
Plaement Algorithms forHierarhial Cooperative Cahing�Madhukar R. Korupoluy C. Greg Plaxton� Rajmohan RajaramanzSeptember 3, 2000AbstratConsider a hierarhial network in whih eah node periodially issues a request for an objetdrawn from a �xed set of unit-size objets. Suppose further that the following onditions are satis�ed:the frequeny with whih eah node aesses eah objet is known; eah node has a ahe of knownapaity; any ahe an be aessed by any node; any request is satis�ed by the losest node witha opy of the desired objet, at a ost proportional to the distane between the aessing nodeand the losest opy. In suh an environment, it is desirable to �ll the available ahe spae withopies of objets in suh a way that the average aess ost is minimized. We provide both exatand approximate polynomial-time algorithms for this hierarhial plaement problem. Our exatalgorithm is based on a redution to min-ost ow, and does not appear to be pratial for largeproblem sizes. Thus we are motivated to searh for a faster approximation algorithm. Our mainresult is a simple onstant-fator approximation algorithm for the hierarhial plaement problemthat admits an eÆient distributed implementation.1 IntrodutionCooperative ahing [14℄ is an emerging paradigm in the design of salable high-performane distributedsystems. In traditional ahing shemes, the primary funtion of a ahe is to at as a fast intermediatestorage between a lient or a olletion of lients and the servers. In suh shemes, eah request issatis�ed by the ahe assoiated with the requesting node or by the server of the requested objet.Moreover, the storage deisions made by one ahe are independent of those made by other ahes inthe system. The de�ning harateristi of ooperative ahing shemes, on the other hand, is that theahes ooperate in serving one another's requests as well as in storage deisions.A number of reent studies have disussed the bene�ts of ooperative ahing for distributed �lesystems and large-sale information systems suh as digital libraries and the World Wide Web. Thesestudies inlude analytial results (e.g., [3, 22℄), simulation experiments (e.g., [8, 16, 17, 28℄) and pro-totypes and produts (e.g., Harvest [9, 11℄, xFS [1℄). The widely deployed and studied Harvest ahesystem [9℄, employs a hierarhial arrangement of objet ahes to improve aess performane. Inthe Squid ahe system [30℄, whih is a suessor to Harvest, the ahes ooperate via the InternetCahe Protool [31℄ to serve one another's misses and thus redue overall traÆ. Reent experimentalwork of [28℄ also indiates the potential for signi�ant performane gains by ooperative ahing onthe Internet. In the ontext of loal-area networks, the xFS system [1℄ utilizes ooperative ahes toobtain a serverless �le system. While the appropriate level of ooperation depends on the kind and�A preliminary version of this paper appears in Proeedings of the 10th Annual ACM-SIAM Symposium on DisreteAlgorithms, 1999, pages 586{595.yDepartment of Computer Siene, University of Texas, Austin, TX 78712. Supported by NSF grant CCR{9504145.Email: fmadhukar,plaxtong�s.utexas.edu.zCollege of Computer Siene, Northeastern University, Boston, MA 02115. Part of this work was done while theauthor was at DIMACS, whih is an NSF Siene and Tehnology Center, funded under ontrat STC{91{19999 andpartially supported by the New Jersey Commission on Siene and Tehnology. Email: rraj�s.neu.edu.1



sale of the appliation, it is evident from these studies that ooperative ahing will play a signi�antrole in future information systems.This paper studies an important omponent of ooperative ahing shemes, whih we refer to asplaement. A ooperative ahing sheme an be loosely divided into three omponents: plaement,searh, and onsisteny. The plaement omponent determines where to plae the opies of the objets.The searh omponent direts eah request to an appropriate opy of the requested objet. Finally,the onsisteny omponent maintains the desired level of onsisteny among the various opies of anobjet.In [3℄, Awerbuh, Bartal, and Fiat study a general on-line ooperative ahing problem on arbitrarynetworks and present a polylog(n)-ompetitive algorithm, where n is the number of nodes in thenetwork. Their result is impressive in that it addresses the searh, plaement, and onsisteny problemsin a general adversarial setting. However, the time and spae bounds established may exeed optimalby a polylogarithmi fator. In this paper, we study a speial ase of ooperative ahing with theaim of developing simple algorithms that obtain near-optimal (e.g., onstant-fator approximation)solutions. We fous our attention on the plaement omponent of ooperative ahing and developplaement algorithms for a lass of networks that we refer to as hierarhial networks. Our de�nitionof hierarhial networks, whih is based on the ultrametri ost model used in [20℄, is motivated by thefat that modern wide-area networks tend to admit natural hierarhial deompositions. In fat, theexistene of a hierarhial deomposition is impliit in several previous studies (e.g., see [11, 29, 30℄).1.1 The problemWe address the following plaement problem for hierarhial networks. Let 	 denote a set of unit-sizeobjets and let size(u) denote the ahe size at node u. We are given for eah node u and eah objet the aess frequeny for  at u. Further assume that for any node u and objet  , the ost ofsatisfying an aess request for  originating at u is given by the ommuniation ost between u andv, where v is the losest node (with respet to the ommuniation ost funtion) that holds a opy of . The objetive of a plaement algorithm is to determine a plaement of objet opies in the nodeahes subjet to spae onstraints suh that the average aess ost over all nodes and all objets isminimized. See Setion 2 for a formal statement of the problem.Our problem formulation is most suitable for appliations in whih writes are infrequent and hangesin the aess pattern over short time intervals are moderate. Infrequent writes imply a low overheadin maintaining onsisteny among the opies of an objet, allowing us to separate the onerns ofonsisteny and plaement. Moderate hanges in the aess pattern an be addressed by invoking theplaement algorithm at regular intervals. Finally, we onsider our assumption that eah request issatis�ed by the nearest opy of the requested objet. This assumption is justi�ed by the existene ofalgorithms for the searh omponent that diret eah request to a nearby, if not the nearest, opy ofthe requested objet [4, 16, 25, 29℄. Another useful idea in this regard is the summary ahe protoolof [16℄ in whih eah ahe maintains a synopsis of the ontents of nearby ahes so that it an redireta request to a nearby opy (if one exists) in the event of a ahe miss.As indiated above, we restrit our attention to unit-sized objets. It is worth noting that thereare appliations in whih it is reasonable to redue the ase of arbitrary-sized objets to the unit-sized ase by splitting eah objet of size k into k unit-size fragments, and then plaing the fragmentsindependently. In other appliations, suh a redution may not be appropriate; thus it remains aninteresting open problem to extend our results to the ase of arbitrary-sized indivisible objets.1.2 Our resultsWe �rst present a polynomial-time exat algorithm for the hierarhial plaement problem based ona redution to minimum-ost ow. Our redution, desribed in Setion 3, generalizes the approah ofLe�, Wolf, and Yu [22℄, who solved the problem for the speial ase of a single-level hierarhy. Whilethe algorithm of Setion 3 runs in polynomial time, the degree of the polynomial is suÆiently high to2



make the algorithm largely impratial.Thus, we fous on the goal of developing a fast, simple onstant-fator approximation algorithm forthe hierarhial plaement problem that admits an eÆient distributed implementation. In Setion 4.1we onsider a natural bottom-up greedy algorithm, but �nd that this algorithm has approximationratio �(n). The lower bound proof leads us to a natural re�nement of the greedy algorithm, theamortizing algorithm, desribed in Setion 4.2. Like the greedy algorithm, the amortizing algorithmstarts with a plaement in whih the ahe of eah node holds the loally optimal set of objets. Thealgorithm then iteratively improves the plaement in a bottom-up manner as the nodes ooperate andshare information about the aess frequenies aross larger regions of the network.Our main result is that the amortizing algorithm ahieves a onstant-fator approximation for thehierarhial plaement problem. (The onstant fator is less than 14.) An important harateristi ofthe amortizing algorithm is that it an be implemented eÆiently, even in a distributed setting. Wedisuss suh an implementation towards the end of the paper.It is worth noting that the reent results on the approximation of general metris by tree metris [5,6, 12℄ imply that any hierarhial plaement algorithm an be used to obtain a plaement algorithmfor general metris giving up an extra O(log n log log n) fator in the approximation.1.3 Related workDowdy and Foster [15℄ initiated the study of ooperative ahing in the ontext of alloating �les in adistributed network [15℄. A sequene of results [2, 7, 23℄ obtained improved algorithms for entralizedas well as distributed �le alloation. These results, however, did not onsider ahe apaities atthe individual nodes. As mentioned earlier in this setion, Awerbuh, Bartal, and Fiat [3℄ provide apolylog(n)-ompetitive on-line algorithm for the general plaement problem under the assumption thatthe size of eah ahe in the on-line algorithm is polylog(n) times more than the size in the optimalalgorithm. In ontrast, we obtain an optimal entralized and a onstant-fator approximate distributedalgorithm for the o�-line version of the problem on hierarhial networks without any blowup in theahe sizes.In [22℄, Le�, Wolf, and Yu study the plaement problem for a network of workstations, whih theymodel as a single-level hierarhy. In addition to providing an optimal entralized algorithm for thisase, they give heuristis for a distributed solution. These heuristis, however, make use of partiularproperties of a single-level hierarhy that are not appliable in an arbitrary hierarhial setting.By adopting a ommuniation model based on a �xed ost funtion, we endeavor to separate theonerns of ahing (a higher-level operation) from routing (a lower-level operation). In ontrast, somereent papers have inorporated routing issues into ahing by either ombining the two problems ormaking use of available routing information. For example, the algorithms developed in [18, 26, 32℄tend to ahe opies of an objet in nodes that either lie on or are lose to the path along whih theobjet is being transferred. Routing information is also used in the plaement algorithms developedin [24℄, where the primary aim is to minimize the network ongestion that may our when requests andtheir responses are routed within the network. We also remark that ost models have been adopted inuniproessor ahing systems to model senarios in whih the osts inurred in the retrieval of objetson ahe misses may vary from one objet to another [10, 19, 33℄.With regard to uniproessor ahing shemes, reent researh has addressed the hallenge of de-signing ahe replaement poliies that take into aount the di�ering osts inurred in the retrieval ofobjets on ahe misses. This has led to studies formulating generalizations of the traditional unipro-essor ahing problems that aount for the di�ering osts [10, 19, 33℄.In a reent experimental study [21℄, Korupolu and Dahlin evaluate the pratial performane ofseveral plaement and replaement algorithms for ooperative ahing. Their simulation experimentsdemonstrate that, in pratie, both our greedy plaement algorithm as well as our amortizing plaementalgorithm are in fat very lose to the optimal. 3



We remark that the plaement problem an be viewed as an instane of faility loation withmultiple types of failities and onstraints on the number of failities that an be loated at a point.To the best of our knowledge, this multiple failities loation problem has not been studied previously.For a survey of results related to faility loation, see [13, 27℄.1.4 Organization of the paperThe remainder of the paper is organized as follows. Setion 2 gives a formal de�nition of the hierarhialplaement problem. Setion 3 give a polynomial-time exat algorithm for the hierarhial plaementproblem based on a redution to minimum-ost ow. Setion 4 presents the greedy and amortizingalgorithms. Setion 5 presents the analysis of the amortizing algorithm. Setion 6 ontains the proof ofthe main tehnial lemma. Setion 7 presents an eÆient distributed implementation of the amortizingalgorithm.The tehnial setions of this paper involve a large number of de�nitions and lemmas. In severalplaes we provide a series of de�nitions along with a number of basi \fats" that follow from thesede�nitions. These fats enapsulate ertain properties of the de�nitions that are used in subsequentparts of the paper. In order to keep the presentation foused on the more interesting and hallengingaspets of our work, we have omitted the proofs of these fats. The reader should not have any diÆultyonvining her- or himself of the orretness of these fats, though in some ases it may be a tediousexerise.2 PreliminariesIn this setion, we formally de�ne the hierarhial plaement problem. To simplify the exposition, wede�ne this problem with respet to a �xed tuple (	;V; distane ; frequeny ; size; penalty), where 	 is aset of unit-size read-only objets, V is a set of nodes, distane : V � V ! R, frequeny : V �	 ! R,size : V ! N, and penalty is a real number. We assume that the set of nodes V forms a hierarhy asde�ned in Setion 2.1. We assume that penalty is at least as large as diameter (V), where for any setof nodes U , diameter (U) is de�ned as the maximum value of distane(u; v) over all nodes u and v inV. The hierarhial plaement problem is de�ned in Setion 2.2.2.1 HierarhiesWe now indutively de�ne the notion of a hierarhy. For any node u in V, the singleton set fug isa hierarhy i� distane(u; u) = 0. A set of nodes U suh that jU j > 1 is a hierarhy i� there is apartition of U into k > 1 disjoint hierarhies �i, 0 � i < k, suh that distane(u; v) = diameter (U)(resp., distane(u; v) < diameter (U)) for all nodes u in �i and v in �j for whih i 6= j (resp., i = j).A hierarhy orresponding to a set of nodes U is atomi i� jU j = 1. Note that for any non-atomihierarhy �, the aforementioned partition is unique. For any non-atomi hierarhy � with assoiatedpartition f�i : 0 � i < kg, we de�ne eah hierarhy �i as a hild of the hierarhy �, and we de�nethe parent of eah �i, denoted parent (�i), as �. We indutively de�ne the notion of a desendant of ahierarhy � as follows: A hierarhy � is a desendant of a hierarhy � i� � = � or � is a desendantof some hild of �. A desendant � of � is proper i� � 6= �.Hierarhies an be used to model a large lass of distributed networks. For example, a homogeneous,k-node loal-area network may be modeled as a single-level hierarhy. In fat, this is preisely the modelused in [1, 22℄ in the study of ahing shemes for networks of workstations. Furthermore, it seemsplausible that some nontrivial hierarhy should provide a reasonable �rst-order model for a omplex,heterogeneous wide-area network suh as the Internet.Hierarhies an also be used to model multi-level storage; we an introdue a hierarhy for eahlevel of storage and inorporate the disparate speeds of the di�erent levels in the distane funtion.As a simple example, onsider a mahine with two levels of storage (e.g., memory and disk) havingloal aess latenies a and b, a < b. This mahine may be modeled as a hierarhy with diameter band two hildren: (i) an atomi hierarhy with zero aess frequenies and storage apaity equal to4



