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tConsider a hierar
hi
al network in whi
h ea
h node periodi
ally issues a request for an obje
tdrawn from a �xed set of unit-size obje
ts. Suppose further that the following 
onditions are satis�ed:the frequen
y with whi
h ea
h node a

esses ea
h obje
t is known; ea
h node has a 
a
he of known
apa
ity; any 
a
he 
an be a

essed by any node; any request is satis�ed by the 
losest node witha 
opy of the desired obje
t, at a 
ost proportional to the distan
e between the a

essing nodeand the 
losest 
opy. In su
h an environment, it is desirable to �ll the available 
a
he spa
e with
opies of obje
ts in su
h a way that the average a

ess 
ost is minimized. We provide both exa
tand approximate polynomial-time algorithms for this hierar
hi
al pla
ement problem. Our exa
talgorithm is based on a redu
tion to min-
ost 
ow, and does not appear to be pra
ti
al for largeproblem sizes. Thus we are motivated to sear
h for a faster approximation algorithm. Our mainresult is a simple 
onstant-fa
tor approximation algorithm for the hierar
hi
al pla
ement problemthat admits an eÆ
ient distributed implementation.1 Introdu
tionCooperative 
a
hing [14℄ is an emerging paradigm in the design of s
alable high-performan
e distributedsystems. In traditional 
a
hing s
hemes, the primary fun
tion of a 
a
he is to a
t as a fast intermediatestorage between a 
lient or a 
olle
tion of 
lients and the servers. In su
h s
hemes, ea
h request issatis�ed by the 
a
he asso
iated with the requesting node or by the server of the requested obje
t.Moreover, the storage de
isions made by one 
a
he are independent of those made by other 
a
hes inthe system. The de�ning 
hara
teristi
 of 
ooperative 
a
hing s
hemes, on the other hand, is that the
a
hes 
ooperate in serving one another's requests as well as in storage de
isions.A number of re
ent studies have dis
ussed the bene�ts of 
ooperative 
a
hing for distributed �lesystems and large-s
ale information systems su
h as digital libraries and the World Wide Web. Thesestudies in
lude analyti
al results (e.g., [3, 22℄), simulation experiments (e.g., [8, 16, 17, 28℄) and pro-totypes and produ
ts (e.g., Harvest [9, 11℄, xFS [1℄). The widely deployed and studied Harvest 
a
hesystem [9℄, employs a hierar
hi
al arrangement of obje
t 
a
hes to improve a

ess performan
e. Inthe Squid 
a
he system [30℄, whi
h is a su

essor to Harvest, the 
a
hes 
ooperate via the InternetCa
he Proto
ol [31℄ to serve one another's misses and thus redu
e overall traÆ
. Re
ent experimentalwork of [28℄ also indi
ates the potential for signi�
ant performan
e gains by 
ooperative 
a
hing onthe Internet. In the 
ontext of lo
al-area networks, the xFS system [1℄ utilizes 
ooperative 
a
hes toobtain a serverless �le system. While the appropriate level of 
ooperation depends on the kind and�A preliminary version of this paper appears in Pro
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reteAlgorithms, 1999, pages 586{595.yDepartment of Computer S
ien
e, University of Texas, Austin, TX 78712. Supported by NSF grant CCR{9504145.Email: fmadhukar,plaxtong�
s.utexas.edu.zCollege of Computer S
ien
e, Northeastern University, Boston, MA 02115. Part of this work was done while theauthor was at DIMACS, whi
h is an NSF S
ien
e and Te
hnology Center, funded under 
ontra
t STC{91{19999 andpartially supported by the New Jersey Commission on S
ien
e and Te
hnology. Email: rraj�

s.neu.edu.1



s
ale of the appli
ation, it is evident from these studies that 
ooperative 
a
hing will play a signi�
antrole in future information systems.This paper studies an important 
omponent of 
ooperative 
a
hing s
hemes, whi
h we refer to aspla
ement. A 
ooperative 
a
hing s
heme 
an be loosely divided into three 
omponents: pla
ement,sear
h, and 
onsisten
y. The pla
ement 
omponent determines where to pla
e the 
opies of the obje
ts.The sear
h 
omponent dire
ts ea
h request to an appropriate 
opy of the requested obje
t. Finally,the 
onsisten
y 
omponent maintains the desired level of 
onsisten
y among the various 
opies of anobje
t.In [3℄, Awerbu
h, Bartal, and Fiat study a general on-line 
ooperative 
a
hing problem on arbitrarynetworks and present a polylog(n)-
ompetitive algorithm, where n is the number of nodes in thenetwork. Their result is impressive in that it addresses the sear
h, pla
ement, and 
onsisten
y problemsin a general adversarial setting. However, the time and spa
e bounds established may ex
eed optimalby a polylogarithmi
 fa
tor. In this paper, we study a spe
ial 
ase of 
ooperative 
a
hing with theaim of developing simple algorithms that obtain near-optimal (e.g., 
onstant-fa
tor approximation)solutions. We fo
us our attention on the pla
ement 
omponent of 
ooperative 
a
hing and developpla
ement algorithms for a 
lass of networks that we refer to as hierar
hi
al networks. Our de�nitionof hierar
hi
al networks, whi
h is based on the ultrametri
 
ost model used in [20℄, is motivated by thefa
t that modern wide-area networks tend to admit natural hierar
hi
al de
ompositions. In fa
t, theexisten
e of a hierar
hi
al de
omposition is impli
it in several previous studies (e.g., see [11, 29, 30℄).1.1 The problemWe address the following pla
ement problem for hierar
hi
al networks. Let 	 denote a set of unit-sizeobje
ts and let size(u) denote the 
a
he size at node u. We are given for ea
h node u and ea
h obje
t the a

ess frequen
y for  at u. Further assume that for any node u and obje
t  , the 
ost ofsatisfying an a

ess request for  originating at u is given by the 
ommuni
ation 
ost between u andv, where v is the 
losest node (with respe
t to the 
ommuni
ation 
ost fun
tion) that holds a 
opy of . The obje
tive of a pla
ement algorithm is to determine a pla
ement of obje
t 
opies in the node
a
hes subje
t to spa
e 
onstraints su
h that the average a

ess 
ost over all nodes and all obje
ts isminimized. See Se
tion 2 for a formal statement of the problem.Our problem formulation is most suitable for appli
ations in whi
h writes are infrequent and 
hangesin the a

ess pattern over short time intervals are moderate. Infrequent writes imply a low overheadin maintaining 
onsisten
y among the 
opies of an obje
t, allowing us to separate the 
on
erns of
onsisten
y and pla
ement. Moderate 
hanges in the a

ess pattern 
an be addressed by invoking thepla
ement algorithm at regular intervals. Finally, we 
onsider our assumption that ea
h request issatis�ed by the nearest 
opy of the requested obje
t. This assumption is justi�ed by the existen
e ofalgorithms for the sear
h 
omponent that dire
t ea
h request to a nearby, if not the nearest, 
opy ofthe requested obje
t [4, 16, 25, 29℄. Another useful idea in this regard is the summary 
a
he proto
olof [16℄ in whi
h ea
h 
a
he maintains a synopsis of the 
ontents of nearby 
a
hes so that it 
an redire
ta request to a nearby 
opy (if one exists) in the event of a 
a
he miss.As indi
ated above, we restri
t our attention to unit-sized obje
ts. It is worth noting that thereare appli
ations in whi
h it is reasonable to redu
e the 
ase of arbitrary-sized obje
ts to the unit-sized 
ase by splitting ea
h obje
t of size k into k unit-size fragments, and then pla
ing the fragmentsindependently. In other appli
ations, su
h a redu
tion may not be appropriate; thus it remains aninteresting open problem to extend our results to the 
ase of arbitrary-sized indivisible obje
ts.1.2 Our resultsWe �rst present a polynomial-time exa
t algorithm for the hierar
hi
al pla
ement problem based ona redu
tion to minimum-
ost 
ow. Our redu
tion, des
ribed in Se
tion 3, generalizes the approa
h ofLe�, Wolf, and Yu [22℄, who solved the problem for the spe
ial 
ase of a single-level hierar
hy. Whilethe algorithm of Se
tion 3 runs in polynomial time, the degree of the polynomial is suÆ
iently high to2



make the algorithm largely impra
ti
al.Thus, we fo
us on the goal of developing a fast, simple 
onstant-fa
tor approximation algorithm forthe hierar
hi
al pla
ement problem that admits an eÆ
ient distributed implementation. In Se
tion 4.1we 
onsider a natural bottom-up greedy algorithm, but �nd that this algorithm has approximationratio �(n). The lower bound proof leads us to a natural re�nement of the greedy algorithm, theamortizing algorithm, des
ribed in Se
tion 4.2. Like the greedy algorithm, the amortizing algorithmstarts with a pla
ement in whi
h the 
a
he of ea
h node holds the lo
ally optimal set of obje
ts. Thealgorithm then iteratively improves the pla
ement in a bottom-up manner as the nodes 
ooperate andshare information about the a

ess frequen
ies a
ross larger regions of the network.Our main result is that the amortizing algorithm a
hieves a 
onstant-fa
tor approximation for thehierar
hi
al pla
ement problem. (The 
onstant fa
tor is less than 14.) An important 
hara
teristi
 ofthe amortizing algorithm is that it 
an be implemented eÆ
iently, even in a distributed setting. Wedis
uss su
h an implementation towards the end of the paper.It is worth noting that the re
ent results on the approximation of general metri
s by tree metri
s [5,6, 12℄ imply that any hierar
hi
al pla
ement algorithm 
an be used to obtain a pla
ement algorithmfor general metri
s giving up an extra O(log n log log n) fa
tor in the approximation.1.3 Related workDowdy and Foster [15℄ initiated the study of 
ooperative 
a
hing in the 
ontext of allo
ating �les in adistributed network [15℄. A sequen
e of results [2, 7, 23℄ obtained improved algorithms for 
entralizedas well as distributed �le allo
ation. These results, however, did not 
onsider 
a
he 
apa
ities atthe individual nodes. As mentioned earlier in this se
tion, Awerbu
h, Bartal, and Fiat [3℄ provide apolylog(n)-
ompetitive on-line algorithm for the general pla
ement problem under the assumption thatthe size of ea
h 
a
he in the on-line algorithm is polylog(n) times more than the size in the optimalalgorithm. In 
ontrast, we obtain an optimal 
entralized and a 
onstant-fa
tor approximate distributedalgorithm for the o�-line version of the problem on hierar
hi
al networks without any blowup in the
a
he sizes.In [22℄, Le�, Wolf, and Yu study the pla
ement problem for a network of workstations, whi
h theymodel as a single-level hierar
hy. In addition to providing an optimal 
entralized algorithm for this
ase, they give heuristi
s for a distributed solution. These heuristi
s, however, make use of parti
ularproperties of a single-level hierar
hy that are not appli
able in an arbitrary hierar
hi
al setting.By adopting a 
ommuni
ation model based on a �xed 
ost fun
tion, we endeavor to separate the
on
erns of 
a
hing (a higher-level operation) from routing (a lower-level operation). In 
ontrast, somere
ent papers have in
orporated routing issues into 
a
hing by either 
ombining the two problems ormaking use of available routing information. For example, the algorithms developed in [18, 26, 32℄tend to 
a
he 
opies of an obje
t in nodes that either lie on or are 
lose to the path along whi
h theobje
t is being transferred. Routing information is also used in the pla
ement algorithms developedin [24℄, where the primary aim is to minimize the network 
ongestion that may o

ur when requests andtheir responses are routed within the network. We also remark that 
ost models have been adopted inunipro
essor 
a
hing systems to model s
enarios in whi
h the 
osts in
urred in the retrieval of obje
tson 
a
he misses may vary from one obje
t to another [10, 19, 33℄.With regard to unipro
essor 
a
hing s
hemes, re
ent resear
h has addressed the 
hallenge of de-signing 
a
he repla
ement poli
ies that take into a

ount the di�ering 
osts in
urred in the retrieval ofobje
ts on 
a
he misses. This has led to studies formulating generalizations of the traditional unipro-
essor 
a
hing problems that a

ount for the di�ering 
osts [10, 19, 33℄.In a re
ent experimental study [21℄, Korupolu and Dahlin evaluate the pra
ti
al performan
e ofseveral pla
ement and repla
ement algorithms for 
ooperative 
a
hing. Their simulation experimentsdemonstrate that, in pra
ti
e, both our greedy pla
ement algorithm as well as our amortizing pla
ementalgorithm are in fa
t very 
lose to the optimal. 3



