
Strategies to Combat Software PiracyJAYADEV MISRA�The University of Texas at AustinAustin, Texas 78712Email: misra@cs.utexas.eduHome page: http://www.cs.utexas.edu/users/misraAugust 10, 1999AbstractIt is impossible to combat software piracy as long as the machineson which the programs execute are indistinguishable; then, any programthat can execute on one machine may be copied for execution on anothermachine. Recently, hardware manufacturers have begun assigning uniqueidenti�ers to CPU chips, which make it possible to address the piracyissue in a new light. In this paper, we suggest schemes that make itnearly impossible to use certain kinds of software on a machine unlessthe manufacturer of that software has issued a license for that speci�cmachine.1 IntroductionIt is impossible to combat software piracy as long as the machines on which theprograms execute are indistinguishable; then, any program that can executeon one machine may be copied for execution on another machine. Recently,hardware manufacturers have begun assigning unique identi�ers to CPU chips,which make it possible to address the piracy issue in a new light. In this paper,we suggest schemes that make it nearly impossible to use certain kinds of soft-ware on a machine unless the manufacturer of that software has issued a licensefor that speci�c machine.Terminology An author creates �les; an author is, typically, a software man-ufacturer, and a �le consists of executable as well as data components (musicand video �les as well as binary executables can be protected using our scheme).A retailer or the author sells a copy of the �le to a customer. The customer�This material is based in part upon work supported by the National Science FoundationAward CCR{9803842. 1



installs the �le on a machine and the �le opens on that machine under a ker-nel. Additionally, a group of individuals may create and distribute �les amongthemselves; we call such �les privately shared �les. 2From the viewpoint of the author neither the retailer nor the customer istrustworthy. A retailer may make unauthorized copies of a �le and sell themto customers at lower prices, and a customer may let other customers \borrow"the �les he has bought for a small fee. Additionally, a fake author may alter thecode of a genuine �le, claim that the altered �le is his creation and market the�le under a di�erent title, possibly, through a dishonest retailer. Our schemeprevents piracy in spite of such collusion among the dishonest parties.Which �les can be protected? The piracy problem, in theory, is unsolv-able. Consider, for instance, a �le whose content is a genome sequence. Thedistributor of the �le must provide the means for a customer to extract thesymbol at every position in the sequence. Therefore, a customer can recreatethe sequence, encode it in a di�erent format and market the �le. Similarly, a �lecontaining a video stream can be replicated by simply playing the video. Calla �le f vulnerable if a �le equivalent to f can be constructed easily given thespeci�cation of f and the outcomes of a �nite number of experiments with f .The genome sequence and the video stream are vulnerable, as we have argued.By contrast, a word processing program is not easily reconstructed from itsspeci�cation (i.e., its manual) given a reasonable amount of time to experimentwith it. Methods of water-marking can be used to protect music and video �les{ see section 3.3 for certi�cations of such �les by a trusted third party { andgenome sequences are best protected manually through patenting.Our thesis is that a �le can be protected against piracy, without employinga trusted third party, if and only if it is not vulnerable. This statement, un-fortunately, carries little formal meaning since neither of the important termsis precisely de�ned. Yet, we use this thesis as a guiding principle in devisingantipiracy schemes.Requirements for an Antipiracy Scheme Our requirements for antipiracyare grouped into correctness and performance requirements. Correctness re-quirements are stated more precisely than the performance requirements, be-cause the latter may be implemented in a variety of di�erent ways by the authorsand the kernels. Most of the following requirements are self-explanatory.� Correctness Requirements:1. A �le opens on a machine only if the author of that �le has authorizedthe machine for opening that �le.� Performance Requirements:1. The author does not have to make extraordinary e�orts to buildpirate-proof �les. Few burdens are imposed upon the customer ininstalling and opening the �le, and the retailer in selling it.2



