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three kinds of energy are internal spline energy, image energy and user constraint energy. Theinternal spline energy tries to maintain a smooth contour. The image energy attracts contours tothe desired image features. Image energies come in several forms. One is the image intensity itself,another is the edge energy, and a third is the energy of the terminations of line segments and corners.A coarse-to-�ne approach by spatially smoothing image energy is entailed to reduce the possibilityof trapping a contour in a local minimum. The user constraint energy can be interactively added bya user to move the contour from one local minimum into another minimum in case of unsatisfactoryresults. This energy model is also very attractive for a sequence of image slices in which the objectdoes not change or move much.A user de�nes some initial rough contours for the beginning slice, and thereafter the program�nds accurate contours using the active contour model. These newly found contours will be usedas the initial contours for the next slice. This scheme has been used by other papers in contourtracing [Coh91, CC93, Ron94].This paper presents the following major contributions:1. A-spline active contours: An algebraic spline (A-spline) [BX92, BX96, BCHN98] is used torepresent the contour curve. One advantage of A-splines is that any change to the controllingweights only a�ects the curve locally. This results in fast convergence. Moreover, the degreesof freedom of an active linear contour polygon still remain in the control polygon verticesof the A-spline contour. Our active A-splines are also level sets of a time-dependent (piece-wise quadratic or cubic) function with the added 
exibility of a dynamic unstructured mesh(triangulation). Other advantages include the ability to use lower degree polynomials thantraditional polynomial parametric B-splines (quadratic A-splines achieve local C1 continuitywith extra degrees of freedom; impossible with degree two polynomial parametric splines).A-splines also avoid the necessity of dealing with poles that can arise from rational parametricB-splines (NURBS).2. Vector image forces: A-splines allow an easy speci�cation of orientation, so that they may bedriven to converge to an interior or exterior contour. Our active contour model shall havethis polarity, dependent on whether the desired segmented contour is the inner or outer (orboth) boundary of an annular region. The vector image force shall attract the active contourto the correct boundary.The following terms will be used in this paper. An A-spline segment will be the portion ofan A-spline between two consecutive marked points, called junction points, on the contour. Thetriangle formed by the two junction points and the point of intersection of the two tangent lines tothe A-spline at the junction points will be called the control triangle of the A-spline segment, andthe vertex at the intersection of the tangents lines is the apex of the control triangle. The polygonformed by connecting all the junction points is the control polygon of the A-spline.The rest of this paper is as follows. Section 2 reports on prior work on active contour models.Section 3 gives background information on constructing image contours with A-splines. Section 4provides an overall sketch of our algorithm that computes image for active contouring of images.Sections 5{7 provide the details of the three main steps of the active contouring algorithm. Section 5presents an iterative coarsening algorithm for de�ning an A-spline control polygon from imagesusing the degrees of freedom of the control vertices respecting intrinsic conditions derived from theimage. Section 6 de�nes physical A-splines where material properties are assigned to the geometry2



yielding strain energy formulations for the curve. Image energy models are also provided. Section 7presents an algorithm for energy minimization of physical A-splines for active image contouringutilizing the local degrees of freedom. Section 8 concludes the paper.2 Prior Work on Active ContoursSince their introduction, active contour models [KWT88] have been heavily investigated. Theimprovements are mainly in two aspects: 1) the methods to locate the contour with minimumenergy, and 2) the types of energies acting on the contour.The snake model [KWT88] uses a �nite di�erence method to iteratively re�ne the solution.Amini et al. [AWJ90] use dynamic programming, which is numerically stable, in the search windowto locate the contour with minimum energy. Williams et al. [WS92] use a greedy algorithm toimprove the speed of dynamic programming from O(nm3) to O(nm) where n is the number ofpoints of the contour and m is the number of positions a point can move. Fujimura et al. [FYY93]use a coarse-to-�ne approach to speed up the dynamic programming time. Geiger et al. [GGCV95]lets a user place initial points instead of contours on an image. A list of uncertainty for each pointis