that of the slow level of storage, and (ii) a hierarhy with diameter a and two atomi hildren, onewith zero aess frequenies and storage apaity equal to that of the fast level of storage, and anotherwith zero storage and aess frequenies equal to those of the original mahine. This approah an begeneralized to apture both network and ahe latenies in a heterogeneous distributed network withahes of varying speeds.2.2 The hierarhial plaement problemHaving �xed the tuple (	;V; distane ; frequeny ; size; penalty) as spei�ed at the beginning of Setion 2,any desendant of the hierarhy V determines an instane of the hierarhial plaement problem. Wenow present a sequene of de�nitions leading up to the de�nition of the hierarhial plaement problem.It is onvenient to extend the de�nitions of the funtions frequeny and size to at on hierarhies.For any hierarhy � and any objet  , we de�ne frequeny(�; ) as the sum of frequeny(u;  ) over allnodes u in �. For any hierarhy �, we de�ne size(�) as the sum of size(u) over all nodes in �. Thefollowing de�nitions involving hierarhies will also prove to be useful. For any proper desendant � of V,we de�ne miss(�) as diameter (parent (�)). For the hierarhy V itself, we de�ne miss(V) as penalty . Forany hierarhy � and any objet  , we de�ne value(�; ) as frequeny(�; ) � (miss(�)� diameter (�)).A opy is a pair (�; ) where � is a hierarhy and  is an objet. A opy (�; ) is onrete i� �is atomi. A set of opies is onrete i� it is a set of onrete opies. A re�nement of a set of opiesP is a set of opies Q for whih jP j = jQj and there exists a bijetion � : P ! Q suh that for allp = (�; ) in P , the opy �(p) = (�;  ) for some desendant � of �. A onrete set of opies P isfeasible i� jf(�; ) 2 P :  2 	gj � size(�) for eah atomi hierarhy � in V. A non-onrete set ofopies is feasible i� it admits a feasible onrete re�nement. A plaement is a pair (�; P ) where � isa hierarhy, P is a set of opies, and eah opy in P is of the form (�;  ) for some desendant � of�. For any plaement A = (�; P ), we de�ne Hierarhy(A) and Copies(A) as � and P , respetively.For any hierarhy �, a plaement A is a �-plaement i� Hierarhy(A) = �. A plaement A is onrete(resp. feasible) i� Copies(A) is onrete (resp., feasible). A plaement (�; P ) is a re�nement of aplaement (�;Q) i� � = � and P is a re�nement of Q. For any plaement A and any desendant � ofHierarhy(A), we de�ne restrit(A;�) as the plaement (�; P ) where P is the set of all opies (�;  )in Copies(A) suh that � is a desendant of �.Fat 2.1 For any hierarhy �, an �-plaement A is feasible i� jCopies(restrit(A; �))j � size(�) forall desendants � of �.For any plaement A and objet  , a opy p is an (A; )-opy i� p belongs to Copies(A) and hasassoiated objet  . For any plaement A and objet  , we de�ne ount(A; ) as the number of (A; )-opies. For any plaement A, we de�neMissing(A) as the set of all objets  suh that ount(A; ) = 0.For any plaement A, node u in Hierarhy(A), and objet  , we de�ne lateny(A; u;  ) as follows: If belongs to Missing(A), then lateny(A; u;  ) = miss(Hierarhy(A)); otherwise, lateny(A; u;  ) isthe minimum value of diameter (�) over all desendants � of Hierarhy(A) suh that u belongs to� and ount(restrit(A;�);  ) > 0. Note that if A is a re�nement of B, then lateny(A; u;  ) �lateny(B; u;  ). For any plaement A, we de�ne the ost of A, denoted ost(A), as the sum offrequeny(u;  ) � lateny(A; u;  ) over all nodes u in Hierarhy(A) and all objets  in 	. Given ahierarhy �, the hierarhial plaement problem is to �nd a feasible onrete �-plaement of minimumost. We remark that if A is a re�nement of B, then ost(A) � ost(B); it follows that some minimum-ost feasible �-plaement is onrete.The following fat an be proven by indution on the struture of hierarhy �.Fat 2.2 For any �-plaement A, ost(A) is equal to the sum, over all objets  and all desendants� of � suh that ount(restrit(A; �);  ) = 0, of value(�;  ).5



A plaement A is said to be empty i� Copies(A) is the empty set. The next fat is a orollary ofthe previous one.Fat 2.3 For any empty �-plaement A, ost(A) is equal to the sum, over all objets  and all de-sendants � of �, of value(�;  ).3 A redution to minimum-ost owIn this setion we redue a given instane � of the hierarhial plaement problem to a orrespondinginstane G� of the minimum-ost ow problem. If the hierarhy � is atomi then the plaement problemis trivial; our presentation assumes that � is non-atomi.The minimum-ost ow instane G� is onstruted as follows. The vertex set onsists of thefollowing: a vertex � for every atomi desendant � of �; a vertex h ; �i for every objet  and non-atomi desendant � of �; a soure s and sink t. The edge set onsists of four types of edges: for eahatomi desendant � of � and eah objet  , there is a unit-apaity edge (h ; parent (�)i; �) with ost�value(�;  ); for eah non-atomi proper desendant � of � and eah objet  , there are two paralleledges (h ; parent (�)i; h ; �i) with apaities 1 and 1, and osts �value(�;  ) and 0, respetively; foreah objet  , there are two parallel edges (s; h ;�i) with apaities 1 and 1, and osts �value(�; )and 0, respetively; for eah atomi desendant � of �, there is an edge (�; t) with apaity size(�) andost 0.The next two lemmas imply that an integral minimum-ost ow in G� orresponds to a feasibleonrete �-plaement of minimum ost.Lemma 3.1 For every feasible onrete �-plaement A, there is an integral ow in G� with ost equalto ost(A) minus the ost of the empty �-plaement.Proof: For any hierarhy �, let A� denote the plaement restrit(A; �). We onstrut the de-sired ow as follows. For eah edge (h ; parent (�)i; �), we set the ow to 1 if ount(A�;  ) > 0,and to 0 otherwise. For eah unit-apaity edge (h ; parent (�)i; h ; �i), we set the ow to 1 ifount(A� ;  ) > 0, and to 0 otherwise. For eah in�nite-apaity edge (h ; parent (�)i; h ; �i), weset the ow to maxf0; ount (A� ;  ) � 1g. For eah unit-apaity edge (s; h ;�i), we set the ow to1 if ount(A�;  ) > 0, and to 0 otherwise. For eah in�nite-apaity edge (s; h ;�i), we set the owto maxf0; ount (A�;  ) � 1g. For eah edge (�; t), we set the ow to the sum over all objets  ofount(A� ;  ).It remains to prove that the above ow is feasible and has the stated ost. We �rst establishfeasibility. Clearly, the ow assigned to eah edge obeys the orresponding apaity onstraints. Wenow onsider the ow onservation onstraints. For eah atomi desendant � of �, the ow along theedge (�; t) is P ount(A� ;  ). This equals the sum, over all objets  , of the ows along the edgefrom h ; parent (�)i to �. For eah non-atomi desendant � of �, and for eah objet  , the totalow oming into h ; �i equals the total ow along the two parallel edges, whih is ount(A� ;  ). Thetotal ow oming out of h ; �i is the sum, over all hildren  of �, of the ow along the two paralleledges (h ; �i; h ; i). This ow equals P ount(A ;  ), whih equals ount(A�;  ). This ompletesthe proof of the feasibility of the ow.To establish the ost bound, we �rst note that the ow inurs a ost of �value(�;  ) for every objet and every desendant � of � suh that ount(A� ;  ) > 0. Furthermore, Fats 2.2 and 2.3 imply thatthe ost of A is equal to the ost of the empty �-plaement minus the sum, over all objets  and alldeendants � of � suh that ount(A� ;  ) > 0, of value(�;  ). The laimed ost bound follows.Lemma 3.2 For every integral minimum-ost ow with ost 0 in G�, there is a feasible onrete�-plaement A suh that ost(A) is equal to the ost of the empty �-plaement plus 0.6



Proof: Given an integral minimum-ost ow in G�, we de�ne a orresponding onrete �-plaementA as follows: For any atomi desendant � of � and any objet  , Copies(A) inludes the onreteopy (�;  ) i� the ow along edge (h ; parent (�)i; �) is 1. (Note that A is onrete and feasible.)It remains to establish the ost bound. To do so, we make the following key observation regardingthe ows on adjaent parallel ars. Let e0 and e1 denote the parallel edges with apaities 1 and1, respetively, between a pair of verties. If the ow along e1 is positive, then the ow along e0is 1. Otherwise, transferring a unit of ow from e1 to e0 would yield another feasible ow withsmaller ost, a ontradition. It follows that if ount(restrit(A; �);  ) > 0 for some atomi (resp.,non-atomi) proper desendant � of �, then the ow along the unit-apaity edge (h ; parent (�)i; �)(resp., (h ; parent (�)i; h ; �i)) is 1. Similarly, if ount(A; ) > 0, then the ow along the unit-apaityedge (s; h ;�i) is 1. Hene the ost of the ow is the sum, over all objets  and all desendants �of � suh that ount(restrit(A; �);  ) > 0, of �value(�;  ). The desired ost bound now follows fromFats 2.2 and 2.3.4 An approximation algorithmWhile the algorithm of Setion 3 omputes an optimal solution to the hierarhial plaement problem,its run-time omplexity is prohibitively high, at least quadrati in the produt of the number of nodesn and the number of objets m. This motivates us to seek a faster approximation algorithm. Twoandidate algorithms are presented in this setion. The �rst algorithm, whih we refer to as the greedyalgorithm, uses a natural loal improvement heuristi. We show, however, that the greedy algorithmhas an approximation ratio of �(n). The lower bound proof leads us to a variant of the greedy algorithmthat we refer to as the amortizing algorithm. Setion 5 establishes that the amortizing algorithm is aonstant-fator approximation algorithm. Setion 7 outlines an eÆient distributed implementation ofthe amortizing algorithm.Given any feasible non-onrete plaement A, the following simple proedure an be used to obtaina feasible onrete re�nement of A. Note that Copies(A) ontains a opy p of the form (�; ) for somenon-atomi hierarhy � and objet  . Using Fat 2.1, we onlude that there exists a hild � of � forwhih jCopies(restrit(A; �))j < size(�). Hene we an obtain a feasible re�nement of A by removingp from Copies(A) and replaing it with the opy (�;  ). Repeated appliation of this argument yieldsa onrete re�nement of A. (Remark: For any feasible plaement A, a minimum-ost feasible onretere�nement of A an be obtained by solving a suitably de�ned weighted mathing problem.)The greedy and amortizing plaement algorithms desribed in Setions 4.1 and 4.2, respetively,eah ompute a plaement A that is feasible but not neessarily onrete. The re�nement proedureof the preeding paragraph may then be applied to obtain a feasible onrete plaement B suh thatost(B) � ost(A).The greedy and amortizing algorithms, though well-de�ned for arbitrary hierarhies, are only in-tended to be diretly applied to hierarhies that are \�-separated" for some onstant � > 1. A hierarhyU is �-separated i� miss(V ) � � � diameter (V ) for every desendant V of U . It is straightforward toshow that any -approximation algorithm for the �-separated hierarhial plaement problem impliesa �-approximation algorithm for the hierarhial plaement problem. (The main idea is to transformthe given hierarhy into a �-separated hierarhy by rounding up all distanes to the nearest integralpower of �.) Thus, for the purposes of obtaining a onstant-fator approximation algorithm, we mayassume without loss of generality that the input hierarhy is �-separated for an arbitrary onstant� > 1.4.1 The greedy plaement algorithmFor any plaement A and any opy p in Copies(A), we de�ne min-bene�t(A; p) as the amount by whihost(A) would inrease if p were removed from Copies(A). Given a plaement A for whih Copies(A) isnonempty, the greedy elimination rule removes from Copies(A) the opy pminimizingmin-bene�t(A; p);7