2. Storage and processing requirements for opening a �le at the kernellevel are minimal.Assumptions Our scheme requires the kernel to verify a \license"; so, werequire a secure kernel. Additionally, as mentioned earlier, each machine has aunique id that can not be compromised; e�ectively, the machine id is part ofthe kernel.Note that having a secure kernel alone does not solve the piracy problembecause the authenticity information from a genuine �le (purchased for onemachine) may be attached to a pirated �le running on the same machine. Oursolution makes heavy use of public key cryptography [2], { in particular, signedmessages { which we assume to be secure.1. Each machine operates under a secure kernel. That is, the code of thekernel cannot be changed, its state can not be examined and its accessesto addresses (in the application programs) can not be observed.2. Each machine has a unique identi�er, called its machine id, that cannotbe changed.3. Public key cryptography is secure.Overview of the Solution and the Paper In order to buy a �le a customerprovides his machine id. The customer receives a �le along with a license: thelicense contains the �le id and machine id, and the license is signed by theauthor. The kernel allows execution of a �le on a speci�c machine only if the�le is licensed to run on that machine.Under mild attack, see section 3, a pirate can only copy a �le, verbatim. Thisis currently the prevalent mode of attack, and this can be combatted relativelyeasily by verifying the license.We also consider vicious attacks in section 3, in which a pirate may read,analyze and modify a �le. In particular, the pirate may change the �le headerso that a license for another product can be used for this �le. We propose afew schemes that thwart this attack. Methods to combat dishonest retailers arediscussed in section 4. Several aspects of our scheme, including a few extensions,are discussed in section 5. Since many ingenious attacks may be imagined, weconstruct a formal proof of the main result based on a small number of axiomsthat couch our assumptions. The only attacks that can succeed against ourscheme are the ones that invalidate the axioms; therefore, we discuss each axiomin detail and the possible attacks against it.Related Work There is a vast amount of work on secure transactions. Wemention only two here: digiboxes from Intertrust Corporation [4] and cryp-tolopes from IBM [1]. These employ methods similar to block encryption thatwe suggest in section 3.2. 3



2 Axiomatic Treatment of Piracy and Licensing2.1 File HeaderEach author and each kernel has a unique signature. A signature is a functionthat converts a string to another string1. Any one can decrypt a string signedby author v, but no one other than v can create a string with v's signature. Wewrite v:sign; v:unsign for the signature encryption and decryption functions forv; v:sign is private to v, but v:unsign is publicly available. We assume thatv:sign and v:unsign are inverses of each other.Each �le, f , has a header, f:header, that includesf:id, the title of �le f , andf:unsign, the (publicly available) signature decryption function of theauthor of f .The header information in a �le may not be genuine because it may havebeen corrupted by the pirate.Privately Shared Files We regard each customer as an author. For a �lecreated by a customer, the header information will, typically, be constructedby the kernel (it will assign an id to the �le and the signature function maybe picked from a table of such functions built into the kernel). This permitstreatment of privately shared �les in exactly the same way as the �les marketedas products.2.2 A Model of PiracyIn the world of piracy, a �le is either genuine or a copy of a genuine �le. Acopy need not be verbatim; a pirate may analyze and simulate a genuine �le tounderstand its functioning and create a �le di�erent from the original. But weexpect that a copy would be very similar to the genuine �le. Also, we expectgenuine �les from di�erent authors to be quite di�erent. Finally, we proposethat genuine �les from the same author should be made quite di�erent: �leswith di�erent version numbers, for instance, can be made dissimilar by loadingthe modules in a totally di�erent order. Therefore, the only way two �les arealike is for one to be a copy of the other (or even be a copy of a copy), perhapswith a small amount of modi�cation.Since �les are either quite alike or quite di�erent, we can de�ne an equiva-lence relation, similar (written as �), over �les. If �les f; g are copies (or copiesof copies) of the same genuine �le then we expect f � g.Axiom 1 asserts that each �le is a copy of some unique genuine �le. Axiom2 says that a copy carries the same header information as the original. Axiom 2seems hard to justify since a pirate can read a �le, locate the header and replaceit by a di�erent header. We suggest methods that defeat this attack; see section1A tuple of strings may be signed, by converting the tuple to a simple string. This conver-sion is not shown explicitly. 4



3.Axiom 1: There is an equivalence relation, �, over �les such that for any �lef there is a unique genuine �le g where f � g.Axiom 2: (f � g) ^ (genuine g)) (f:header = g:header).Remarks on the axioms It may seem unreasonable to claim that a copied�le that is several generations removed from the original is still similar to theoriginal. We do not believe that copies will be made from copies unless thecopies are verbatim; therefore, this is a reasonable assumption.Axiom 2 permits two unrelated �les to have the same header. For instance,an author may release a �le g that has the same header as f released earlier bythe same author. This permits every purchaser of �le f to upgrade to g at noadditional cost; see section 2.3.2.3 LicensingWhen a customer buys a �le f (from an author or retailer), he speci�es hismachine id, m. The customer receives f and a license (f:id, m) signed by theauthor of f . A license can not be forged since it is signed. Privately shared �lesare acquired in exactly the same fashion, though the details will di�er on the�nancial aspects of the transaction.Opening a File A �le can be opened on a machine only if the customer canproduce an appropriate license. Speci�cally, the kernel on machine m carriesout a license veri�cation in order to open a �le f under license c, as follows.It reads the header information (f:id, f:unsign) from the �le. (We describe insection 3 how the header information is encoded in a �le so that it can not beremoved by the pirate and it can be accessed by the kernel.) The kernel thencomputes f:unsign(c); if this matches (f:id, m) then the �le is opened, else the�le is deemed to be a fake.De�nition: m opens (f; c) � [f:unsign(c) = (f:id;m)].It is reasonable to say that a machine m has been authorized to open �le gif there is a license c such that m opens (g; c). Since no machine is authorizedto open a non-genuine �le, we may also assume that g is genuine if m has beenauthorized to open g.De�nition: m authorized for g � [(9 c :: m opens (g; c)) ^ genuine g].2.4 CorrectnessThe correctness requirements are described in section 1. Our proof obligationis that if a machine opens �le f under license c, i.e., m opens (f; c), then m has5