calculated. Basically, the uncertainty list shows a higher cost for a point farther away from theselected point. A search window is created from two consecutive lists. A dynamic programmingmethod is employed to trace the contour. Cohen et al. [CC93] apply a �nite-element method toachieve greater stability and faster convergence. Finally, Lobregt et al. [LV95] develop a discretemodel using vertices connected by line segments. All calculations of energies are limited to verticesonly. This model uses re-sampling so the distance between vertices has approximately the samelength after each iteration.The snake model shrinks into a point or a line if no image energy is present. It also createscrowded vertices at high curvature portions of contours. Lobregt et al. [LV95] use a convolution�lter applied to the internal force to solve the shrinking problem. Re-sampling as well as limitingthe vertices moving avoids vertex clustering. Cohen's `balloon' model [Coh91] adds an in
atingforce. The thresholded edge is di�used by a Gaussian �lter and is added to the image energy. Thisallows better localization of real edges. Ronfard [Ron94] incorporates region-based segmentationinto the active contour models. Ronfard partitions the region along the contour into small regions,and computes the image force from the deformation of these partitioned regions. Malladi, Sethian,and Vemuri [MSV95, MS96, Set96] use a level set approach to make a contour front advance tothe desired boundary. The advancing front is a time-dependent (piecewise bilinear) function overa static structed mesh (Cartesian image grid).3 Image Contours with A-splinesIn this section we brie
y summarize, for the sake of completeness, the process of constructing anA-spline contour approximation from a closed linear polygon [BX96]. The speci�c steps we takeare:1. Compute breakpoints along the contour. These breakpoints points are the junction pointsfor the A-spline segments which make up the A-spline contour.2. For C1 and C2 A-splines, compute �rst and second derivatives at the junction points usinglocal divided di�erences along the contour.3



Figure 3.1: Extracting an isocontour (left) from a dense MRI slice (right)3. Construct A-spline �ts which interpolate the junction points along with the derivatives, andis least-squares approximate from all the given data between junction points.An A-spline curve consists of the zero contour of some piecewise smooth BB polynomials de�nedover a simplicial hull �, or a triangulation of a connected region of the space. In particular,F (i)(�) = Xj�j=d b(i)� Bd�(�) = b(i)TBd = 0 (3.1)is the zero contour of a BB polynomial de�ned within the i-th simplex (triangles in 2-D) in �.The base functions Bd� are grouped into a vector B and the coe�cients b� into b. Smoothnessof certain degrees and local interpolation of certain degrees are enforced by some linear equalityconstraints bTC(p) = 0 ; (3.2)and connectedness of the curve is enforced by additional linear sign inequalitiesbTS > 0 : (3.3)Vector b is a global collection of the coe�cient vector b(i) of all simplices in �, and S and C(p)are de�ned explicitly for A-splines with Ck continuity in [BX92]. An example contour extractionis shown in the left part of Figure 3.1 from the input MRI (Magnetic Resonance Imaging) imageslice on the right. Of course, more sophisticated edge detection or contour extraction algorithmsmay also be used, see for e.g. [Can86].To compute the junction points around an image contour, in [Baj91] we use a curvature adaptivescheme for the placement of the A-spline segments. In this paper, we construct junction pointsvia an iterative contour coarsening scheme, preserving some local features of the image. There arevarious forms of divided-di�erence methods that extract geometric information around a junction4



Figure 3.2: Junction Points and Cubic A-spline Fitspoint, from a given list of points or dense image grids [deB78, BX96]. We use compact formulasfor higher order divided di�erences given in [BI93].After satisfying the derivatives at the junction points, A-splines still possess extra degrees offreedom. These degrees of freedom are used to least-squares approximate points in the triangle whilesatisfying the sign requirements. In the event that there are not enough data points within a triangle(zero probability for a dense image contouring), default choices of values for the undeterminedcoe�cients are used. One method to determine these default coe�cient values is to approximatelocally a quadratic curve within the triangle. This tends to avoid sharp changes in the localgeometry of the spline curve. The quadratic approximation is easily achieved by using degreeelevation formulas (see [Far90]).4 Algorithm Sketch for Active Contouring of ImagesIn this section we sketch the main steps of our algorithm for active contouring of images using C1quadratic and C3 cubic A-splines. The former A-spline allows us to achieve the same degree ofcontinuity as a traditional cubic polynomial B-spline.� Step 1: Given an image, we apply the level set method of Sethian et al. [MSV95] to obtaina good geometric �t to the desired image boundary (often multiple contour components), andconstruct an A-spline contour approximation as sketched in Section 3 and detailed in Section 5.� Step 2: Next, construct a physical A-spline contour from the geometric one obtained in5
