
POOCLAPACK: Parallel Out-of-Core Linear Algebra Package

Wesley C. Reiley
Robert A. van de Geijn

Department of Computer Sciences
The University of Texas

Austin, TX 78712frvdg,wesley g@cs.utexas.edu

November 8, 1999

Abstract

In this paper parallel implementation of out-of-core Cholesky factorization is used to introduce the Parallel Out-
of-Core Linear Algebra Package (POOCLAPACK), a flexible infrastructure for parallel implementation of out-of-core
linear algebra operations. POOCLAPACK builds on the Parallel Linear Algebra Package (PLAPACK) for in-core par-
allel dense linear algebra computation. Despite the extreme simplicity of POOCLAPACK, the out-of-core Cholesky
factorization implementation is shown to achieve in excessof 80% of peak performance on a 64 node configura-
tion of the Cray T3E-600. Preliminary results from the HP Exemplar X-Class that demonstrate the portability of
POOCLAPACK are also given.

1 Introduction

There are only a few applications left that require the solution of extremely large dense linear systems. They tend
to arise from boundary-element formulations for the solution of integral equations in the areas of electro-magnetics
and acoustics [5, 7, 10]. Even for those applications, much cheaper methods based on multi-pole expansions, fast
multipole methods (FMM), have recently become popular [9].Nonetheless, there are still many such applications that
are solved by forming large dense systems of equations. In some cases, this is simply because the users are naive. In
other cases it is a conscious decision since a considerable effort is required to reformulate the problem in a fashion
that allows fast multi-pole methods to be utilized. Furthermore, there are applications requiring the solution of large
linear least squares problems that also give rise to very large linear systems [2]. For applications that do still lead
to large dense linear systems, the matrices involved are frequently so large that they do not fit even in the combined
memories of the processors of a large distributed memory parallel supercomputer. Such problems are often referred to
as out-of-core problems, since they do not fit in the core memory of the computer. The matrices are instead stored on
disk.

The preeminent library for sequential computers and conventional (shared memory) vector supercomputers is the
Linear Algebra Package (LAPACK) [1]. This package does not explicitly include out-of-core capabilities, although on
machines with virtual memory the library can be used to solveproblems larger than fit in-core. For larger problems,
a version of this library called ScaLAPACK [4], designed fordistributed memory parallel architectures, can be used.
This extension of LAPACK does include prototype out-of-core implementations of some of the ScaLAPACK routines,
including general linear solvers via LU factorization, positive definite linear solvers via Cholesky factorization, and
linear least squares solvers via QR factorization [6].

1

A more serious effort to add out-of-core capabilities to LAPACK and ScaLAPACK is provided by SOLAR [15],
a portable library for scalable out-of-core linear algebracomputations. This library uses ScaLAPACK routines for
in-core computation, but provides an I/O layer that managesmatrix input-output. SOLAR achieves better I/O rates by
allowing a different storage scheme for matrices on disk than is used in-core by ScaLAPACK. Impressive performance
is reported for up to four nodes of an IBM SP-2. Lack of performance on larger numbers of nodes is in part blamed
on nonscalability of some of the in-core parallel kernels used.

Our own approach is somewhat different. Since we developed the Parallel Linear Algebra Package (PLAPACK) [16]
used as a basis for the Parallel Out-of-Core Linear Algebra Package (POOCLAPACK), we have more flexibility to
customize both the in-core and the out-of-core algorithms.This in turn allows us to code the out-of-core algorithms in
such a way that the I/O of matrices becomes trivial, reducingthe amount of code required to port between platforms
and improving performance.

It should be noted that the above described parallel out-of-core library efforts are in addition to a number of parallel
out-of-core implementations of individual operations or machine specific libraries for dense linear systems reported
in the literature [2, 12, 3, 13, 14]. Additional references to applications requiring large dense linear solves are given
in [5, 7, 10]. Additional references to research using fast summation methods like FMM are given in [9].

This paper is organized as follows: Section 2 introduces algorithms for solving the Cholesky factorization used
to later illustrate the use of POOCLAPACK. Section 3 discusses issues regarding the in-core and out-of-core imple-
mentation of sequential Cholesky factorization. Section 4introduces the POOCLAPACK approach to coding parallel
out-of-core dense linear algebra algorithms. Performanceis reported in Section 5. Concluding remarks and future
directions are given in the final section.