been authorized for f . This result is not true because f may not be genuine. Wecan show, however, that there is a genuine g such that f � g and \m authorizedfor g". Then, it makes no sense to open copy f on m given that permission toopen the genuine �le g on m has has been acquired.Observation 1: Given f and m there is a unique c such that m opens (f; c).That is, m opens (f; c) and m opens (f; c0) implies c = c0.Proof: We prove the result by computing the value of c given that m opens(f; c). m opens (f; c)) fDe�nitiongf:unsign(c) = (f:id;m)) fFunction applicationgf:sign(f:unsign(c)) = f:sign(f:id;m)) ff:sign; f:unsign are inversesgc = f:sign(f:id;m)Note: It is highly improbable, though not impossible, for m to open twodi�erent �les f; g using the same license, c. From observation 1, thenc = f:sign(f:id;m), andc = g:sign(g:id;m).This is a remote possibility for well-chosen signature functions, and even ifthese equalities hold for some m they are unlikely to hold for many other ma-chine ids; thus, systematic piracy is still highly unlikely.Theorem 1: m opens (f; c)) (9 g :: f � g ^ genuine g ^ m authorized for g).m opens (f; c)) fAxiom 1g(9 g :: f � g ^ genuine g) ^ m opens (f; c)) fAxiom 2 applied to f � gg(9 g :: f � g ^ genuine g ^ f:header = g:header)^ m opens (f; c)) fDe�nition of header and \opens"g(9 g :: f � g ^ genuine g^ f:id; f:unsign = g:id; g:unsign)^ f:unsign(c) = (f:id;m)) fPredicate Calculusg(9 g :: f � g ^ genuine g ^ g:unsign(c) = (g:id;m))) fDe�nition of \opens"g(9 g :: f � g ^ genuine g ^ m opens (g; c))) fDe�nition of \authorized"g(9 g :: f � g ^ genuine g ^ m authorized for g)6



3 AttacksThe only assumptions we have made so far are, in rough terms: (1) the kernelis secure, (2) the machine id can not be compromised, (3) (axiom 1) each �le isa copy of a unique genuine �le, and (4) (axiom 2) the header of a genuine �lecan not be altered. We do not discuss the possible attacks against the kernelin this paper. The remaining assumption that needs scrutiny is axiom 2. Wediscuss two di�erent kinds of attacks and show how this axiom can be satis�ed.Mild Attack In this form of attack, a pirate can only copy a genuine �leverbatim. That is,(f � g) � (f = g).Then, a pirate can not change the header of a genuine �le, and axiom 2holds. More formally,Observation 2: In mild attack, (f � g)) (f:header = g:header).Proof: f � g) fDe�nition of mild attackgf = g) fPredicate calculusgf:header = g:headerMild attacks can be defeated even in the absence of a secure kernel; �le fmimics the steps of the kernel for license veri�cation. There is an executableportion in f that reads the header information from f , the license, c, the machineid m, and it evaluates (m opens (f; c)).Vicious Attack In our treatment of vicious attacks, we endow the attackerwith extraordinary powers. An attacker may replace portions of a binary �le,simulate executions of portions of the �le, take core dumps after execution ofeach instruction and analyze those to pinpoint instructions that change contentsof speci�c memory locations, for instance. Almost all of these attacks are in-feasible. For instance, replacing a portion of a binary executable �le may causeall the absolute addresses to be shifted, which would make the execution of aprogram impossible. Yet, we allow these attacks in order to study the ultimatedefenses.There is no guaranteed way of preventing a pirate from reading (the binarycontents) of a �le, analyzing the contents to remove the header, and replacingit by a di�erent header. A customer who plans to steal the �le for personaluse will replace the header by the header of a �le that is licensed to run onhis machine. But for large scale operation, a pirate declares himself to be anauthor and includes a header in a �le identifying him as the author (replacingthe original one). From then on, he is free to issue licenses for the �le on anymachine. It may seem that this particular attack can be thwarted by hiding7