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Figure 4.1: The points b1, b2, and b3 slide independently along the edges of 4a1a2a3.Step 1. We de�ne a strain energy function Estrain, and an image energy function Eimage in amanner similar to that of [KWT88]. The strain energy, or internal spline energy, Estrain is afunction of the spline's arc length and curvature [Mum94], and the image energy Eimage is typicallya function of the intensity I(x; y) at each pixel of an image. If f(x; y) = �I(x; y) the contourwill be attracted to light or dark areas, while if f = �jrI(x; y)j2, the contour will be attracted toboundaries between light and dark regions. Details of how the energy functions are obtained areprovided in Section 6.� Step 3: The �nal step involves minimizing the total energy of the A-spline. We constructan energy minimizing A-spline by �nding the energy minimizing spline inside each triangle usinga formulation like (7.1) below. The general C1 quadratic spline in BB coordinates has the formb101�1(1��1��2)��22, as shown in [BX92, BCHN98]. Thus for each triangle, �nding the minimumenergy is a one-variable minimization problem. A derivation of the energy minimizing process isgiven in Section 7.An example of such constrained motion is shown in Figure 4.1. In this example, we have a closedcontour with three junction points b1, b2, and b3, and three control triangles �b1a2b2, �b2a3b3,and �b3a1b1. By restricting the bi to slide along the edges of �a1a2a3, we have three degrees offreedom to describe their positions as compared to six degrees of freedom with no restriction ontheir motion. If the interpolating splines are C1 quadratic, we have an additional three degrees offreedom to express the splines within the control triangles.5 A-spline Control Polygon from ImagesIn this section we present a method to build a control polygon with marked junction endpointsfor an A-spline approximation of the desired segmented contour. We �rst discuss some intrinsicconditions that the junction endpoints and the control polygon need to satisfy.6



Interpolation An A-spline interpolates the junction endpoints (vertices of the base) of each tri-angle containing the A-spline segment. This implies that such points need to lie very close tothe desired segmented contour boundary C.Tangency Adjacent A-spline segments are tangent to the edges of the polygon at the junctionpoints. The position of the junction points can be selected arbitrarily along the interior ofeach edge of the polygon. We will take advantage of these degrees of freedom for the junctionpoints.In
ection Points Each A-spline segment is convex within its triangle [BX92]. This implies thatany in
ection point of the desired segmented contour boundary C must lie close to one of thejunction points of the A-spline segment.Angle Span The length of each arc approximated with an A-spline (even without in
ection points)is bounded by the curvature of the curve segment. In particular the total angle span coveredby an A-spline segment must be bounded by a maximum angle smaller than � (for example, asemicircle cannot be represented by a single A-spline segment unless the apex of its containingtriangle lies at in�nity, i. e. a projective A-spline).We build an A-spline contour control polygon satisfying the above four conditions, as a \coarse"representation of the desired segmented contour boundary curve C, preserving level set local imageand polygon features like in
ection points and tangency. We �rst use the method of Sethian etal. [MSV95] to obtain a �ne piecewise linear polygon approximation Q0 of the desired boundarycurve C. This polygon Q0 has the advantage of being su�ciently �ne to capture the required localfeatures of C. To ensure that the �nal A-spline contour control polygon satis�es the above fourconditions, we go through an iterative coarsening process to obtain successively coarser polygonsQ1; Q2; : : : ; Qk with fewer sides, however preserving the necessary image features of vertices of Q0.The coarsening scheme applied to the polygon Q0 di�ers from standard error-bounded shapesimpli�cation schemes since in this case, we additionally need to satisfy the in
ection point condi-tions instead of being concerned on keeping a low overall error of the coarse polygons [BS96]. Notethat we use Q0 both as the initial polygon in the simpli�cation process and as a good approximationof the segmented contour boundary curve C (see �gure 5.1).First of all we detect the re
ex edges of Q0, the edges at which the concavity of the polygonchanges. Such edges need to be preserved in the simpli�cation process since each of them containsan in