Swapping Proedure: Swap(A; p)� Set Copies(A) to (Copies(A)� fpg) [ f(Hierarhy(A); andidate(A))g.Figure 1: The swapping proedure. The input is a plaement A and a opy p in Copies(A).Greedy Algorithm� Combining. Initialize Hierarhy(A) to �. If � is atomi, initialize Copies(A)to f(�; ) :  2 Sg, where S is an arbitrarily hosen subset of 	 of size size(�).Otherwise, initialize Copies(A) to [0�i<kCopies(Ai), where the Ai's are the plae-ments previously omputed at the k hildren of �.� Swapping. While bene�t(A; vitim(A)) < value(�; andidate(A)), allSwap(A; vitim(A)).Figure 2: The greedy algorithm. We assume that the hildren, if any, of a given hierarhy � havealready been proessed, and desribe the omputation assoiated with �.this opy is denoted vitim(A). (Ties may be broken in an arbitrary onsistent manner. For example,we ould assign a unique integer ID to eah opy, and use these IDs to break ties. Suh tie-breakingonventions will be assumed throughout the remainder of the paper without further omment.)In the following de�nitions, let A denote a plaement, let  denote an objet, let k denotejCopies(A)j, let A0 = A, let Ai+1 denote the plaement (Hierarhy(A);Copies(Ai) � fvitim(Ai)g),0 � i < k, let p denote an (A; )-opy, and let j denote the maximum value of i suh that p be-longs to Copies(Ai). We de�ne bene�t(A; p) as min-bene�t(Aj ; p); note that bene�t(A; vitim(A)) =min-bene�t(A; vitim(A)) and min-bene�t(A; p) � bene�t(A; p). (Remark: The remaining de�ni-tions in this paragraph are not neessary for understanding the greedy plaement algorithm. Itis simply onvenient to present them now.) The opy p belongs to the set Primary(A) i� thereis no other (Aj ;  )-opy. We de�ne Seondary (A) as Copies(A) � Primary(A). For any plae-ment A, we de�ne seondary-vitim(A) as the opy p in Seondary(A) minimizing bene�t(A; p). IfSeondary(A) is empty, then seondary-vitim(A) is unde�ned and it is onvenient to assume thatbene�t(A; seondary-vitim(A)) =1.In order to failitate the next de�nition, we assume that Missing(A) is nonempty for any plaementA. This assumption is made without loss of generality sine the set of objets 	 an be augmentedwith arbitrarily many dummy objets for whih the assoiated aess frequenies are all zero. For anyplaement A, we de�ne andidate(A) as the objet  inMissing(A) maximizing value(Hierarhy(A);  ).The swapping proedure of Figure 1 is used in all of our approximation algorithms for the hierar-hial plaement problem. Fat 2.1 implies that if the plaement passed to the swapping proedure isfeasible, then the updated plaement is also feasible.The greedy algorithm is presented in Figure 2. It is straightforward to prove that the greedyalgorithm terminates, and that the plaement A omputed by the greedy algorithm is feasible. Itis natural to ask whether the greedy algorithm is a onstant-fator approximation algorithm for thehierarhial plaement problem. Below we provide a negative answer to this question by onstrutingan n-node hierarhy � for whih the plaement omputed by the greedy algorithm has ost exeedingthe optimal by an 
(n) fator.We label n nodes from 0 to n� 1 and onstrut the hierarhy � = �n�1 as follows. First, we reatea hierarhy �1 with two atomi hildren orresponding to nodes 0 and 1. Then, for i running from 28



to n� 1, we reate a hierarhy �i with two hildren: the hierarhy �i�1 onstruted previously and anatomi hierarhy ontaining node i. The ahe size of eah node is 1. We de�ne the distane funtionbetween the nodes in suh a way that diameter (�i) equals ni�1, 1 � i < n. The penalty , whih isrequired to be at least as large as diameter (�), is set to nn�1. We assign nonzero frequenies to nobjets  i, 0 � i < n. For node 0, frequeny(0;  i) = 1=ni, 0 � i < n. For node 1, frequeny(1;  i) is 1if i is 0, and 0 otherwise. For node j, 2 � j < n, frequeny(j;  i) is 0 for all i.For this example, the set of opies assoiated with an optimal feasible onrete �-plaement Aonsists of (f0g;  0), (f1g;  1), and (fig;  i), 2 � i < n. The ost of A is 2� 1=n sine lateny(A; 0;  i)is ni�1, 1 � i < n, and lateny(A; 1;  0) is 1. In ontrast, we laim that the ost of the greedy �-plaement is n � 1. (Furthermore, any re�nement of this �-plaement also has ost n � 1.) It anbe shown by indution that, for eah hierarhy �i, 1 � i < n, the set of opies assoiated with thegreedy �i-plaement onsists of (f0g;  0), (f1g;  0), and (�j ;  j�1), 2 � j � i. The ost of the greedy�-plaement B is n� 1 sine lateny(B; 0;  i) is ni for 1 � i < n. We onlude that the approximationratio of the greedy algorithm is 
(n).We now sketh a proof that the preeding lower bound is tight, that is, the approximation ratio ofthe greedy algorithm is �(n). To establish the O(n) upper bound, we begin by making the followinglaim. Let A and B denote two �-plaements suh that the following onditions hold: A ontains kopies of some objet  and no opies of any other objet; B ontains ` opies of the same objet and no opies of any other objet; ` � k. If b1; : : : ; bk denotes the sequene of bene�ts, sorted innoninreasing order, assoiated with the k opies of  in A, then we laim that the ost of the plaementB is at least P`<i�k bi. It is easy to prove the laim by indution on the struture of the hierarhy �.Using this laim one an establish the following lemma. Let A denote the plaement omputed by thegreedy algorithm for some hierarhy �. Then the ost of any �-plaement is at least as large as thesum, over all objets  in Missing(A), of value(�; ). We now use the lemma to omplete the proof asfollows. By Fat 2.2, the ost of the greedy �-plaement is equal to the sum, over all desendants � of� and all objets  in Missing(restrit(A; �)), of value(�; ). Sine the number of desendants � of �is at most 2n� 1, it follows from the lemma that the ost of the greedy �-plaement is at most 2n� 1times the ost of the optimal �-plaement. (Remark: By a slight re�nement of this argument, it anbe shown that the greedy approximation ratio is at most the depth of the hierarhy �.)In the setions that follow we develop a fast onstant-fator approximation algorithm for the hier-arhial plaement problem. In doing so, we will make use of a number of basi fats related to thede�nitions given earlier in this setion. These fats are formally stated below.Fat 4.1 For any plaement A suh that Copies(A) is nonempty, and any p in Copies(A), we havebene�t(A; vitim(A)) � bene�t(A; p).Fat 4.2 For any plaement A and any objet  suh that there is at least one (A; )-opy, there is aunique (A; )-opy p in Primary(A), and this opy p further satis�es bene�t(A; p) � value(Hierarhy(A);  )and bene�t(A; p) � bene�t(A; q) for all (A; )-opies q.Fat 4.3 For any �-plaement A, the ost of A is equal to the ost of the empty �-plaement minusthe sum, over all opies p in Copies(A), of bene�t(A; p).Fat 4.4 (Insert) Let � denote a hierarhy, let A denote an �-plaement, let  denote an objetin Missing(A), let p denote the opy (�; ), and let A0 denote the plaement (�;Copies(A) [ fpg).Then p belongs to Primary(A0), bene�t(A0; p) = value(�; ), and the following laims hold for all q inCopies(A): bene�t(A; q) = bene�t(A0; q); q belongs to Primary(A) (resp., Seondary(A)) i� q belongsto Primary(A0) (resp., Seondary(A0)).Fat 4.5 (Delete) Let p denote vitim(A) (resp., seondary-vitim(A)) for some plaement A, and letA0 denote the plaement (Hierarhy(A);Copies(A) � fpg). Then the following onditions hold for all9



q in Copies(A0): bene�t(A; q) = bene�t(A0; q); q belongs to Primary(A) (resp., Seondary(A)) i� qbelongs to Primary(A0) (resp., Seondary(A0)).Fat 4.6 (Combine) Let � denote a non-atomi hierarhy with k hildren �i, 0 � i < k, let Ai denotean �i-plaement, 0 � i < k, and let A denote the plaement (�;[0�i<kCopies(Ai)). For any objet  suh that there is at least one (A; )-opy, let p denote the unique (A; )-opy in Primary(A), and letx denote bene�t(A; p) � value(�; ). Then for any i, 0 � i < k, and any (Ai;  )-opy q, the followinglaim holds: If p = q then bene�t(Ai; q) = x; otherwise, bene�t(A; q) = bene�t(Ai; q) � x.4.2 The amortizing plaement algorithmThe lower bound argument given in Setion 4.1 leads us to onsider a natural variant of the greedyalgorithm that we all the amortizing algorithm. The amortizing algorithm is presented in Figure 3.The high-level intuition underlying the algorithm is as follows. When deiding whih opies to exhangeat a given stage, it an be diÆult to deide whether to swap out a seondary opy with high bene�tin favor of a primary opy (of a missing objet) with low bene�t. In suh a ase, the greedy algorithmprefers to keep the seondary opy beause it has higher bene�t, but as we have seen, this approahan fail beause it waits too long to swap in missing objets. An alternative strategy is to always preferprimary opies over seondary opies, but it is easy to devise senarios in whih this strategy fails. (Notethat suh a strategy an be misled by introduing a large number of objets with aess frequeniestending to zero.) In the amortizing algorithm, we pursue a more balaned strategy: we use the miss ostinurred at the urrent level to \justify" the removal of ertain seondaries. The underlying intuitionis that sine we have already ommitted to paying the miss ost, we an a�ord to inur a similar ostin order to make room for additional primary opies to be swapped in. Unfortunately, this intuition isfar from a omplete proof. The main diÆulty is that the miss ost we are willing to pay may be muhhigher than that whih is paid by an optimal plaement. The main goal of the rest of the paper is toprove that the amortizing algorithm is a onstant-fator approximation algorithm for the hierarhialplaement problem.It is straightforward to prove that the amortizing algorithm terminates and that the plaementA omputed by the amortizing algorithm is feasible. An eÆient distributed implementation of theamortizing algorithm is given in Setion 7. It is partiularly noteworthy that the amortized swappingloop exeuted at eah non-atomi hierarhy is highly parallelizable.5 Analysis of the amortizing algorithmIn this setion we prove our main result, namely, that the ost of the plaement onstruted by theamortizing algorithm is within a onstant fator of optimal. To failitate our analysis, we introdueanother plaement algorithm that we all the bridging algorithm. The bridging algorithm omputesthree feasible plaements that we refer to as the amortizing, arbitrary, and bridging plaements, re-spetively. The amortizing plaement is idential to that omputed by the amortizing algorithm. Thearbitrary plaement is simply an arbitrary onrete plaement. The bridging plaement depends onthe hoie of the arbitrary plaement, and is designed to ensure that the ost of the bridging plaementan be relatively easily ompared to that of the amortizing and arbitrary plaements. In partiular,we establish our main theorem via the following two main steps. First, we prove that the ost of theamortizing plaement is at most that of the bridging plaement. Seond, we prove that the ost of thebridging plaement is within a onstant fration of the ost of the arbitrary plaement.5.1 The bridging algorithmIn this setion, we present the bridging algorithm whih is used to analyze the amortizing algorithm.We begin with some de�nitions.A set of plaements is said to be omparable i� all the plaements in the set have the same assoiatedhierarhy. For any plaement A and opy p = (�; ) in Copies(A), we de�ne Region(A; p) as the10