We remark that the pla
ement problem 
an be viewed as an instan
e of fa
ility lo
ation withmultiple types of fa
ilities and 
onstraints on the number of fa
ilities that 
an be lo
ated at a point.To the best of our knowledge, this multiple fa
ilities lo
ation problem has not been studied previously.For a survey of results related to fa
ility lo
ation, see [13, 27℄.1.4 Organization of the paperThe remainder of the paper is organized as follows. Se
tion 2 gives a formal de�nition of the hierar
hi
alpla
ement problem. Se
tion 3 give a polynomial-time exa
t algorithm for the hierar
hi
al pla
ementproblem based on a redu
tion to minimum-
ost 
ow. Se
tion 4 presents the greedy and amortizingalgorithms. Se
tion 5 presents the analysis of the amortizing algorithm. Se
tion 6 
ontains the proof ofthe main te
hni
al lemma. Se
tion 7 presents an eÆ
ient distributed implementation of the amortizingalgorithm.The te
hni
al se
tions of this paper involve a large number of de�nitions and lemmas. In severalpla
es we provide a series of de�nitions along with a number of basi
 \fa
ts" that follow from thesede�nitions. These fa
ts en
apsulate 
ertain properties of the de�nitions that are used in subsequentparts of the paper. In order to keep the presentation fo
used on the more interesting and 
hallengingaspe
ts of our work, we have omitted the proofs of these fa
ts. The reader should not have any diÆ
ulty
onvin
ing her- or himself of the 
orre
tness of these fa
ts, though in some 
ases it may be a tediousexer
ise.2 PreliminariesIn this se
tion, we formally de�ne the hierar
hi
al pla
ement problem. To simplify the exposition, wede�ne this problem with respe
t to a �xed tuple (	;V; distan
e ; frequen
y ; size; penalty), where 	 is aset of unit-size read-only obje
ts, V is a set of nodes, distan
e : V � V ! R, frequen
y : V �	 ! R,size : V ! N, and penalty is a real number. We assume that the set of nodes V forms a hierar
hy asde�ned in Se
tion 2.1. We assume that penalty is at least as large as diameter (V), where for any setof nodes U , diameter (U) is de�ned as the maximum value of distan
e(u; v) over all nodes u and v inV. The hierar
hi
al pla
ement problem is de�ned in Se
tion 2.2.2.1 Hierar
hiesWe now indu
tively de�ne the notion of a hierar
hy. For any node u in V, the singleton set fug isa hierar
hy i� distan
e(u; u) = 0. A set of nodes U su
h that jU j > 1 is a hierar
hy i� there is apartition of U into k > 1 disjoint hierar
hies �i, 0 � i < k, su
h that distan
e(u; v) = diameter (U)(resp., distan
e(u; v) < diameter (U)) for all nodes u in �i and v in �j for whi
h i 6= j (resp., i = j).A hierar
hy 
orresponding to a set of nodes U is atomi
 i� jU j = 1. Note that for any non-atomi
hierar
hy �, the aforementioned partition is unique. For any non-atomi
 hierar
hy � with asso
iatedpartition f�i : 0 � i < kg, we de�ne ea
h hierar
hy �i as a 
hild of the hierar
hy �, and we de�nethe parent of ea
h �i, denoted parent (�i), as �. We indu
tively de�ne the notion of a des
endant of ahierar
hy � as follows: A hierar
hy � is a des
endant of a hierar
hy � i� � = � or � is a des
endantof some 
hild of �. A des
endant � of � is proper i� � 6= �.Hierar
hies 
an be used to model a large 
lass of distributed networks. For example, a homogeneous,k-node lo
al-area network may be modeled as a single-level hierar
hy. In fa
t, this is pre
isely the modelused in [1, 22℄ in the study of 
a
hing s
hemes for networks of workstations. Furthermore, it seemsplausible that some nontrivial hierar
hy should provide a reasonable �rst-order model for a 
omplex,heterogeneous wide-area network su
h as the Internet.Hierar
hies 
an also be used to model multi-level storage; we 
an introdu
e a hierar
hy for ea
hlevel of storage and in
orporate the disparate speeds of the di�erent levels in the distan
e fun
tion.As a simple example, 
onsider a ma
hine with two levels of storage (e.g., memory and disk) havinglo
al a

ess laten
ies a and b, a < b. This ma
hine may be modeled as a hierar
hy with diameter band two 
hildren: (i) an atomi
 hierar
hy with zero a

ess frequen
ies and storage 
apa
ity equal to4



that of the slow level of storage, and (ii) a hierar
hy with diameter a and two atomi
 
hildren, onewith zero a

ess frequen
ies and storage 
apa
ity equal to that of the fast level of storage, and anotherwith zero storage and a

ess frequen
ies equal to those of the original ma
hine. This approa
h 
an begeneralized to 
apture both network and 
a
he laten
ies in a heterogeneous distributed network with
a
hes of varying speeds.2.2 The hierar
hi
al pla
ement problemHaving �xed the tuple (	;V; distan
e ; frequen
y ; size; penalty) as spe
i�ed at the beginning of Se
tion 2,any des
endant of the hierar
hy V determines an instan
e of the hierar
hi
al pla
ement problem. Wenow present a sequen
e of de�nitions leading up to the de�nition of the hierar
hi
al pla
ement problem.It is 
onvenient to extend the de�nitions of the fun
tions frequen
y and size to a
t on hierar
hies.For any hierar
hy � and any obje
t  , we de�ne frequen
y(�; ) as the sum of frequen
y(u;  ) over allnodes u in �. For any hierar
hy �, we de�ne size(�) as the sum of size(u) over all nodes in �. Thefollowing de�nitions involving hierar
hies will also prove to be useful. For any proper des
endant � of V,we de�ne miss(�) as diameter (parent (�)). For the hierar
hy V itself, we de�ne miss(V) as penalty . Forany hierar
hy � and any obje
t  , we de�ne value(�; ) as frequen
y(�; ) � (miss(�)� diameter (�)).A 
opy is a pair (�; ) where � is a hierar
hy and  is an obje
t. A 
opy (�; ) is 
on
rete i� �is atomi
. A set of 
opies is 
on
rete i� it is a set of 
on
rete 
opies. A re�nement of a set of 
opiesP is a set of 
opies Q for whi
h jP j = jQj and there exists a bije
tion � : P ! Q su
h that for allp = (�; ) in P , the 
opy �(p) = (�;  ) for some des
endant � of �. A 
on
rete set of 
opies P isfeasible i� jf(�; ) 2 P :  2 	gj � size(�) for ea
h atomi
 hierar
hy � in V. A non-
on
rete set of
opies is feasible i� it admits a feasible 
on
rete re�nement. A pla
ement is a pair (�; P ) where � isa hierar
hy, P is a set of 
opies, and ea
h 
opy in P is of the form (�;  ) for some des
endant � of�. For any pla
ement A = (�; P ), we de�ne Hierar
hy(A) and Copies(A) as � and P , respe
tively.For any hierar
hy �, a pla
ement A is a �-pla
ement i� Hierar
hy(A) = �. A pla
ement A is 
on
rete(resp. feasible) i� Copies(A) is 
on
rete (resp., feasible). A pla
ement (�; P ) is a re�nement of apla
ement (�;Q) i� � = � and P is a re�nement of Q. For any pla
ement A and any des
endant � ofHierar
hy(A), we de�ne restri
t(A;�) as the pla
ement (�; P ) where P is the set of all 
opies (�;  )in Copies(A) su
h that � is a des
endant of �.Fa
t 2.1 For any hierar
hy �, an �-pla
ement A is feasible i� jCopies(restri
t(A; �))j � size(�) forall des
endants � of �.For any pla
ement A and obje
t  , a 
opy p is an (A; )-
opy i� p belongs to Copies(A) and hasasso
iated obje
t  . For any pla
ement A and obje
t  , we de�ne 
ount(A; ) as the number of (A; )-
opies. For any pla
ement A, we de�neMissing(A) as the set of all obje
ts  su
h that 
ount(A; ) = 0.For any pla
ement A, node u in Hierar
hy(A), and obje
t  , we de�ne laten
y(A; u;  ) as follows: If belongs to Missing(A), then laten
y(A; u;  ) = miss(Hierar
hy(A)); otherwise, laten
y(A; u;  ) isthe minimum value of diameter (�) over all des
endants � of Hierar
hy(A) su
h that u belongs to� and 
ount(restri
t(A;�);  ) > 0. Note that if A is a re�nement of B, then laten
y(A; u;  ) �laten
y(B; u;  ). For any pla
ement A, we de�ne the 
ost of A, denoted 
ost(A), as the sum offrequen
y(u;  ) � laten
y(A; u;  ) over all nodes u in Hierar
hy(A) and all obje
ts  in 	. Given ahierar
hy �, the hierar
hi
al pla
ement problem is to �nd a feasible 
on
rete �-pla
ement of minimum
ost. We remark that if A is a re�nement of B, then 
ost(A) � 
ost(B); it follows that some minimum-
ost feasible �-pla
ement is 
on
rete.The following fa
t 
an be proven by indu
tion on the stru
ture of hierar
hy �.Fa
t 2.2 For any �-pla
ement A, 
ost(A) is equal to the sum, over all obje
ts  and all des
endants� of � su
h that 
ount(restri
t(A; �);  ) = 0, of value(�;  ).5



A pla
ement A is said to be empty i� Copies(A) is the empty set. The next fa
t is a 
orollary ofthe previous one.Fa
t 2.3 For any empty �-pla
ement A, 
ost(A) is equal to the sum, over all obje
ts  and all de-s
endants � of �, of value(�;  ).3 A redu
tion to minimum-
ost 
owIn this se
tion we redu
e a given instan
e � of the hierar
hi
al pla
ement problem to a 
orrespondinginstan
e G� of the minimum-
ost 
ow problem. If the hierar
hy � is atomi
 then the pla
ement problemis trivial; our presentation assumes that � is non-atomi
.The minimum-
ost 
ow instan
e G� is 
onstru
ted as follows. The vertex set 
onsists of thefollowing: a vertex � for every atomi
 des
endant � of �; a vertex h ; �i for every obje
t  and non-atomi
 des
endant � of �; a sour
e s and sink t. The edge set 
onsists of four types of edges: for ea
hatomi
 des
endant � of � and ea
h obje
t  , there is a unit-
apa
ity edge (h ; parent (�)i; �) with 
ost�value(�;  ); for ea
h non-atomi
 proper des
endant � of � and ea
h obje
t  , there are two paralleledges (h ; parent (�)i; h ; �i) with 
apa
ities 1 and 1, and 
osts �value(�;  ) and 0, respe
tively; forea
h obje
t  , there are two parallel edges (s; h ;�i) with 
apa
ities 1 and 1, and 
osts �value(�; )and 0, respe
tively; for ea
h atomi
 des
endant � of �, there is an edge (�; t) with 
apa
ity size(�) and
ost 0.The next two lemmas imply that an integral minimum-
ost 
ow in G� 
orresponds to a feasible
on
rete �-pla
ement of minimum 
ost.Lemma 3.1 For every feasible 
on
rete �-pla
ement A, there is an integral 
ow in G� with 
ost equalto 
ost(A) minus the 
ost of the empty �-pla
ement.Proof: For any hierar
hy �, let A� denote the pla
ement restri
t(A; �). We 
onstru
t the de-sired 
ow as follows. For ea
h edge (h ; parent (�)i; �), we set the 
ow to 1 if 
ount(A�;  ) > 0,and to 0 otherwise. For ea
h unit-
apa
ity edge (h ; parent (�)i; h ; �i), we set the 
ow to 1 if
ount(A� ;  ) > 0, and to 0 otherwise. For ea
h in�nite-
apa
ity edge (h ; parent (�)i; h ; �i), weset the 
ow to maxf0; 
ount (A� ;  ) � 1g. For ea
h unit-
apa
ity edge (s; h ;�i), we set the 
ow to1 if 
ount(A�;  ) > 0, and to 0 otherwise. For ea
h in�nite-
apa
ity edge (s; h ;�i), we set the 
owto maxf0; 
ount (A�;  ) � 1g. For ea
h edge (�; t), we set the 
ow to the sum over all obje
ts  of
ount(A� ;  ).It remains to prove that the above 
ow is feasible and has the stated 
ost. We �rst establishfeasibility. Clearly, the 
ow assigned to ea
h edge obeys the 
orresponding 
apa
ity 
onstraints. Wenow 
onsider the 
ow 
onservation 
onstraints. For ea
h atomi
 des
endant � of �, the 
ow along theedge (�; t) is P 
ount(A� ;  ). This equals the sum, over all obje
ts  , of the 
ows along the edgefrom h ; parent (�)i to �. For ea
h non-atomi
 des
endant � of �, and for ea
h obje
t  , the total
ow 
oming into h ; �i equals the total 
ow along the two parallel edges, whi
h is 
ount(A� ;  ). Thetotal 
ow 
oming out of h ; �i is the sum, over all 
hildren 
 of �, of the 
ow along the two paralleledges (h ; �i; h ; 
i). This 
ow equals P
 
ount(A
 ;  ), whi
h equals 
ount(A�;  ). This 
ompletesthe proof of the feasibility of the 
ow.To establish the 
ost bound, we �rst note that the 
ow in
urs a 
ost of �value(�;  ) for every obje
t and every des
endant � of � su
h that 
ount(A� ;  ) > 0. Furthermore, Fa
ts 2.2 and 2.3 imply thatthe 
ost of A is equal to the 
ost of the empty �-pla
ement minus the sum, over all obje
ts  and allde
endants � of � su
h that 
ount(A� ;  ) > 0, of value(�;  ). The 
laimed 
ost bound follows.Lemma 3.2 For every integral minimum-
ost 
ow with 
ost 
0 in G�, there is a feasible 
on
rete�-pla
ement A su
h that 
ost(A) is equal to the 
ost of the empty �-pla
ement plus 
0.6



Proof: Given an integral minimum-
ost 
ow in G�, we de�ne a 
orresponding 
on
rete �-pla
ementA as follows: For any atomi
 des
endant � of � and any obje
t  , Copies(A) in
ludes the 
on
rete
opy (�;  ) i� the 
ow along edge (h ; parent (�)i; �) is 1. (Note that A is 
on
rete and feasible.)It remains to establish the 
ost bound. To do so, we make the following key observation regardingthe 
ows on adja
ent parallel ar
s. Let e0 and e1 denote the parallel edges with 
apa
ities 1 and1, respe
tively, between a pair of verti
es. If the 
ow along e1 is positive, then the 
ow along e0is 1. Otherwise, transferring a unit of 
ow from e1 to e0 would yield another feasible 
ow withsmaller 
ost, a 
ontradi
tion. It follows that if 
ount(restri
t(A; �);  ) > 0 for some atomi
 (resp.,non-atomi
) proper des
endant � of �, then the 
ow along the unit-
apa
ity edge (h ; parent (�)i; �)(resp., (h ; parent (�)i; h ; �i)) is 1. Similarly, if 
ount(A; ) > 0, then the 
ow along the unit-
apa
ityedge (s; h ;�i) is 1. Hen
e the 
ost of the 
ow is the sum, over all obje
ts  and all des
endants �of � su
h that 
ount(restri
t(A; �);  ) > 0, of �value(�;  ). The desired 
ost bound now follows fromFa
ts 2.2 and 2.3.4 An approximation algorithmWhile the algorithm of Se
tion 3 
omputes an optimal solution to the hierar
hi
al pla
ement problem,its run-time 
omplexity is prohibitively high, at least quadrati
 in the produ
t of the number of nodesn and the number of obje
ts m. This motivates us to seek a faster approximation algorithm. Two
andidate algorithms are presented in this se
tion. The �rst algorithm, whi
h we refer to as the greedyalgorithm, uses a natural lo
al improvement heuristi
. We show, however, that the greedy algorithmhas an approximation ratio of �(n). The lower bound proof leads us to a variant of the greedy algorithmthat we refer to as the amortizing algorithm. Se
tion 5 establishes that the amortizing algorithm is a
onstant-fa
tor approximation algorithm. Se
tion 7 outlines an eÆ
ient distributed implementation ofthe amortizing algorithm.Given any feasible non-
on
rete pla
ement A, the following simple pro
edure 
an be used to obtaina feasible 
on
rete re�nement of A. Note that Copies(A) 
ontains a 
opy p of the form (�; ) for somenon-atomi
 hierar
hy � and obje
t  . Using Fa
t 2.1, we 
on
lude that there exists a 
hild � of � forwhi
h jCopies(restri
t(A; �))j < size(�). Hen
e we 
an obtain a feasible re�nement of A by removingp from Copies(A) and repla
ing it with the 
opy (�;  ). Repeated appli
ation of this argument yieldsa 
on
rete re�nement of A. (Remark: For any feasible pla
ement A, a minimum-
ost feasible 
on
retere�nement of A 
an be obtained by solving a suitably de�ned weighted mat
hing problem.)The greedy and amortizing pla
ement algorithms des
ribed in Se
tions 4.1 and 4.2, respe
tively,ea
h 
ompute a pla
ement A that is feasible but not ne
essarily 
on
rete. The re�nement pro
edureof the pre
eding paragraph may then be applied to obtain a feasible 
on
rete pla
ement B su
h that
ost(B) � 
ost(A).The greedy and amortizing algorithms, though well-de�ned for arbitrary hierar
hies, are only in-tended to be dire
tly applied to hierar
hies that are \�-separated" for some 
onstant � > 1. A hierar
hyU is �-separated i� miss(V ) � � � diameter (V ) for every des
endant V of U . It is straightforward toshow that any 
-approximation algorithm for the �-separated hierar
hi
al pla
ement problem impliesa 
�-approximation algorithm for the hierar
hi
al pla
ement problem. (The main idea is to transformthe given hierar
hy into a �-separated hierar
hy by rounding up all distan
es to the nearest integralpower of �.) Thus, for the purposes of obtaining a 
onstant-fa
tor approximation algorithm, we mayassume without loss of generality that the input hierar
hy is �-separated for an arbitrary 
onstant� > 1.4.1 The greedy pla
ement algorithmFor any pla
ement A and any 
opy p in Copies(A), we de�ne min-bene�t(A; p) as the amount by whi
h
ost(A) would in
rease if p were removed from Copies(A). Given a pla
ement A for whi
h Copies(A) isnonempty, the greedy elimination rule removes from Copies(A) the 
opy pminimizingmin-bene�t(A; p);7