ection point (see �gure 5.1(b)). We will take as the in
ection point the midpoint of eachsuch edge.To coarsen the polygon we remove every other edge in the polygon, as long as it is not a re
ex.For each removed edge we extend the two adjacent edges (that we keep) up to their intersectionpoint as in �gure 5.1(c). We repeat the process as long as we can remove a non-re
ex edge byextending the two edges adjacent to it. The condition for this rule to be applied is as follows. Calle the edge we want to remove, el and er the two edges at its left and right, and a the intersectionpoint between the lines through el and er. (If el and er are parallel, point a does not exist, andedge e cannot be removed.) The edge e can be removed if the triangle T of base e and apex acontains neither el nor er. Examples of the various cases are shown in �gure 5.2. In examples (a)and (b) the edge e cannot be removed since either el or both el and er are contained in T . Example(c) shows the case in which the edge e can be removed. For practical reasons we will restrict such7



condition by requiring that the angle of T at the apex a is greater than some positive value �, suchas 30� (this is shown in example (d) in the �gure).6 Physical A-splines and Strain Energy ModelsIn this section we capture physical information from the material properties of the A-splines. Anexample of this is relating computer tomography (CT) data and elasticity correlation as in [CH77].We begin with a description of how linear, quadratic, and cubic A-splines can be parametrized,and then develop models of the strain and image energies involved.6.1 Parametrizations of A-splinesIn order to perform the various integrations along the splines, we need parametrizations for them.We proceed to derive parametrizations of linear, quadratic, and cubic A-splines. Doing the linearcase �rst, we observe that a parametrization of a general line in BB formS(�1; �2) = b100�1 + b010�2 + b001(1� �1 � �2) = 0 (6.1)is given by �1 = u �2 = 0 (�3 = 1� u) ; (6.2)0 � u � 1 :Next, we turn our attention to the more interesting case of quadratic A-splines. A parametriza-tion of the general quadratic with C1 continuity at p1 and p3,S(�1; �2) = 2b101�1(1� �1 � �2)� �22 (6.3)is obtained in [BX92] by intersecting S(�1; �2) = 0 with the line �1 = u(1� �2) to obtain�1(u;b) = u1 +p2b101u(1� u) �2(u;b) = p2b101u(1� u)1 +p2b101u(1� u) ; (6.4)0 � u � 1 :Here b denotes the column vector of the coe�cients bijk, and in this case b consists of the singleelement b101. For now we will assume b is constant when deriving the energy of a spline; lateron when dealing with dynamic splines, b will be allowed to vary. Also, u parametrizes the linesegment from p3 to p1.Now we consider cubic A-splines with C3 continuity. The equation of the general C3 cubic isS(�1; �2) = 3b201�21(1� �1 � �2) + 3b120�1�22 + 6b111�1�2(1 � �1 � �2) (6.5)+ 3b102�1(1� �1 � �2)2 + 3b021�22(1� �1 � �2)� �32 = 0 ;in accordance with [BX96]. When one speci�es the second and third order derivatives at p1 and p3,it is possible to express the four coe�cients b201, b120, b102, and b021 as linear functions of the remain-ing coe�cient, b111. These relations are given in [BX96], and the following cubic parametrizationappears in [BX92]. When we intersect S(�1; �2) = 0 with the line �1 = u(1 � �2), we obtain a8
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Figure 5.1: Successive steps of the simpli�cation process applied to the polygon Q0(x; y).9
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Figure 6.1: Representation of points in local BB coordinates. Point pi has Cartesian coordinates(xi; yi), i = 1; 2; 3. A point (�1(u); �2(u)) is given by the intersection of the spline with the lineconnecting the points (u; 0) and (0; 1) (p2) in BB coordinates.Then the root we want is t(u) = 2r1=3 cos � � B3A : (6.9)The �nal cubic parametrization is then�1(u;b) = u[1� �2(u;b)] ; �2(u;b) = 11 + t(u;b) ; 0 � u � 1 :where t(u;b) is given by (6.8) or (6.9). (6.10)6.2 Strain energy modelsLet s be the arc length coordinate of a point on a plane curve C with parametrization w(a). Forthis parametrization, the elastic potential energy of a deformable curve is as follows [Mum94]:Estrain = ZC �� + 
�2� ds : (6.11)The terms � and 
�2 represent the stretching and bending energy, respectively.Let S(�1; �2) = 0 be an A-spline de�ned within a triangle �p1p2p3 (see �gure 6.1). Thecurved piece interpolates p1 and p3 and is tangent to p1p2 and p3p2 at p1 and p3 respectively. LetF (x; y) = 0 be the representation of the spline in Cartesian coordinates. The Cartesian coordinatesof p1, p2 and p3 are (x1; y1), (x2; y2) and (x3; y3), respectively, and their local barycentric coordi-nates, suppressing the third coordinate �3 = 1� �1 � �2, are (1; 0), (0; 1), and (0; 0), respectively.The following notation will be used:dij = q(xi � xj)2 + (yi � yj)2c12 = (x1 � x3)(x2 � x3) + (y1 � y3)(y2 � y3)� = ������� x1 x2 x3y1 y2 y31 1 1 ������� :11