Amortizing Algorithm� Combining. This step is the same as the ombining step of the greedy algorithm,exept that we also initialize an auxiliary potential variable �. If � is atomi,then � is set to 0. Otherwise, � is set to the sum of the potentials �i, 0 � i < k,omputed at the k hildren of �.� Loal Initialization. Initialize � to the sum over all objets  in Missing(A)of value(�; ).� Amortized Swapping. This step is similar to the swapping step of the greedyalgorithm, exept that the potential � is used to redue the bene�ts of ertainseondary opies.1. Let x = bene�t(A; seondary-vitim(A)), let y = bene�t(A; vitim(A)), andlet z = value(�; andidate(A)).2. If x�� � min(y; z) then all Swap(A; seondary-vitim(A)), subtrat z from�, set � to max(0;�� x), and goto line 1.3. If y < z, then all Swap(A; vitim(A)), add y � z to �, and goto line 1.� Potential Update. Add � to �.Figure 3: The amortizing algorithm. We assume that the hildren, if any, of a given hierarhy � havealready been proessed, and desribe the omputation assoiated with �.set of nodes u suh that lateny(A; u;  ) would inrease if p were removed from Copies(A); it isstraightforward to prove that Region(A; p) is a hierarhy. For any omparable plaements A and B,we de�ne Min-mathed(A;B) as the set of all p = (�; ) in Copies(A) for whih there is a opyq = (�;  ) in Copies(B) suh that � is a desendant of Region(A; p). We de�ne Min-unmathed(A;B)as Copies(A)�Min-mathed(A;B).In the following de�nitions, let A and B denote two omparable plaements, let  denote an objet,and let P (resp., Q) denote the set of all (A; )-opies inMin-mathed(A;B) (resp.,Min-unmathed(A;B)).If there are one or more (A; )-opies, then we de�ne quasivitim(A;B; ) as follows: If Q is empty(resp., nonempty), then quasivitim(A;B; ) is the opy p in P (resp., Q) minimizingmin-bene�t(A; p).For the remaining de�nitions in this paragraph, let k denote the number of (A; )-opies, let A0 = A,let Ai+1 denote the plaement (Hierarhy(A);Copies(Ai) � fquasivitim(Ai; B;  )g), 0 � i < k, let pdenote a (A; )-opy, and let j denote the maximum value of i suh that p belongs to Copies(Ai). Wede�ne quasibene�t(A;B; p) as min-bene�t(Aj ; p). The opy p belongs to the set Quasiprimary(A;B)i� j = k � 1. We de�ne Quasiseondary (A;B) as Copies(A) � Quasiprimary(A;B). The opy p be-longs to the set Mathed (A;B) i� p belongs to Min-mathed(Aj ; B). We de�ne Unmathed (A;B) asCopies(A) �Mathed(A;B). Note that if p belongs to Min-mathed(A`; B) where 0 � ` � j then pbelongs to Min-mathed (Ai; B) for all i suh that ` � i � j.The following six fats are analogous to Fats 4.1, through 4.6.Fat 5.1 Let A and B denote two omparable plaements, let  denote an objet suh that ount(A; ) >0, and let P (resp., Q) denote the set of all (A; )-opies in Mathed (A;B) (resp., Unmathed (A;B)).Then if Q is empty (resp., nonempty), quasivitim(A;B; ) belongs to P (resp., Q) and for all p in P(resp., Q), quasibene�t(A;B; quasivitim(A;B; )) � quasibene�t(A;B; p).Fat 5.2 Let A and B denote two omparable plaements, let  denote an objet suh that ount(A; ) >0, and let P (resp., Q) denote the set of all (A; )-opies in Mathed (A;B) (resp., Unmathed (A;B)).11



Then there is a unique (A; )-opy p in Quasiprimary(A;B), and this opy p further satis�es the follow-ing three onditions: p belongs to P unless P is empty; quasibene�t(A;B; p) � value(Hierarhy(A);  );quasibene�t(A;B; p) � quasibene�t(A;B; q) for all q in P (resp., Q).Fat 5.3 For any two omparable �-plaements A and B, the ost of A is equal to the ost of theempty �-plaement minus the sum, over all opies p in Copies(A), of quasibene�t(A;B; p).Fat 5.4 (Insert) Let � denote a hierarhy, let A and B denote two �-plaements, let  denote anobjet in Missing(A), let p denote the opy (�; ) and let A0 denote the plaement (�;Copies(A) [fpg). Then p belongs to Quasiprimary(A0; B), quasibene�t(A0; B; p) = value(�; p), and the follow-ing laims hold for all q in Copies(A): quasibene�t(A;B; q) = quasibene�t(A0; B; q); q belongs toQuasiprimary(A;B) (resp., Quasiseondary(A;B), Mathed(A;B), Unmathed (A;B)) i� q belongs toto Quasiprimary(A0; B) (resp., Quasiseondary (A0; B), Mathed (A0; B), Unmathed (A0; B)).Fat 5.5 (Delete) Let A and B denote two omparable plaements, let  denote an objet suh thatount(A; ) > 0, and let A0 denote the plaement (Hierarhy(A);Copies(A)�fquasivitim(A;B; )g).Then the following laims hold for all p in Copies(A0): quasibene�t(A;B; p) = quasibene�t(A0; B; p);p belongs to Quasiprimary(A;B) (resp., Quasiseondary(A;B), Mathed(A;B), Unmathed (A;B)) i�p belongs to Quasiprimary(A0; B) (resp., Quasiseondary(A0; B), Mathed(A0; B), Unmathed (A0; B)).Fat 5.6 (Combine) Let � denote a non-atomi hierarhy with k hildren �i, 0 � i < k, let Aiand Bi denote two �i-plaements, 0 � i < k, let A denote the plaement (�;[0�i<kCopies(Ai)), letB denote the plaement (�;[0�i<kCopies(Bi)), let P denote [0�i<kMathed (Ai; Bi), let Q denote[0�i<kUnmathed (Ai; Bi), let  denote an objet suh that ount(A; ) > 0, let p denote the unique(A; )-opy in Quasiprimary(A;B), and let x denote quasibene�t(A;B; p) � value(�; ). Then thefollowing laims hold: if P is nonempty then p belongs to P ; quasibene�t(Ai; B; p) = x; p belongs toMathed(A;B) (resp., Unmathed (A;B)) i� ount(B; ) > 0 (resp., ount(B; ) = 0). Furthermore,for any i, 0 � i < k, and any (Ai;  )-opy q di�erent from p, the following laims hold: q belongsto Mathed(A;B) (resp., Unmathed (A;B)) i� q belongs to P (resp., Q); quasibene�t(A;B; q) =quasibene�t(Ai; Bi; q); if q belongs to Quasiseondary (Ai; Bi) then q belongs to Quasiseondary(A;B);if Q is empty or q belongs to Q then quasibene�t(A;B; q) � x.The next fat is used in Setion 6.1.Fat 5.7 Let A and B denote two omparable plaements. Then jUnmathed (A;B)j � Copies(A)j �jCopies(B)j.Two plaements A and B are de�ned to be oupled i� they are omparable and ount(A; ) =ount(B; ) for all objets  . A triple of plaements (A;B;C) is de�ned to be nie i� A, B, and Care omparable and A and B are oupled.In the following de�nition, let (A;B;C) denote a nie triple of plaements, let k = jCopies(A)j, letA0 = A and B0 = B, let Ai+1 denote the plaement (Hierarhy(A);Copies(Ai) � fvitim(Ai)g), letBi+1 denote the plaement (Hierarhy(B);Copies(Bi)� fquasivitim(Bi; C;  )g) where  denotes theobjet assoiated with vitim(Ai), 0 � i < k, let p denote a opy in Copies(B), and let j denote themaximum value of i suh that p belongs to Copies(Bi). (Note that eah triple (Ai; Bi; C), 0 � i < k,is nie.) We de�ne mate(A;B;C; p) as vitim(Aj).The oupled swapping proedure of Figure 4 exeutes a pair of swaps, one involving eah of theoupled plaements in a given nie triple. Lemmas 5.2 and 5.1 below are useful for analyzing thee�et of a all to the oupled swapping proedure for whih the parameter p is either vitim(A) orseondary-vitim(A). 12



Coupled Swapping Proedure: Swaps(A;B;C; p)� Let  be suh that p is a (A; )-opy.� Call Swap(A; p) and Swap(B; quasivitim(B;C;  )).Figure 4: The oupled swapping proedure. The input is a nie triple of plaements (A;B;C) and aopy p in Copies(A). Beause A and B are oupled, andidate(A) = andidate(B) and hene the sameopy is inserted in both alls to the swapping proedure. It follows that the output triple (A;B;C) isnie.Lemma 5.1 (Insert) Let (A;B;C) denote a nie triple of plaements, let  denote an objet inMissing(A), let A0 denote the plaement (Hierarhy(A);Copies(A) [ f(Hierarhy (A);  )g), and let B0denote the plaement (Hierarhy(B);Copies(B) [ f(Hierarhy(B);  )g). Then (A0; B0; C) is nie.Proof: Straightforward from Fats 4.4 and 5.4.Lemma 5.2 (Delete) Let p be equal to vitim(A) (resp., seondary-vitim(A)) for some plaement Abelonging to a nie triple (A;B;C), let  be suh that p is an (A; )-opy, let A0 denote the plaement(Hierarhy(A);Copies(A)�fvitim(A)g), and let B0 denote the plaement (Hierarhy(B);Copies(B)�fquasivitim(A;B; )g). Then (A0; B0; C) is nie.Proof: Straightforward from Fats 4.5 and 5.5.Lemma 5.3 (Combine) Let � denote a non-atomi hierarhy with k hildren �i, 0 � i < k, let Ai,Bi, and Ci denote �i-plaements suh that (Ai; Bi; Ci) is nie, 0 � i < k, and let A, B, and C denotethe plaements (�;[0�i<kCopies(Ai)), (�;[0�i<kCopies(Bi)), and (�;[0�i<kCopies(Ci)), respetively.Then (A;B;C) is nie.Proof: Straightforward from Fats 4.6 and 5.6.The bridging algorithm is presented in Figure 5. The program variables A, B, and C orrespondto the amortizing, bridging, and arbitrary plaements, respetively.The following lemma implies that the swaps assoiated with the bridging plaement are well-de�ned.Given this lemma, it is straightforward to prove that all of the plaements assoiated with the bridgingalgorithm are feasible. Furthermore, it is straightforward to prove that the amortizing plaementA omputed by the bridging algorithm is the same as the plaement omputed by the amortizingalgorithm.Lemma 5.4 After the ombining step of the bridging algorithm, and after eah iteration of the amor-tized swapping loop of the bridging algorithm, (A;B;C) is nie.Proof: Lemmas 5.2 and 5.1 imply that the laim annot fail for the �rst time after an iteration ofthe amortized swapping loop. We now argue that the laim annot fail for the �rst time after theombining step assoiated with some hierarhy �. If � is atomi, then A, B, and C are all equal andthe laim follows. If � is non-atomi then (Ai; Bi; Ci) are nie, 0 � i < k, then Lemma 5.3 implies that(A;B;C) is nie. The lemma follows sine no other part of the ode modi�es A, B, or C.
13



