In Proceedings of the 38th Annual IEEE
Symposium on Foundations of Computer Science, pages 284-293, October 1997.

C. G. Plaxton, R. Rajaraman, and A. W. Richa. Accessing nearby copies of replicated objects in
a distributed environment. Theory of Computing Systems, 32:241-280, 1999.

M. Rabinovich, I. Rabinovich, R. Rajaraman, and A. Aggarwal. A dynamic object replication
and migration protocol for an Internet hosting service. In Proceedings of the IEEE International
Conference on Distributed Computing Systems, pages 101-113, May 1999.

D. B. Shmoys, E. Tardos, and K. Aardal. Approximation algorithms for facility location problems.
In Proceedings of the 29th Annual ACM Symposium on Theory of Computing, pages 265-274, May
1997.

31



[28]

[29]

[30]

[31]

[32]

[33]

R. Tewari, M. Dahlin, H. M. Vin, and J. S. Kay. Design considerations for distributed caching
on the Internet. In Proceedings of the 19th International Conference on Distributed Computing
Systems, pages 273-284, May 1999.

M. van Steen, F. J. Hauck, and A. S. Tanenbaum. A model for worldwide tracking of distributed
objects. In Proceedings of the 1996 Conference on Telecommunications Information Networking
Architecture (TINA 96), pages 203-212, September 1996.

D. Wessels. Squid Internet object cache. Available at URL http://squid.nlanr.net/Squid, January
1998.

D. Wessels and K. Claffy. Internet Cache Protocol (ICP), version 2, request for comments rfc-2187.
Available at URL http://ds.internic.net/rfc/rfc2186.txt, September 1997.

O. Wolfson, S. Jajodia, and Y. Huang. An adaptive data replication algorithm. ACM Transactions
on Database Systems, 22:255-314, 1997.

N. E. Young. On-line file caching. In Proceedings of the 9th Annual ACM-SIAM Symposium on
Discrete Algorithms, pages 82-86, January 1998.

32