Swapping Pro
edure: Swap(A; p)� Set Copies(A) to (Copies(A)� fpg) [ f(Hierar
hy(A); 
andidate(A))g.Figure 1: The swapping pro
edure. The input is a pla
ement A and a 
opy p in Copies(A).Greedy Algorithm� Combining. Initialize Hierar
hy(A) to �. If � is atomi
, initialize Copies(A)to f(�; ) :  2 Sg, where S is an arbitrarily 
hosen subset of 	 of size size(�).Otherwise, initialize Copies(A) to [0�i<kCopies(Ai), where the Ai's are the pla
e-ments previously 
omputed at the k 
hildren of �.� Swapping. While bene�t(A; vi
tim(A)) < value(�; 
andidate(A)), 
allSwap(A; vi
tim(A)).Figure 2: The greedy algorithm. We assume that the 
hildren, if any, of a given hierar
hy � havealready been pro
essed, and des
ribe the 
omputation asso
iated with �.this 
opy is denoted vi
tim(A). (Ties may be broken in an arbitrary 
onsistent manner. For example,we 
ould assign a unique integer ID to ea
h 
opy, and use these IDs to break ties. Su
h tie-breaking
onventions will be assumed throughout the remainder of the paper without further 
omment.)In the following de�nitions, let A denote a pla
ement, let  denote an obje
t, let k denotejCopies(A)j, let A0 = A, let Ai+1 denote the pla
ement (Hierar
hy(A);Copies(Ai) � fvi
tim(Ai)g),0 � i < k, let p denote an (A; )-
opy, and let j denote the maximum value of i su
h that p be-longs to Copies(Ai). We de�ne bene�t(A; p) as min-bene�t(Aj ; p); note that bene�t(A; vi
tim(A)) =min-bene�t(A; vi
tim(A)) and min-bene�t(A; p) � bene�t(A; p). (Remark: The remaining de�ni-tions in this paragraph are not ne
essary for understanding the greedy pla
ement algorithm. Itis simply 
onvenient to present them now.) The 
opy p belongs to the set Primary(A) i� thereis no other (Aj ;  )-
opy. We de�ne Se
ondary (A) as Copies(A) � Primary(A). For any pla
e-ment A, we de�ne se
ondary-vi
tim(A) as the 
opy p in Se
ondary(A) minimizing bene�t(A; p). IfSe
ondary(A) is empty, then se
ondary-vi
tim(A) is unde�ned and it is 
onvenient to assume thatbene�t(A; se
ondary-vi
tim(A)) =1.In order to fa
ilitate the next de�nition, we assume that Missing(A) is nonempty for any pla
ementA. This assumption is made without loss of generality sin
e the set of obje
ts 	 
an be augmentedwith arbitrarily many dummy obje
ts for whi
h the asso
iated a

ess frequen
ies are all zero. For anypla
ement A, we de�ne 
andidate(A) as the obje
t  inMissing(A) maximizing value(Hierar
hy(A);  ).The swapping pro
edure of Figure 1 is used in all of our approximation algorithms for the hierar-
hi
al pla
ement problem. Fa
t 2.1 implies that if the pla
ement passed to the swapping pro
edure isfeasible, then the updated pla
ement is also feasible.The greedy algorithm is presented in Figure 2. It is straightforward to prove that the greedyalgorithm terminates, and that the pla
ement A 
omputed by the greedy algorithm is feasible. Itis natural to ask whether the greedy algorithm is a 
onstant-fa
tor approximation algorithm for thehierar
hi
al pla
ement problem. Below we provide a negative answer to this question by 
onstru
tingan n-node hierar
hy � for whi
h the pla
ement 
omputed by the greedy algorithm has 
ost ex
eedingthe optimal by an 
(n) fa
tor.We label n nodes from 0 to n� 1 and 
onstru
t the hierar
hy � = �n�1 as follows. First, we 
reatea hierar
hy �1 with two atomi
 
hildren 
orresponding to nodes 0 and 1. Then, for i running from 28



to n� 1, we 
reate a hierar
hy �i with two 
hildren: the hierar
hy �i�1 
onstru
ted previously and anatomi
 hierar
hy 
ontaining node i. The 
a
he size of ea
h node is 1. We de�ne the distan
e fun
tionbetween the nodes in su
h a way that diameter (�i) equals ni�1, 1 � i < n. The penalty , whi
h isrequired to be at least as large as diameter (�), is set to nn�1. We assign nonzero frequen
ies to nobje
ts  i, 0 � i < n. For node 0, frequen
y(0;  i) = 1=ni, 0 � i < n. For node 1, frequen
y(1;  i) is 1if i is 0, and 0 otherwise. For node j, 2 � j < n, frequen
y(j;  i) is 0 for all i.For this example, the set of 
opies asso
iated with an optimal feasible 
on
rete �-pla
ement A
onsists of (f0g;  0), (f1g;  1), and (fig;  i), 2 � i < n. The 
ost of A is 2� 1=n sin
e laten
y(A; 0;  i)is ni�1, 1 � i < n, and laten
y(A; 1;  0) is 1. In 
ontrast, we 
laim that the 
ost of the greedy �-pla
ement is n � 1. (Furthermore, any re�nement of this �-pla
ement also has 
ost n � 1.) It 
anbe shown by indu
tion that, for ea
h hierar
hy �i, 1 � i < n, the set of 
opies asso
iated with thegreedy �i-pla
ement 
onsists of (f0g;  0), (f1g;  0), and (�j ;  j�1), 2 � j � i. The 
ost of the greedy�-pla
ement B is n� 1 sin
e laten
y(B; 0;  i) is ni for 1 � i < n. We 
on
lude that the approximationratio of the greedy algorithm is 
(n).We now sket
h a proof that the pre
eding lower bound is tight, that is, the approximation ratio ofthe greedy algorithm is �(n). To establish the O(n) upper bound, we begin by making the following
laim. Let A and B denote two �-pla
ements su
h that the following 
onditions hold: A 
ontains k
opies of some obje
t  and no 
opies of any other obje
t; B 
ontains ` 
opies of the same obje
t and no 
opies of any other obje
t; ` � k. If b1; : : : ; bk denotes the sequen
e of bene�ts, sorted innonin
reasing order, asso
iated with the k 
opies of  in A, then we 
laim that the 
ost of the pla
ementB is at least P`<i�k bi. It is easy to prove the 
laim by indu
tion on the stru
ture of the hierar
hy �.Using this 
laim one 
an establish the following lemma. Let A denote the pla
ement 
omputed by thegreedy algorithm for some hierar
hy �. Then the 
ost of any �-pla
ement is at least as large as thesum, over all obje
ts  in Missing(A), of value(�; ). We now use the lemma to 
omplete the proof asfollows. By Fa
t 2.2, the 
ost of the greedy �-pla
ement is equal to the sum, over all des
endants � of� and all obje
ts  in Missing(restri
t(A; �)), of value(�; ). Sin
e the number of des
endants � of �is at most 2n� 1, it follows from the lemma that the 
ost of the greedy �-pla
ement is at most 2n� 1times the 
ost of the optimal �-pla
ement. (Remark: By a slight re�nement of this argument, it 
anbe shown that the greedy approximation ratio is at most the depth of the hierar
hy �.)In the se
tions that follow we develop a fast 
onstant-fa
tor approximation algorithm for the hier-ar
hi
al pla
ement problem. In doing so, we will make use of a number of basi
 fa
ts related to thede�nitions given earlier in this se
tion. These fa
ts are formally stated below.Fa
t 4.1 For any pla
ement A su
h that Copies(A) is nonempty, and any p in Copies(A), we havebene�t(A; vi
tim(A)) � bene�t(A; p).Fa
t 4.2 For any pla
ement A and any obje
t  su
h that there is at least one (A; )-
opy, there is aunique (A; )-
opy p in Primary(A), and this 
opy p further satis�es bene�t(A; p) � value(Hierar
hy(A);  )and bene�t(A; p) � bene�t(A; q) for all (A; )-
opies q.Fa
t 4.3 For any �-pla
ement A, the 
ost of A is equal to the 
ost of the empty �-pla
ement minusthe sum, over all 
opies p in Copies(A), of bene�t(A; p).Fa
t 4.4 (Insert) Let � denote a hierar
hy, let A denote an �-pla
ement, let  denote an obje
tin Missing(A), let p denote the 
opy (�; ), and let A0 denote the pla
ement (�;Copies(A) [ fpg).Then p belongs to Primary(A0), bene�t(A0; p) = value(�; ), and the following 
laims hold for all q inCopies(A): bene�t(A; q) = bene�t(A0; q); q belongs to Primary(A) (resp., Se
ondary(A)) i� q belongsto Primary(A0) (resp., Se
ondary(A0)).Fa
t 4.5 (Delete) Let p denote vi
tim(A) (resp., se
ondary-vi
tim(A)) for some pla
ement A, and letA0 denote the pla
ement (Hierar
hy(A);Copies(A) � fpg). Then the following 
onditions hold for all9



q in Copies(A0): bene�t(A; q) = bene�t(A0; q); q belongs to Primary(A) (resp., Se
ondary(A)) i� qbelongs to Primary(A0) (resp., Se
ondary(A0)).Fa
t 4.6 (Combine) Let � denote a non-atomi
 hierar
hy with k 
hildren �i, 0 � i < k, let Ai denotean �i-pla
ement, 0 � i < k, and let A denote the pla
ement (�;[0�i<kCopies(Ai)). For any obje
t  su
h that there is at least one (A; )-
opy, let p denote the unique (A; )-
opy in Primary(A), and letx denote bene�t(A; p) � value(�; ). Then for any i, 0 � i < k, and any (Ai;  )-
opy q, the following
laim holds: If p = q then bene�t(Ai; q) = x; otherwise, bene�t(A; q) = bene�t(Ai; q) � x.4.2 The amortizing pla
ement algorithmThe lower bound argument given in Se
tion 4.1 leads us to 
onsider a natural variant of the greedyalgorithm that we 
all the amortizing algorithm. The amortizing algorithm is presented in Figure 3.The high-level intuition underlying the algorithm is as follows. When de
iding whi
h 
opies to ex
hangeat a given stage, it 
an be diÆ
ult to de
ide whether to swap out a se
ondary 
opy with high bene�tin favor of a primary 
opy (of a missing obje
t) with low bene�t. In su
h a 
ase, the greedy algorithmprefers to keep the se
ondary 
opy be
ause it has higher bene�t, but as we have seen, this approa
h
an fail be
ause it waits too long to swap in missing obje
ts. An alternative strategy is to always preferprimary 
opies over se
ondary 
opies, but it is easy to devise s
enarios in whi
h this strategy fails. (Notethat su
h a strategy 
an be misled by introdu
ing a large number of obje
ts with a

ess frequen
iestending to zero.) In the amortizing algorithm, we pursue a more balan
ed strategy: we use the miss 
ostin
urred at the 
urrent level to \justify" the removal of 
ertain se
ondaries. The underlying intuitionis that sin
e we have already 
ommitted to paying the miss 
ost, we 
an a�ord to in
ur a similar 
ostin order to make room for additional primary 
opies to be swapped in. Unfortunately, this intuition isfar from a 
omplete proof. The main diÆ
ulty is that the miss 
ost we are willing to pay may be mu
hhigher than that whi
h is paid by an optimal pla
ement. The main goal of the rest of the paper is toprove that the amortizing algorithm is a 
onstant-fa
tor approximation algorithm for the hierar
hi
alpla
ement problem.It is straightforward to prove that the amortizing algorithm terminates and that the pla
ementA 
omputed by the amortizing algorithm is feasible. An eÆ
ient distributed implementation of theamortizing algorithm is given in Se
tion 7. It is parti
ularly noteworthy that the amortized swappingloop exe
uted at ea
h non-atomi
 hierar
hy is highly parallelizable.5 Analysis of the amortizing algorithmIn this se
tion we prove our main result, namely, that the 
ost of the pla
ement 
onstru
ted by theamortizing algorithm is within a 
onstant fa
tor of optimal. To fa
ilitate our analysis, we introdu
eanother pla
ement algorithm that we 
all the bridging algorithm. The bridging algorithm 
omputesthree feasible pla
ements that we refer to as the amortizing, arbitrary, and bridging pla
ements, re-spe
tively. The amortizing pla
ement is identi
al to that 
omputed by the amortizing algorithm. Thearbitrary pla
ement is simply an arbitrary 
on
rete pla
ement. The bridging pla
ement depends onthe 
hoi
e of the arbitrary pla
ement, and is designed to ensure that the 
ost of the bridging pla
ement
an be relatively easily 
ompared to that of the amortizing and arbitrary pla
ements. In parti
ular,we establish our main theorem via the following two main steps. First, we prove that the 
ost of theamortizing pla
ement is at most that of the bridging pla
ement. Se
ond, we prove that the 
ost of thebridging pla
ement is within a 
onstant fra
tion of the 
ost of the arbitrary pla
ement.5.1 The bridging algorithmIn this se
tion, we present the bridging algorithm whi
h is used to analyze the amortizing algorithm.We begin with some de�nitions.A set of pla
ements is said to be 
omparable i� all the pla
ements in the set have the same asso
iatedhierar
hy. For any pla
ement A and 
opy p = (�; ) in Copies(A), we de�ne Region(A; p) as the10