Bridging Algorithm� Combining. Initialize A and � as in the amortizing algorithm. If � is atomi,initialize B and C to A. Otherwise, initialize Hierarhy(B) (resp., Hierarhy(C))to �, and initialize Copies(B) (resp., Copies(C)) to [0�i<kCopies(Bi), wherethe Bi's (resp., Ci's) are the bridging (resp., arbitrary) plaements previouslyomputed at the k hildren of �.� Loal Initialization. Set � to 0 and � to Missing(A).� Amortized Swapping. This step applies the same sequene of swaps to theamortizing plaement A as in the amortizing algorithm. Eah of these swaps isaompanied by a orresponding swap involving the bridging plaement B. (Fora proof that the latter swaps are well-de�ned, see Lemma 5.4 below.)1. Let x = bene�t(A; seondary-vitim(A)), let y = bene�t(A; vitim(A)), andlet z = value(�; andidate(A)).2. If x�� � min(y; z) then all Swaps(A;B;C; seondary-vitim (A)), set � tomax(0;� � x), remove andidate(A) from �, and goto line 1.3. If y < z, then all Swaps(A;B;C; vitim(A)), add y to �, removeandidate(A) from �, and goto line 1.� Aounting. For eah objet  in �, add value(�; ) to � and remove  from�.� Potential Update. Add � to �.Figure 5: The bridging algorithm. We introdue this algorithm for the sole purpose of analyzing theamortizing algorithm. We assume that the hildren, if any, of a given hierarhy � have already beenproessed, and desribe the omputation assoiated with �.
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5.2 Cost omparison: amortizing versus bridgingIn this setion we ompare the ost of the amortizing and bridging plaements omputed by the bridgingalgorithm for a given hierarhy.For any multiset of reals X, we de�ne sum(X) as the sum of the elements of X. For any multiset ofreals X, and any integer i suh that 0 � i � jXj, we de�ne Big(X; i) (resp., Little(X; i)) as the multisetonsisting of the i largest (resp., smallest) reals in X. For any two multisets of reals X and Y suh thatjXj = jY j, we write X � Y to mean that the ith largest element of X is less than or equal to the ithlargest element of Y , 1 � i � jXj. A triple (X;Y;Z) is de�ned to be good i� the following onditionshold: (i) X, Y , and Z are �nite multisets of reals, (ii) jXj + jY j = jZj, (iii) X � Little(Z; jXj), (iv)Y � Big(Z; jY j), and (v) sum(X) + sum(Y ) � sum(Z).Fat 5.8 (Insert) For any real x, the triples (fxg; fg; fxg) and (fg; fxg; fxg) are good.Fat 5.9 (Delete) Let (X;Y;Z) be good and assume that Z 0 = Big(Z; jZj � 1). If X is empty, then letX 0 = X and Y 0 = Big(Y; jY j � 1). Otherwise, let X 0 = Big(X; jXj � 1) and Y 0 = Y . In either ase,(X 0; Y 0; Z 0) is good.Fat 5.10 (Combine: Merge) Let (Xi; Yi; Zi) be good, 1 � i � k, and let X = [1�i�kXi, Y =[1�i�kYi, and Z = [1�i�kZi. Then (X;Y;Z) is good. Furthermore, if Y is empty and x is themaximum element of X, then (X � fxg; fxg; Z) is good.Fat 5.11 (Combine: Adjust) Let (X;Y;Z) be good and let w be a nonnegative real. Assume that zis a maximum element of Z and let Z 0 = (Z � fzg) [ fw + zg. If Y is nonempty, then let X 0 = Xand Y 0 = (Y � fyg) [ fw + yg where y is a maximum element of Y . Otherwise, let Y 0 = Y andX 0 = (X �fxg)[ fw+ xg where x is a maximum element of X. In either ase, (X 0; Y 0; Z 0) is good.Lemma 5.5 Let A, B, and C denote the orresponding program variables after the ombining stepof the bridging algorithm, or after some iteration of the amortized swapping loop of the bridgingalgorithm. Let X, Y , and Z denote the multisets fquasibene�t(B;C; p) : p 2 Unmathed (B;C)g,fquasibene�t(B;C; p) : p 2 Mathed(B;C)g, and fbene�t(A; p) : p 2 Copies(A)g, respetively. Then(X;Y;Z) is good.Proof: After the ombining step, there are two ases to onsider. If � is atomi, then A = B = C,Unmathed (B;C) is empty, Mathed (B;C) = Copies(A), and bene�t(A; p) = quasibene�t(B;C; p) forall p in Copies(A); the laim follows. If � is non-atomi, the laim follows by Fats 4.6, 5.6, 5.10,and 5.11. (Remark: Fat 5.11 takes are of the inrease in bene�t/quasibene�t assoiated with theprimary/quasiprimary opy of eah objet.)It remains to onsider the e�et of the pair of swapping operations (one applied to A, the other toB) ourring in some iteration of the amortized swapping loop of the bridging algorithm. This pair ofswaps an be viewed as a pair of deletions followed by a pair of insertions. Fats 4.5, 5.5, and 5.9 implythat the laim holds after the pair of deletions. Fats 4.4, 5.4, and 5.8 imply that the laim holds afterthe pair of insertions.Lemma 5.6 For any hierarhy �, let A (resp., B) denote the amortizing (resp., bridging) plaementomputed by the bridging algorithm. Then ost(A) � ost(B).Proof: From Lemma 5.5 and ondition (v) in the de�nition of a good triple, it follows thatPp2Copies(B) quasibene�t(B;C; p) is at most Pp2Copies(A) bene�t(A; p). The laim now follows byFats 4.3 and 5.3. 15



5.3 Cost omparison: bridging versus arbitraryIn this setion we ompare the ost of the bridging and arbitrary plaements omputed by the bridgingalgorithm for a given hierarhy. The following lemma is useful for our analysis.Lemma 5.7 Let A, B, and C denote the orresponding program variables after the ombining stepof the bridging algorithm, or after some iteration of the amortized swapping loop of the bridging al-gorithm. Let q belong to Copies(B), let p = mate(A;B;C; q), let x = bene�t(A; p), and let y =quasibene�t(B;C; q). If q belongs to Mathed(B;C) (resp., Unmathed (B;C)) then x � y (resp.,x � y).Proof: Follows from Lemma 5.5 and onditions (iii) and (iv) in the de�nition of a good triple.We now state our main tehnial lemma. The proof of this lemma is given in Setion 6.Lemma 5.8 Let B (resp., C) denote the bridging (resp., arbitrary) plaement omputed by the bridgingalgorithm for a given �-separated hierarhy. Then ost(B) � (1 + 3���1 ) � ost(C).Given that the arbitrary plaement is potentially an optimal plaement, we onlude that the ostof the bridging plaement is within a onstant fator of optimal.5.4 The main theoremUsing Lemmas 5.6 and 5.8, we obtain the following result.Lemma 5.9 For any �-separated hierarhy, the ost of the plaement omputed by the amortizingalgorithm is at most (1 + 3���1) times optimal.Reall that while the plaement A omputed by the amortizing algorithm is not neessarily onrete,A an easily be re�ned to a onrete plaement B suh that ost(B) � ost(A), as disussed at thebeginning of Setion 4. Lemma 5.9 assumes that the given hierarhy is �-separated as de�ned inSetion 4. If this is not the ase, we �rst transform the given hierarhy into a �-separated hierarhy asindiated in Setion 4, introduing an extra fator of � into the approximation bound.Theorem 5.1 For any hierarhy � and for any onstant � > 1, the ost of the plaement omputed bythe amortizing algorithm is at most � � (1 + 3���1) times optimal.The above approximation ratio is less than 13.93 for the optimal hoie of � = 1 +p3=2 � 1:866.6 Proof of the main tehnial lemmaIn this setion we prove Lemma 5.8 whih ompares the ost of the bridging and the arbitrary plae-ments omputed by the bridging algorithm. Throughout this setion, we let A, B, and C denotethe program variables of the bridging algorithm orresponding to the amortizing, bridging, and arbi-trary plaements. Note that by Lemma 5.4, the triple (A;B;C) is nie and therefore Hierarhy(A) =Hierarhy(B) = Hierarhy(C). We let � denote this ommon hierarhy, and furthermore if � is notatomi we let �i, 0 � i < k, denote the hildren of �. For oniseness, the above notational onventionsare assumed throughout this setion without further repetition.To failitate the omparison of the bridging plaement B with the arbitrary plaement C, weintrodue and maintain another omparable plaement D that is losely related to C.The rest of this setion is organized as follows. First, in Setion 6.1 we introdue the notions of\emulation" and \domination" to desribe the relationship that we maintain between the plaementsB, C, and D. In Setion 6.2 we list the variables used to speify the state of the omputation. InSetion 6.3 we list a number of invariants that are laimed to hold at partiular points in the exeution ofthe bridging algorithm, and prove that Lemma 5.8 follows from these invariants. Finally, in Setions 6.4through 6.9 we examine how the state is a�eted by eah step of the algorithm, and prove that thelaimed invariants are indeed maintained. 16



Pruning Proedure: Prune(D;B; p)� Let  be suh that p is a (B; )-opy .� Update Copies(D) by removing all opies of the form (�;  ), where � is a de-sendant of Region(B; p).Figure 6: The pruning proedure. The input is two omparable plaements D and B, and a opyp in Copies(B) suh that p = quasivitim(B;D; ) belongs to Mathed(B;D). This proedure isused to modify the plaement D whenever the plaement B is modi�ed by deleting the opy p fromCopies(B). (Remark: By Fat 6.1, if D is a (B;C)-emulator, then Mathed (B;D) = Mathed (B;C)and quasivitim(B;D; ) = quasivitim(B;C;  ).)6.1 Emulation and dominationA plaement D is said to be a (B;C)-emulator i� the following two onditions hold for all objets  and all desendants � of �: (i) if ount(restrit(C; �);  ) = 0 then ount(restrit(D;�);  ) = 0, and (ii)if ount(restrit(C; �);  ) > 0 and ount(restrit (B; �);  ) > 0 then ount(restrit (D;�);  ) > 0. Notethat C itself is a (B;C)-emulator. Furthermore, if D is a (B;C)-emulator, ount(restrit(C; �);  ) > 0,and ount(restrit(B; �);  ) = 0, then there is no requirement on ount(restrit(D;�);  ).Fat 6.1 If D is a (B;C)-emulator, then Mathed (B;C) = Mathed (B;D) and Unmathed (B;C) =Unmathed (B;D).The next fat follows from the previous one and Fat 5.7.Fat 6.2 If D is a (B;C)-emulator, then jUnmathed (B;C)j � jCopies(B)j � jCopies(D)j.The plaement B is said to dominate a omparable plaement D i� the following ondition holds forall objets  and for all desendants � of �: If ount(restrit(B; �);  ) = 0 then ount(restrit(D;�);  ) =0. The following fat is immediate.Fat 6.3 If B dominates D, then ost(B) � ost(D).We now introdue a slightly weakened version of domination. Given a set S of objets, the plaementB is said to \S-dominate" a omparable plaement D i� the following two onditions hold for all objets and for all desendants � of �: if  does not belong to S and ount(restrit(B; �);  ) = 0, thenount(restrit(D;�);  ) = 0; if  belongs to S then ount(B; ) = 0, ount(D; ) = 1, and the uniqueopy of  in Copies(D) is (�; ). Note that the plaement B dominates D i� B ;-dominates D.The following three fats will be used to prove that ertain emulation and domination properties arepreserved during the exeution of the bridging algorithm.Fat 6.4 (Insert) Let S be an arbitrary set of objets suh that B S-dominates D and D is a (B;C)-emulator, let  be any objet in Missing(B) suh that either  2 S or ount(C; ) = 0, let p denotethe opy (�; ), and let B0 denote the plaement (�;Copies(B) [ fpg). Then D is a (B0; C)-emulator,and if  =2 S (resp.,  2 S) then B0 S-dominates (resp., (S � f g)-dominates) D.Fat 6.5 (Delete) Let S be an arbitrary set of objets suh that B S-dominates D and D is a (B;C)-emulator. For any objet  suh that there is at least one (B; )-opy, let p denote quasivitim(B;C;  )and let B0 denote (�;Copies(B) � fpg). If p is in Unmathed (B;C), then let D0 = D; otherwise, let17