In the linear case, when we use the parametrization (6.2), we see that rS = [0 1]T and r2S isthe 2� 2 zero matrix, so � = 0 in (6.11), which must be the case for a straight line segment. Thusonly the stretching energy is present in this formulation. Equation (6.11) then reduces toEstrain = �d13 ; (6.12)a multiple of the arc length, here the distance from p1 to p3, as expected.In [BCHN98], these following expressions for the strain energy of a quadratic A-spline wereobtained. For brevity, we de�ne b =p2b101 :Estrain = Z 10 (�  n4u(1 � u)d213 + 2bqu(1 � u)[(1� 2u)(d223 � d212) + d213]+b2[�u(1� 2u)d212 + u(1� u)d213 + (1� u)(1� 2u)d223]o1=2�(2qu(1� u) �1 + bqu(1� u)�2)!+ 
 "2b2�2 �1 + bqu(1� u)�4,�qu(1� u)n4u(1 � u)d213 (6.13)+ 2bqu(1� u)[(1 � 2u)(d223 � d212) + d213]+b2[�u(1� 2u)d212 + u(1� u)d213 + (1� u)(1� 2u)d223]o5=2��� du :andEstrain = Z 1=p20 h� �n4v2(1� v2)d213 + 2bvp1� v2 h(1� 2v2)(d223 � d212) + d213i+b2[�v2(1� 2v2)d212 + v2(1� v2)d213 + (1� v2)(1� 2v2)d223]o1=2��p1� v2 �1 + bvp1� v2�2��+ 4
�2b2 � (1 + bvp1� v2)4 .p1� v2 n4v2(1� v2)d213 + 2bvp1� v2[(1� 2v2)(d223 � d212) + d213]+b2[�v2(1� 2v2)d212 + v2(1� v2)d213 + (1� v2)(1� 2v2)d223]o5=2�� dv+ Z 1=p20 h� �n4w2(1� w2)d213 + 2bwp1� w2 h(1� 2w2)(d212 � d223) + d213i (6.14)+b2[(1� w2)(1� 2w2)d212 + w2(1� w2)d213 � w2(1� 2w2)d223]o1=2��p1� w2 �1 + bwp1� w2�2��+ 4
�2b2 � (1 + bwp1� w2)4 .12



p1� w2 n4w2(1� w2)d213 + 2bwp1� w2[(1� 2w2)(d212 � d223) + d213]+b2[(1� w2)(1� 2w2)d212 + w2(1� w2)d213 � w2(1� 2w2)d223]o5=2�� dwIn the interest of computational speed, an application of Simpson's rule using three points foreach of the two integrals in (6.14) yields this expression for the simpli�ed strain energy:Estrain� = �  b(d12 + d23)6p2 + 2d133(2 + b) + 32[3p7(8 +p7 b)2] �n[28d213 + 4bp7(�3d212 + 4d213 + 3d223) + b2(�6d212 + 7d213 + 42d223)]1=2 (6.15)+ [28d213 + 4bp7(3d212 + 4d213 � 3d223) + b2(42d212 + 7d213 � 6d223)]1=2o !+ 
�2  p23b3 � 1d512 + 1d523�+ 8b23(2 + b)d513 + 128(8 +p7 b)4b23p7 �n[28d213 + 4bp7(�3d212 + 4d213 + 3d223) + b2(�6d212 + 7d213 + 42d223)]�5=2+ [28d213 + 4bp7(3d212 + 4d213 � 3d223) + b2(42d212 + 7d213 � 6d223)]�5=2o ! :To get an idea of the values b is likely to take on, consider a typical triangle with P1 = (p3; 0),P2 = (0; 1), and P3 = (�p3; 0) in Cartesian coordinates. Here d12 = d23 = 2 and d13 = � = 2p3.The bending energy has its minimum of 0.28 at b = 1:55, rises sharply, asymptotic to 0:20=b3,as b ! 0+, and rises slowly, asymptotic to 0:084b, as b ! 1. The bending energy is 25.03 whenb = 0:2, and in practice we never see smaller values of b. This corresponds to b101 = 0:02. Regardinglarge values of b, when b is greater than 6, the spline remains extremely close to an edge of thetriangle for at least half the length of the edge, as in side P1P2 in Figure 6.2. Here, when x = p3=2on the spline, y = 0:475, which is 95% of the distance from the x-axis to side P1P2. In practice,the splines do not stick that close to the edges of the control triangles, so we generally have b � 6,or b101 � 18.There is a similar construction of the strain energy for the C3 cubic A-spline, but it is sounwieldy it will not be written explicitly here. The same idea using a change of variables andSimpson's rule for the approximation of the strain energy can be used for the cubic splines.6.3 Image energy modelsIn addition to the internal strain energy of an A-spline, we must also consider the energy arisingfrom the image itself. Models of image energy dictate to what features the spline is attracted. In[KWT88], the authors describe three types of image energy functionals, which cause splines to beattracted to lines, edges, and \terminations," de�ned as endpoints of line segments and corners.The total image energy is then de�ned asEimage = Z (wlineEline + wedgeEedge + wtermEterm) ds ; (6.16)where the w(�) are weights, and s is arc length, parametrizing the spline.13
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Figure 6.2: Extreme values of b101 occurring in practice. The lower and upper splines are those forb101 = 0:02 and b101 = 18, respectively.The line functional is simply the image intensity,Eline = I(x; y) = I�(�1; �2) ; (6.17)where the last expression is the image intensity expressed in BB coordinates. This functional causesthe spline to be attracted to light or dark curves in the image, depending on the sign of wline. Thecoordinates (x; y) and (�1; �2) are related by the expressions" xy # = " x1 � x3 x2 � x3y1 � y3 y2 � y3 # " �1�2 #+ " x3y3 # (6.18)as indicated in [BCHN98].A frequent desire is to get the spline to converge to a boundary of two regions of di�erentintensity. For this purpose we use the edge functional, which is the opposite of the square of themagnitude of the gradient,Eedge = �krIk2 = � "�@I@x�2+ �@I@y�2# = �rI�TJJTrI� = �d223I�2�1 � 2c12I��1I��2 + d213I�2�2�2 ;(6.19)where rI� = (@I�=@�1; @I�=@�2)T.Since the images studied will normally contain noise, instead of using the actual image intensitywe should use a smoothed version of it. We shall use that in [MSV95], which is G� � I(x; y), where(G� � �) denotes convolution with a Gaussian �lter with standard deviation �. This image energyis the same as that used in Section 5 when obtaining a piecewise linear curve that approximates aninitial contour. Hereinafter, references to the image intensity I(x; y) will assume that it has alreadybeen smoothed.In [KWT88], an alternative edge energy is given,Eedge = �(G� � r2I)2 ;14