2 Cholesky Factorization

Given ann � n symmetric positive definite matrixA, its Cholesky factorization is given byA = LLT whereL is
a lower triangular matrix. In this section, we develop two different algorithms for this operation, aright- and aleft-
looking algorithm, using LAPACK terminology. While the right-looking algorithm is more appropriate for (parallel)
in-core implementation, the left-looking algorithm has known advantages for out-of-core computation. We will de-
velop blocked versions of the algorithm, since these are known to yield better ratios of the number of computations to
memory operations, thus allowing better utilization of hierarchical memories.

2.1 Right-looking variant

The right-looking algorithm for implementing this operation can be described by partitioning the matricesA = � A11 ?A21 A22 � and L = � L11 0L21 L22 �
whereA11 andL11 areb� b submatrices. The? indicates the symmetric part ofA, which will not be updated. Now,A = � A11 ?A21 A22 � = � L11 0L21 L22 �� LT11 LT210 LT22 � = � L11LT11 ?L21LT11 L21LT21 + L22LT22 �
From this we derive the equations A11 = L11LT11A21 = L21LT11A22 � L21LT21 = L22LT22
An algorithm for computing the Cholesky factorization is now given by

2

1. PartitionA = � A11 ?A21 A22 �
2. A11 L11 = Chol:fact:(A11)
3. A21 L21 = A21L�T11
4. A22 A22 � L21LT21
5. Continue recursively withA22
Note that only the upper or lower triangular part of a symmetric matrix needs to be stored and the above algorithm

only updates the lower portion of the matrix with the resultL. As a result, in the stepA22 A22 � L21LT21 only the
lower portion ofA22 is updated, which is typically referred to as asymmetric rank-k update (with k = b).

One question that may be asked about the above algorithm is what is stored in the matrix after a number of recursive
steps. We answer this by partitioningA = � ATL ?ABL ABR � = � LTL 0LBL LBR �

(1)

whereATL andLTL arek � k. Here “TL” , “BL”, and “BR” stand for “Top-Left”, “Bottom-Left”, and “Bottom-
Right”, respectively. As seen beforeA = � ATL ?ABL ABR � = � LTL 0LBL LBR �� LTTL LTBL0 LTBR � = � LTLLTTL ?LBLLTTL LBLLTBL + LBRLTBR �

(2)

so that ATL = LTLLTTL (3)ABL = LBLLTTL (4)ABR = LBRLTBR + LBLLTBL (5)

It can be easily verified that the above algorithm maintains the conditions� ATL has been overwritten byLTL,� ABL has been overwritten byLBL, and� ABR has been overwritten byABR � LBLLTBL.

while at each step increasing the size ofATL by b. Thus, the matrix with which the algorithm is continued at each
step is the submatrixABRand to complete the Cholesky factorization, it suffices to compute the factorization of the
updatedABR. This motivates the algorithm given in Fig. 1 (right-looking variant).

2.2 Left-looking variant

To derive aleft-looking variant for computing this factorization, consider again Eqns. (1)–(5). This time assume that
at the current stage� ATL has been overwritten byLTL,� ABL has been overwritten byLBL, and

3

� ABR has not been changed

To derive an algorithm that maintains this condition, whilemoving the computation ahead, repartitionA = 0@ A00 ? ?A10 A11 ?A20 A21 A22 1A and L = 0@ L00 0 0L10 L11 0L20 L21 L22 1A (6)

whereA00 = ATL andL00 = LTL. Notice thatA = 0@ A00 ? ?A10 A11 ?A20 A21 A22 1A = 0@ L00 0 0L10 L11 0L20 L21 L22 1A0@ L00T L10T L20T0 LT11 LT210 0 LT22 1A (7)

Since A11 = L10LT10 + L11LT11A21 = L20LT10 + L21LT11
and realizing thatA10 has been overwritten byL10 andA20 has been overwritten byL20, we find that the following
computations computeL11 andL21:A11 L11 = Chol:fact:(A11 � L10LT10)A21 L21 = (A21 � L20LT10)L�T11
The algorithm for the left-looking version of Cholesky factorization is now given in Fig. 1 (left-looking algorithm).