the header inside the �le in some fashion so that it can not be removed; theexact hiding place is known only to the author and the kernel. But, then, anydishonest author can glean this information by claiming that he needs to hidethe header in the �les he produces. Therefore, the exact hiding place has tobe author-dependent. This requires each kernel to maintain a list of authorsand their hiding places; a unworkable solution if the author list is long andconstantly changing.A possible solution to this problem is for the �le itself to do the licenseveri�cation, as was proposed for the mild attack. The header and the codefor the check could be hidden within the �le. This is surely quite e�ective inpractice. But, it is not immune to the kind of attack we have described earlier.A pirate can analyze the code to locate all instructions that compare a valueagainst the machine id, for instance. He may then replace those instructionsby the ones that compare the value against a location where a fake machineid is stored. While such attacks can be combatted by a variety of means tohide the code for license veri�cation { indirect addressing, self-modifying code {there seems to be no general cure against a committed adversary who is allowedto analyze the code and simulate its execution. We suggest several possibledefenses, each of which ensure axiom 2, that may be appropriate under di�erentcircumstances.3.1 File EncryptionThe simplest strategy is to encrypt the entire �le so that only the kernel candecrypt it. The header information is a part of the �le, and it will be impossibleto remove the header from the encrypted �le. The kernel opens the �le bydecrypting it and checking the header information. The �le is executed in aprivileged mode under the control of the kernel so that no attacker can read thedecrypted version. This strategy can also be applied if the hardware supportsexecution of instructions in encrypted mode.The major drawback of this strategy is the performance penalty associatedwith decryption each time the �le is opened. Therefore, this strategy is bestapplied for small or infrequently used �les.3.2 Block EncryptionThis is a re�nement of the previous strategy; instead of encrypting the entire�le, only a portion of it that includes the header is encrypted. We postulatethat every �le, f , that is not vulnerable, contains a block of code, B, with thefollowing properties.� B is essential: Unless B is executed at the appropriate point the machinewill eventually crash or produce meaningless results.� B is incomprehensible: Observing only the e�ects of B, i.e., which bits arealtered as a result of executing B, for any �nite number of inputs gives noclue about its e�ect for some other input.8



The availability of such a block of code within f makes it possible to satisfyaxiom 2, as follows. Include the header within B. Next, encrypt B so that itcan be decrypted only by the kernel. The encrypted version of B, B0, is passedas an argument of a call to a kernel routine. The kernel routine decrypts B0,checks for authenticity using the header included there and then executes thecode of B. We argue that this strategy satis�es axiom 2.� B0 can not be removed from a copy of f because B is essential.� An attack may attempt to replace B0 by B00 where B00 is (the encryptedversion of) some code that mimics B and B00 includes a fake header. SinceB0 can not be analyzed by an attacker, being in an encrypted form, theconstruction of B00 has to rely on the observations of the e�ects of B0, i.e,observing the bits that are altered as a result of executing B0. (The storagearea for the kernel is unobservable, and, hence, the decrypted version of B0is also unobservable.) From the condition of incomprehensibility, no �niteset of experiments su�ce to determine the functionality of B0. Hence, nosuch B00 can be constructed.� From the two observations above, every copy of f has to include B0. There-fore, the header is included, as required by axiom 2.The block B is application dependent. For instance, in a program thatperforms garbage collection, a few critical instructions manipulate the pointers.Understanding the e�ects of these instructions is tantamount to understandingthe full program. These critical instructions can be taken to be B. However,in a larger program that includes a garbage collector, it is not su�cient to usethis strategy, because an attacker may replace the entire garbage collector.We have assumed that B is executed only once. We can make it extremelydi�cult for the attacker to observe the e�ect of B if B spawns a kernel processthat runs concurrently with the application program. This process does thelicense veri�cation and carries out some essential computation. Observing thee�ect of B is very di�cult since its execution is intertwined with the executionof the other processes in f and its e�ect is spread out over an execution ofundetermined length.3.3 File Certi�cationAn entirely di�erent scheme to thwart vicious attacks is based on using unforge-able certi�cates. There is a trusted third party, called a certi�cation authority,to whom authors submit their �les for certi�cation. If the authority determinesthat the �le is genuine and the author is the legitimate creator of the �le then itissues a certi�cate to the �le, which the author attaches to the �le as a header.The kernel checks for such a certi�cate in each �le and uses the certi�cate andthe license to open a �le.The certi�cation authority may use a variety of means to check the authen-ticity of �les. For music and video, water-marking may be the preferred solution;9