Amortizing Algorithm� Combining. This step is the same as the 
ombining step of the greedy algorithm,ex
ept that we also initialize an auxiliary potential variable �. If � is atomi
,then � is set to 0. Otherwise, � is set to the sum of the potentials �i, 0 � i < k,
omputed at the k 
hildren of �.� Lo
al Initialization. Initialize � to the sum over all obje
ts  in Missing(A)of value(�; ).� Amortized Swapping. This step is similar to the swapping step of the greedyalgorithm, ex
ept that the potential � is used to redu
e the bene�ts of 
ertainse
ondary 
opies.1. Let x = bene�t(A; se
ondary-vi
tim(A)), let y = bene�t(A; vi
tim(A)), andlet z = value(�; 
andidate(A)).2. If x�� � min(y; z) then 
all Swap(A; se
ondary-vi
tim(A)), subtra
t z from�, set � to max(0;�� x), and goto line 1.3. If y < z, then 
all Swap(A; vi
tim(A)), add y � z to �, and goto line 1.� Potential Update. Add � to �.Figure 3: The amortizing algorithm. We assume that the 
hildren, if any, of a given hierar
hy � havealready been pro
essed, and des
ribe the 
omputation asso
iated with �.set of nodes u su
h that laten
y(A; u;  ) would in
rease if p were removed from Copies(A); it isstraightforward to prove that Region(A; p) is a hierar
hy. For any 
omparable pla
ements A and B,we de�ne Min-mat
hed(A;B) as the set of all p = (�; ) in Copies(A) for whi
h there is a 
opyq = (�;  ) in Copies(B) su
h that � is a des
endant of Region(A; p). We de�ne Min-unmat
hed(A;B)as Copies(A)�Min-mat
hed(A;B).In the following de�nitions, let A and B denote two 
omparable pla
ements, let  denote an obje
t,and let P (resp., Q) denote the set of all (A; )-
opies inMin-mat
hed(A;B) (resp.,Min-unmat
hed(A;B)).If there are one or more (A; )-
opies, then we de�ne quasivi
tim(A;B; ) as follows: If Q is empty(resp., nonempty), then quasivi
tim(A;B; ) is the 
opy p in P (resp., Q) minimizingmin-bene�t(A; p).For the remaining de�nitions in this paragraph, let k denote the number of (A; )-
opies, let A0 = A,let Ai+1 denote the pla
ement (Hierar
hy(A);Copies(Ai) � fquasivi
tim(Ai; B;  )g), 0 � i < k, let pdenote a (A; )-
opy, and let j denote the maximum value of i su
h that p belongs to Copies(Ai). Wede�ne quasibene�t(A;B; p) as min-bene�t(Aj ; p). The 
opy p belongs to the set Quasiprimary(A;B)i� j = k � 1. We de�ne Quasise
ondary (A;B) as Copies(A) � Quasiprimary(A;B). The 
opy p be-longs to the set Mat
hed (A;B) i� p belongs to Min-mat
hed(Aj ; B). We de�ne Unmat
hed (A;B) asCopies(A) �Mat
hed(A;B). Note that if p belongs to Min-mat
hed(A`; B) where 0 � ` � j then pbelongs to Min-mat
hed (Ai; B) for all i su
h that ` � i � j.The following six fa
ts are analogous to Fa
ts 4.1, through 4.6.Fa
t 5.1 Let A and B denote two 
omparable pla
ements, let  denote an obje
t su
h that 
ount(A; ) >0, and let P (resp., Q) denote the set of all (A; )-
opies in Mat
hed (A;B) (resp., Unmat
hed (A;B)).Then if Q is empty (resp., nonempty), quasivi
tim(A;B; ) belongs to P (resp., Q) and for all p in P(resp., Q), quasibene�t(A;B; quasivi
tim(A;B; )) � quasibene�t(A;B; p).Fa
t 5.2 Let A and B denote two 
omparable pla
ements, let  denote an obje
t su
h that 
ount(A; ) >0, and let P (resp., Q) denote the set of all (A; )-
opies in Mat
hed (A;B) (resp., Unmat
hed (A;B)).11



Then there is a unique (A; )-
opy p in Quasiprimary(A;B), and this 
opy p further satis�es the follow-ing three 
onditions: p belongs to P unless P is empty; quasibene�t(A;B; p) � value(Hierar
hy(A);  );quasibene�t(A;B; p) � quasibene�t(A;B; q) for all q in P (resp., Q).Fa
t 5.3 For any two 
omparable �-pla
ements A and B, the 
ost of A is equal to the 
ost of theempty �-pla
ement minus the sum, over all 
opies p in Copies(A), of quasibene�t(A;B; p).Fa
t 5.4 (Insert) Let � denote a hierar
hy, let A and B denote two �-pla
ements, let  denote anobje
t in Missing(A), let p denote the 
opy (�; ) and let A0 denote the pla
ement (�;Copies(A) [fpg). Then p belongs to Quasiprimary(A0; B), quasibene�t(A0; B; p) = value(�; p), and the follow-ing 
laims hold for all q in Copies(A): quasibene�t(A;B; q) = quasibene�t(A0; B; q); q belongs toQuasiprimary(A;B) (resp., Quasise
ondary(A;B), Mat
hed(A;B), Unmat
hed (A;B)) i� q belongs toto Quasiprimary(A0; B) (resp., Quasise
ondary (A0; B), Mat
hed (A0; B), Unmat
hed (A0; B)).Fa
t 5.5 (Delete) Let A and B denote two 
omparable pla
ements, let  denote an obje
t su
h that
ount(A; ) > 0, and let A0 denote the pla
ement (Hierar
hy(A);Copies(A)�fquasivi
tim(A;B; )g).Then the following 
laims hold for all p in Copies(A0): quasibene�t(A;B; p) = quasibene�t(A0; B; p);p belongs to Quasiprimary(A;B) (resp., Quasise
ondary(A;B), Mat
hed(A;B), Unmat
hed (A;B)) i�p belongs to Quasiprimary(A0; B) (resp., Quasise
ondary(A0; B), Mat
hed(A0; B), Unmat
hed (A0; B)).Fa
t 5.6 (Combine) Let � denote a non-atomi
 hierar
hy with k 
hildren �i, 0 � i < k, let Aiand Bi denote two �i-pla
ements, 0 � i < k, let A denote the pla
ement (�;[0�i<kCopies(Ai)), letB denote the pla
ement (�;[0�i<kCopies(Bi)), let P denote [0�i<kMat
hed (Ai; Bi), let Q denote[0�i<kUnmat
hed (Ai; Bi), let  denote an obje
t su
h that 
ount(A; ) > 0, let p denote the unique(A; )-
opy in Quasiprimary(A;B), and let x denote quasibene�t(A;B; p) � value(�; ). Then thefollowing 
laims hold: if P is nonempty then p belongs to P ; quasibene�t(Ai; B; p) = x; p belongs toMat
hed(A;B) (resp., Unmat
hed (A;B)) i� 
ount(B; ) > 0 (resp., 
ount(B; ) = 0). Furthermore,for any i, 0 � i < k, and any (Ai;  )-
opy q di�erent from p, the following 
laims hold: q belongsto Mat
hed(A;B) (resp., Unmat
hed (A;B)) i� q belongs to P (resp., Q); quasibene�t(A;B; q) =quasibene�t(Ai; Bi; q); if q belongs to Quasise
ondary (Ai; Bi) then q belongs to Quasise
ondary(A;B);if Q is empty or q belongs to Q then quasibene�t(A;B; q) � x.The next fa
t is used in Se
tion 6.1.Fa
t 5.7 Let A and B denote two 
omparable pla
ements. Then jUnmat
hed (A;B)j � Copies(A)j �jCopies(B)j.Two pla
ements A and B are de�ned to be 
oupled i� they are 
omparable and 
ount(A; ) =
ount(B; ) for all obje
ts  . A triple of pla
ements (A;B;C) is de�ned to be ni
e i� A, B, and Care 
omparable and A and B are 
oupled.In the following de�nition, let (A;B;C) denote a ni
e triple of pla
ements, let k = jCopies(A)j, letA0 = A and B0 = B, let Ai+1 denote the pla
ement (Hierar
hy(A);Copies(Ai) � fvi
tim(Ai)g), letBi+1 denote the pla
ement (Hierar
hy(B);Copies(Bi)� fquasivi
tim(Bi; C;  )g) where  denotes theobje
t asso
iated with vi
tim(Ai), 0 � i < k, let p denote a 
opy in Copies(B), and let j denote themaximum value of i su
h that p belongs to Copies(Bi). (Note that ea
h triple (Ai; Bi; C), 0 � i < k,is ni
e.) We de�ne mate(A;B;C; p) as vi
tim(Aj).The 
oupled swapping pro
edure of Figure 4 exe
utes a pair of swaps, one involving ea
h of the
oupled pla
ements in a given ni
e triple. Lemmas 5.2 and 5.1 below are useful for analyzing thee�e
t of a 
all to the 
oupled swapping pro
edure for whi
h the parameter p is either vi
tim(A) orse
ondary-vi
tim(A). 12



Coupled Swapping Pro
edure: Swaps(A;B;C; p)� Let  be su
h that p is a (A; )-
opy.� Call Swap(A; p) and Swap(B; quasivi
tim(B;C;  )).Figure 4: The 
oupled swapping pro
edure. The input is a ni
e triple of pla
ements (A;B;C) and a
opy p in Copies(A). Be
ause A and B are 
oupled, 
andidate(A) = 
andidate(B) and hen
e the same
opy is inserted in both 
alls to the swapping pro
edure. It follows that the output triple (A;B;C) isni
e.Lemma 5.1 (Insert) Let (A;B;C) denote a ni
e triple of pla
ements, let  denote an obje
t inMissing(A), let A0 denote the pla
ement (Hierar
hy(A);Copies(A) [ f(Hierar
hy (A);  )g), and let B0denote the pla
ement (Hierar
hy(B);Copies(B) [ f(Hierar
hy(B);  )g). Then (A0; B0; C) is ni
e.Proof: Straightforward from Fa
ts 4.4 and 5.4.Lemma 5.2 (Delete) Let p be equal to vi
tim(A) (resp., se
ondary-vi
tim(A)) for some pla
ement Abelonging to a ni
e triple (A;B;C), let  be su
h that p is an (A; )-
opy, let A0 denote the pla
ement(Hierar
hy(A);Copies(A)�fvi
tim(A)g), and let B0 denote the pla
ement (Hierar
hy(B);Copies(B)�fquasivi
tim(A;B; )g). Then (A0; B0; C) is ni
e.Proof: Straightforward from Fa
ts 4.5 and 5.5.Lemma 5.3 (Combine) Let � denote a non-atomi
 hierar
hy with k 
hildren �i, 0 � i < k, let Ai,Bi, and Ci denote �i-pla
ements su
h that (Ai; Bi; Ci) is ni
e, 0 � i < k, and let A, B, and C denotethe pla
ements (�;[0�i<kCopies(Ai)), (�;[0�i<kCopies(Bi)), and (�;[0�i<kCopies(Ci)), respe
tively.Then (A;B;C) is ni
e.Proof: Straightforward from Fa
ts 4.6 and 5.6.The bridging algorithm is presented in Figure 5. The program variables A, B, and C 
orrespondto the amortizing, bridging, and arbitrary pla
ements, respe
tively.The following lemma implies that the swaps asso
iated with the bridging pla
ement are well-de�ned.Given this lemma, it is straightforward to prove that all of the pla
ements asso
iated with the bridgingalgorithm are feasible. Furthermore, it is straightforward to prove that the amortizing pla
ementA 
omputed by the bridging algorithm is the same as the pla
ement 
omputed by the amortizingalgorithm.Lemma 5.4 After the 
ombining step of the bridging algorithm, and after ea
h iteration of the amor-tized swapping loop of the bridging algorithm, (A;B;C) is ni
e.Proof: Lemmas 5.2 and 5.1 imply that the 
laim 
annot fail for the �rst time after an iteration ofthe amortized swapping loop. We now argue that the 
laim 
annot fail for the �rst time after the
ombining step asso
iated with some hierar
hy �. If � is atomi
, then A, B, and C are all equal andthe 
laim follows. If � is non-atomi
 then (Ai; Bi; Ci) are ni
e, 0 � i < k, then Lemma 5.3 implies that(A;B;C) is ni
e. The lemma follows sin
e no other part of the 
ode modi�es A, B, or C.
13



Bridging Algorithm� Combining. Initialize A and � as in the amortizing algorithm. If � is atomi
,initialize B and C to A. Otherwise, initialize Hierar
hy(B) (resp., Hierar
hy(C))to �, and initialize Copies(B) (resp., Copies(C)) to [0�i<kCopies(Bi), wherethe Bi's (resp., Ci's) are the bridging (resp., arbitrary) pla
ements previously
omputed at the k 
hildren of �.� Lo
al Initialization. Set � to 0 and � to Missing(A).� Amortized Swapping. This step applies the same sequen
e of swaps to theamortizing pla
ement A as in the amortizing algorithm. Ea
h of these swaps isa

ompanied by a 
orresponding swap involving the bridging pla
ement B. (Fora proof that the latter swaps are well-de�ned, see Lemma 5.4 below.)1. Let x = bene�t(A; se
ondary-vi
tim(A)), let y = bene�t(A; vi
tim(A)), andlet z = value(�; 
andidate(A)).2. If x�� � min(y; z) then 
all Swaps(A;B;C; se
ondary-vi
tim (A)), set � tomax(0;� � x), remove 
andidate(A) from �, and goto line 1.3. If y < z, then 
all Swaps(A;B;C; vi
tim(A)), add y to �, remove
andidate(A) from �, and goto line 1.� A

ounting. For ea
h obje
t  in �, add value(�; ) to � and remove  from�.� Potential Update. Add � to �.Figure 5: The bridging algorithm. We introdu
e this algorithm for the sole purpose of analyzing theamortizing algorithm. We assume that the 
hildren, if any, of a given hierar
hy � have already beenpro
essed, and des
ribe the 
omputation asso
iated with �.