partition A = � ATL ?ABL ABR �
whereATL is 0� 0

do until ABR is 0� 0
repartition� ATL ?ABL ABR � = 0@ A00 ? ?A10 A11 ?A20 A21 A22 1A whereATL is b� b

right-looking algorithm left-looking algorithmA11 L11 = Chol:fact:(A11) A11 A11 �A10AT10A21 L21 = A21L�T11 A21 A21 �A20AT10A22 A22 � L21LT21 A11 L11 = Chol:fact:(A11)A21 L21 = A21L�T11
continue with� ATL ?ABL ABR � = 0@ A00 ? ?A10 A11 ?A20 A21 A22 1A

enddo

Figure 1: Blocked right- and left-looking Cholesky factorization algorithms.

4

3 Sequential Implementation

3.1 Sequential In-core Implementation

Either of the two algorithms presented in Section 2 can be used for efficient sequential in-core implementation of the
Cholesky factorization. In practice, the right-looking algorithm is favored for a rather curious reason: The bulk of
the computation in the right-looking algorithm is in the rank-k updateA22 A22 � L21LT21 and for the left-looking
algorithm in the matrix-matrix multiplyA21 A21 � L20LT10. While there is no technical reason for this, the level-
3 BLAS [8] kernel2syrk that implements the symmetric rank-k update tends to achieve higher performance than
the matrix-matrix multiply kernel2gemmfor the special case where one of the matrices is transposed. From our
experience, we believe the reason is that the symmetric rank-k update is a modification of the general rank-k update,
which is at the heart of fast implementations of the LINPACK benchmark. Vendors tend to pay a lot of attention to this
kernel since it is key to the performance on the benchmark. Some vendors tend to spend less time optimizing other
cases of the matrix-matrix multiply, while other vendors pride themselves on delivering highly optimized versions of
all BLAS. Packages like LAPACK favor the right-looking variants of these kinds of algorithms.

3.2 Sequential Out-of-Core Implementation

The left-looking Cholesky factorization is favored for out-of-core implementations. There are two basic reasons for
this: First, the left-looking Cholesky requires approximately half the I/O operations of the right-looking algorithm.
Second, it is easier to addcheck-pointing to a left-looking algorithm. Check-pointing allows for a restart partially into
the computation in case of a system failure.

Let us examine in more detail how to implement an out-of-coreCholesky factorization. PartitionA = 0@ L00 � �L10 A11 �L20 A21 A22 1A
whereL00 ism�m and we assume thatL�0 have been computed, while the other parts ofA have been left untouched.
HereA11 is of sizet� t, which we will later call atile of sizet. All data is assumed to exist on disk.

The following steps will advance the computation so thatL11 andL21 have been computed and have overwritten
the corresponding blocks ofA:

1. ReadA11 from disk into memory.

2. UpdateA11 A11 � L10LT10 whereL10 is on disk.

3. UpdateA11 L11 = Chol:fact:(A11). SinceA11 is in memory, this requires an in-core Cholesky factorization.
As mentioned, typically a right-looking variant is favoredfor this subproblem.

4. WriteL11 to disk, leaving a copy in memory.

5. UpdateA21 (A21 � L20LT10)L�T11 , whereA21, L20 andL10 are on disk andL11 is in memory.

6. Flush all memory.

We must give further details on how to perform steps 2 and 5:

Step 2: A11 A11 � L10LT10: HereA11 is in memory, butL10 is on disk. At first glance, this appears to require a
read ofL10, followed by an in-core symmetric rank-k update. This requirest�m data to be read, after whichmt2 floating point operations are performed to updateA11, for a ratio oft floating point operations for every

5

floating point number read. However, readingL10 requires a considerable amount of memory, thereby limiting
the size oft, and thus affecting this ratio.

The following approach retains the benefits of the same ratiot of computation to disk accesses, while maximiz-

ing the size oft and thus this ratio: PartitionL10 = � L(0)10 � � � L(k�1)10 �
whereL(j)10 has approximatelyb

columns. Notice that A11 � L10LT10 = A11 � L(0)10 L(0)T10 � � � � � L(k�1)10 L(k�1)T10
Thus, the following procedure will perform the update ofA11 For eachL(j)10 , read this submatrix (t � b items
read), and perform an in-core rank-k update (bt2 floating point operations). Notice that this maintains the ratio
of t computations for each item read from disk. However, by picking b relatively small, very little memory is
needed forL10, thus allowingt to be chosen to be much larger. The block sizeb is typically chosen to equal a
block-size that maximizes the performance of the in-core symmetric rank-k update.