for a genome sequence a manual patent check may be su�cient. We outline anautomatic scheme, similar to water-marking, that is applicable to executablebinary �les. Before explaining the scheme, we state the properties of certi�-cates in axiom 3 { 5, and show that axiom 2 is implemented. Then, we showthat our scheme implements these axioms. Note that any scheme that satis�esthese axioms will protect the �les against piracy; our scheme is only one way ofimplementing the axioms.A certi�cate is issued only to a genuine �le and for a speci�c kernel (imag-ine that �les running under di�erent kernels are di�erent). For every �le f ,f:header is a certi�cate. For a genuine �le, g, g:header is the certi�cate issuedto it, and for a fake �le, f , f:header is a certi�cate issued to some genuine �le.A kernel can verify if a �le \satis�es" a certi�cate; we write f sat c to denotethat �le f satis�es certi�cate c, and we de�ne this term in section 3.3.1. Notethat f need not be genuine to satisfy c.Axiom 3: For any �le f , f sat f:header.Axiom 4: For any certi�cate c, f sat c ^ g sat c) f � g.Axiom 5: For every certi�cate, c, there is a genuine �le f such that c =f:header.We now prove that axiom 2 follows from the three axioms above.Theorem 2: (f � g) ^ (genuine g)) (f:header = g:header).Proof: Let c = f:header.c = f:header) fAxiom 5: let h be a genuine �le such that h:header = cgc = f:header ^ c = h:header ^ (genuine h)) fAxiom 3: Both f; h satisfy their headersgf sat c ^ h sat c ^ f:header = h:header ^ (genuine h)) fAxiom 4: f sat c ^ h sat c) f � hgf � h ^ f:header = h:header ^ (genuine h)) fantecedent: f � g ^ (genuine g)gf � g ^ (genuine g) ^ f � h ^ (genuine h) ^ f:header = h:header) fUniqueness condition from axiom 1gg = h ^ f:header = h:header) fPredicate calculusgg:header = h:header ^ f:header = h:header) fPredicate calculusgf:header = g:header
10



3.3.1 Implementing Axioms 3,4We propose that a certi�cate issued to f contain a pair (f:id; f:sign), matchingthe structure of a header; the certi�cate will be signed by a trusted third party,as we show in section 3.3.2. The component f:id of the certi�cate is computedas follows. Let p be a sequence, p = p0; p1; ::, where, for all i, pi is a randomposition in f where the bit value is 0. Then f:id is K:unsign(p) where K is thekernel under which this �le operates (recall that each kernel has a signature).Thus, f:id can be read (i.e., decrypted) only by the kernel.De�nition: File f satis�es certi�cate c (written as f sat c), where c containsthe pair (u; v), if f [pi] = 0, for all i, and p = K:sign(u).We claim that axioms 3,4 are met by this scheme. For a genuine �le, g, thecerti�cate issued to it becomes its header; therefore, g sat g:header, meetingaxiom 3. For any other �le the kernel rejects the �le if this condition is notmet. Therefore, every �le submitted to a kernel meets axiom 3. For axiom 4,note that a random bit string satis�es c with probability 2�jpj, where jpj is thelength of the sequence of positions chosen from f . Thus, for su�ciently longp, say jpj = 40, it is highly unlikely for two �les to satisfy the same certi�cateunless they are copies. Additionally, no one can tweak a �le content to satisfy acerti�cate c for an entirely di�erent �le, f , because that would require decryptionof f:id; only the kernel can perform this decryption.3.3.2 Implementing Axiom 5We use a trusted third party, called a Certi�cation Authority, or CA for short,for implementing axiom 5. There can be several CA. An author submits toa CA a �le f and the name of the kernel K under which f is to be exe-cuted. If the CA determines that f is genuine then it issues a signed certi�cate,CA:sign(f:id; f:sign), that becomes f:header. Since the certi�cate is signed bya CA, any fake certi�cate will be rejected by the kernel. Therefore, axiom 5 ismet: For every certi�cate, c, there is a genuine �le f such that c = f:header.The remaining question is how a CA tells if a �le is genuine. Here, di�erentmethods may be employed for di�erent kinds of �les. Water-marking is bestapplied for music and videos; if the CA detects a water-mark of another authorit rejects the �le. We describe below a variation of this scheme to establishauthenticity of executable binary �les.For CA to issue certi�cates only to genuine �les the author has to prove toCA that a �le it submits is genuine. One possible proof is for the author tosupply the source code for f ; any party that has access to the source code canbe deemed to be the genuine author. CA then compiles the source code andcerti�es the resulting executable �le. Unfortunately, this scheme does not quitework, because it requires the author and CA to agree on a common compiler. Itis possible that an author has an in-house compiler on which the code is to becompiled. Then, CA has to �rst certify the genuineness of the compiler. This is11



