
Finding Minimum Spanning Trees in O(m�(m;n)) TimeSeth PettieDepartment of Computer SciencesThe University of Texas at AustinAustin, TX 78712seth@cs.utexas.eduOctober 21, 1999UTCS Technical Report TR99-23AbstractWe describe a deterministic minimum spanning tree algorithm running in time O(m�(m;n)), where� is a natural inverse of Ackermann's function and m and n are the number of edges and vertices,respectively. This improves upon the O(m�(m;n) log �(m;n)) bound established by Chazelle in 1997.A similar O(m�(m;n))-time algorithm was discovered independently by Chazelle, predating the al-gorithm presented here by many months. This paper may still be of interest for its alternative exposition.1 IntroductionWe consider the problem of �nding a minimum spanning tree on a weighted, undirected graph. This problemhas been studied in its present form for many decades and yet to date, no proof of its complexity has beenfound. The �rst MST algorithms were discovered by Bor�uvka [Bor26] and Jarn��k [Jar30] and for manyyears the only progress made on the MST problem was in rediscovering these algorithms. (See [GH85] foran historical survey of MST.) Kruskal [Kr56] presented an algorithm that rivaled previous algorithms interms of simplicity but did not improve on the O(m logn) time bound �rst established by Bor�uvka. Here m(resp. n) is the number of edges (resp. vertices) in the graph.The m logn barrier was broken by Yao's O(m log logn) time algorithm1 [Yao75], which was followedquickly by Cheriton and Tarjan's O(m log logd n) time algorithm [CT76], where d = maxf2; mn g. The MSTproblem saw no new developments until the mid-1980s when Fredman and Tarjan [FT87] used Fibonacciheaps (presented in the same paper) to give an algorithm running in O(m�(m;n)) time2. In the worstcase, �(m;n) = log� n). Before the ink had dried on this result Gabow et al. [GGST86] upped the ante toO(m log�(m;n)), a result which stood for a decade.Recently Chazelle described a non-greedy approach to solving the MST problem which makes use of thesoft heap [Chaz98a], a priority queue which is allowed to corrupt its own data in a controlled fashion. Thisled to an algorithm [Chaz97, Chaz98b] running in time O(m� log�), where � = �(m;n) is a certain inverseof Ackermann's function.Pettie and Ramachandran [PR99] have just developed an optimal MST algorithm by breaking the largerMST problem into manageable subproblems and �nding the MSTs on these subproblems using optimaldecision trees. In the decision tree model, edge cost comparisons take unit time and all other operationsare free. The overhead for this algorithm is linear, thus its running time is asymptotically the same asthe decision tree complexity of the MST problem. Considering this result, in the analysis of our algorithmwe will not address the time spent on operations which do not involve edge cost comparisons. Henceforth,running time refers to time under the decision tree model.1Actually, Yao cites an unpublished algorithm of Tarjan running in O(mplog n) time.2�(m;n) = minfi : log(i) n � mn g. 1



All algorithms mentioned thus far require a relatively weak model of computation. Each can be imple-mented on a pointer machine3 in which the only operations allowed on edge costs are comparisons. If morepowerful models of computation are used then �nding minimum spanning trees can be done even faster.Under the assumption that edge costs are integers, Fredman and Willard [FW90] showed that on a unit-costRAM in which the bit-representation of edge costs may be manipulated, the MST can be computed in lineartime. Karger et al. [KKT95] considered a model with access to a stream of random bits and showed that withhigh probability, the MST can be computed in linear time, even if edge costs are only subject to comparisons.It is still unknown whether these more powerful models are necessary to compute the MST in linear time.In this paper we present a deterministic minimum spanning tree algorithm running in time O(m�(m;n)).The increase in speed over [Chaz97, Chaz98b] is the result of dealing with \bad" edges4 more intelligently,which also calls for changes to the recursive structure of the 1997 algorithm. In addition, we believe ourexposition highlights the underlying elegance of the algorithm.We would like to give due credit to Chazelle on two matters. First, the bulk of our algorithm was in placein his O(m� log�)-time algorithm [Chaz97, Chaz98b]. Second, he has independently lowered the complexityof his 1997 algorithm to O(m�) [Chaz99]. There is no question that this result predates our algorithm.2 The Soft HeapThe soft heap [Chaz98a] is a kind of priority queue that gives us an optimal tradeo� between accuracy andspeed. It supports the following operations:� makeheap(): returns an empty soft heap.� insert(S; x): insert item x into heap S.� findmin(S): returns item with smallest key in heap S.� delete(S; x): delete x from heap S.