
Hoard: A Fast, Scalable, and Memory-Efficient Allocator for

Shared-Memory Multiprocessors

Emery D. Berger Robert D. Blumofefemery,rdbg@cs.utexas.edu �
Department of Computer Sciences
The University of Texas at Austin

Austin, TX 78712

Abstract

In this paper, we present Hoard, a memory allo-
cator for shared-memory multiprocessors. We
prove that its worst-case memory fragmenta-
tion is asymptotically equivalent to that of an
optimal uniprocessor allocator. We present ex-
periments that demonstrate its speed and scala-
bility.

1 Introduction

Researchers and programmers have long ob-
served the heap contention phenomenon: mul-
tithreaded programs that perform dynamic
memory allocation do not scale because the
heap is a bottleneck. When multiple threads
simultaneously allocate or deallocate memory
from the heap, they will be serialized while
waiting for the heap lock. Programs making in-�This research was supported in part by the De-
fense Advanced Research Projects Agency (DARPA)
under Grant F30602-97-1-0150 from the U.S. Air
Force Research Laboratory. Multiprocessor comput-
ing facilities were provided by a generous donation
from Sun Microsystems, Inc. In addition, Emery
Berger was supported in part by a Novell Corpora-
tion Fellowship.

tensive use of the heap actually slow down as
the number of processors increases.

In terms of contention and memory con-
sumption, there are two extreme types of allo-
cators. A monolithic allocator has one heap pro-
tected by a lock and does not waste any mem-
ory. Memory freed by one processor is always
available for re-use by any other processor, but
every allocation and deallocation must acquire
the heap lock. In a pure private-heaps allocator,
each processor has its own private heap that is
refilled as needed with large blocks of memory
from the operating system. When a processor
allocates memory, it takes it from its own heap.
When a processor frees memory, it puts it on
its own heap. Because no processor ever ac-
cesses another processor’s heap, heap access is
contention-free except during refills.

However, a pure private-heaps allocator can
exhibit unbounded memory consumption for a
fixed amount of memory requested. For exam-
ple, consider a program in which a producer
thread repeatedly allocates a block of memory
and gives it to a consumer thread who frees it.
If we link this program with a monolithic allo-
cator, the memory freed by the consumer thread
is re-used by the producer thread, so only one
block of memory is allocated. But if we link

1

with a pure private-heaps allocator, the memory
freed by the consumer is unavailable to the pro-
ducer. The longer the program runs, the more
memory it consumes.

In this paper, we present Hoard, an allo-
cator for shared-memory multiprocessors that
combines the best features of monolithic and
pure-private heaps allocators. We prove that
Hoard is memory-efficient. Its worst-case mem-
ory fragmentation is asymptotically equivalent
to that of an optimal uniprocessor allocator.
Specifically, we show that for U bytes of mem-
ory requested, Hoard allocates no more thanO(log(M=m) U) bytes, where M and m are re-
spectively the largest and smallest blocks re-
quested. This bound matches the lower bound
for worst-case fragmentation that holds for
uniprocessor allocators [Rob77]. We demon-
strate Hoard’s speed and scalability empiri-
cally, using synthetic benchmarks and applica-
tions. We show that Hoard is nearly as fast as
a uniprocessor allocator and that it scales lin-
early with the number of processors, like a pure-
private heaps allocator.

The rest of this paper is organized as follows.
In Section 2, we give an overview of Hoard
and describe its algorithms in detail. We prove
Hoard’s memory efficiency in Section 3. Sec-
tion 4 explains how Hoard achieves speed and
scalability, which we demonstrate empirically
in Section 5. We discuss previous work in the
area in Section 6, and conclude in Section 7.

2 The Hoard Allocator

The overall strategy of the Hoard allocator
is to avoid contention by using a local heap
for each processor, like private-heaps, while
bounding memory fragmentation by periodi-
cally returning memory to a globally accessible
heap. Each processor has a distinct heap for
each size class (a range of block sizes). Hoard

allocates memory from the operating system in
“superblocks” of S bytes that it subdivides into
blocks in the same size class to avoid external
fragmentation within superblocks. Hoard man-
ages blocks larger than S separately from su-
perblocks. When Hoard frees a large block, it
is immediately placed on the globally-accessible
heap for re-use by any other processor.