where G� is a bivariate Gaussian density with standard deviation � in both variables. This func-tional allows the spline, or snake, to be \constrained by its own smoothness." Also, the terminationenergy is de�ned asEterm = @�@n? = @2C=@n2?@C=@n = CyyC2x � 2CxyCxCy + CxxC2y(C2x + C2y )3=2 ;where C(x; y) = G�(x; y) � I(x; y), � = tan�1(Cy=Cx), n = (cos �; sin �), and n? = (� sin �; cos �).For our purposes, we are interested mainly in the ordinary edge energy given by (6.19), so inplace of (6.16), we will useEimage = � 1�2 Z 10 �d223I�2�1 � 2c12I��1I��2 + d213I�2�2� du ; (6.20)where I� = I�(�1(u;b); �2(u;b)) ;and the parametrizations �1(u;b) and �2(u;b) are given by (6.2), (6.4), or (6.10) for linear, quad-ratic, or cubic splines respectively.As was done with the strain energies, the integral for the image energy may be approximatedusing Simpson's rule. Here we will use the �ve points where u = 0; 1=4; 1=2; 3=4, and 1. The resultis Eimage� = � 112�2 hÎ�(0) + 4Î�(1=4) + 2Î�(1=2) + 4Î�(3=4) + Î�(1)i (6.21)where Î�(u) = d223[I��1(�1(u;b); �2(u;b))]2� 2c12I��1(�1(u;b); �2(u;b)) I��2(�1(u;b); �2(u;b))+ d213[I��2(�1(u;b); �2(u;b))]2 :or Eimage� = � 112 hÎ(0) + 4Î(1=4) + 2Î(1=2) + 4Î(3=4) + Î(1)i (6.22)where Î(u) = [Ix(u)]2 + [Iy(u)]2 :For the quadratic parametrization (6.4), changing variables using (6.18) yieldsx(u;b) = x1u+ x2bpu(1� u) + x3(1� u)1 + bpu(1� u) y(u;b) = y1u+ y2bpu(1� u) + y3(1� u)1 + bpu(1� u) :(6.23)We observe that for u = 0; 1=4; 1=2; 3=4; 1,�1(u;b) = 0; 14 +p3 b ; 12 + b ; 34 +p3 b ; 1 (6.24)�2(u;b) = 0; p3 b4 +p3 b ; b2 + b ; p3 b4 +p3 b ; 0; (6.25)x(u;b) = x3; x1 + 3x3 +p3x2b4 +p3 b ; x1 + x3 + x2b2 + b ; x1 + 3x3 +p3x2b4 +p3 b ; x1; (6.26)y(u;b) = y3; y1 + 3y3 +p3y2b4 +p3 b ; y1 + y3 + y2b2 + b ; y1 + 3y3 +p3y2b4 +p3 b ; y1; (6.27)15



for the quadratic parametrization (6.4).Consequently, when the edge energy is written out in full in terms of the original Cartesiancoordinates, we haveEimage� = � 112 n[Ix(x3; y3)]2 + [Iy(x3; y3)]2+ 4 "Ix x1 + 3x3 +p3x2b4 +p3 b ; y1 + 3y3 +p3y2b4 +p3 b !#2+ 4 "Iy  x1 + 3x3 +p3x2b4 +p3 b ; y1 + 3y3 +p3y2b4 +p3 b !#2+ 2 �Ix �x1 + x3 + x2b2 + b ; y1 + y3 + x2b2 + b ��2 (6.28)+ 2 �Iy �x1 + x3 + x2b2 + b ; y1 + y3 + x2b2 + b ��2+ 4 "Ix 3x1 + x3 +p3x2b4 +p3 b ; 3y1 + y3 +p3y2b4 +p3 b !#2+ 4 "Iy  3x1 + x3 +p3x2b4 +p3 b ; 3y1 + y3 +p3y2b4 +p3 b !#2+ [Ix(x1; y1)]2 + [Iy(x1; y1)]2o :The cubic parametrization is much more complicated. As u! 0+ and as u! 1�, the quantity(q=2)2 + (p=3)3 is asymptotic with [b021=(27b102)]u3 and [b120=(27b201)](1 � u)3, respectively, andboth of these quantities are nonpositive in view of the inequality constraints (6.7). Thus we use(6.9), and �nd that r ! 1, and hence t(u) ! 1, as u ! 0+ and as u ! 1�. Thus we have�2(u)! 0 in both cases, and we have�1(0;b) = 0 �1(1;b) = 1�2(0;b) = 0 �2(1;b) = 0 : (6.29)When u = 1=4; 1=2, or 3/4, the quantity (q=2)2 + (p=3)3 can be either positive or negative. If welet Ajk = jb201 + kb102 and Bjk = jb120 + kb021, then"�q2�2 + �p3�3#�����u=1=4 = 1024(4A13B313 + 9A213 + 36A13B13b111 � 12B213b2111 � 96b3111)729A413 ;"�q2�2 + �p3�3#�����u=1=2 = 16(12A11B311 + 9A211 + 36A11B11b111 � 12B211b2111 � 32b3111)81A411 ;"�q2�2 + �p3�3#�����u=3=4 = 1024(4A31B331 + 9A231 + 36A31B31b111 � 12B231b2111 � 96b3111)729A431 :Depending on whether these expressions are nonnegative or negative, �i(1=4;b), �i(1=2;b) and�i(3=4;b), i = 1; 2, are computed through the use of (6.8) or (6.9).16



7 Energy Minimizing Physical A-splinesIn this section we use the results from Section 6 to minimize the total energy of a C1 quadraticA-spline de�ned as Etotal = wstrainEstrain + wimageEimage ; (7.1)or the simpli�ed equation Etotal� = wstrainEstrain� + wimageEimage� : (7.2)The strain and image energies may be expressed in terms of b, a global vector of coe�cients ofthe A-splines. In order to �nd the minimum energy, we need to solve dEtotal=db = 0. However, aspreviously noted, the energy inside of each spline segment is independent of all the others, so wejust need to sum over the individual energy contributions.In the cases of the C1 quadratic and C3 cubic A-splines, there is a single degree of freedom amongthe coe�cients. Thus for these cases the vector b may be interpreted as having a single componentb, and the energy (7.1) can be expressed as a function of one parameter. The minimization of theoverall energy is then found by adding up one term for each control triangle, where each term isthe di�erentiation of the expression (7.1) with respect to one variable.In order to di�erentiate the image energy (6.21) or (6.28) with respect to b, we need to evaluateseveral partial derivatives of I� with respect to b. To this end, de�nexi3 = xi � x3 ; yi3 = yi � y3 ; i = 1; 2 :Then by several applications of the chain rule we obtain@I�@�i = @I@x @x@�i + @I@y @y@�i = xi3Ix + yi3Iy ; i = 1; 2 : (7.3)@I��i@b = @I��i@a1 @�1@b + @I��i@�2 @�2@b= �@I��i@x @x@�1 + @I��i@y @y@�1� @�1@b + �@I��i@x @x@�2 + @I��i@y @y@�2� @�2@b ; i = 1; 2 :@I��1@b = [x213Ixx + 2x13y13Ixy + y213Iyy]@�1@b (7.4)+ [x13x23Ixx + (x13y23 + x23y13)Ixy + y13y23Iyy]@�2@b@I��2@b = [x13x23Ixx + (x13y23 + x23y13)Ixy + y13y23Iyy]@�1@b (7.5)+ [x223Ixx + 2x23y23Ixy + y223Iyy]@�2@bHence we need to estimate Ixx; Ixy, and Iyy throughout the image as well as Ix and Iy.17