This “sequence of narrow symmetric rank-k updates” approach to implementating a larger symmetric rank-k
update yields an excellent parallel in-core implementation of symmetric rank-k update. Thus, the out-of-core
approach fits naturally with a very good in-core algorithm1.

Step 5: A21 L21 = (A21 � L20LT10)L�T11 : Here onlyL11 is in memory. This time, we partitionA21 = 0BB@ A(0)21
...A(M�1)21 1CCA andL20 = 0BB@ L(0)20

...L(M�1)20 1CCA
whereA(i)21 is approximatelyt � t. Note that each tileA(i)21 must be updated byA(i)21 A(i)21 � L(i)20L10 after

whichA(i)21 L(i)21 = A(i)21L�T11 can be computed. The out-of-core algorithm for this proceeds as follows: for
eachi,� ReadA(i)21 .� UpdateA(i)21 A(i)21 � L(i)20LT10 by readingb columns ofL(i)20 andL10 at a time and performing a general

rank-k update, much like for the out-of-core symmetric rank-k update described above. The ratio of
computation to disk accesses is equally favorable for this operation as it was for the symmetric rank-k
update.� UpdateA(i)21 L(i)21 = A(i)21L�T11 . Notice that all matrices involved in this operation are in memory, since
a copy ofL11 is kept in memory.� WriteA(i)21 .

This “sequence of narrow rank-k updates” approach to implementating a matrix-matrix multiply yields an excel-
lent parallel in-core implementation of matrix-matrix multiplication [16, 11] and thus the out-of-core approach
fits naturally with the a very good in-core algorithm for thisoperation.

Careful consideration of the complete out-of-core algorithm shows that in addition to two tiles of sizet � t (one
for A11 and forA(i)21) only a small amount of workspace is needed for storing a few blocks of columns ofL10 andL(i)20 .
Naturally,t is chosen as large as possible, thus improving the ratio of computation to disk accesses.

1Unfortunately, the only reference for this is the actually implementation of symmetric rank-k update in the PLAPACK source. Most likely,
ScaLAPACK uses a similar approach.

6

3.3 Overlapping I/O with computation

It is possible to exploit asynchronous I/O operations to overlap computation with I/O operations. We now discuss
opportunities and trade-offs:

1. ReadL(0)21 whileA11 is being factored to computeL11.
2. WriteL11 whileA(0)21 is being read.

3. ReadA(i+1)21 while A(i)21 is being updated: Notice that this requires storage of threetiles in memory (L11, A(i)21
andA(i+1)21). This affects the tile sizet, and thus the ratio between computation and I/O operations.

4. ReadA(i+1)21 whileA(i)21 is being written to disk: One could carefully orchestrate the writing of parts ofA(i)21 with

reading parts ofA(i+1)21 so that no extra memory is required.

5. ReadL11 while L(M�1)21 from the previous iteration is being updated: SinceL11 from the previous iteration is

required for the final update ofA(M�1)21 to formL(M�1)21 , this again requires space for a third tile in memory,
affecting the tile sizet.

6. ReadL11 whileL(M�1)21 from the previous iteration is being written.

Notice that all of the above optimizations would yield minimal benefit: the cost of reading and/or writing these tiles is
amortized over many computations, and thus comprises only asmall percentage of the total execution time. Thus, we
do not consider these optimizations worth the added complexity in the code.

It is in the updateA11 A11�L10LT10 andA(i)21 A(i)21 �L(i)20LT10 that there is a more profitable opportunity for
overlapping:

7. As discussed in Section 3.2,A11�L10LT10 = A11�L(0)10 L(0)T10 � � � � �L(k�1)10 L(k�1) T10 . Notice that whileA11
is being updated withA11 � L(j)10 L(j) T10 , the next block of columnsL(j+1)10 can already be read from disk.

8. SimilarlyA(i)21 is updated using a few columns ofL(i)20 andL10 at a time, and thus the next blocks of columns of
these matrices can be read while the current blocks are beingused.