14



5.2 Cost 
omparison: amortizing versus bridgingIn this se
tion we 
ompare the 
ost of the amortizing and bridging pla
ements 
omputed by the bridgingalgorithm for a given hierar
hy.For any multiset of reals X, we de�ne sum(X) as the sum of the elements of X. For any multiset ofreals X, and any integer i su
h that 0 � i � jXj, we de�ne Big(X; i) (resp., Little(X; i)) as the multiset
onsisting of the i largest (resp., smallest) reals in X. For any two multisets of reals X and Y su
h thatjXj = jY j, we write X � Y to mean that the ith largest element of X is less than or equal to the ithlargest element of Y , 1 � i � jXj. A triple (X;Y;Z) is de�ned to be good i� the following 
onditionshold: (i) X, Y , and Z are �nite multisets of reals, (ii) jXj + jY j = jZj, (iii) X � Little(Z; jXj), (iv)Y � Big(Z; jY j), and (v) sum(X) + sum(Y ) � sum(Z).Fa
t 5.8 (Insert) For any real x, the triples (fxg; fg; fxg) and (fg; fxg; fxg) are good.Fa
t 5.9 (Delete) Let (X;Y;Z) be good and assume that Z 0 = Big(Z; jZj � 1). If X is empty, then letX 0 = X and Y 0 = Big(Y; jY j � 1). Otherwise, let X 0 = Big(X; jXj � 1) and Y 0 = Y . In either 
ase,(X 0; Y 0; Z 0) is good.Fa
t 5.10 (Combine: Merge) Let (Xi; Yi; Zi) be good, 1 � i � k, and let X = [1�i�kXi, Y =[1�i�kYi, and Z = [1�i�kZi. Then (X;Y;Z) is good. Furthermore, if Y is empty and x is themaximum element of X, then (X � fxg; fxg; Z) is good.Fa
t 5.11 (Combine: Adjust) Let (X;Y;Z) be good and let w be a nonnegative real. Assume that zis a maximum element of Z and let Z 0 = (Z � fzg) [ fw + zg. If Y is nonempty, then let X 0 = Xand Y 0 = (Y � fyg) [ fw + yg where y is a maximum element of Y . Otherwise, let Y 0 = Y andX 0 = (X �fxg)[ fw+ xg where x is a maximum element of X. In either 
ase, (X 0; Y 0; Z 0) is good.Lemma 5.5 Let A, B, and C denote the 
orresponding program variables after the 
ombining stepof the bridging algorithm, or after some iteration of the amortized swapping loop of the bridgingalgorithm. Let X, Y , and Z denote the multisets fquasibene�t(B;C; p) : p 2 Unmat
hed (B;C)g,fquasibene�t(B;C; p) : p 2 Mat
hed(B;C)g, and fbene�t(A; p) : p 2 Copies(A)g, respe
tively. Then(X;Y;Z) is good.Proof: After the 
ombining step, there are two 
ases to 
onsider. If � is atomi
, then A = B = C,Unmat
hed (B;C) is empty, Mat
hed (B;C) = Copies(A), and bene�t(A; p) = quasibene�t(B;C; p) forall p in Copies(A); the 
laim follows. If � is non-atomi
, the 
laim follows by Fa
ts 4.6, 5.6, 5.10,and 5.11. (Remark: Fa
t 5.11 takes 
are of the in
rease in bene�t/quasibene�t asso
iated with theprimary/quasiprimary 
opy of ea
h obje
t.)It remains to 
onsider the e�e
t of the pair of swapping operations (one applied to A, the other toB) o

urring in some iteration of the amortized swapping loop of the bridging algorithm. This pair ofswaps 
an be viewed as a pair of deletions followed by a pair of insertions. Fa
ts 4.5, 5.5, and 5.9 implythat the 
laim holds after the pair of deletions. Fa
ts 4.4, 5.4, and 5.8 imply that the 
laim holds afterthe pair of insertions.Lemma 5.6 For any hierar
hy �, let A (resp., B) denote the amortizing (resp., bridging) pla
ement
omputed by the bridging algorithm. Then 
ost(A) � 
ost(B).Proof: From Lemma 5.5 and 
ondition (v) in the de�nition of a good triple, it follows thatPp2Copies(B) quasibene�t(B;C; p) is at most Pp2Copies(A) bene�t(A; p). The 
laim now follows byFa
ts 4.3 and 5.3. 15



5.3 Cost 
omparison: bridging versus arbitraryIn this se
tion we 
ompare the 
ost of the bridging and arbitrary pla
ements 
omputed by the bridgingalgorithm for a given hierar
hy. The following lemma is useful for our analysis.Lemma 5.7 Let A, B, and C denote the 
orresponding program variables after the 
ombining stepof the bridging algorithm, or after some iteration of the amortized swapping loop of the bridging al-gorithm. Let q belong to Copies(B), let p = mate(A;B;C; q), let x = bene�t(A; p), and let y =quasibene�t(B;C; q). If q belongs to Mat
hed(B;C) (resp., Unmat
hed (B;C)) then x � y (resp.,x � y).Proof: Follows from Lemma 5.5 and 
onditions (iii) and (iv) in the de�nition of a good triple.We now state our main te
hni
al lemma. The proof of this lemma is given in Se
tion 6.Lemma 5.8 Let B (resp., C) denote the bridging (resp., arbitrary) pla
ement 
omputed by the bridgingalgorithm for a given �-separated hierar
hy. Then 
ost(B) � (1 + 3���1 ) � 
ost(C).Given that the arbitrary pla
ement is potentially an optimal pla
ement, we 
on
lude that the 
ostof the bridging pla
ement is within a 
onstant fa
tor of optimal.5.4 The main theoremUsing Lemmas 5.6 and 5.8, we obtain the following result.Lemma 5.9 For any �-separated hierar
hy, the 
ost of the pla
ement 
omputed by the amortizingalgorithm is at most (1 + 3���1) times optimal.Re
all that while the pla
ement A 
omputed by the amortizing algorithm is not ne
essarily 
on
rete,A 
an easily be re�ned to a 
on
rete pla
ement B su
h that 
ost(B) � 
ost(A), as dis
ussed at thebeginning of Se
tion 4. Lemma 5.9 assumes that the given hierar
hy is �-separated as de�ned inSe
tion 4. If this is not the 
ase, we �rst transform the given hierar
hy into a �-separated hierar
hy asindi
ated in Se
tion 4, introdu
ing an extra fa
tor of � into the approximation bound.Theorem 5.1 For any hierar
hy � and for any 
onstant � > 1, the 
ost of the pla
ement 
omputed bythe amortizing algorithm is at most � � (1 + 3���1) times optimal.The above approximation ratio is less than 13.93 for the optimal 
hoi
e of � = 1 +p3=2 � 1:866.6 Proof of the main te
hni
al lemmaIn this se
tion we prove Lemma 5.8 whi
h 
ompares the 
ost of the bridging and the arbitrary pla
e-ments 
omputed by the bridging algorithm. Throughout this se
tion, we let A, B, and C denotethe program variables of the bridging algorithm 
orresponding to the amortizing, bridging, and arbi-trary pla
ements. Note that by Lemma 5.4, the triple (A;B;C) is ni
e and therefore Hierar
hy(A) =Hierar
hy(B) = Hierar
hy(C). We let � denote this 
ommon hierar
hy, and furthermore if � is notatomi
 we let �i, 0 � i < k, denote the 
hildren of �. For 
on
iseness, the above notational 
onventionsare assumed throughout this se
tion without further repetition.To fa
ilitate the 
omparison of the bridging pla
ement B with the arbitrary pla
ement C, weintrodu
e and maintain another 
omparable pla
ement D that is 
losely related to C.The rest of this se
tion is organized as follows. First, in Se
tion 6.1 we introdu
e the notions of\emulation" and \domination" to des
ribe the relationship that we maintain between the pla
ementsB, C, and D. In Se
tion 6.2 we list the variables used to spe
ify the state of the 
omputation. InSe
tion 6.3 we list a number of invariants that are 
laimed to hold at parti
ular points in the exe
ution ofthe bridging algorithm, and prove that Lemma 5.8 follows from these invariants. Finally, in Se
tions 6.4through 6.9 we examine how the state is a�e
ted by ea
h step of the algorithm, and prove that the
laimed invariants are indeed maintained. 16



Pruning Pro
edure: Prune(D;B; p)� Let  be su
h that p is a (B; )-
opy .� Update Copies(D) by removing all 
opies of the form (�;  ), where � is a de-s
endant of Region(B; p).Figure 6: The pruning pro
edure. The input is two 
omparable pla
ements D and B, and a 
opyp in Copies(B) su
h that p = quasivi
tim(B;D; ) belongs to Mat
hed(B;D). This pro
edure isused to modify the pla
ement D whenever the pla
ement B is modi�ed by deleting the 
opy p fromCopies(B). (Remark: By Fa
t 6.1, if D is a (B;C)-emulator, then Mat
hed (B;D) = Mat
hed (B;C)and quasivi
tim(B;D; ) = quasivi
tim(B;C;  ).)6.1 Emulation and dominationA pla
ement D is said to be a (B;C)-emulator i� the following two 
onditions hold for all obje
ts  and all des
endants � of �: (i) if 
ount(restri
t(C; �);  ) = 0 then 
ount(restri
t(D;�);  ) = 0, and (ii)if 
ount(restri
t(C; �);  ) > 0 and 
ount(restri
t (B; �);  ) > 0 then 
ount(restri
t (D;�);  ) > 0. Notethat C itself is a (B;C)-emulator. Furthermore, if D is a (B;C)-emulator, 
ount(restri
t(C; �);  ) > 0,and 
ount(restri
t(B; �);  ) = 0, then there is no requirement on 
ount(restri
t(D;�);  ).Fa
t 6.1 If D is a (B;C)-emulator, then Mat
hed (B;C) = Mat
hed (B;D) and Unmat
hed (B;C) =Unmat
hed (B;D).The next fa
t follows from the previous one and Fa
t 5.7.Fa
t 6.2 If D is a (B;C)-emulator, then jUnmat
hed (B;C)j � jCopies(B)j � jCopies(D)j.The pla
ement B is said to dominate a 
omparable pla
ement D i� the following 
ondition holds forall obje
ts  and for all des
endants � of �: If 
ount(restri
t(B; �);  ) = 0 then 
ount(restri
t(D;�);  ) =0. The following fa
t is immediate.Fa
t 6.3 If B dominates D, then 
ost(B) � 
ost(D).We now introdu
e a slightly weakened version of domination. Given a set S of obje
ts, the pla
ementB is said to \S-dominate" a 
omparable pla
ement D i� the following two 
onditions hold for all obje
ts and for all des
endants � of �: if  does not belong to S and 
ount(restri
t(B; �);  ) = 0, then
ount(restri
t(D;�);  ) = 0; if  belongs to S then 
ount(B; ) = 0, 
ount(D; ) = 1, and the unique
opy of  in Copies(D) is (�; ). Note that the pla
ement B dominates D i� B ;-dominates D.The following three fa
ts will be used to prove that 
ertain emulation and domination properties arepreserved during the exe
ution of the bridging algorithm.Fa
t 6.4 (Insert) Let S be an arbitrary set of obje
ts su
h that B S-dominates D and D is a (B;C)-emulator, let  be any obje
t in Missing(B) su
h that either  2 S or 
ount(C; ) = 0, let p denotethe 
opy (�; ), and let B0 denote the pla
ement (�;Copies(B) [ fpg). Then D is a (B0; C)-emulator,and if  =2 S (resp.,  2 S) then B0 S-dominates (resp., (S � f g)-dominates) D.Fa
t 6.5 (Delete) Let S be an arbitrary set of obje
ts su
h that B S-dominates D and D is a (B;C)-emulator. For any obje
t  su
h that there is at least one (B; )-
opy, let p denote quasivi
tim(B;C;  )and let B0 denote (�;Copies(B) � fpg). If p is in Unmat
hed (B;C), then let D0 = D; otherwise, let17