Each heap contains a number of superblocks.
A processor allocates blocks only from su-
perblocks on its own heap, although it can
deallocate blocks from any superblock. A per-
processor heap is allowed to hold no more than2S free bytes. When the free bytes on a per-
processor heap exceed 2S, a superblock with
free space is transferred from the per-processor
heap to the globally-accessible heap. Maintain-
ing this invariant for each heap achieves mem-
ory efficiency while keeping contention low. In
the rest of this section, we provide a detailed de-
scription of Hoard’s allocation and deallocation
algorithms.

There are three tunable system parameters
that control Hoard’s behavior. S is the size in
bytes of a superblock. � is the largest alignment
in bytes required for a given platform. B is the
base (> 1) of the exponential that determines
size classes: a block of size s is in the smallest
size class c � 0 such that s � �Bc. In the ex-
periments cited below, the alignment � is 8, the
size of a superblock S is 32K and the base of the
exponential for size classes B is 1:2. The SPARC
architecture dictates our choice of �. We chooseS to be a multiple of the system page size (8K)
large enough to make Hoard run as fast as a
uniprocessor allocator. By keeping B relatively
small, we minimize the internal fragmentation
caused by rounding to the nearest size class.

We number the heaps 0 to P . Heap 0 is the
process heap accessible by every processor, while
the other heaps are the processor heaps; proces-
sor i uses heap i. To allow us to keep track of

2

memory consumption, Hoard maintains a pair
of statistics for every size class in heap i: ui, the
number of bytes in use in heap i, and ai, the to-
tal number of bytes held in heap i.
2.1 Allocation

The algorithm for allocation is presented in Fig-
ure 1. When processor i calls malloc, Hoard
locks heap i and checks it to see if there is any
memory available. If not, it checks heap 0 for
a superblock. If there is one, Hoard transfers
it to heap i, incrementing ui by s:u, the num-
ber of bytes in use in the superblock, and incre-
menting ai by s:a, the total number of bytes in
the superblock. If there are no superblocks in
either heap i or heap 0, Hoard allocates a new
superblock of at least S bytes and inserts it into
heap i (and updates ai). Hoard then chooses a
single block from a superblock with free space,
marks it as allocated, and returns a pointer to
that block.

2.2 Deallocation

The algorithm for deallocation is presented in
Figure 2. Each superblock is associated with
its “owner” (the processor whose heap it’s in).
When a processor frees a block, Hoard finds
its superblock (by a pointer dereference) and
marks the block as available. Hoard then locks
the owner heap i and decrements ui. (If this
block is “large” (size > S), we immediately
transfer its superblock to the process heap.) If
the amount of free memory (ai�ui) exceeds 2S,
Hoard transfers its emptiest superblock to the
process heap (lines 11-14).

We now show that Hoard maintains the in-
variant that for each size class, no processor

malloc (sz)
1. i the current processor.
2. Scan heap i’s list of superblocks

(for the size class corresponding to sz).
3. If there is no superblock with free space,
4. Check heap 0 for a superblock.
5. If there is none,
6. Allocate max fsz; Sg bytes

as superblock s
and set the owner to heap i.

7. ai ai + s:a.
8. Else,
9. Transfer the superblock s to heap i.
10. u0 u0 � s:u
11. ui ui + s:u
12. a0 a0 � s:a
13. ai ai + s:a
14. ui ui + sz.
15. Return a block from the superblock.

Figure 1: Pseudocode for Hoard’s malloc.

heap i contains more than 2S free bytes.

Invariant: ai � ui � 2S
A processor calling malloc either decreases

the amount of free memory (ai � ui) by incre-
menting ui (by allocating a block from one of its
superblocks, line 14), or it changes the amount
of free memory from 0 to no more than S by
transferring a superblock from the process heap
(line 9) or allocating a new superblock (line 6).
When a processor calls free, it increases the
amount of freed memory on its heap by one
block, but if the amount of free memory on its
heap exceeds 2S, it transfers the emptiest su-
perblock to the process heap (lines 11-14). This
reduces the amount of free memory by at least
one block, thus restoring the invariant.