D0 denote the new value of D after a all to Prune(D;B; p). Then D0 is a (B0; C)-emulator and B0S-dominates D0. Furthermore, if p belongs to Mathed(B;C), then jCopies(D0)j � jCopies(D)j � 1and ost(D0) � ost(D) + quasibene�t(B;C; p).Fat 6.6 (Combine) Assume that � is non-atomi and let Bi, Ci, and Di denote three �i-plaements,0 � i < k, suh that Di is a (Bi; Ci)-emulator and Bi dominates Di. Assume that B, C, and Dare equal to the plaements (�;[0�i<kCopies(Bi)), (�;[0�i<kCopies(Ci)), and (�;[0�i<kCopies(Di)),respetively. Further, let D0 denote the plaement (�;Copies(D) [ P ) where P is the set of opiesf(�; ) : ount(D; ) = 0 ^ ount(C; ) > 0g. Then, D0 is a (B;C)-emulator and B S-dominates D0,where S = f : ount(B; ) = 0 ^ ount(D0;  ) > 0g.6.2 State variablesIn this setion we speify the variables that are used to apture the state of the omputation. Inaddition to the program variables that appear in the pseudoode of Setion 5.1, we also de�ne anumber of auxiliary variables. Eah auxiliary variable is lassi�ed as either independent or dependent.We modify the values of the independent variables expliitly, in e�et augmenting the pseudoode. Thevalue of eah dependent auxiliary variable is determined by the values of the program variables andthe independent auxiliary variables. Below is a list of all state variables.1. Program variables: Plaements A, B, and C; potential �; hange in potential �; the set ofobjets �.2. Independent auxiliary variables: (i) the plaement D; (ii) the nonnegative reals de�it ,surplus , newde�it , and newsurplus ; (iii) the nonnegative integers numdead and numlift ; (iv) aolor, either red or blue, for eah opy in Copies(B).3. Dependent auxiliary variables: (i) numred , the number of opies that are olored red; (ii)threshold , de�ned as min(max(0; x � �); y) where x is bene�t(A; seondary-vitim(A)) and yis bene�t(A; vitim(A)); (iii) the two sets of objets �U = � \ f : ount(C; ) = 0g and�M = ���U ; (iv) the six sets of opies P̂ , Q̂, R̂, �P , �Q, and �R.The last six sets partition the set Copies(B) as follows: P̂ (resp., �P ) is the set of all blue opiesin Mathed(B;C) that belong to Quasiprimary(B;C) (resp., Quasiseondary (B;C)); Q̂ (resp.,�Q) is the set of all blue opies in Unmathed (B;C) that belong to Quasiprimary(B;C) (resp.,Quasiseondary (B;C)); R̂ (resp., �R) is the set of all red opies in Unmathed (B;C) that belongto Quasiprimary(B;C) (resp., Quasiseondary(B;C)). It is worth remarking that our oloringmehanism guarantees that none of the opies in Mathed (B;C) are olored red, and hene theabove six sets alone partition the set Copies(B).6.3 The invariant propertiesIn this setion, we list ertain properties that are laimed to hold at various points in the exeution ofthe bridging algorithm.Invariant 6.1 The following properties hold after the ombining step of the bridging algorithm: (i) BS-dominates D, where S = f : ount(B; ) = 0 ^ ount(C; ) > 0g; (ii) D is a (B;C)-emulator; (iii)jCopies(D)j � jCopies(B)j � numdead; (iv) numred � numdead; (v) (1 + 3���1)ost(C) � ost(D) �de�it+surplus+Pr2 �Q[Q̂ 3 �quasibene�t(B;C; r)+Pr2R̂ 2 �quasibene�t(B;C; r)+P 2T 3 �value(�; ),where T = f : ount(B; ) = 0 ^ ount(C; ) = 0g; (vi) de�it � min(�;Pr2 �Q quasibene�t(B;C; r));(vii) surplus � �� de�it.
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Invariant 6.2 The following properties hold after the loal initialization step, after eah iteration of theamortized swapping loop, and after eah iteration of the aounting loop of the bridging algorithm: (i) B�M -dominates D; (ii) D is a (B;C)-emulator; (iii) jCopies(D)j � jCopies(B)j�(numdead+numlift);(iv) numred � numdead ; (v) (1+ 3���1)ost(C) � ost(D)�de�it+surplus�newde�it+newsurplus+Pr2 �Q[Q̂ 3 � quasibene�t(B;C; r) +Pr2R̂ 2 � quasibene�t(B;C; r) +P 2�U 3 � value(�; ); (vi) de�it �min(�;Pr2 �Q quasibene�t(B;C; r)); (vii) surplus � � � de�it; (viii) numlift = jf : ount(B; ) =0 ^ ount(D; ) = 0 ^ ount(C; ) > 0gj; (ix) newde�it � �; (x) newde�it � numlift � threshold ;(xi) newsurplus � �� newde�it.Invariant 6.3 The following properties hold after the potential update step of the bridging algorithm:(i) B dominates D; (ii) D is a (B;C)-emulator; (iii) jCopies(D)j � jCopies(B)j�(numdead+numlift);(iv) numred � numdead ; (v) (1+ 3���1)ost(C) � ost(D)�de�it+surplus�newde�it+newsurplus+Pr2 �Q[Q̂ 3 � quasibene�t(B;C; r); (vi) de�it � min(���;Pr2 �Q quasibene�t(B;C; r)); (vii) surplus ����� de�it; (viii) numlift = jf : ount(D; ) = 0 ^ ount(C; ) > 0gj; (ix) newde�it � �; (x)newde�it � numlift � w, where w is suh that eah r 2 Q̂ satis�es quasibene�t(B;C; r) � w and eahr 2 �Q satis�es quasibene�t(B;C; r)� de�it � w; (xi) newsurplus � �� newde�it .The above invariants are established in Setions 6.4 through 6.9. Our main tehnial lemma followsfrom Invariant 6.3.Proof of Lemma 5.8: Property (i) of Invariant 6.3 along with Fat 6.3 implies that ost(B) �ost(D). Moreover the fat that ost(D) � (1+ 3���1)ost(C) follows from property (v) of Invariant 6.3along with the following two inequalities: (a) de�it �Pr2 �Q quasibene�t(B;C; r) and (b) newde�it �Pr2 �Q[Q̂ quasibene�t(B;C; r).Inequality (a) above follows diretly from property (vi). For inequality (b), we use Fat 6.2 to deduethat jUnmathed (B;C)j is at least jCopies(B)j�jCopies(D)j, whih in turn is at least numred+numliftby properties (iii) and (iv). Therefore, j �Q [ Q̂j, the number of blue opies in Unmathed (B;C) is atleast numlift . Moreover property (x) implies that for eah r 2 �Q [ Q̂, quasibene�t(B;C; r) � w, andhene Pr2 �Q[Q̂ quasibene�t(B;C; r) � numlift � w � newde�it .6.4 Loal initialization stepIn this setion, we assume that Invariant 6.1 holds before the loal initialization step, and prove thatInvariant 6.2 holds after the loal initialization step.� State hange. Initialize � to Missing(B), and set � = newde�it = newsurplus = numlift = 0.� Dependent variables. �U = � \ f : ount(C; ) = 0g and �M = � \ f : ount(C; ) > 0g.� Analysis. All properties of Invariant 6.2 either follow from the orresponding properties of Invari-ant 6.1 or are trivially satis�ed. Note that �M is equal to the set S in property (i) of Invariant 6.1and �U is equal to the set T in property (v) of Invariant 6.1.Thus Invariant 6.2 holds after the loal initialization step.6.5 Amortized swapping loopIn this setion, we assume that Invariant 6.2 holds before an iteration of the amortized swapping loop,and prove that it holds after the iteration. We treat eah swap as an insertion followed by a deletion.To failitate this deomposition, we introdue a slightly stronger version of property (iii) whih we allproperty (iii)0: jCopies(D)j � jCopies(B)j � 1 � (numdead + numlift). We �rst show in Setion 6.5.1that Invariant 6.2 and property (iii)0 hold after the insertion. Then in Setion 6.5.2 we show thatInvariant 6.2 holds after the deletion. 19



6.5.1 InsertionIn this setion, we assume that Invariant 6.2 holds before an insertion, and prove that Invariant 6.2 andproperty (iii)0 hold after the insertion. Let  denote the inoming objet andidate(B). For notationalonveniene, we use unprimed (resp., primed) symbols to denote the values of variables before (resp.,after) the insertion. If the value of a variable does not hange then we use the unprimed symbolthroughout.� State hange. Let p denote the opy (�; ). Set Copies(A0) = Copies(A) [ fpg, Copies(B0) =Copies(B) [ fpg, and �0 = �� f g. Set the olor of p to blue.� Dependent variables. If ount(C; ) > 0 then �0M = �M � f g and P̂ 0 = P̂ [ fpg. Otherwise�0U = �U � f g and Q̂0 = Q̂ [ fpg.� Inequalities. By Fat 5.4, quasibene�t(B0; C; p) = value(�; ) and for all opies q in Copies(B),quasibene�t(B0; C; q) = quasibene�t(B;C; q).� Analysis. Properties (i) and (ii) follow from Fat 6.4. Property (iii)0 follows sine jCopies(B)j =jCopies(B0)j � 1. Properties (iv) and (vii) through (xi) are not a�eted. Properties (v) and (vi)follow from the above inequalities.Thus Invariant 6.2 and property (iii)0 hold after the insertion.6.5.2 DeletionIn this setion, we assume that Invariant 6.2 and property (iii)0 hold before a deletion, and provethat Invariant 6.2 holds after the deletion. Throughout this setion, let q denote the opy deletedfrom A, let  denote the objet assoiated with q, and let p denote quasivitim(B;C;  ). Note thatq is either seondary-vitim(A) or vitim(A) and q = mate(A;B;C; p). The opy p either belongsto Quasiprimary(B;C) or Quasiseondary (B;C), and aordingly q either belongs to Primary(A) orSeondary(A). The deletion is handled di�erently in eah ase. Eah ase is further split into threedi�erent subases depending on the olor of p and whether p is in Mathed (B;C) or not.For notational onveniene, we use unprimed (resp., primed) symbols to denote the values ofvariables before (resp., after) the deletion. If the value of a variable does not hange then we usethe unprimed symbol throughout. In all ases below we use the result of Fat 5.5 that if B0 =(�;Copies(B)�fpg) then for every opy r in Copies(B0), quasibene�t(B0; C; r) = quasibene�t(B;C; r).Case 1: p 2 Quasiseondary(B;C) = �R [ �Q [ �P� Remark. In this ase �, newde�it , newsurplus , and numlift do not hange. Hene properties (ix),(x), and (xi) are not a�eted. However the plaements B and D, along with the variables �,de�it , surplus , and numdead may hange. This a�ets properties (i) through (viii) and thesehave to be restored. Of these, properties (i) and (ii) follow from Fat 6.5 while properties (iii),(iv), and (viii) are easy to verify. The ruial properties to establish are (iv), (v), (vi), and (vii).� State hange. Set �0 = max(0;�� bene�t(A; q)).� Analysis. Note that the RHS of (vii), as well as the �rst term in the RHS of (vi), is redued bymin(�; bene�t(A; q)).� Case 1.1: p 2 �R{ State hange. Set Copies(A0) = Copies(A)� fqg and Copies(B0) = Copies(B)� fpg.{ Dependent variables. �R0 = �R� fpg, and numred 0 = numred � 1.20



{ Analysis. Properties (i), (ii), (iii), and (viii) hold and are not a�eted further.{ Case 1.1.1: de�it = 0� State hange. None.� Analysis. Properties (iv) and (v) are una�eted, while properties (vi) and (vii) arediretly satis�ed. Hene all properties hold.{ Case 1.1.2: de�it > 0� Remark. By property (vi) of Invariant 6.2, �Q 6= ;.� State hange. Pik an arbitrary opy r from �Q and olor it red. Set de�it 0 =max(0; de�it � quasibene�t(B;C; r)) and surplus 0 = surplus + quasibene�t(B;C; r).� Dependent variables. �Q0 = �Q� frg, �R0 = �R [ frg, and numred 0 = numred .� Inequalities. By Lemma 5.7, quasibene�t(B;C; r) � bene�t(A;mate(A;B;C; r)) �bene�t(A; seondary-vitim(A)) = bene�t(A; q).� Analysis. For (iv), note that the LHS and the RHS are both unhanged. For (v),note that the net hange in the RHS is �de�it 0 + surplus 0 + de�it � surplus � 3 �quasibene�t(B;C; r), whih is nonpositive. For (vi), note that the RHS is always non-negative, and furthermore, if de�it 0 is greater than zero then the derease in the LHSis quasibene�t(B;C; r)) while the derease in the RHS is no more than this. For (vii),note that the LHS inreases by quasibene�t(B;C; r), whih is an upper bound on theumulative inrease in the RHS.� Case 1.2: p 2 �Q{ State hange. Set Copies(A0) = Copies(A)� fqg and Copies(B0) = Copies(B)� fpg.{ Dependent variables. �Q0 = �Q� fpg.{ Analysis. Properties (i), (ii), (iii), and (viii) hold and are not a�eted further. Property (iv)also holds sine the LHS and the RHS are both unhanged.{ Case 1.2.1: de�it = 0� State hange. None.� Analysis. For (v) and (vii), note that the LHS is unhanged and the RHS only dereases.For (vi), note that the LHS is zero and the RHS remains nonnegative.{ Case 1.2.2: de�it > 0� State hange. Set de�it 0 = max(0; de�it � quasibene�t(B;C; p)) and surplus 0 =surplus + quasibene�t(B;C; p).� Inequalities. By Lemma 5.7, quasibene�t(B;C; p) � bene�t(A; q).� Analysis. For (v), note that the net hange in the RHS is �de�it 0+ surplus 0+de�it�surplus � 3 � quasibene�t(B;C; p), whih is nonpositive. For (vi), note that the RHS isalways nonnegative, and furthermore, if de�it 0 is greater than zero then the dereasein the LHS is quasibene�t(B;C; p)) while the derease in the RHS is no more than this.For (vii), note that the LHS inreases by quasibene�t(B;C; p), whih is an upper boundon the umulative inrease in the RHS.� Case 1.3: p 2 �P{ State hange. Set Copies(A0) = Copies(A) � fqg and Copies(B0) = Copies(B) � fpg. SetD0 to the new value of D after a all to Prune(D;B; p) and set numdead 0 = numdead + 1.{ Dependent variables. �P 0 = �P � fpg. 21