not a frivolous issue, because a pirate may create a fake compiler that includesan encoding of a genuine executable �le, f , from another author; compiling anyinput with this compiler produces f . If CA accepts compilers without questionfrom authors then it will certify f as a creation of the pirate.We suggest a strategy based on water-marking. Each author �rst registerswith CA and then CA assigns an imprint to the author. The imprint informationis a secret that is shared between CA and the author. Imprints have the followingproperties: (1) it is not burdensome for an author to embed its imprint into its�les, (2) it is easy for CA to check a �le for the imprints of all registered authors,(3) it is highly unlikely that a random bit string bears the imprint of any author,and (4) it is nearly impossible to remove an imprint from a �le without knowingthe imprint. We discuss certain kinds of imprints and argue why they do or donot meet these conditions.First, we show that CA can certify that a genuine �le is genuine and rejectfake �les, given these properties of imprints. For a �le submitted by author v,CA checks that the �le bears v0s imprint and only v0s imprint. Then CA canassert that the �le is written by v; had it been written by any other author itwould bear that author's imprint, from condition (4).A genuine �le submitted for certi�cation may bear another author's imprintaccidentally. In that case, the �le will be rejected by CA, and the author willhave to modify it. The chances of this happening are quite low (see assumption3 above), and it is highly unlikely that this scenario will repeat with the modi�ed�le.How can an attacker change an executable �le? We have allowed thepossibility that an attacker may change a genuine �le, f , to a �le g and thenmarket g as his own. What kinds of changes are possible?A genuine executable �le, f , is available as a bit string. Let f [i] denote thebit value at the ith position of f . Since the source code of f is not available,the attacker has, at best, an understanding of small portions of the code off . Without a thorough understanding of the �le it is impossible to change itextensively and still have the �le run properly. Thus, inserting an instruction,which shifts a signi�cant portion of the memory map by one location, is surelygoing to make an executable �le useless. Similarly, data items cannot be changedsigni�cantly either because their absolute addresses may be used in the �le. Thepirate may insert new code at the end of f and change small portions of f byadding jumps to new code. He may also modify a few bits of f (even at theexpense of losing some functionalities) in order to embed his imprint. However,for f � g, we can assert that f [i] = g[i], for almost all i whenever f [i]; g[i] arede�ned. If this is not the case then g will not execute because �le f makesreferences to absolute addresses in f , which will now be di�erent in g. Weexploit this limitation of the attacker to distinguish a genuine �le from a fake�le.Notation: position is an index i such that f [i] is de�ned. For a sequence ofpositions X , f [X ] is the bit string obtained from the corresponding positions of12



f ; we assume that all positions in X fall within the bounds of f so that f [X ] isde�ned.Imprints that meet the stated conditions A simple imprint that CA canassign to each author is a pair (X;S), where X is a sequence of positions andS is a bit string, and X and S have the same length. A bit string f bears theimprint (X;S) if f [X ] = S. The probability that a random string bears thisimprint is 2�jXj. However, it is possible to guess such an imprint by examininga large number of �les from the same author. Suppose we examine q �les froman author and �nd that all �les have the same value at a particular position.The likelihood of this occurrence is 2�q+1; for q of about 50, say, it is extremelyunlikely for one position to have the same value in all �les unless it is speci�callyintended. Thus, all such positions can be identi�ed and they can all be inverted;with high likelihood, the imprint will then be removed.This analysis assumes that di�erent �les from the same author share nothingbut the imprint. This may be true for music and video �les, but for executable�les they, typically, share much more. So, it is unlikely that this attack willsucceed in practice. However, we can modify this imprinting scheme and avoidthe attack altogether.As before, let CA assign to each author a pair (X;S), where X is a sequenceof positions and S is a bit string, and X and S have the same length. A bitstring f bears this imprint if f [X ] = S0, where S0 is a rotation of S by someamount. We argue below that this scheme meets all the criteria for imprintslisted earlier. In the following, let N be the number of bits in f (N is severalhundred million for today's commercially available �les) and n be the length ofX (and S); (we will consider n in the range of about 32 bits).First, It is possible for an author to embed its imprint into its �les if nis small. For n = 32, for instance, it will take some help from compiler andloader to put a few hand-designed routines into speci�c positions in f so thatthe imprint is embedded. Or, it may be possible to �ddle with absolute code toinvert a few bits to embed an imprint.Second, CA can check a �le for a speci�c imprint quite easily: given (X;S)to see if f [X ] is a rotation of S can be solved using an algorithm due to Shiloach[3] that operates in time proportional to jX j; see Gasteren and Feijen [5] for anelegant development of Shiloach's algorithm. More simply, it is su�cient tocheck that f [X ] is a substring of SS, and a linear string matching algorithmcan be used for this purpose. The imprints of all authors in a given �le canbe checked in time proportional to the number of authors and the lengths oftheir imprints. (For 30; 000 authors it takes around 3 seconds to check all theimprints, assuming that 107 instructions are executed per second, and that ittakes around 1000 instructions to check for an imprint.)Third, it is quite unlikely that a random �le bears the imprint of someauthor. The probability that a random bit string has the imprint (X;S) ofa speci�c author is n=2n (we assume that the string S yields di�erent stringswhen rotated by di�erent amounts). Given that there are r authors, each with13