The partial derivatives of �i with respect to b are given by@�1@b = �upu(1 � u)h1 + bpu(1� u)i2 @�2@b = pu(1� u)h1 + bpu(1� u)i2 ; (7.6)and the partial derivatives of x and y with respect to b are given by@x@b = pu(1� u)[�ux1 + x2 � (1� u)x3][1 + bpu(1� u)]2 @x@b = pu(1� u)[�ux1 + x2 � (1� u)x3][1 + bpu(1� u)]2 (7.7)At u = 0; 1=4; 1=2; 3=4; 1;@�1@b = 0; � p3(4 +p3 b)2 ; 2(2 + b)2 ; � 3p3(4 +p3 b)2 ; 0 ; (7.8)@�2@b = 0; 4p3(4 +p3 b)2 ; � 1(2 + b)2 ; 4p3(4 +p3 b)2 ; 0 ; (7.9)@x@b = 0; p3(�x1 + 4x2 � 3x3)(4 +p3 b)2 ; �x1 + 2x2 � x3(2 + b)2 ; p3(�3x1 + 4x2 � x3)(4 +p3 b)2 ; 0 ; (7.10)@y@b = 0; p3(�y1 + 4y2 � 3y3)(4 +p3 b)2 ; �y1 + 2y2 � y3(2 + b)2 ; p3(�3y1 + 4y2 � y3)(4 +p3 b)2 ; 0 : (7.11)Next, we wish to di�erentiate the strain energy (6.15) with respect to b. This is a straightforwardtask, with the result beingdEstrain�db = ��d12 + d236p2 � 2d133(2 + b)2 � 3221(8 +p7 b)3 �f[56(6d212 � d213 � 6d223) + 2bp7(�39d212 + 56d213 � 105d223) + 7b2(�6d212 + 7d213 + 42d223)]�[28d213 + 4bp7(�3d212 + 4d213 + 3d223) + b2(�6d212 + 7d213 + 42d223)]1=2+[�56(6d212 + d213 � 6d223) + 2bp7(�105d212 + 56d213 � 39d223) + 7b2(42d212 � 7d213 � 6d223)]�[28d213 + 4bp7(3d212 + 4d213 � 3d223) + b2(42d212 + 7d213 � 6d223)]1=2g�+ 
�2��p2b4 � 1d512 + 1d523�+ 8b(4 + b)(2 + b)2d513 + 128(8 +p7 b)3b21 ��448p7d213 + 56b(6d212 + 13d213 � 6d223) + 2b2p7(�75d212 + 112d213 � 357d223) + 7b3(�6d212 + 7d213 + 42d223)[28d213 + 4bp7(�3d212 + 4d213 + 3d223) + b2(�6d212 + 7d213 + 42d223)]7=2+ 448p7d213 + 56b(�6d212 + 13d213 + 6d223) + 2b2p7(�357d212 + 112d213 � 75d223) + 7b3(42d212 + 7d213 � 6d223)[28d213 + 4bp7(3d212 + 4d213 � 3d223) + b2(42d212 + 7d213 � 6d223)]7=2 � � :The above equations provide the required expression of dE=db in terms of b so that it can besolved. The problem remains that the derivatives Ix(x; y), Iy(x; y); : : : are not provided analyticallybut are sampled on the vertices of the regular grid displayed in �gure 7.1(b). As a consequencedE=db is de�ned as a piecewise function. To determine the representation of dE=db we have thatin each square of the image grid the derivatives can be de�ned as the bilinear interpolation of thefour values estimated at the vertices of the square. For example they can be approximated in the18
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(c)Figure 7.1: (a) Plot of energy as a function of b. The derivative may be discontinuous wheneverone of the points corresponding to u = 1=4; 1=2, or 3/4 on the spline crosses the edge of a cell.(b) Lines along which the three samples move when b varies from 0 to +1. (c) Image grid thatdetermines the piecewise representation of �(1=4;b), �(1=2;b) and �(3=4;b).region xi � x � xi+1, yj � y � yj+1 by the expression:Ix(x; y) = 1(xi+1 � xi)(yj+1 � yj) [Ix(xi; yj)(xi+1 � x)(yj+1 � y) + Ix(xi; yj+1)(xi+1 � x)(y � yj) (7.12)+ Ix(xi+1; yj)(x� xi)(yj+1 � y) + Ix(xi+1; yj+1)(x� xi)(y � yj)] :From equations (6.24) we can determine for which values of b the spline crosses one of the linesin the image grid and hence the values of i and j that appear in (7.12) change.In view of (6.22), we havedEimage�db = � 112 "@Î(0)@b + 4@Î(1=4)@b + 2@Î(1=2)@b + 4@Î(3=4)@b + @Î(1)@b #
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where@Î(u)@b = 2Ix(u) �Ixx(u)@x(u)@b + Ixy(u)@y(u)@b �+ 2Iy(u) �Ixy(u)@x(u)@b + Iyy(u)@y(u)@b � :When written out in full, this becomesdEimage�db = � 112 (2Ix  x1 + 3x3 +p3x2b4 +p3 b ; y1 + 3y3 +p3y2b4 +p3 b !� "4p3(�x1 + 4x2 � 3x3)(4 +p3 b)2 Ixx x1 + 3x3 +p3x2b4 +p3 b ; y1 + 3y3 +p3y2b4 +p3 b !+ 4p3(�y1 + 4y2 � 3y3)(4 +p3 b)2 Ixy  x1 + 3x3 +p3x2b4 +p3 b ; y1 + 3y3 +p3y2b4 +p3 b !#+ 2Iy  x1 + 3x3 +p3x2b4 +p3 b ; y1 + 3y3 +p3y2b4 +p3 b !� "4p3(�x1 + 4x2 � 3x3)(4 +p3 b)2 Ixy  x1 + 3x3 +p3x2b4 +p3 b ; y1 + 3y3 +p3y2b4 +p3 b !+ 4p3(�y1 + 4y2 � 3y3)(4 +p3 b)2 Iyy  x1 + 3x3 +p3x2b4 +p3 b ; y1 + 3y3 +p3y2b4 +p3 b !#+ 2Ix �x1 + x3 + x2b2 + b ; y1 + y3 + y2b2 + b �� �2(�x1 + 2x2 � x3)(2 + b)2 Ixx �x1 + x3 + x2b2 + b ; y1 + y3 + y2b2 + b �+ 2(�y1 + 2y2 � y3)(2 + b)2 Ixy �x1 + x3 + x2b2 + b ; y1 + y3 + y2b2 + b ��+ 2Iy �x1 + x3 + x2b2 + b ; y1 + y3 + y2b2 + b �� �2(�x1 + 2x2 � x3)(2 + b)2 Ixy �x1 + x3 + x2b2 + b ; y1 + y3 + y2b2 + b �+ 2(�y1 + 2y2 � y3)(2 + b)2 Iyy �x1 + x3 + x2b2 + b ; y1 + y3 + y2b2 + b ��+ 2Ix 3x1 + x3 +p3x2b4 +p3 b ; 3y1 + y3 +p3y2b4 +p3 b !� "4p3(�3x1 + 4x2 � x3)(4 +p3 b)2 Ixx 3x1 + x3 +p3x2b4 +p3 b ; 3y1 + y3 +p3y2b4 +p3 b !+ 4p3(�3y1 + 4y2 � y3)(4 +p3 b)2 Ixy  3x1 + x3 +p3x2b4 +p3 b ; 3y1 + y3 +p3y2b4 +p3 b !#+ 2Iy  3x1 + x3 +p3x2b4 +p3 b ; 3y1 + y3 +p3y2b4 +p3 b !� "4p3(�3x1 + 4x2 � x3)(4 +p3 b)2 Ixy  3x1 + x3 +p3x2b4 +p3 b ; 3y1 + y3 +p3y2b4 +p3 b !20