D0 denote the new value of D after a 
all to Prune(D;B; p). Then D0 is a (B0; C)-emulator and B0S-dominates D0. Furthermore, if p belongs to Mat
hed(B;C), then jCopies(D0)j � jCopies(D)j � 1and 
ost(D0) � 
ost(D) + quasibene�t(B;C; p).Fa
t 6.6 (Combine) Assume that � is non-atomi
 and let Bi, Ci, and Di denote three �i-pla
ements,0 � i < k, su
h that Di is a (Bi; Ci)-emulator and Bi dominates Di. Assume that B, C, and Dare equal to the pla
ements (�;[0�i<kCopies(Bi)), (�;[0�i<kCopies(Ci)), and (�;[0�i<kCopies(Di)),respe
tively. Further, let D0 denote the pla
ement (�;Copies(D) [ P ) where P is the set of 
opiesf(�; ) : 
ount(D; ) = 0 ^ 
ount(C; ) > 0g. Then, D0 is a (B;C)-emulator and B S-dominates D0,where S = f : 
ount(B; ) = 0 ^ 
ount(D0;  ) > 0g.6.2 State variablesIn this se
tion we spe
ify the variables that are used to 
apture the state of the 
omputation. Inaddition to the program variables that appear in the pseudo
ode of Se
tion 5.1, we also de�ne anumber of auxiliary variables. Ea
h auxiliary variable is 
lassi�ed as either independent or dependent.We modify the values of the independent variables expli
itly, in e�e
t augmenting the pseudo
ode. Thevalue of ea
h dependent auxiliary variable is determined by the values of the program variables andthe independent auxiliary variables. Below is a list of all state variables.1. Program variables: Pla
ements A, B, and C; potential �; 
hange in potential �; the set ofobje
ts �.2. Independent auxiliary variables: (i) the pla
ement D; (ii) the nonnegative reals de�
it ,surplus , newde�
it , and newsurplus ; (iii) the nonnegative integers numdead and numlift ; (iv) a
olor, either red or blue, for ea
h 
opy in Copies(B).3. Dependent auxiliary variables: (i) numred , the number of 
opies that are 
olored red; (ii)threshold , de�ned as min(max(0; x � �); y) where x is bene�t(A; se
ondary-vi
tim(A)) and yis bene�t(A; vi
tim(A)); (iii) the two sets of obje
ts �U = � \ f : 
ount(C; ) = 0g and�M = ���U ; (iv) the six sets of 
opies P̂ , Q̂, R̂, �P , �Q, and �R.The last six sets partition the set Copies(B) as follows: P̂ (resp., �P ) is the set of all blue 
opiesin Mat
hed(B;C) that belong to Quasiprimary(B;C) (resp., Quasise
ondary (B;C)); Q̂ (resp.,�Q) is the set of all blue 
opies in Unmat
hed (B;C) that belong to Quasiprimary(B;C) (resp.,Quasise
ondary (B;C)); R̂ (resp., �R) is the set of all red 
opies in Unmat
hed (B;C) that belongto Quasiprimary(B;C) (resp., Quasise
ondary(B;C)). It is worth remarking that our 
oloringme
hanism guarantees that none of the 
opies in Mat
hed (B;C) are 
olored red, and hen
e theabove six sets alone partition the set Copies(B).6.3 The invariant propertiesIn this se
tion, we list 
ertain properties that are 
laimed to hold at various points in the exe
ution ofthe bridging algorithm.Invariant 6.1 The following properties hold after the 
ombining step of the bridging algorithm: (i) BS-dominates D, where S = f : 
ount(B; ) = 0 ^ 
ount(C; ) > 0g; (ii) D is a (B;C)-emulator; (iii)jCopies(D)j � jCopies(B)j � numdead; (iv) numred � numdead; (v) (1 + 3���1)
ost(C) � 
ost(D) �de�
it+surplus+Pr2 �Q[Q̂ 3 �quasibene�t(B;C; r)+Pr2R̂ 2 �quasibene�t(B;C; r)+P 2T 3 �value(�; ),where T = f : 
ount(B; ) = 0 ^ 
ount(C; ) = 0g; (vi) de�
it � min(�;Pr2 �Q quasibene�t(B;C; r));(vii) surplus � �� de�
it.
18



Invariant 6.2 The following properties hold after the lo
al initialization step, after ea
h iteration of theamortized swapping loop, and after ea
h iteration of the a

ounting loop of the bridging algorithm: (i) B�M -dominates D; (ii) D is a (B;C)-emulator; (iii) jCopies(D)j � jCopies(B)j�(numdead+numlift);(iv) numred � numdead ; (v) (1+ 3���1)
ost(C) � 
ost(D)�de�
it+surplus�newde�
it+newsurplus+Pr2 �Q[Q̂ 3 � quasibene�t(B;C; r) +Pr2R̂ 2 � quasibene�t(B;C; r) +P 2�U 3 � value(�; ); (vi) de�
it �min(�;Pr2 �Q quasibene�t(B;C; r)); (vii) surplus � � � de�
it; (viii) numlift = jf : 
ount(B; ) =0 ^ 
ount(D; ) = 0 ^ 
ount(C; ) > 0gj; (ix) newde�
it � �; (x) newde�
it � numlift � threshold ;(xi) newsurplus � �� newde�
it.Invariant 6.3 The following properties hold after the potential update step of the bridging algorithm:(i) B dominates D; (ii) D is a (B;C)-emulator; (iii) jCopies(D)j � jCopies(B)j�(numdead+numlift);(iv) numred � numdead ; (v) (1+ 3���1)
ost(C) � 
ost(D)�de�
it+surplus�newde�
it+newsurplus+Pr2 �Q[Q̂ 3 � quasibene�t(B;C; r); (vi) de�
it � min(���;Pr2 �Q quasibene�t(B;C; r)); (vii) surplus ����� de�
it; (viii) numlift = jf : 
ount(D; ) = 0 ^ 
ount(C; ) > 0gj; (ix) newde�
it � �; (x)newde�
it � numlift � w, where w is su
h that ea
h r 2 Q̂ satis�es quasibene�t(B;C; r) � w and ea
hr 2 �Q satis�es quasibene�t(B;C; r)� de�
it � w; (xi) newsurplus � �� newde�
it .The above invariants are established in Se
tions 6.4 through 6.9. Our main te
hni
al lemma followsfrom Invariant 6.3.Proof of Lemma 5.8: Property (i) of Invariant 6.3 along with Fa
t 6.3 implies that 
ost(B) �
ost(D). Moreover the fa
t that 
ost(D) � (1+ 3���1)
ost(C) follows from property (v) of Invariant 6.3along with the following two inequalities: (a) de�
it �Pr2 �Q quasibene�t(B;C; r) and (b) newde�
it �Pr2 �Q[Q̂ quasibene�t(B;C; r).Inequality (a) above follows dire
tly from property (vi). For inequality (b), we use Fa
t 6.2 to dedu
ethat jUnmat
hed (B;C)j is at least jCopies(B)j�jCopies(D)j, whi
h in turn is at least numred+numliftby properties (iii) and (iv). Therefore, j �Q [ Q̂j, the number of blue 
opies in Unmat
hed (B;C) is atleast numlift . Moreover property (x) implies that for ea
h r 2 �Q [ Q̂, quasibene�t(B;C; r) � w, andhen
e Pr2 �Q[Q̂ quasibene�t(B;C; r) � numlift � w � newde�
it .6.4 Lo
al initialization stepIn this se
tion, we assume that Invariant 6.1 holds before the lo
al initialization step, and prove thatInvariant 6.2 holds after the lo
al initialization step.� State 
hange. Initialize � to Missing(B), and set � = newde�
it = newsurplus = numlift = 0.� Dependent variables. �U = � \ f : 
ount(C; ) = 0g and �M = � \ f : 
ount(C; ) > 0g.� Analysis. All properties of Invariant 6.2 either follow from the 
orresponding properties of Invari-ant 6.1 or are trivially satis�ed. Note that �M is equal to the set S in property (i) of Invariant 6.1and �U is equal to the set T in property (v) of Invariant 6.1.Thus Invariant 6.2 holds after the lo
al initialization step.6.5 Amortized swapping loopIn this se
tion, we assume that Invariant 6.2 holds before an iteration of the amortized swapping loop,and prove that it holds after the iteration. We treat ea
h swap as an insertion followed by a deletion.To fa
ilitate this de
omposition, we introdu
e a slightly stronger version of property (iii) whi
h we 
allproperty (iii)0: jCopies(D)j � jCopies(B)j � 1 � (numdead + numlift). We �rst show in Se
tion 6.5.1that Invariant 6.2 and property (iii)0 hold after the insertion. Then in Se
tion 6.5.2 we show thatInvariant 6.2 holds after the deletion. 19



6.5.1 InsertionIn this se
tion, we assume that Invariant 6.2 holds before an insertion, and prove that Invariant 6.2 andproperty (iii)0 hold after the insertion. Let  denote the in
oming obje
t 
andidate(B). For notational
onvenien
e, we use unprimed (resp., primed) symbols to denote the values of variables before (resp.,after) the insertion. If the value of a variable does not 
hange then we use the unprimed symbolthroughout.� State 
hange. Let p denote the 
opy (�; ). Set Copies(A0) = Copies(A) [ fpg, Copies(B0) =Copies(B) [ fpg, and �0 = �� f g. Set the 
olor of p to blue.� Dependent variables. If 
ount(C; ) > 0 then �0M = �M � f g and P̂ 0 = P̂ [ fpg. Otherwise�0U = �U � f g and Q̂0 = Q̂ [ fpg.� Inequalities. By Fa
t 5.4, quasibene�t(B0; C; p) = value(�; ) and for all 
opies q in Copies(B),quasibene�t(B0; C; q) = quasibene�t(B;C; q).� Analysis. Properties (i) and (ii) follow from Fa
t 6.4. Property (iii)0 follows sin
e jCopies(B)j =jCopies(B0)j � 1. Properties (iv) and (vii) through (xi) are not a�e
ted. Properties (v) and (vi)follow from the above inequalities.Thus Invariant 6.2 and property (iii)0 hold after the insertion.6.5.2 DeletionIn this se
tion, we assume that Invariant 6.2 and property (iii)0 hold before a deletion, and provethat Invariant 6.2 holds after the deletion. Throughout this se
tion, let q denote the 
opy deletedfrom A, let  denote the obje
t asso
iated with q, and let p denote quasivi
tim(B;C;  ). Note thatq is either se
ondary-vi
tim(A) or vi
tim(A) and q = mate(A;B;C; p). The 
opy p either belongsto Quasiprimary(B;C) or Quasise
ondary (B;C), and a

ordingly q either belongs to Primary(A) orSe
ondary(A). The deletion is handled di�erently in ea
h 
ase. Ea
h 
ase is further split into threedi�erent sub
ases depending on the 
olor of p and whether p is in Mat
hed (B;C) or not.For notational 
onvenien
e, we use unprimed (resp., primed) symbols to denote the values ofvariables before (resp., after) the deletion. If the value of a variable does not 
hange then we usethe unprimed symbol throughout. In all 
ases below we use the result of Fa
t 5.5 that if B0 =(�;Copies(B)�fpg) then for every 
opy r in Copies(B0), quasibene�t(B0; C; r) = quasibene�t(B;C; r).Case 1: p 2 Quasise
ondary(B;C) = �R [ �Q [ �P� Remark. In this 
ase �, newde�
it , newsurplus , and numlift do not 
hange. Hen
e properties (ix),(x), and (xi) are not a�e
ted. However the pla
ements B and D, along with the variables �,de�
it , surplus , and numdead may 
hange. This a�e
ts properties (i) through (viii) and thesehave to be restored. Of these, properties (i) and (ii) follow from Fa
t 6.5 while properties (iii),(iv), and (viii) are easy to verify. The 
ru
ial properties to establish are (iv), (v), (vi), and (vii).� State 
hange. Set �0 = max(0;�� bene�t(A; q)).� Analysis. Note that the RHS of (vii), as well as the �rst term in the RHS of (vi), is redu
ed bymin(�; bene�t(A; q)).� Case 1.1: p 2 �R{ State 
hange. Set Copies(A0) = Copies(A)� fqg and Copies(B0) = Copies(B)� fpg.{ Dependent variables. �R0 = �R� fpg, and numred 0 = numred � 1.20



{ Analysis. Properties (i), (ii), (iii), and (viii) hold and are not a�e
ted further.{ Case 1.1.1: de�
it = 0� State 
hange. None.� Analysis. Properties (iv) and (v) are una�e
ted, while properties (vi) and (vii) aredire
tly satis�ed. Hen
e all properties hold.{ Case 1.1.2: de�
it > 0� Remark. By property (vi) of Invariant 6.2, �Q 6= ;.� State 
hange. Pi
k an arbitrary 
opy r from �Q and 
olor it red. Set de�
it 0 =max(0; de�
it � quasibene�t(B;C; r)) and surplus 0 = surplus + quasibene�t(B;C; r).� Dependent variables. �Q0 = �Q� frg, �R0 = �R [ frg, and numred 0 = numred .� Inequalities. By Lemma 5.7, quasibene�t(B;C; r) � bene�t(A;mate(A;B;C; r)) �bene�t(A; se
ondary-vi
tim(A)) = bene�t(A; q).� Analysis. For (iv), note that the LHS and the RHS are both un
hanged. For (v),note that the net 
hange in the RHS is �de�
it 0 + surplus 0 + de�
it � surplus � 3 �quasibene�t(B;C; r), whi
h is nonpositive. For (vi), note that the RHS is always non-negative, and furthermore, if de�
it 0 is greater than zero then the de
rease in the LHSis quasibene�t(B;C; r)) while the de
rease in the RHS is no more than this. For (vii),note that the LHS in
reases by quasibene�t(B;C; r), whi
h is an upper bound on the
umulative in
rease in the RHS.� Case 1.2: p 2 �Q{ State 
hange. Set Copies(A0) = Copies(A)� fqg and Copies(B0) = Copies(B)� fpg.{ Dependent variables. �Q0 = �Q� fpg.{ Analysis. Properties (i), (ii), (iii), and (viii) hold and are not a�e
ted further. Property (iv)also holds sin
e the LHS and the RHS are both un
hanged.{ Case 1.2.1: de�
it = 0� State 
hange. None.� Analysis. For (v) and (vii), note that the LHS is un
hanged and the RHS only de
reases.For (vi), note that the LHS is zero and the RHS remains nonnegative.{ Case 1.2.2: de�
it > 0� State 
hange. Set de�
it 0 = max(0; de�
it � quasibene�t(B;C; p)) and surplus 0 =surplus + quasibene�t(B;C; p).� Inequalities. By Lemma 5.7, quasibene�t(B;C; p) � bene�t(A; q).� Analysis. For (v), note that the net 
hange in the RHS is �de�
it 0+ surplus 0+de�
it�surplus � 3 � quasibene�t(B;C; p), whi
h is nonpositive. For (vi), note that the RHS isalways nonnegative, and furthermore, if de�
it 0 is greater than zero then the de
reasein the LHS is quasibene�t(B;C; p)) while the de
rease in the RHS is no more than this.For (vii), note that the LHS in
reases by quasibene�t(B;C; p), whi
h is an upper boundon the 
umulative in
rease in the RHS.� Case 1.3: p 2 �P{ State 
hange. Set Copies(A0) = Copies(A) � fqg and Copies(B0) = Copies(B) � fpg. SetD0 to the new value of D after a 
all to Prune(D;B; p) and set numdead 0 = numdead + 1.{ Dependent variables. �P 0 = �P � fpg. 21