the same parameter n, the probability of �nding the imprint of some author ina random string is, 1� (1� n=2n)r. For n; r = 32; 30000, this is about 0:0002.This is the probability that CA rejects a valid �le from an author because itdetects the imprint of another author. The author may recompile the �le in adi�erent sequence and submit it for certi�cation in that case.Fourth, we argue that it is nearly impossible to remove an author's imprintfrom a �le without knowing the imprint itself. An imprint can be removed fromf by creating g which is a shift of f by one position. It is unlikely then thatg[X ] = f [X ], and hence g[X ] will most likely di�er from any rotation of S, thusremoving any imprint in f . However, g will then di�er from f in a large numberof positions (around half, on average), and, as we have argued, g will not thenexecute properly. As long as most positions in g have identical bit values asin f , the only attack seems to be to guess some position in X and invert thebit value at that position. The only information available to an attacker areseveral �les from the same author. However, no position in all the �les bearsany distinguishing characteristic if S is chosen appropriately, for instance, if Shas about equal number of zeroes and ones. Then, the only attack that seemsto be left is to invert a random number of bits of f to remove an imprint.How many bits have to be inverted randomly so that an imprint is removed?We calculate the probability of choosing one of the positions in X if t positionsare chosen randomly out of N positions. Call the positions in X private andthe remaining positions public; there are n private positions and N positionsin all. Probability of choosing a public position in a random choice is around(1� n=N) (this is an approximation because the number of public and privatepositions change as a result of a choice). Probability of choosing all publicpositions in t choices is (1 � n=N)t. So, the probability of choosing at leastone private position is 1 � (1 � n=N)t. With N;n = 106; 32 the probabilitiesare .031, .062, 0.617, 0.959 for t = 1000, 2000, 30000 and 100000, respectively.Therefore, a fake author has to invert around 10% of the bits of the original �leto assure removing an imprint; for larger �les a larger fraction of the bits haveto be inverted if n remains unchanged. It is unlikely that a �le that di�ers inso many bits from the original can simulate the original �le in any reasonablesense.Remarks on the contents of certi�cates The certi�cate issued by CAshould contain additional statistical information about a �le such as its lengthand checksums for certain blocks. In the absence of such information, a piratemay truncate a genuine �le drastically to remove the author's imprint, embedits own imprint by tweaking the truncated �le and submit the truncated �le forcerti�cation. The certi�cate issued to the truncated �le is valid for the original�le as well. Hence, the pirate can market the original �le with the certi�cateissued for the truncated �le.
14



3.3.3 Drawback of certi�cationThe major di�culty in using certi�cation is that privately shared �les are nolonger permitted; all such �les have to be certi�ed by a CA. Therefore, thisscheme is best used for music and video �les, that are, typically, publicly mar-keted.4 Licensing from the RetailerIn this section, we present a few proposals for the retailer to issue licenses onbehalf of the authors. There are many commercial reasons why customers mayprefer to purchase �les from a retailer rather than directly from the author. Aretailer may handle �les produced by several authors. For the retailer to issuelicenses it must have the headers for all the �les it sells, and it must sign a pair(f:id;m) with the signature of f 's author. Given honest retailers this schemeis immune to piracy in the sense described in theorem 1. However, a dishonestretailer may create unauthorized copies of �les and issue licenses which are neverreported to the authors.A possible defense against dishonest retailers is as follows. An author as-sociates a unique serial number with each copy of each �le it sells. The serialnumber appears in plain text. The customer buys the �le (on a CD, for instance)from the retailer and then contacts the author electronically for a license. Therequest for the license includes the serial number of the �le as well as the ma-chine id. The author issues the license, and it keeps track of the serial numberssold. Then the author can demand the appropriate payment from the retailersbased on the sales data and the serial numbers of the �les issued to each retailer.Also, the author will not issue duplicate licenses for the same serial number. Wereject this solution, however, because customers often buy from retailers whenthey have no convenient electronic contact with the author.Electronic contact between a retailer and an author is more easily estab-lished. Therefore, a retailer may obtain the license from the author, on behalfof a customer, as described in the previous paragraph; the customer has to sup-ply the machine id to the retailer. This procedure is analogous to \credit-cardsale authorization" where a point-of-sale terminal (pos) obtains an authoriza-tion code for a credit card sale. The customer presents a machine-id card andthe �le to be purchased at a pos and the pos issues a license after contactingthe author.Another possibility is for the retailer to use a secure device, called a licenser.Presented with a �le title, its author and a machine id, the licenser issues theappropriate license and records the sale on permanent storage. The device hasto be secure so that the sales record can not be modi�ed by the retailer. Thestorage requirement for a licenser are minimal: for each �le sold by a retailer, ithas to store the header, the signature function of the author and the number ofcopies of the �le sold so far. The processing requirements are also minimal: foreach sale a license has to be computed. Information on sales data may be read15