3

free (ptr)
1. Find the superblock s this block comes from.
2. Deallocate the block from the superblock.
3. i the superblock’s owner.
4. ui ui � block size.
5. If i = 0, return.
6. If the block is “large”,
7. Transfer the superblock to heap 0.
8. u0 u0 + s:u, ui ui � s:u
9. a0 a0 + s:a, ai ai � s:a
10. Else,
11. If ai � ui > 2S,
12. Transfer the emptiest superblock s

to heap 0.
13. u0 u0 + s:u, ui ui � s:u
14. a0 a0 + s:a, ai ai � s:a

Figure 2: Pseudocode for Hoard’s free.

3 Analysis

3.1 Notation

Before we proceed to the proof of Hoard’s mem-
ory efficiency, we introduce some useful nota-
tion. Let a denote the amount of memory held
in the processor heaps (a = PPi=1 ai). Let a�
be the total amount of memory in the processor
and process heaps (a� = a+ a0). When we refer
to values at a certain time step, we present them
as functions over time, as in a(t). Let A and A�
be the maxima of a and a� (A(T) = maxt�T a(t),A�(T) = maxt�T a�(t)). Note that since we
never return memory to the system, a� never
decreases, so A�(t) = a�(t). Likewise, we de-
fine U and U� as the maximum memory in use
(since U� is the maximum sum of ui while U is
the maximum sum of ui for i � 1, U � U�).

In the analysis below, we first prove a lemma
and a theorem that hold for any individual size
class c, and then extend these results to prove

a bound that holds for all logB S size classes.
We omit subscripts for size classes except in the
proof of the overall bound in Theorem 2.

3.2 Memory Efficiency

In this section, we prove that A�(t) =O(log(M=m) U�(t)). Robson showed that this
bound holds for any uniprocessor allocator
[Rob77]. By proving the equivalent bound for
Hoard, we demonstrate its memory efficiency.

For the proof, we first need to show that the
maximum amount of memory used in the pro-
cessor heaps (heaps 1 through P) is the max-
imum amount of memory used in all of the
heaps (heaps 0 through P), for any given size
class.

Lemma 1: A = A�.
Proof. As noted above, A� = a�, so we prove
the equivalent assertion, A = a� by induction
over the number of steps. At step 0, no mem-
ory is allocated, so A(0) = a�(0) = 0. We now
assume the induction hypothesis for step t and
show that at step t + 1, A(t + 1) = a�(t + 1).
We define a step as a call by one processor i
to malloc or free. Neither A nor a� are af-
fected when a processor calls free, because a
decreases (since we decrement ai) while a� re-
mains unchanged (we subtract s:a from ai and
add it to a0).

When processor i calls malloc, there are
three possibilities:

Case 1: There is an available superblock in
heap i.

Since no memory is allocated or transferred
between heaps, there is no change to either A ora�.
Case 2: Heap 0 is empty (a0 = 0).

In this case, Hoard allocates a new su-
perblock, so a�(t + 1) = a�(t) + S. By the

4

induction hypothesis and the definition of a�,A(t) = a�(t) = a0(t) + a(t). Since a0 = 0,A(t) = a�(t) = a(t). The total amount held in
the processor heaps increases by S with the al-
location of the new superblock, so a(t + 1) =a(t) + S > A(t). By definition, A(t + 1) =max fA(t); a(t+ 1)g = a(t + 1). This, in turn, is
just a(t) + S = a�(t+1), so A(t+1) = a�(t+1).
Case 3: Heap 0 is non-empty (a0 > 0).

When heap 0 is non-empty, a0 � S (since
we allocate and transfer superblocks of size S).
Because no memory is allocated, a�(t + 1) =a�(t). By the definition of a�, we have a�(t) =a0(t) + a(t) � a(t) + S. Transferring the su-
perblock from heap 0 to heap i increases a byS: a(t + 1) = a(t) + S � a�(t), which by
the induction hypothesis = A(t). By definition,A(t + 1) = max fA(t); a(t + 1)g = A(t), so we
have A(t+ 1) = a�(t+ 1).

In the rest of the analysis, we ignore “large”
blocks (since these are immediately returned to
the process heap, they are immediately avail-
able for re-use). For now, we also ignore the in-
ternal fragmentation that can result from round-
ing up to size classes (this is at most B).

We first bound Hoard’s memory fragmenta-
tion for each size class:

Theorem 1: For each size class, A�(t) � U�(t)+2PS.