� meld(S1; S2): create new heap containing the union of items stored inS1 and S2, destroying S1 and S2 in the process.All operations take constant amortized time, except for insert, which takes O(log( 1� )) amortized time.Here's the catch: to make its job easier, the soft heap may increase the values of any keys, corrupting theassociated items and potentially causing later �ndmins to report the wrong answer. Once corrupted, anitem's key may still increase, though never decrease. The guarantee is that after n insert operations, nomore than �n corrupted items are in the heap. Note that because of deletes, the proportion of corrupteditems could be much greater than �.3 PreliminariesThe input is an undirected graph G = (V;E) with a distinct cost associated with each edge. We makeno other assumptions about the costs, but require that any two may be compared in constant time. Theminimum spanning tree problem can be stated in just a handful of words: �nd the tree spanning the verticesof G which is of minimum total cost.Although we must minimize the total cost, edges may be certi�ed as being inside or outside the MST byobserving just a subset of G. By the cycle property, the costliest edge on any cycle in G is not in the MST.Assume for the purposes of contradiction that such an edge, call it e, was in the MST. Edge e separatesthe vertices of the MST into two groups, meaning there must be at least one edge from the cycle, call it f ,which has one endpoint in each group. We can thus produce a tree of lesser total cost by substituting f fore. Dual to the cycle property is the cut property which states that for any cut X � V (G), the cheapest edge3The pointer machine model prohibits pointer arithmetic, so certain techniques such as table lookup cannot be used. See[Tar79].4Bad edges will be discussed in later sections. Briey, the algorithm �nds a spanning tree where the only edges that couldpossibly decrease its weight are the bad ones. They are reconsidered in recursive calls in order to �nd the minimum spanningtree. 2



with exactly one endpoint in X is in the MST. This follows directly from the cycle property since such anedge cannot be the costliest in any cycle.Traditional MST algorithms identify the minimum cost edge crossing a cut X by keeping all eligible edgesincident to vertices in X in a heap. We will use this same strategy, using a soft heap in place of a correctheap. Edges identi�ed in this manner will be in the MST of G * R, a graph derived from G by raising thecosts of all edges in R � E(G). How do the cut and cycle properties fare in this corrupted graph? Unless alledges crossing a cut are uncorrupted (not in R), the minimum such edge is not guaranteed to be in MST(G).Similarly, the costliest edge in some cycle is de�nitely not in MST(G) only if it is uncorrupted (all corruptededges in the cycle having higher costs than w.r.t the graph G).Using these two properties for the purpose of classifying edges will not prove useful. However, we mayderive useful information about the MST by certifying that regions of the graph are contractible. We saythat a subgraph C is contractible if for any edges e and f , each having one endpoint in C, there exists apath connecting e to f in C consisting of edges with costs less than either e or f . The notation GnC is usedto mean the graph G with the subgraph C contracted into a single vertex c. Edges incident to one vertex inC become incident to c and edges internal to C are removed. The following Lemma is very well known.Lemma 3.1 If C is contractible w.r.t G, then MST(G) = MST(GnC)[ MST(C).Proof: Edges in C which are not in MST(C), being the costliest on some cycle, are also not in MST(G)since that cycle exists in G as well. We need only examine edges which are the most expensive on a cycle inGnC involving vertex c. Let e and f be the two edges incident to c in such a cycle. By the contractibilityof C, there is a path connecting e to f in C, the edges of which are cheaper than maxfcost(e); cost(f)g.Therefore, the costliest edge on any cycle in GnC is the costliest edge on a corresponding cycle in G.2 This idea of contractibility is surprisingly robust when applied to corrupted graphs. Clearly Lemma 3.1does not work as is. With a little adjustment however, we obtain a Lemma which is crucial to the correctnessof the algorithm.Lemma 3.2 If C is contractible w.r.t G * R, and RC are those edges in R with one endpoint in C, thenMST(G) � MST(C)[ MST(GnC * RC) [ RCProof: First note that C is also contractible w.r.t G * RC since returning the edges of C to their uncorruptedstate only lowers their cost. Edges in C which are not in MST(C) are the most expensive along some cycleand thus are not in MST(G) since the cycle exists there as well. Consider the edge e, the costliest on somecycle in GnC * RC involving vertex c (derived by contracting C). If e is not corrupted, i.e. not in RC ,then by the contractibility of C, it is also the costliest edge in some cycle in G * RC , and thus in G as well.However, if e is corrupted it is not necessarily the costliest edge in some cycle in G (though it is for somecycle in G * RC .) This forces us to reconsider all edges in RC .2 The Lemma given above is enough to show the correctness of the following generic algorithm.1. Consider a graph G0 = G * R derived from the input graph by corrupting all edges in R � E(G).PartitionG0 into contractible subgraphs, then contract each subgraph into a single vertex, forming thegraph G1. Repeat the partition-contraction step (creating graphs G2; G3; : : :) until the whole graphcontracts into a single vertex. Whenever a subgraph is contracted, corrupted edges with one endpointin that subgraph are marked as bad. They, as well as any other corrupted edges, remain corrupted.2. Next, recurse on the non-bad edges of each contracted subgraph, returning its MST. Non-bad edgesshould be restored to their original cost before the algorithm is applied recursively.3. Finally, recurse on the graph consisting of the edges returned in step 2 and the bad edges found in thestep 1, returning them to their original cost. By repeated application of Lemma 3.2, this set of edgescontains the MST of the original graph G.In the actual algorithm edges will be corrupted progressively, not in one swift stroke. However, let usmomentarily abstract away this aspect of the algorithm.3