out and reset by each author electronically (by using a secure authenticationprotocol) from time to time; therefore, only periodic contact between an authorand a retailer is required. Since it is impossible for the retailer to access ormanipulate any information in the licenser all sales of a �le will be reported toits author.In some countries such a device is already used for \�scal journalling", i.e.,the sales are recorded on a secure device for tax purposes.Creating a license does not place extraordinary burden on a retailer. Hemay link the licenser to the point of sale terminal; the customer may providehis machine id in a smart card that can be scanned, and the �le title can beobtained from its UPC code; the license can be printed in the sales receipt. Notethat the license has no value to any other party; therefore, it may be given inplain text.5 ExtensionsSoftware leasing The scheme proposed in this paper permits leasing of soft-ware for a speci�c time period. Then, the license carries the terms of the lease,and these terms can be checked by the kernel as part of the license veri�cation.The licenser device at the retailer has to record the lease term as part of thesale.This scheme could be compromised by tampering with the clock in the ma-chine. We assume that the clock is part of the kernel, and, hence, it is tamper-proof.Authorizing the customer vs. authorizing the machine We have, sofar, assumed that a �le is authorized for execution on a speci�c machine. Thispresents di�culties when the machine is sold to a di�erent party; the buyer ac-quires and the seller relinquishes all licensed software on the machine. Instead,a �le may be sold to a customer provided that the customer has a unique, un-forgeable id encoded in a smart card that plugs into any machine. Authenticitycheck is then made against a customer id instead of a machine id. It is possibleto authorize either a machine or a customer using this scheme. This allows acustomer to run his software on any machine, but if the cards are truly un-forgeable then a �le licensed to a customer could be operating on at most onemachine at any time.Software refund It is di�cult to carry out the following transaction: thecustomer returns a �le and demands a refund. This is because he can keep acopy of his license and a copy of the original �le.Software reselling It is di�cult for one customer to sell a �le, that he hadpurchased, to another customer (and remove it from his machine). Reselling isa more general case of software refund (refund involves selling to the retailer),which is di�cult, as argued above. 16



Bulk Licensing A �le is sometimes licensed to run on any machine in a group,particularly, when software is licensed to an organization. Then, a single licensemay include the identities of all machines in the group, instead of licensing eachmachine individually. In particular, a special machine id, \ALL", could be usedin a license for a privately shared �le to enable it to be installed on any machine.AcknowledgmentThis paper owes a great deal to discussions with Rajeev Joshi, Don Fussell andDoug Burger. I am grateful to the members of WG 2.3 who gave me usefulcomments after presentation of this material. In particular, Ernie Cohen andJ.R. Rao have given me expert advice on several aspects of this problem. Thesimilarity of �scal journalling to the use of licenser as well as the necessity of asecure clock for software leasing are due to Rao.References[1] Marc A. Kaplan. IBM Cryptolpestm, SuperDistribution and digital rightsmanagement. Available at http://www.research.ibm.com/people/k/kaplan,Dec 1996. IBM Corporation.[2] R.L. Rivest, A.Shamir, and L. Adelman. A method for obtaining digitalsignatures and public key cryptosystems. Communications of the ACM,21(2):120{126, February 1978.[3] Yossi Shiloach. A fast equivalence-checking algorithm for circular lists. In-formation Processing Letters, 8(5):236{238, 1979.[4] Olin Sibert, David Bernstein, and David Van Wie. Securing the content,not the wire, for information commerce. Available at http://www.star-lab.com/secure-the-content.html. Intertrust Technologies Corporation.[5] A. J. M. van Gasteren and W. H. J. Feijen. Shiloach's algorithm, taken as anexercise in presenting programs. Nieuw Archief Voor Wiskunde, xxx(3):277{282, 1982.

17