+ 4p3(�3y1 + 4y2 � y3)(4 +p3 b)2 Iyy  3x1 + x3 +p3x2b4 +p3 b ; 3y1 + y3 +p3y2b4 +p3 b !#) :ExamplesConsider the triangle with vertices p1 = (1; 0), p2 = (1; 1), and p3 = (0; 1) in Cartesian coordinates,and suppose � = 
 = 1. Then d12 = 1, d13 = p2, d23 = 1, c12 = 1, and � = 1. Also, letthe image intensity be given by I(x; y) = tan�1[k(x2 + y2 � 3=2)], so that the image is radiallysymmetric about the origin, and the magnitude of its gradient is greatest on the circle x2+y2 = 3=2.Converting to BB coordinates, we have I�(�1; �2) = tan�1[k(�1 + �2)2 + (1 � �1)2 � 3=2]. Alsolet wstrain = 1 and wimage = 1. In order to �nd the value of b or b101 for which a quadratic splineS(�1; �2) = 2b101�1(1� �1 � �2)� �22 = 0 minimizes the total energy (7.1), it is necessary to �ndthe value of b for whichZ 10 ( [8u(1� u) + 4bpu(1� u) + b2(1� 2u+ 2u2)]1=22pu(1� u)[1 + bpu(1� u)]2+ 2b2[1 + bpu(1� u)]4pu(1� u)[8u(1 � u) + 4bpu(1� u) + b2(1� 2u+ 2u2)]5=2� 64k2[1 + bpu(1 � u)]6[�2u2 + 2u� 1� 2bpu(1� u) + 2b2u(1� u)]f4[1 + bpu(1� u)]4 + k2[�4u2 + 4u+ 1 + 2bpu(1� u)� b2u(1� u)]2g2) duor the equivalent expression using (6.14) and (6.20), is minimized. Using numerical integration, itis found that for k = 0, this value of b is 1:414, or equivalently b101 = b2=2 = 1:000, and that theminimum energy is 3:142. Actually, it can be veri�ed that b is exactly p2 and the minimum energyis � in this special case. Using the simpli�ed energy (7.2), we need to �nd the value of b whichminimizes the resulting expression, namelyb3p2 + 2p23(2 + b) + 64(56 + 32p7b+ 50b2)1=23p7(8 +p7 b)2+ 2p23b3 + p2b23(2 + b) + 256b2(8 +p7 b)43p7(56 + 32p7b+ 50b2)5=2� 16 ( 128k2(4 + k2)2 + 512k2(1 + b)2(2 + b)6[4(2 + b)4 + k2(b2 � 4b+ 8)2]2) ;is found to be b = 1:428, or equivalently b101 = 1:020, and the minimum simpli�ed energy is 3.161 .This example is illustrated in Figure 7.2(a). The Cartesian equations of the exact and approximatesplines are x2+ y2� 1 = 0 and x2� 0:040xy+ y2+0:040x+0:040y� 1:040 = 0, respectively. Thesetwo curves are virtually indistinguishable. Their greatest separation, along the line y = x, is just0.0012.Changing the value of k to 1, we expect the contour to be attracted to the circle x2+ y2 = 3=2,which lies outside the circle x2 + y2 = 1. Indeed, the minimum energy now occurs when b = 3:862,or b101 = 7:458, and the minimum energy is �0:522. The negative value is a consequence of thede�nition of the edge energy functional as �krIk2; this no longer represents an actual energy, butrather just compares energies of di�erent image intensity �elds. If one wants this to have a positivevalue, one can de�ne the edge energy functional as krI(x; y)k2 subtracted from the largest value21
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Figure 7.2: Quadratic splines for the exact energy and the simpli�ed energy for the image I(x; y) =tan�1[k(x2 + y2 � 3=2)] when (a) k = 0, (b) k = 1. In both �gures, the exact energy is given bythe thin solid line and the simpli�ed energy is given by the thick dashed line.krIk2 takes on over all (x; y). The greater value of b101 means that the spline contour is pushedtowards the corner (1; 1) in Cartesian coordinates, or (0; 1) in BB coordinates.In this case the simpli�ed energy (7.2) is minimized when b = 3:607, or b101 = 6:505, and theminimum simpli�ed energy is �0:378. While these values for b and b101 are a bit o� from the truevalues, the curves they represent are quite similar. Speci�cally, the greatest separation betweenthe two, along the line y = x, is 0.0078. The Cartesian equations of the exact and approximatesplines are x2� 12:916xy+ y2+12:916x+12:916y� 13:916 = 0 and x2� 11:010xy+ y2+11:010x+11:010y � 12:010 = 0, respectively. These are displayed in Figure 7.2(b).Figures 7.3 and 7.4 illustrate how an energy minimizing A-spline changes shape as the ratio of�=
 changes. Figure 7.3 is an open polygon, while Figure 7.4 is a closed non-convex polygon. Asthe ratio �=
 increases, the A-spline turns sharper corners at the junction points and sticks moreclosely to the piecewise linear curve connecting these points.The next examples are of CT scans of a vertebra column, taken at intervals of 20 millimeters(?).The initial control points are entered by hand, and the algorithm is run for all the contours in eachslice. In these examples we have taken wstrain = wimage = 1 and � = 
 = 1. The results are shownin Figure 7.4. The control polygons are not shown in Figure 7.4(b), (d), (f), (h) as they wouldclutter up the �gures too much.8 ConclusionWe have presented an algorithm for the active contouring of images which incorporates signi�cantimprovements. By using A-splines to represent contour curves, we can use polynomials of lowerdegree than those of traditional splines to achieve the same order of continuity. These physical22