{ Analysis. Properties (i), (ii), and (iii) follow from Fat 6.5 and are not a�eted further. Notethat the RHS of (iv) inreases by one while the RHS of (v) inreases by ost(D0)� ost(D),whih is at most quasibene�t(B;C; p).{ Case 1.3.1: de�it = 0� Case 1.3.1.1: surplus � quasibene�t(B;C; p)� State hange. Set surplus 0 = surplus � quasibene�t(B;C; p).� Inequalities. By Lemma 5.7, quasibene�t(B;C; p) � bene�t(A; q).� Analysis. For (iv), note that the LHS does not hange. For (v), note that the RHSnow redues by quasibene�t(B;C; p) and hene the umulative hange is nonpos-itive. For (vi), note that the LHS is zero. For (vii), note that the LHS reduesby quasibene�t(B;C; p) while the RHS either beomes zero or redues by at leastbene�t(A; q).� Case 1.3.1.2: surplus < quasibene�t(B;C; p)� Remark. By Fat 6.2 and property (ii), jUnmathed (B0; C)j is at least jCopies(B0)j�jCopies(D0)j, whih is at least numdead 0 � numred+1, using properties (iii) and (iv).Hene there exists at least one blue opy in jUnmathed (B;C)j and therefore jQ̂ [�Qj � 1:� State hange. Pik an arbitrary opy r 2 Q̂ [ �Q and olor it red. Set surplus 0 = 0.� Dependent variables. If r is in Quasiprimary(B;C), then Q̂0 = Q̂ � frg and R̂0 =R̂[frg. Otherwise �Q0 = �Q�frg and �R0 = �R[frg. Moreover numred 0 = numred+1.� Inequalities. By Lemma 5.7, quasibene�t(B;C; r) � bene�t(A;mate(A;B;C; r)) �bene�t(A; vitim(A)) � bene�t(A; seondary-vitim(A)) � � = bene�t(A; q) � � �quasibene�t(B;C; p) � �. So quasibene�t(B;C; r) + � � quasibene�t(B;C; p), andhene by property (vii), quasibene�t(B;C; r)+surplus � quasibene�t(B;C; p). More-over, �0 = 0, beause by property (vii) and the preonditions for ase 1.3.1.2,� � surplus < quasibene�t(B;C; p) � bene�t(A; q).� Analysis. For (iv), note that the LHS and the RHS both inrease by one. For (v),note that the RHS further redues by at least quasibene�t(B;C; r)+surplus whih isat least quasibene�t(B;C; p) by the above inequality; it follows that the net hangein the RHS of (v) is nonpositive. For (vi), note that the LHS is zero. For (vii), notethat the LHS and the RHS are both zero.{ Case 1.3.2: de�it > 0� Remark. By property (vi), �Q 6= ;.� State hange. Pik an arbitrary opy r from �Q and olor it red. Set de�it 0 =max(0; de�it � quasibene�t(B;C; r)) and surplus 0 = surplus + quasibene�t(B;C; r).� Dependent variables. �Q0 = �Q� frg, �R0 = �R [ frg, and numred 0 = numred + 1.� Inequalities. By Lemma 5.7, quasibene�t(B;C; r) � bene�t(A;mate(A;B;C; r)) �bene�t(A; seondary-vitim(A)) = bene�t(A; q) � quasibene�t(B;C; p).� Analysis. For (iv), note that the LHS and the RHS both inrease by one. For (v),note that the new hange in the RHS is �de�it 0 + surplus 0 + de�it � surplus � 3 �quasibene�t(B;C; r), whih is at most �quasibene�t(B;C; p); it follows that the nethange in the RHS is nonpositive. For (vi), note that the RHS is always nonnega-tive, and furthermore, if de�it 0 is greater than zero then the derease in the LHS isquasibene�t(B;C; r)) while the derease in the RHS is no more than this. For (vii),note that the LHS inreases by quasibene�t(B;C; r), whih is an upper bound on theumulative inrease in the RHS. 22



Case 2: p 2 Quasiprimary(B;C) = R̂ [ Q̂ [ P̂� Remark. In this ase, �, de�it , surplus , and numdead do not hange and numred an onlyderease. Hene properties (iv), (vi), and (vii) are not a�eted at all. However the plaements Band D, along with the variables �, newde�it , newsurplus , and numlift may hange. Hene theremaining properties may hange and have to be restored. Of these, (i) and (ii) will again followfrom Fat 6.5 while (iii) and (viii) are easy to verify. The ruial properties to establish are (v),(ix), (x), and (xi).� State hange. Set �0 = �+ bene�t(A; q).� Analysis. Note that the RHS of (ix) and (xi) inreases by bene�t(A; q).� Case 2.1: p 2 R̂{ State hange. Set Copies(A0) = Copies(A) � fqg and Copies(B0) = Copies(B) � fpg. Setnewsurplus 0 = newsurplus + quasibene�t(B;C; p).{ Dependent variables. R̂0 = R̂� fpg and numred 0 = numred � 1.{ Inequalities. By Lemma 5.7, quasibene�t(B;C; p) � bene�t(A; q).{ Analysis. Properties (i), (ii), (iii), (viii), and (ix) are easy to verify. For (v), note that thehange in the RHS is newsurplus 0�newsurplus�2�quasibene�t(B;C; p), whih is nonpositive.For (x), note that there is no hange in the LHS while the RHS an only inrease. For (xi),note that the LHS inreases by quasibene�t(B;C; p) while the RHS inreases by bene�t(A; q).� Case 2.2: p 2 Q̂{ State hange. Set Copies(A0) = Copies(A) � fqg and Copies(B0) = Copies(B) � fpg. Setnewsurplus 0 = newsurplus + quasibene�t(B;C; p).{ Dependent variables. Q̂0 = Q̂� fpg.{ Inequalities. By Lemma 5.7, quasibene�t(B;C; p) � bene�t(A; q).{ Analysis. Properties (i), (ii), (iii), (viii), and (ix) are easy to verify. For (v), note that thehange in the RHS is newsurplus 0�newsurplus�3�quasibene�t(B;C; p), whih is nonpositive.For (x), note that there is no hange in LHS while the RHS an only inrease. For (xi), notethat the LHS inreases by quasibene�t(B;C; p) while the RHS inreases by bene�t(A; q).� Case 2.3: p 2 P̂{ State hange. Set Copies(A0) = Copies(A) � fqg and Copies(B0) = Copies(B) � fpg. SetD0 to the new value of D after a all to Prune(D;B; p). Set numlift 0 = numlift + 1 andnewde�it 0 = newde�it + bene�t(A; q).{ Dependent variables. P̂ 0 = P̂ � fpg.{ Inequalities. By Lemma 5.7, quasibene�t(B;C; p) � bene�t(A; q) and bene�t(A; q) = threshold .By Fat 6.5, ost(D0)� ost(D) � quasibene�t(B;C; p).{ Analysis. Properties (i), (ii), (iii), and (viii) hold. For (v), note that the hange in RHSis ost(D0) � ost(D) � newde�it 0 + newde�it , whih is at most quasibene�t(B;C; p) �bene�t(A; q) and hene is nonpositive. For (ix), note that the LHS and the RHS bothhange by the same amount. For (x), note that the LHS inreases by bene�t(A; q) while theRHS inreases by threshold . For (xi), note that the net hange in the RHS is zero while theLHS is unhanged.Thus Invariant 6.2 holds after an iteration of the amortized swapping loop.23



6.6 Aounting loopIn this setion, we assume that Invariant 6.2 holds before an iteration of the aounting loop, andprove that it holds after the iteration. Let  denote the objet that is removed from the set � in thisiteration. For notational onveniene, we use unprimed (resp., primed) symbols to denote the valuesof variables before (resp., after) the iteration. If the value of a variable does not hange then we usethe unprimed symbol throughout.� Remark. Sine � = �U [�M ,  belongs to either �U or �M . The plaement B and the variables�, de�it , surplus , numdead , and numred do not hange here. Hene properties (iv), (vi),and (vii) are una�eted. However the plaement D and the variables �, newde�it , newsurplus ,and numlift may hange. This a�ets the other properties and they have to be restored.� State hange. Set �0 = �� f g and �0 = �+ value(�; ).� Analysis. Note that the RHS of (ix) and (xi) inrease by value(�; ).� Case 1:  2 �U{ Dependent variables. �0U = �U � f g.{ State hange. Set newsurplus 0 = newsurplus + value(�; ):{ Analysis. Properties (i), (ii), (iii), (viii), (ix), (x), and (xii) are easy to verify. For (v),note that the hange in the RHS is newsurplus 0 � newsurplus � 3 � value(�; ), whih isnonpositive. For (xi), note that the LHS and the RHS eah inrease by the same amount.� Case 2:  2 �M{ Remark. We have ount(B; ) = 0 and, by property (i), ount(D; ) = 1 where the orre-sponding opy is (�; ). Furthermore, the de�nition of �M implies that ount(C; ) > 0.{ Dependent variables. �0M = �M �  .{ State hange. Set Copies(D0) = Copies(D) � fpg, where p = (�; ). Set newde�it 0 =newde�it + value(�; ) and numlift 0 = numlift + 1.{ Inequalities. We have ost(D0) � ost(D) = value(�; ), and moreover sine the objet  was not swapped in, we have value(�; ) � threshold .{ Analysis. The modi�ation of D preserves property (i) with respet to �0M , while prop-erty (ii) is una�eted. Properties (iii) and (viii) hold due to the inrease in numlift . For (v),note that the hange in the RHS is ost(D0) � ost(D) � newde�it 0 + newde�it , whih iszero. For (ix), note that the LHS and the RHS both inrease by the same amount. For (x),note that the LHS inreases by value(�; ) while the RHS inreases by threshold . For (xi),note that the net hange in the RHS is zero while the LHS is unhanged.Thus Invariant 6.2 holds after an iteration of the aounting loop.6.7 Potential update stepIn this setion, we assume that Invariant 6.2 holds before the potential update step, and prove thatInvariant 6.3 holds after the step. We use unprimed (resp., primed) symbols to denote the values ofvariables before (resp., after) the potential update step. If the value of a variable does not hange thenwe use the unprimed symbol throughout.� Remark. Note that � = �U = �M = ;. 24



� Analysis. Property (i) of Invariant 6.3 follows from property (i) of Invariant 6.2 sine �M =;. Properties (ii), (iii), (iv), (viii), (ix), and (xi) are same as the orresponding properties ofInvariant 6.2 and hold without hange. Property (v) of Invariant 6.3 follows by dropping the lasttwo summation terms of property (v) in Invariant 6.2.� State hange. Set w = threshold .� Analysis. Property (x) of Invariant 6.3 follows from property (x) of Invariant 6.2. By Lemma 5.7,eah r in Q̂ satis�es quasibene�t(B;C; r) � bene�t(A;mate(A;B;C; r)) � bene�t(A; vitim(A)) �threshold = w. The same lemma implies that eah opy r in �Q satis�es quasibene�t(B;C; r)�� �bene�t(A;mate(A;B;C; r))�� � bene�t(A; seondary-vitim(A))�� � threshold = w, and thenby property (vi) of Invariant 6.2, it follows that quasibene�t(B;C; r)� de�it � w.� State hange. Set �0 = �+�.� Analysis. Properties (vi) and (vii) follow from the orresponding properties of Invariant 6.2.Thus Invariant 6.3 holds after the potential update step.6.8 Combining step at an atomi hierarhyIn this setion, we establish the base ase of our proof by showing that Invariant 6.1 holds after theombining step at an atomi hierarhy �.� State hange. Initialize A, B, C, and D to the same arbitrary �-plaement and set � = de�it =surplus = numdead = 0. Set the olor of all the opies in B to blue.� Dependent variables. Initialize the six dependent sets R̂, Q̂, P̂ , �R, �Q, �P using B, C, and theolors of the opies in B. Set numred = 0.� Inequalities. We have ost(C) = ost(D) � P 2T value(�; ), where T = f : ount(B; ) =ount(C; ) = 0g. Moreover, �Q = Q̂ = R̂ = ;.� Analysis. Properties (i) and (ii) follow diretly from the de�nitions of domination and emulation,while property (iii) follows diretly. Properties (iv), (vi), and (vii) hold trivially. Property (v)follows from the above inequalities.Thus Invariant 6.1 holds after the ombining step at an atomi hierarhy.6.9 Combining step at a non-atomi hierarhyIn this setion, we assume that � is a non-atomi hierarhy and that Invariant 6.3 holds after thepotential update step at eah hild �i, and prove that Invariant 6.1 holds after the ombining step at�. (Reall that �i, 0 � i < k, denote the hildren of �.) We use the subsript i on the state variablesto denote the variable omputed at the hild �i.1. State hange. Initialize A = (�;[0�i<kCopies(Ai)), B = (�;[0�i<kCopies(Bi)), and C =(�;[0�i<kCopies(Ci)). The olor of the opies in Copies(B) does not hange during this union(i.e., eah opy p in Copies(Bi) retains the same olor when it enters B.) Initialize numdead =P0�i<k numdead i.2. Dependent variables. Variable numred =P0�i<k numred i.3. State hange. Initialize D = (�;[0�i<kCopies(Di)) and then for eah objet  suh thatount(C; ) > 0 and ount(D; ) = 0, add a opy ( ; u) to Copies(D).25