{ Analysis. Properties (i), (ii), and (iii) follow from Fa
t 6.5 and are not a�e
ted further. Notethat the RHS of (iv) in
reases by one while the RHS of (v) in
reases by 
ost(D0)� 
ost(D),whi
h is at most quasibene�t(B;C; p).{ Case 1.3.1: de�
it = 0� Case 1.3.1.1: surplus � quasibene�t(B;C; p)� State 
hange. Set surplus 0 = surplus � quasibene�t(B;C; p).� Inequalities. By Lemma 5.7, quasibene�t(B;C; p) � bene�t(A; q).� Analysis. For (iv), note that the LHS does not 
hange. For (v), note that the RHSnow redu
es by quasibene�t(B;C; p) and hen
e the 
umulative 
hange is nonpos-itive. For (vi), note that the LHS is zero. For (vii), note that the LHS redu
esby quasibene�t(B;C; p) while the RHS either be
omes zero or redu
es by at leastbene�t(A; q).� Case 1.3.1.2: surplus < quasibene�t(B;C; p)� Remark. By Fa
t 6.2 and property (ii), jUnmat
hed (B0; C)j is at least jCopies(B0)j�jCopies(D0)j, whi
h is at least numdead 0 � numred+1, using properties (iii) and (iv).Hen
e there exists at least one blue 
opy in jUnmat
hed (B;C)j and therefore jQ̂ [�Qj � 1:� State 
hange. Pi
k an arbitrary 
opy r 2 Q̂ [ �Q and 
olor it red. Set surplus 0 = 0.� Dependent variables. If r is in Quasiprimary(B;C), then Q̂0 = Q̂ � frg and R̂0 =R̂[frg. Otherwise �Q0 = �Q�frg and �R0 = �R[frg. Moreover numred 0 = numred+1.� Inequalities. By Lemma 5.7, quasibene�t(B;C; r) � bene�t(A;mate(A;B;C; r)) �bene�t(A; vi
tim(A)) � bene�t(A; se
ondary-vi
tim(A)) � � = bene�t(A; q) � � �quasibene�t(B;C; p) � �. So quasibene�t(B;C; r) + � � quasibene�t(B;C; p), andhen
e by property (vii), quasibene�t(B;C; r)+surplus � quasibene�t(B;C; p). More-over, �0 = 0, be
ause by property (vii) and the pre
onditions for 
ase 1.3.1.2,� � surplus < quasibene�t(B;C; p) � bene�t(A; q).� Analysis. For (iv), note that the LHS and the RHS both in
rease by one. For (v),note that the RHS further redu
es by at least quasibene�t(B;C; r)+surplus whi
h isat least quasibene�t(B;C; p) by the above inequality; it follows that the net 
hangein the RHS of (v) is nonpositive. For (vi), note that the LHS is zero. For (vii), notethat the LHS and the RHS are both zero.{ Case 1.3.2: de�
it > 0� Remark. By property (vi), �Q 6= ;.� State 
hange. Pi
k an arbitrary 
opy r from �Q and 
olor it red. Set de�
it 0 =max(0; de�
it � quasibene�t(B;C; r)) and surplus 0 = surplus + quasibene�t(B;C; r).� Dependent variables. �Q0 = �Q� frg, �R0 = �R [ frg, and numred 0 = numred + 1.� Inequalities. By Lemma 5.7, quasibene�t(B;C; r) � bene�t(A;mate(A;B;C; r)) �bene�t(A; se
ondary-vi
tim(A)) = bene�t(A; q) � quasibene�t(B;C; p).� Analysis. For (iv), note that the LHS and the RHS both in
rease by one. For (v),note that the new 
hange in the RHS is �de�
it 0 + surplus 0 + de�
it � surplus � 3 �quasibene�t(B;C; r), whi
h is at most �quasibene�t(B;C; p); it follows that the net
hange in the RHS is nonpositive. For (vi), note that the RHS is always nonnega-tive, and furthermore, if de�
it 0 is greater than zero then the de
rease in the LHS isquasibene�t(B;C; r)) while the de
rease in the RHS is no more than this. For (vii),note that the LHS in
reases by quasibene�t(B;C; r), whi
h is an upper bound on the
umulative in
rease in the RHS. 22



Case 2: p 2 Quasiprimary(B;C) = R̂ [ Q̂ [ P̂� Remark. In this 
ase, �, de�
it , surplus , and numdead do not 
hange and numred 
an onlyde
rease. Hen
e properties (iv), (vi), and (vii) are not a�e
ted at all. However the pla
ements Band D, along with the variables �, newde�
it , newsurplus , and numlift may 
hange. Hen
e theremaining properties may 
hange and have to be restored. Of these, (i) and (ii) will again followfrom Fa
t 6.5 while (iii) and (viii) are easy to verify. The 
ru
ial properties to establish are (v),(ix), (x), and (xi).� State 
hange. Set �0 = �+ bene�t(A; q).� Analysis. Note that the RHS of (ix) and (xi) in
reases by bene�t(A; q).� Case 2.1: p 2 R̂{ State 
hange. Set Copies(A0) = Copies(A) � fqg and Copies(B0) = Copies(B) � fpg. Setnewsurplus 0 = newsurplus + quasibene�t(B;C; p).{ Dependent variables. R̂0 = R̂� fpg and numred 0 = numred � 1.{ Inequalities. By Lemma 5.7, quasibene�t(B;C; p) � bene�t(A; q).{ Analysis. Properties (i), (ii), (iii), (viii), and (ix) are easy to verify. For (v), note that the
hange in the RHS is newsurplus 0�newsurplus�2�quasibene�t(B;C; p), whi
h is nonpositive.For (x), note that there is no 
hange in the LHS while the RHS 
an only in
rease. For (xi),note that the LHS in
reases by quasibene�t(B;C; p) while the RHS in
reases by bene�t(A; q).� Case 2.2: p 2 Q̂{ State 
hange. Set Copies(A0) = Copies(A) � fqg and Copies(B0) = Copies(B) � fpg. Setnewsurplus 0 = newsurplus + quasibene�t(B;C; p).{ Dependent variables. Q̂0 = Q̂� fpg.{ Inequalities. By Lemma 5.7, quasibene�t(B;C; p) � bene�t(A; q).{ Analysis. Properties (i), (ii), (iii), (viii), and (ix) are easy to verify. For (v), note that the
hange in the RHS is newsurplus 0�newsurplus�3�quasibene�t(B;C; p), whi
h is nonpositive.For (x), note that there is no 
hange in LHS while the RHS 
an only in
rease. For (xi), notethat the LHS in
reases by quasibene�t(B;C; p) while the RHS in
reases by bene�t(A; q).� Case 2.3: p 2 P̂{ State 
hange. Set Copies(A0) = Copies(A) � fqg and Copies(B0) = Copies(B) � fpg. SetD0 to the new value of D after a 
all to Prune(D;B; p). Set numlift 0 = numlift + 1 andnewde�
it 0 = newde�
it + bene�t(A; q).{ Dependent variables. P̂ 0 = P̂ � fpg.{ Inequalities. By Lemma 5.7, quasibene�t(B;C; p) � bene�t(A; q) and bene�t(A; q) = threshold .By Fa
t 6.5, 
ost(D0)� 
ost(D) � quasibene�t(B;C; p).{ Analysis. Properties (i), (ii), (iii), and (viii) hold. For (v), note that the 
hange in RHSis 
ost(D0) � 
ost(D) � newde�
it 0 + newde�
it , whi
h is at most quasibene�t(B;C; p) �bene�t(A; q) and hen
e is nonpositive. For (ix), note that the LHS and the RHS both
hange by the same amount. For (x), note that the LHS in
reases by bene�t(A; q) while theRHS in
reases by threshold . For (xi), note that the net 
hange in the RHS is zero while theLHS is un
hanged.Thus Invariant 6.2 holds after an iteration of the amortized swapping loop.23



6.6 A

ounting loopIn this se
tion, we assume that Invariant 6.2 holds before an iteration of the a

ounting loop, andprove that it holds after the iteration. Let  denote the obje
t that is removed from the set � in thisiteration. For notational 
onvenien
e, we use unprimed (resp., primed) symbols to denote the valuesof variables before (resp., after) the iteration. If the value of a variable does not 
hange then we usethe unprimed symbol throughout.� Remark. Sin
e � = �U [�M ,  belongs to either �U or �M . The pla
ement B and the variables�, de�
it , surplus , numdead , and numred do not 
hange here. Hen
e properties (iv), (vi),and (vii) are una�e
ted. However the pla
ement D and the variables �, newde�
it , newsurplus ,and numlift may 
hange. This a�e
ts the other properties and they have to be restored.� State 
hange. Set �0 = �� f g and �0 = �+ value(�; ).� Analysis. Note that the RHS of (ix) and (xi) in
rease by value(�; ).� Case 1:  2 �U{ Dependent variables. �0U = �U � f g.{ State 
hange. Set newsurplus 0 = newsurplus + value(�; ):{ Analysis. Properties (i), (ii), (iii), (viii), (ix), (x), and (xii) are easy to verify. For (v),note that the 
hange in the RHS is newsurplus 0 � newsurplus � 3 � value(�; ), whi
h isnonpositive. For (xi), note that the LHS and the RHS ea
h in
rease by the same amount.� Case 2:  2 �M{ Remark. We have 
ount(B; ) = 0 and, by property (i), 
ount(D; ) = 1 where the 
orre-sponding 
opy is (�; ). Furthermore, the de�nition of �M implies that 
ount(C; ) > 0.{ Dependent variables. �0M = �M �  .{ State 
hange. Set Copies(D0) = Copies(D) � fpg, where p = (�; ). Set newde�
it 0 =newde�
it + value(�; ) and numlift 0 = numlift + 1.{ Inequalities. We have 
ost(D0) � 
ost(D) = value(�; ), and moreover sin
e the obje
t  was not swapped in, we have value(�; ) � threshold .{ Analysis. The modi�
ation of D preserves property (i) with respe
t to �0M , while prop-erty (ii) is una�e
ted. Properties (iii) and (viii) hold due to the in
rease in numlift . For (v),note that the 
hange in the RHS is 
ost(D0) � 
ost(D) � newde�
it 0 + newde�
it , whi
h iszero. For (ix), note that the LHS and the RHS both in
rease by the same amount. For (x),note that the LHS in
reases by value(�; ) while the RHS in
reases by threshold . For (xi),note that the net 
hange in the RHS is zero while the LHS is un
hanged.Thus Invariant 6.2 holds after an iteration of the a

ounting loop.6.7 Potential update stepIn this se
tion, we assume that Invariant 6.2 holds before the potential update step, and prove thatInvariant 6.3 holds after the step. We use unprimed (resp., primed) symbols to denote the values ofvariables before (resp., after) the potential update step. If the value of a variable does not 
hange thenwe use the unprimed symbol throughout.� Remark. Note that � = �U = �M = ;. 24



� Analysis. Property (i) of Invariant 6.3 follows from property (i) of Invariant 6.2 sin
e �M =;. Properties (ii), (iii), (iv), (viii), (ix), and (xi) are same as the 
orresponding properties ofInvariant 6.2 and hold without 
hange. Property (v) of Invariant 6.3 follows by dropping the lasttwo summation terms of property (v) in Invariant 6.2.� State 
hange. Set w = threshold .� Analysis. Property (x) of Invariant 6.3 follows from property (x) of Invariant 6.2. By Lemma 5.7,ea
h r in Q̂ satis�es quasibene�t(B;C; r) � bene�t(A;mate(A;B;C; r)) � bene�t(A; vi
tim(A)) �threshold = w. The same lemma implies that ea
h 
opy r in �Q satis�es quasibene�t(B;C; r)�� �bene�t(A;mate(A;B;C; r))�� � bene�t(A; se
ondary-vi
tim(A))�� � threshold = w, and thenby property (vi) of Invariant 6.2, it follows that quasibene�t(B;C; r)� de�
it � w.� State 
hange. Set �0 = �+�.� Analysis. Properties (vi) and (vii) follow from the 
orresponding properties of Invariant 6.2.Thus Invariant 6.3 holds after the potential update step.6.8 Combining step at an atomi
 hierar
hyIn this se
tion, we establish the base 
ase of our proof by showing that Invariant 6.1 holds after the
ombining step at an atomi
 hierar
hy �.� State 
hange. Initialize A, B, C, and D to the same arbitrary �-pla
ement and set � = de�
it =surplus = numdead = 0. Set the 
olor of all the 
opies in B to blue.� Dependent variables. Initialize the six dependent sets R̂, Q̂, P̂ , �R, �Q, �P using B, C, and the
olors of the 
opies in B. Set numred = 0.� Inequalities. We have 
ost(C) = 
ost(D) � P 2T value(�; ), where T = f : 
ount(B; ) =
ount(C; ) = 0g. Moreover, �Q = Q̂ = R̂ = ;.� Analysis. Properties (i) and (ii) follow dire
tly from the de�nitions of domination and emulation,while property (iii) follows dire
tly. Properties (iv), (vi), and (vii) hold trivially. Property (v)follows from the above inequalities.Thus Invariant 6.1 holds after the 
ombining step at an atomi
 hierar
hy.6.9 Combining step at a non-atomi
 hierar
hyIn this se
tion, we assume that � is a non-atomi
 hierar
hy and that Invariant 6.3 holds after thepotential update step at ea
h 
hild �i, and prove that Invariant 6.1 holds after the 
ombining step at�. (Re
all that �i, 0 � i < k, denote the 
hildren of �.) We use the subs
ript i on the state variablesto denote the variable 
omputed at the 
hild �i.1. State 
hange. Initialize A = (�;[0�i<kCopies(Ai)), B = (�;[0�i<kCopies(Bi)), and C =(�;[0�i<kCopies(Ci)). The 
olor of the 
opies in Copies(B) does not 
hange during this union(i.e., ea
h 
opy p in Copies(Bi) retains the same 
olor when it enters B.) Initialize numdead =P0�i<k numdead i.2. Dependent variables. Variable numred =P0�i<k numred i.3. State 
hange. Initialize D = (�;[0�i<kCopies(Di)) and then for ea
h obje
t  su
h that
ount(C; ) > 0 and 
ount(D; ) = 0, add a 
opy ( ; u) to Copies(D).25