Notice that these last optimizations require minimal extraworkspace, since only a few extra columns need to be stored.
Moreover, reading of these blocks of columns isn’t amortized over nearly as much computation, and thus the benefits
may be more noticeable.

3.4 Storage considerations

We must briefly discuss storage of the matrix on disk. In-core, we will assume that the matrices are stored in column-
major order. Thus, elements in columns are in contiguous memory. When reading from disk, one must consider the
fact that a disk access carries a large startup cost, after which contiguous data can be read at a rate determined by the
limits of the hardware. Thus, reading noncontiguous data can be costly.

While columns of matrices are in contiguous memory, readinga submatrix of sizet � b, as is encountered in the
out-of-core rank-k updates described above, requires either noncontiguous data to be read or a more complex storage
scheme. In our implementation, we experimented with the parallel equivalent of two storage schemes: The first stores
the matrix in a file much like it would be stored in memory, in column-major order. The second partitions by row
blocks of t rows each, wheret is equal to the tile size discussed above. These blocks of rows are then stored in
separate files. As a resultt � t matricesA11 andA(i)21 can be read as one contiguous block, as canL(j)10 and blocks

of columns ofL(i)20 . For this second scheme, the Cholesky factorization views the matrix as a collection of blocks of
rows.

7

4 Parallel Implementation

4.1 PLAPACK

The Parallel Linear Algebra Package (PLAPACK) is a flexible infrastructure for implementing parallel dense linear
algebra libraries. An MPI-like programming interface, which hides details about matrices and vectors like distribution
from the user, makes both the library implementation and itsuse considerably simpler than more conventional packages
like ScaLAPACK. In addition, the simple programming approach allows more complex algorithms to be implemented,
which often yield better performance. The code segments included in this section are typical of PLAPACK code, in-
core as well as out-of-core.

4.2 Data Distribution and File Management

For in-core matrices PLAPACK uses a two-dimensional Cartesian cyclic data distribution. Thus matrixB is partitioned
like B = 0BBB@ B00 B01 � � � B0(N�1)B10 B11 � � � B1(N�1)

...
...

...B(M�1)0 B(M�1)1 � � � B(M�1)(M�1) 1CCCA
whereB00 is d�d. The processing nodes of the parallel architecture are viewed as a logicalr� c mesh of nodes, withp = rc. Row blocksBi� and column blocksB�j are all assigned to the same row and column of nodes, respectively.
An over-decomposition (N >> r; c) is used to achieve load balance as the computation unfolds.Out-of-core matrices
are distributed to nodes identically, except that the data is stored in a file.

4.3 Parallel out-of-core Cholesky factorization

We only describe the parallel implementation of the algorithm that uses the more complex algorithm where blocks of
rows are treated as separate matrices. The primary reason isthat the actual code comfortably fits on one page (Fig. 2).
PLAPACK and POOCLAPACK manage complexity by hiding detailsof size, distribution, and storage. This approach
allows us to createviews into matrices which reference submatrices. Each block oft rows is passed to the routine as a
view of this data.

We briefly describe the different parts of the routine: The matrix is passed to the POOCLAPACK OOC Cholesky
factorization as an array ofN views, each of which references a panel of rows, as describedin Section 3.4 (line 1).
The algorithm loops over the panels, partitioning the current panel intoL10 andA11 (lines 6–11). An in-core matrix
is created to holdA11 and that submatrix is read from disk (lines 14–15). Notice that this requires only a local copy
from disk to the in-core matrix. A parallel symmetric rank-kupdate,POOCLASyrk , updatesA11 A11 � L10LT10
whereA11 is in-core andL21 resides on disk (line 18). We describe this routine in more detail below. Once updated,A11 is factored by a call to the parallel Cholesky factorizationPLA Chol and written to disk (retaining a copy in
memory for now) (lines 21–22). The inner-most loop updatesA21 (A21 � L20LT10)L�T11 . To accomplish this, we

loop over the remaining row panels, partitioning each intoL(i)20 andA(i)21 (lines 24–28). An in-core matrix is created to

holdA(i)21 and that submatrix is read from disk (lines 30–32). A parallel matrix-matrix multiplication,POOCLAGemm,

updatesA(i)21 A(i)21 � L(i)20LT10. Implementation of this routine is similar to that ofPOOCLASyrk (lines 34–36).
Once updated,A21 is overwritten withL21 = A21L�T11 and written to disk. Since all operands are in-core, a call to
the parallel level-3 BLAS routinePLA Trsm (triangular solve with multiple right-hand-sides) accomplishes this task
(lines 38–43).