Proof. Reordering the invariant as ai � ui+2S
and summing over all P processor heaps gives
usA(t) � PPi=1 ui(t) + 2PS� U(t) + 2PS . def. of U(t)� U�(t) + 2PS. . U(t) � U�(t)

By Lemma 1 we haveA(t) = A�(t), soA�(t) �U�(t) + 2PS.

We now establish Hoard’s memory efficiency:

Theorem 2: A�(t) = O(log(M=m) U�(t)).
Proof. Sum Theorem 1 over the (logB S) size
classes of blocks of size S and smaller. This
gives us

PcA�c(t) � Pc U�c (t) + 2PS logB S.
Since the amount allocated never decreases, the
first term can be replaced by A�(t). The max-
imum amount of memory in use overall is at
least as large as the maximum in one of the size
classes: U�(t) � maxc U�c (t). Each of the logB S
size classes has no more than this maximum in
use (otherwise, it wouldn’t be the maximum),
so
Pc U�c (t) � logB S maxc U�c (t). To account

for the internal fragmentation that can result
from rounding up to powers of B, we multi-
ply the U� terms by B. This gives us the boundA�(t) � B logB S U�(t) + 2PS logB S. Since we
are only concerned with blocks no larger thanS, M = S and m = 1, so we have A�(t) =O(log(M=m) U�(t)).
4 Speed and Scalability

The algorithms used by Hoard provide speed
and scalability in the following ways:

Superblocks relieve contention. By allocating
in superblocks of at least S bytes, we avoid
many calls to the system’s memory allo-
cator (for small blocks). This relieves us
of both contention (for the system’s mem-
ory allocator) and many expensive system
calls.

Hysteresis reduces process heap contention.

Since the release threshold is the size of two
empty superblocks (2S) and we acquire
one superblock at a time, the number of

5

local allocations and deallocations required
between accesses to the process heap is
likely to be proportional to S. This can
be defeated by a pathological sequence
of allocations and deallocations, but in
practice it works well.

Most heap access is contention-free. Because
each superblock is present on exactly one
heap, processors never contend for alloca-
tion of blocks within a superblock. As long
as a processor frees blocks that it allocated,
calls to free only involve access to its
processor heap. While a processor can free
a block it allocated arbitrarily many times
in a tight loop, it is significantly harder for
a processor to free a block belonging to an-
other heap. The processor must first obtain
this block from another processor. This
usually entails some kind of rendezvous,
increasing the time interval between such
operations.

Superblocks improve locality. A private-
heaps allocator can produce widespread
false sharing by distributing a cache line
into every processor’s private heap. But
by allocating from superblocks, each pro-
cessor tends to have exclusive use of large
contiguous chunks of memory. As long
as the superblock size is greater than the
system’s page size, page-level locality is
also improved.

5 Experiments

We performed a variety of experiments on
uniprocessors and multiprocessors. The plat-
form used is a dedicated 14-processor Sun En-
terprise 5000 running Solaris 7. Each processor
is a 400MHz UltraSparc.

5.1 Multiprocessor Experiments

To demonstrate Hoard’s speed and scalability,
we compare Hoard’s performance to several
memory allocators:

Solaris 7 (the allocator shipped with Solaris)
This is a monolithic allocator, with its heap
protected by a single lock. We expect this
allocator to have the lowest scalability, but
we use this as a benchmark for uniproces-
sor performance.

Private-Heaps (a pure private-heaps allocator
variant of Hoard) Despite its memory inef-
ficiency, we include it to establish an upper-
bound on scalability. Further, because it is a
“brain-dead” allocator (for instance, it does
no coalescing), it is extremely fast, so it is
provides a reasonable upper-bound on per-
formance.

Ptmalloc (Wolfram Gloger’s subheap allocator
[Glo]) This allocator has unbounded mem-
ory consumption, like the private-heaps al-
locator. We include it because it is the only
multiprocessor allocator we know of that is
in widespread use (it is the standard Linux
allocator).

For each of the experiments below, we run the
benchmarks three times and use the average.
We use the word speedup for the speedup with
respect to the Solaris allocator, while we use
scaleup for the speedup of each allocator with
respect to itself. Unfortunately, we are unable
to measure fragmentation. We need a lock to
maintain these statistics, and contention for this
lock produces a dramatically different schedule
of allocations and frees.

The first multithreaded benchmark we
present is our own creation, called threadtest.
This is a very simple benchmark: t threads do
nothing but repeatedly allocate and deallocate

6