4. Analysis. Fat 6.6 guarantees that properties (i) and (ii) of Invariant 6.1 hold after this modi-�ation. Property (iii) is established in Lemma 6.2 below. Property (iv) follows by using prop-erty (iv) of Invariant 6.3, and summing over all hildren of �. It remains to establish proper-ties (v), (vi), and (vii) by hoosing appropriate values for de�it and surplus . Before hoosingthese values, we �rst write down expressions to relate the ost(C) to P0�i<k ost(Ci), and theost(D) to P0�i<k ost(Di). Let T̂ denote the set f : ount(C; ) = 0g, or equivalently the setf : ount(D; ) = 0g: Clearly,ost(C) = X0�i<k ost(Ci) + X 2T̂ value(�; ); (1)ost(D) = X0�i<k ost(Di) +X 2T̂ value(�; ): (2)Moreover note that this set T̂ is preisely the union of �U , and the set of objets orrespondingto opies in R̂ and Q̂. This in onjuntion with Lemma 6.1 below yieldsX 2T̂ value(�; ) � X 2�U value(�; ) + Xr2Q̂[R̂ �� 1� � quasibene�t(B;C; r): (3)5. Dependent variables. Initialize the six dependent sets R̂, Q̂, P̂ , �R, �Q, �P using B, C, and theolors on the opies in B.6. Remark. By Fat 5.6, �Q = [0�i<k �Qi + [0�i<k �Qi where �Qi = Q̂i � Q̂.7. State hange. For eah i, 0 � i < k, set de�it 0i = de�it i + newde�it i � (jQ̂i � �Qij) � wi andsurplus 0i = surplus i + newsurplus i + (jQ̂i � �Qij) � wi.8. Analysis. Using the above values of de�it 0i and surplus 0i, we establish in Lemma 6.3 that�1 + 3��� 1� ost(Ci) � ost(Di)� de�it 0i + surplus 0i +Xr2 �Qi[ �Qi 3 � quasibene�t(Bi; Ci; r); (4)de�it 0i � min(�i; Xr2 �Qi[ �Qi quasibene�t(Bi; Ci; r)); (5)surplus 0i � �i � de�it 0i: (6)9. State hange. Initialize �; de�it , and surplus toP0�i<k �i,P0�i<k de�it 0i, andP0�i<k surplus 0i,respetively.10. Analysis. Summing Equations (4), (5), and (6) over all hildren �i, 0 � i < k, we obtainX0�i<k�1 + 3��� 1� ost(Ci) � X0�i<k ost(Di)� de�it + surplus +Xr2 �Q 3 � quasibene�t(B;C; r); (7)de�it � min(�;Xr2 �Q quasibene�t(B;C; r)); (8)surplus � �� de�it : (9)26



(Here we used the result of Fat 5.6 that �Q = [0�i<k �Qi+[0�i<k �Qi, and that for eah r 2 �Qi[ �Qi,quasibene�t(Bi; Ci; r) = quasibene�t(B;C; r).) Properties (vi) and (vii) are essentially the lattertwo equations. Finally, we establish property (v) using Equations (1), (2), (3), and (7) as follows:�1 + 3��� 1� ost(C)= �1 + 3��� 1� X0�i<k ost(Ci) +X 2T̂ �1 + 3��� 1� value(�; )� X0�i<k ost(Di)� de�it + surplus +Xr2 �Q 3 � quasibene�t(B;C; r) +X 2T̂ �1 + 3��� 1� value(�; )� ost(D)� de�it + surplus +Xr2 �Q 3 � quasibene�t(B;C; r) +X 2T̂ � 3��� 1� value(�; )� ost(D)� de�it + surplus + Xr2 �Q[Q̂[R̂ 3 � quasibene�t(B;C; r) + X 2�U 3 � value(�; ):(The above four equations follow by using Equations (1), (7), (2), and (3), respetively.)11. Conlusion. Thus Invariant 6.1 holds after the ombining step.Lemma 6.1 Let � denote a �-separated hierarhy for some � > 1, let A and B denote two �-plaements, and let p denote an (A; )-opy in Copies(A). Then quasibene�t(A;B; p) � ���1 �value(�; ).Proof: Note that value(�; ) = frequeny(�; ) � (miss(�)� diameter (�))� frequeny(�; ) �miss(�) � �1� 1�� :Thus quasibene�t(A;B; p) � frequeny(�; ) �miss(�)� ��� 1 � value(�; );as required.Lemma 6.2 Suppose that properties (iii) and (viii) of Invariant 6.3 hold for eah hild �i of �, andthat the plaements B, C, and D and the variable numdead are initialized as indiated in the preedingstate hange desriptions. Then property (iii) of Invariant 6.1 holds after the initialization.Proof: Note that jCopies(B)j = P0�i<k jCopies(Bi)j and jCopies(D)j = P0�i<k jCopies(Di)j + jT̂ jwhere T̂ = f : ount(D; ) = 0 ^ ount(C; ) > 0g. Using property (iii) of Invariant 6.3 to upperbound jCopies(Di)j, it follows that jCopies(D)j �P0�i<k(jCopies(Bi)j�numdead i�numlift i)+ jT̂ j =jCopies(B)j�numdead+(jT̂ j�P0�i<k numlift i). Moreover, jT̂ j �P0�i<k numlift i, sine T̂ � [0�i<kT̂i,where T̂i = f : ount(Di;  ) = 0 ^ ount(Ci;  ) > 0g, and by property (viii) of Invariant 6.3,jT̂ij = numlift i. Thus property (iii) holds.
27



Lemma 6.3 Suppose that Invariant 6.3 holds and let �Q be an arbitrary subset of Q̂. Let x and y betwo new variables that are set to de�it+newde�it�jQ̂� �Qj �w and surplus+newsurplus+ jQ̂� �Qj �w,respetively. Then the following three equations hold:�1 + 3��� 1� ost(C) � ost(D)� x+ y + Xr2 �Q[ �Q 3 � quasibene�t(B;C; r); (10)x � min(�; Xr2 �Q[ �Q quasibene�t(B;C; r)); (11)y � �� x: (12)Proof: Let j denote jQ̂j � j �Qj. Property (x) of Invariant 6.3 implies that eah r 2 Q̂ satis�esquasibene�t(B;C; r) � w. Therefore�x+ y � �de�it + surplus � newde�it + newsurplus + Xr2Q̂� �Q 3 � quasibene�t(B;C; r):Equation (10) now follows from property (v) of Invariant 6.3. Equation (12) follows diretly fromproperties (vii) and (x) of Invariant 6.3, sine y = surplus + newsurplus + j � w � (���� de�it) +(�� newde�it) + j � w = �� x.It remains to establish Equation (11). The �rst part (i.e., x � �), follows diretly from prop-erties (vi) and (viii), whih imply that de�it � � � � and newde�it � �, respetively. Forthe seond part, we �rst establish that j �Q + �Qj � (numlift � j). By Fat 6.2, jUnmathed (B;C)jis at least jCopies(B)j � jCopies(D)j whih, by properties (iii) and (v) of Invariant 6.3, is at leastnumred + numlift . Hene the number of blue opies in Unmathed (B;C) (i.e., jQ̂j + j �Qj) is at leastnumlift . It follows that j �Qj+ j �Qj � numlift � j. Now by property (x) of Invariant 6.3, eah r 2 �Q hasquasibene�t(B;C; r)�de�it � w. Moreover, eah r 2 Q̂ satis�es quasibene�t(B;C; r) � w. Therefore,Xr2 �Q[ �Q quasibene�t(B;C; r) � de�it + (numlift � j) � w � de�it + newde�it � j � w = x: (13)(For the seond inequality, we use property (ix) of Invariant 6.3.) This establishes Equation (11), thusproving the lemma.7 An eÆient distributed implementationThe main strength of the amortizing algorithm is that, in ontrast with the ow-based algorithmof Setion 3, it admits a fast distributed implementation. In this setion, we briey sketh suh animplementation. The tehniques employed are not partiularly novel. The main point we wish toemphasize is that while the pseudoode of Setion 4.2 may appear to be inherently sequential, in fatthe algorithm is highly parallelizable.The amortizing algorithm determines a plaement for the given hierarhy � in a bottom-up man-ner. During the omputation, the urrent plaement, along with assoiated ontrol information, isdistributed aross the nodes of the network. We begin by desribing how this information is organized.For eah objet  and eah desendant � of �, we designate a node in � as the manager for  in�, denoted manager (�;  ). For load balaning purposes, this manager is hosen at random from �,where the probability of hoosing a partiular node u is size(u)=size(�). For eah desendant � of �,we hoose a node uniformly at random from � and designate it as the leader of �, denoted leader (�).The urrent �-plaement A is distributed aross the nodes in � in the following natural manner. Forevery objet  , the manager (�; ) stores frequeny(�; ) along with a bit indiating whether  belongsto Missing(A). If  belongs to Missing(A), then manager (�; ) also stores value(�; ). Otherwise,for eah opy p = (�;  ) in Copies(A), the manager (�;  ) maintains the bene�t(A; p) along with a bit28



indiating whether p belongs to Primary(A). The variables � and � are maintained by the leader of�. We note that a suitably random seletion of managers and leaders ensures that the �-plaement Ais distributed aross the nodes in � in a balaned manner with high probability.As mentioned earlier, the amortizing algorithm pseudoode of Setion 4.2 may appear to be inher-ently sequential. In partiular, in the amortized swapping loop, the plaement is modi�ed one swapat a time, and the number of swaps ould be large. Moreover, the desired swaps, whih satisfy some\global" objetive, are determined from a distributed plaement. Fortunately, as we disuss below, allof the steps in the algorithm an be expressed in terms of instanes of a simple pre�x sum operationfor any given node ordering. (We stress that for the pre�x sum operations used in our implementation,the partiular ordering of the nodes is not important. In fat, this ordering is allowed to hange fromone invoation of the operation to another. Consequently, the pre�x sum operation an be eÆientlyimplemented on any spanning tree.)Let us now onsider the proess of omputing a �-plaement A at a non-atomi hierarhy � withk hildren �i, 0 � i < k. Let Ai denote the �i-plaement omputed by the amortizing algorithm.The amortizing algorithm proeeds in four steps: the ombining step, the loal initialization step, theamortized swapping loop, and the potential update step.In the ombining step, A is set to (�;[0�i<kAi). This requires no movement of opies in ourdistributed storage; however there are three omputations that are impliit in the desription of thealgorithm in Setion 4.2 that need to be performed. These are the alulation of bene�t(A; p) foreah opy p in Primary(A), the alulation of value(�; ) for eah objet  in Missing(A), and theadjustment of the bit for eah opy p in Primary(Ai) � Primary(A). Fat 4.6 desribes how thesebene�ts and values hange during the ombining step. The omputations for eah objet  are per-formed by manager (�; ), manager (�i;  ) for 0 � i < k, and by manager (�;  ) for eah opy (�;  ) in[0�i<kPrimary(Ai). The omputation of the potential � is a simple summation involving the leaderof � and the leaders of the �i's.The loal initialization step of the amortizing algorithm involves summation over a subset of nodesin the hierarhy �. This an be implemented eÆiently using pre�x sums in a straightforward manner.We now turn to the amortized swapping loop. We implement this loop as an amortization phasefollowed by a swapping phase. (For the rest of this disussion, we say that a opy p is a seondaryi� it belongs to Seondary (A).) Let X denote the list of seondaries in A, sorted aording to theirbene�ts in noninreasing order. Let � denote the value of the potential after the ombining step. In theamortization phase, we determine the largest pre�x X 0 of X suh that the sum of the bene�ts of opiesin X 0 is at most �. (The opies in X 0 are guaranteed to be swapped out in the amortized swappingloop.) Thus, the amortization phase orresponds to a seletion problem. Similarly, the swapping phaseorresponds to the following abstrat seletion problem. Let X and Y denote two lists of numberssorted in nondereasing and noninreasing orders, respetively. (The lists X and Y orrespond to thebene�ts of the opies in the plaement, and the values of the objets missing from the plaement,respetively.) Our goal is to determine a largest pre�x X 0 of X and a pre�x Y 0 of Y suh that jX 0jequals jY 0j and no element of X 0 is greater than any element of Y 0.While the amortization and swapping phases are straightforward to perform sequentially, in thedistributed setting the lists are partitioned aross the nodes and thus are not available in sorted order.We would like to avoid expliitly sorting these lists, sine sorting would require ostly large-salemovement of list elements aross the network. Moreover, we would like to perform the amortizationand swapping steps \in plae", that is, without moving the list elements. We now briey desribean eÆient distributed reursive implementation of the amortization phase; a similar approah an beused for the swapping phase. If jXj � 1 the problem is trivial. Otherwise, we �rst selet a splitteramong the seondaries in X. Seond, we determine the set Z of those seondaries in X with bene�tat most that of the splitter. Third, we sum up the bene�ts of the seondaries in Z. Finally, in amanner that depends on whether the sum exeeds the given potential �, we de�ne a new instane29
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