8

1 int POOCLA_Chol_by_panels(int N, PLA_Obj *A_row_panels)
2 {
3 < declarations >
4
5 size_done = 0; /* number of columns finished */
6 for (j=0; j<N; j++){
7 PLA_Obj_global_length(A_row_panels[j], &t); /* get tile size */
8
9 /* View current L_10 and A_11 submatrices */
10 PLA_Obj_vert_split_2(A_row_panels[j], size_done, &L_1 0, &temp);
11 PLA_Obj_vert_split_2(temp, t, &A_11, PLA_DUMMY);
12
13 /* Create an in-core matrix into which to copy A_11 */
14 PLA_Matrix_create_conf_to(A_11, &A_11_in);
15 PLA_Copy(A_11, A_11_in);
16
17 /* Update A_11 <- A_11 - L_10 * L_10, A_11 in-core, L_10 out-of -core */
18 POOCLA_Syrk(PLA_LOWER_TRIANG, PLA_NO_TRANS, min_one, L_10, one, A_11_in);
19
20 /* Factor updated in-core A_11 and write out the result */
21 PLA_Chol(PLA_LOWER_TRIANGULAR, A_11_in);
22 PLA_Copy(A_11_in, A_11);
23
24 /* Loop over A_21ˆi */
25 for (i=j+1; i<N; i++){
26 /* View current matrices L_20ˆi and A_21ˆi */
27 PLA_Obj_vert_split_2(A_row_panels[i], size_done, &L_2 0_1, &temp);
28 PLA_Obj_vert_split_2(temp, t, &A_21_1, PLA_DUMMY);
29
30 /* Create an in-core matrix into which to copy A_21ˆi */
31 PLA_Matrix_create_conf_to(A_21_1, &A_21_1_in);
32 PLA_Copy(A_21_1, A_21_1_in);
33
34 /* Update A_21ˆi <- A_21ˆi - L_20 * L_10ˆT */
35 POOCLA_Gemm(PLA_NO_TRANS, PLA_TRANS,
36 min_one, L_20_1, L_10, one, A_21_1_in);
37
38 /* Update A_21ˆi <- L_21ˆi = A_21ˆi * L_11ˆ-T */
39 PLA_Trsm(PLA_SIDE_RIGHT, PLA_LOWER_TRIANG, PLA_TRANS, PLA_NONUNIT_DIAG,
40 one, A_11_in, A_21_1_in);
41
42 /* Write out A_21ˆi */
43 PLA_Copy(A_21_1_in, A_21_1);
44
45 size_done += t;
46 }
47 }
48 < clean up >
49 }

Figure 2: POOCLAPACK Out-of-Core Cholesky factorization.In this version, the matrix is presented as a collection
of panels of rows in an effort to improve disk performance.

9

4.4 Parallel out-of-core symmetric rank-k update

We now describe in detail the out-of-core implementation ofthe symmetric rank-k updateA11 A11 � L10LT10, or,
more generically,C �AAT + �C. A parallel implementation of this operation using POOCLAPACK is given in
Fig. 3.

MatricesA andC are passed in as viewsA ooc andC, whereA ooc references a matrix stored on disk, while
C references a matrix stored in-core (line 1). The algorithm starts by scalingC �C (line 7). Next, the algorithm
loops over blocks of columns, partitioning off the current block A(j) asA ooc 1 (lines 11–16). An in-core matrix
is created to holdA(j) and that submatrix is read from disk (lines 17–19). A in-coreparallel symmetric rank-k
update,POOCLASyrk , updatesC �A(j)A(j) T + C whereA(j) is in-core, referenced byA in 1 (line 21). An
asynchronous version is given in Fig. 4.

4.5 Parallel out-of-core matrix-matrix multiplication

The Parallel out-of-core matrix-matrix multiply used to updateA(i)21 A(i)21 � L(i)20LT10 is implemented similarly.