4. Analysis. Fa
t 6.6 guarantees that properties (i) and (ii) of Invariant 6.1 hold after this modi-�
ation. Property (iii) is established in Lemma 6.2 below. Property (iv) follows by using prop-erty (iv) of Invariant 6.3, and summing over all 
hildren of �. It remains to establish proper-ties (v), (vi), and (vii) by 
hoosing appropriate values for de�
it and surplus . Before 
hoosingthese values, we �rst write down expressions to relate the 
ost(C) to P0�i<k 
ost(Ci), and the
ost(D) to P0�i<k 
ost(Di). Let T̂ denote the set f : 
ount(C; ) = 0g, or equivalently the setf : 
ount(D; ) = 0g: Clearly,
ost(C) = X0�i<k 
ost(Ci) + X 2T̂ value(�; ); (1)
ost(D) = X0�i<k 
ost(Di) +X 2T̂ value(�; ): (2)Moreover note that this set T̂ is pre
isely the union of �U , and the set of obje
ts 
orrespondingto 
opies in R̂ and Q̂. This in 
onjun
tion with Lemma 6.1 below yieldsX 2T̂ value(�; ) � X 2�U value(�; ) + Xr2Q̂[R̂ �� 1� � quasibene�t(B;C; r): (3)5. Dependent variables. Initialize the six dependent sets R̂, Q̂, P̂ , �R, �Q, �P using B, C, and the
olors on the 
opies in B.6. Remark. By Fa
t 5.6, �Q = [0�i<k �Qi + [0�i<k �Qi where �Qi = Q̂i � Q̂.7. State 
hange. For ea
h i, 0 � i < k, set de�
it 0i = de�
it i + newde�
it i � (jQ̂i � �Qij) � wi andsurplus 0i = surplus i + newsurplus i + (jQ̂i � �Qij) � wi.8. Analysis. Using the above values of de�
it 0i and surplus 0i, we establish in Lemma 6.3 that�1 + 3��� 1� 
ost(Ci) � 
ost(Di)� de�
it 0i + surplus 0i +Xr2 �Qi[ �Qi 3 � quasibene�t(Bi; Ci; r); (4)de�
it 0i � min(�i; Xr2 �Qi[ �Qi quasibene�t(Bi; Ci; r)); (5)surplus 0i � �i � de�
it 0i: (6)9. State 
hange. Initialize �; de�
it , and surplus toP0�i<k �i,P0�i<k de�
it 0i, andP0�i<k surplus 0i,respe
tively.10. Analysis. Summing Equations (4), (5), and (6) over all 
hildren �i, 0 � i < k, we obtainX0�i<k�1 + 3��� 1� 
ost(Ci) � X0�i<k 
ost(Di)� de�
it + surplus +Xr2 �Q 3 � quasibene�t(B;C; r); (7)de�
it � min(�;Xr2 �Q quasibene�t(B;C; r)); (8)surplus � �� de�
it : (9)26



(Here we used the result of Fa
t 5.6 that �Q = [0�i<k �Qi+[0�i<k �Qi, and that for ea
h r 2 �Qi[ �Qi,quasibene�t(Bi; Ci; r) = quasibene�t(B;C; r).) Properties (vi) and (vii) are essentially the lattertwo equations. Finally, we establish property (v) using Equations (1), (2), (3), and (7) as follows:�1 + 3��� 1� 
ost(C)= �1 + 3��� 1� X0�i<k 
ost(Ci) +X 2T̂ �1 + 3��� 1� value(�; )� X0�i<k 
ost(Di)� de�
it + surplus +Xr2 �Q 3 � quasibene�t(B;C; r) +X 2T̂ �1 + 3��� 1� value(�; )� 
ost(D)� de�
it + surplus +Xr2 �Q 3 � quasibene�t(B;C; r) +X 2T̂ � 3��� 1� value(�; )� 
ost(D)� de�
it + surplus + Xr2 �Q[Q̂[R̂ 3 � quasibene�t(B;C; r) + X 2�U 3 � value(�; ):(The above four equations follow by using Equations (1), (7), (2), and (3), respe
tively.)11. Con
lusion. Thus Invariant 6.1 holds after the 
ombining step.Lemma 6.1 Let � denote a �-separated hierar
hy for some � > 1, let A and B denote two �-pla
ements, and let p denote an (A; )-
opy in Copies(A). Then quasibene�t(A;B; p) � ���1 �value(�; ).Proof: Note that value(�; ) = frequen
y(�; ) � (miss(�)� diameter (�))� frequen
y(�; ) �miss(�) � �1� 1�� :Thus quasibene�t(A;B; p) � frequen
y(�; ) �miss(�)� ��� 1 � value(�; );as required.Lemma 6.2 Suppose that properties (iii) and (viii) of Invariant 6.3 hold for ea
h 
hild �i of �, andthat the pla
ements B, C, and D and the variable numdead are initialized as indi
ated in the pre
edingstate 
hange des
riptions. Then property (iii) of Invariant 6.1 holds after the initialization.Proof: Note that jCopies(B)j = P0�i<k jCopies(Bi)j and jCopies(D)j = P0�i<k jCopies(Di)j + jT̂ jwhere T̂ = f : 
ount(D; ) = 0 ^ 
ount(C; ) > 0g. Using property (iii) of Invariant 6.3 to upperbound jCopies(Di)j, it follows that jCopies(D)j �P0�i<k(jCopies(Bi)j�numdead i�numlift i)+ jT̂ j =jCopies(B)j�numdead+(jT̂ j�P0�i<k numlift i). Moreover, jT̂ j �P0�i<k numlift i, sin
e T̂ � [0�i<kT̂i,where T̂i = f : 
ount(Di;  ) = 0 ^ 
ount(Ci;  ) > 0g, and by property (viii) of Invariant 6.3,jT̂ij = numlift i. Thus property (iii) holds.
27



Lemma 6.3 Suppose that Invariant 6.3 holds and let �Q be an arbitrary subset of Q̂. Let x and y betwo new variables that are set to de�
it+newde�
it�jQ̂� �Qj �w and surplus+newsurplus+ jQ̂� �Qj �w,respe
tively. Then the following three equations hold:�1 + 3��� 1� 
ost(C) � 
ost(D)� x+ y + Xr2 �Q[ �Q 3 � quasibene�t(B;C; r); (10)x � min(�; Xr2 �Q[ �Q quasibene�t(B;C; r)); (11)y � �� x: (12)Proof: Let j denote jQ̂j � j �Qj. Property (x) of Invariant 6.3 implies that ea
h r 2 Q̂ satis�esquasibene�t(B;C; r) � w. Therefore�x+ y � �de�
it + surplus � newde�
it + newsurplus + Xr2Q̂� �Q 3 � quasibene�t(B;C; r):Equation (10) now follows from property (v) of Invariant 6.3. Equation (12) follows dire
tly fromproperties (vii) and (x) of Invariant 6.3, sin
e y = surplus + newsurplus + j � w � (���� de�
it) +(�� newde�
it) + j � w = �� x.It remains to establish Equation (11). The �rst part (i.e., x � �), follows dire
tly from prop-erties (vi) and (viii), whi
h imply that de�
it � � � � and newde�
it � �, respe
tively. Forthe se
ond part, we �rst establish that j �Q + �Qj � (numlift � j). By Fa
t 6.2, jUnmat
hed (B;C)jis at least jCopies(B)j � jCopies(D)j whi
h, by properties (iii) and (v) of Invariant 6.3, is at leastnumred + numlift . Hen
e the number of blue 
opies in Unmat
hed (B;C) (i.e., jQ̂j + j �Qj) is at leastnumlift . It follows that j �Qj+ j �Qj � numlift � j. Now by property (x) of Invariant 6.3, ea
h r 2 �Q hasquasibene�t(B;C; r)�de�
it � w. Moreover, ea
h r 2 Q̂ satis�es quasibene�t(B;C; r) � w. Therefore,Xr2 �Q[ �Q quasibene�t(B;C; r) � de�
it + (numlift � j) � w � de�
it + newde�
it � j � w = x: (13)(For the se
ond inequality, we use property (ix) of Invariant 6.3.) This establishes Equation (11), thusproving the lemma.7 An eÆ
ient distributed implementationThe main strength of the amortizing algorithm is that, in 
ontrast with the 
ow-based algorithmof Se
tion 3, it admits a fast distributed implementation. In this se
tion, we brie
y sket
h su
h animplementation. The te
hniques employed are not parti
ularly novel. The main point we wish toemphasize is that while the pseudo
ode of Se
tion 4.2 may appear to be inherently sequential, in fa
tthe algorithm is highly parallelizable.The amortizing algorithm determines a pla
ement for the given hierar
hy � in a bottom-up man-ner. During the 
omputation, the 
urrent pla
ement, along with asso
iated 
ontrol information, isdistributed a
ross the nodes of the network. We begin by des
ribing how this information is organized.For ea
h obje
t  and ea
h des
endant � of �, we designate a node in � as the manager for  in�, denoted manager (�;  ). For load balan
ing purposes, this manager is 
hosen at random from �,where the probability of 
hoosing a parti
ular node u is size(u)=size(�). For ea
h des
endant � of �,we 
hoose a node uniformly at random from � and designate it as the leader of �, denoted leader (�).The 
urrent �-pla
ement A is distributed a
ross the nodes in � in the following natural manner. Forevery obje
t  , the manager (�; ) stores frequen
y(�; ) along with a bit indi
ating whether  belongsto Missing(A). If  belongs to Missing(A), then manager (�; ) also stores value(�; ). Otherwise,for ea
h 
opy p = (�;  ) in Copies(A), the manager (�;  ) maintains the bene�t(A; p) along with a bit28



indi
ating whether p belongs to Primary(A). The variables � and � are maintained by the leader of�. We note that a suitably random sele
tion of managers and leaders ensures that the �-pla
ement Ais distributed a
ross the nodes in � in a balan
ed manner with high probability.As mentioned earlier, the amortizing algorithm pseudo
ode of Se
tion 4.2 may appear to be inher-ently sequential. In parti
ular, in the amortized swapping loop, the pla
ement is modi�ed one swapat a time, and the number of swaps 
ould be large. Moreover, the desired swaps, whi
h satisfy some\global" obje
tive, are determined from a distributed pla
ement. Fortunately, as we dis
uss below, allof the steps in the algorithm 
an be expressed in terms of instan
es of a simple pre�x sum operationfor any given node ordering. (We stress that for the pre�x sum operations used in our implementation,the parti
ular ordering of the nodes is not important. In fa
t, this ordering is allowed to 
hange fromone invo
ation of the operation to another. Consequently, the pre�x sum operation 
an be eÆ
ientlyimplemented on any spanning tree.)Let us now 
onsider the pro
ess of 
omputing a �-pla
ement A at a non-atomi
 hierar
hy � withk 
hildren �i, 0 � i < k. Let Ai denote the �i-pla
ement 
omputed by the amortizing algorithm.The amortizing algorithm pro
eeds in four steps: the 
ombining step, the lo
al initialization step, theamortized swapping loop, and the potential update step.In the 
ombining step, A is set to (�;[0�i<kAi). This requires no movement of 
opies in ourdistributed storage; however there are three 
omputations that are impli
it in the des
ription of thealgorithm in Se
tion 4.2 that need to be performed. These are the 
al
ulation of bene�t(A; p) forea
h 
opy p in Primary(A), the 
al
ulation of value(�; ) for ea
h obje
t  in Missing(A), and theadjustment of the bit for ea
h 
opy p in Primary(Ai) � Primary(A). Fa
t 4.6 des
ribes how thesebene�ts and values 
hange during the 
ombining step. The 
omputations for ea
h obje
t  are per-formed by manager (�; ), manager (�i;  ) for 0 � i < k, and by manager (�;  ) for ea
h 
opy (�;  ) in[0�i<kPrimary(Ai). The 
omputation of the potential � is a simple summation involving the leaderof � and the leaders of the �i's.The lo
al initialization step of the amortizing algorithm involves summation over a subset of nodesin the hierar
hy �. This 
an be implemented eÆ
iently using pre�x sums in a straightforward manner.We now turn to the amortized swapping loop. We implement this loop as an amortization phasefollowed by a swapping phase. (For the rest of this dis
ussion, we say that a 
opy p is a se
ondaryi� it belongs to Se
ondary (A).) Let X denote the list of se
ondaries in A, sorted a

ording to theirbene�ts in nonin
reasing order. Let � denote the value of the potential after the 
ombining step. In theamortization phase, we determine the largest pre�x X 0 of X su
h that the sum of the bene�ts of 
opiesin X 0 is at most �. (The 
opies in X 0 are guaranteed to be swapped out in the amortized swappingloop.) Thus, the amortization phase 
orresponds to a sele
tion problem. Similarly, the swapping phase
orresponds to the following abstra
t sele
tion problem. Let X and Y denote two lists of numberssorted in nonde
reasing and nonin
reasing orders, respe
tively. (The lists X and Y 
orrespond to thebene�ts of the 
opies in the pla
ement, and the values of the obje
ts missing from the pla
ement,respe
tively.) Our goal is to determine a largest pre�x X 0 of X and a pre�x Y 0 of Y su
h that jX 0jequals jY 0j and no element of X 0 is greater than any element of Y 0.While the amortization and swapping phases are straightforward to perform sequentially, in thedistributed setting the lists are partitioned a
ross the nodes and thus are not available in sorted order.We would like to avoid expli
itly sorting these lists, sin
e sorting would require 
ostly large-s
alemovement of list elements a
ross the network. Moreover, we would like to perform the amortizationand swapping steps \in pla
e", that is, without moving the list elements. We now brie
y des
ribean eÆ
ient distributed re
ursive implementation of the amortization phase; a similar approa
h 
an beused for the swapping phase. If jXj � 1 the problem is trivial. Otherwise, we �rst sele
t a splitteramong the se
ondaries in X. Se
ond, we determine the set Z of those se
ondaries in X with bene�tat most that of the splitter. Third, we sum up the bene�ts of the se
ondaries in Z. Finally, in amanner that depends on whether the sum ex
eeds the given potential �, we de�ne a new instan
e29



of the problem with fewer elements and re
urse. Standard probabilisti
 arguments 
an be used toestablish a logarithmi
 bound on the depth of re
ursion. Moreover, ea
h level of the re
ursion 
an beimplemented using simple distributed operations su
h as broad
ast and sum. We remark that a moreeÆ
ient implementation 
an be obtained by using a large number of splitters to partition the list ofse
ondaries.The potential update step is straightforward to implement eÆ
iently. In the 
omputation of thepla
ement for a hierar
hy �, the 
ombining step requires a 
onstant number of messages per primarystored in the hierar
hy and for ea
h leader. The amortized swapping loop and the lo
al initializationstep ea
h require O(log(size(�))) pre�x sum operations. The top-down pass that is used to 
onvertthe pla
ement to a 
on
rete pla
ement 
an be easily implemented within the same 
omplexity boundsas for the bottom-up amortizing algorithm.Referen
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