5 Performance

In this section, we report preliminary performance achieved with the described PLAPACK based parallel out-of-core
implementations of the Cholesky factorization.

5.1 Target Architectures

We demonstrate performance on two different platforms: theCray T3E-600 (300 MHz) and the HP Exemplar X-
Class, with all computations performed in 64-bit arithmetic. The algorithms were implemented using an alpha release
of PLAPACK Version R2.0, which performs all communication by means of MPI. We report performance measuring
MFLOP/s/processor (millions of floating point operations per second per processor). For reference, the following table
shows performance of matrix-matrix multiplication on a single processor of the T3E-600 and HP Exemplar X-Class
in MFLOP/s: n Cray T3E HP Exemplar

500 418 398
1000 443 496
1500 425 497

All performance reported in this section for the T3E-600 wasmeasured with data streams turned on (a hardware feature
that adds about 15–20% to the performance of the local matrix-matrix multiply kernel).

The Cray T3E-600 at the Goddard Space Flight Center used for the experiments has a 54 Gigabyte partition striped
across 14 disks2. The Cray T3E Systems have an extended IO system, called Flexible File IO (FFIO). This system
allows the user to insert layers through which data is passed. Within the layer, the user can insert various kinds of
buffers and caches. Cache and/or buffer sizes and properties like striping across multiple disks can be controlled by
command line routines. We experimented with putting a smallcache between disk and memory and used default
striping settings. It should be noted that changes in the configuration of the files and cache sizes did not seem to affect
performance of our algorithms much. In particular, the moresophisticated algorithms that allowed larger blocks of
contiguous data to be read did not seem to be affected at all.

The Exemplar we used for our experiments is physically located at Caltech and is part of the National Partnership
for Advanced Computational Infrastructure (NPACI). The Exemplar is a Cache-Coherent, Non-Uniform Memory

2the/tmp directory.

10

1 int POOCLA_Syrk(int uplo, int transa, PLA_Obj alpha, PLA_O bj A_ooc,
2 PLA_Obj beta, PLA_Obj C)
3 {
4 < declarations >
5 < get size b, the number of columns to be read at a time >
6 /* Scale C <- beta * C */
7 PLA_Local_scal(beta, C);
8 /* A_ooc_cur view the part of A_ooc yet to be used */
9 PLA_Obj_view_all(A_ooc, &A_ooc_cur);
10
11 while (TRUE){
12 /* Check if part of A_ooc yet to be used is of width 0 */
13 PLA_Obj_global_width(A_ooc_cur, &size);
14 if ((size = min(size, b)) == 0) break;
15 /* view current Aˆj */
16 PLA_Obj_vert_split_2(A_ooc_cur, size, &A_ooc_1, &A_ooc _cur);
17 /* Create an in-core matrix into which to copy Aˆj */
18 PLA_Matrix_create_conf_to(A_ooc_1, &A_in_1);
19 PLA_Copy(A_ooc_1, A_in_1);
20 /* Perform in-core symmetric rank-k update */
21 PLA_Syrk(uplo, transa, alpha, A_in_1, one, C);
22 }
23 < cleanup >
24 }

Figure 3: POOCLAPACK symmetric rank-k update routine. Matrix A, passed in as objecta ooc , is assumed to be
stored on disk, while matrixC, passed in as objectC, is assumed to be in-core. This version does not attempt to
overlap I/O with computation.

13 while (TRUE){
14 /* Check if part of A_ooc yet to be used is of width 0 */
15 PLA_Obj_global_width(A_ooc_L, &size);
16 if ((size = min(size, nb_ooc)) != 0) {
17 /* view next Aˆj and asynchronously read to in-core matrix */
18 PLA_Obj_vert_split_2(A_ooc_L, size, &A_ooc_2, &A_ooc_L);
19 PLA_Matrix_create_conf_to(A_ooc_2, &A_in_2);
20 PLA_Copy_async(A_ooc_2, A_in_2);
21 }
22 else {
23 if (last_time) break;
24 else last_time = TRUE;
25 }
26 if (!first_time){
27 PLA_Copy_wait(A_out_1);
28 PLA_Syrk(uplo, transa, alpha, A_in_1, one, C);
29 }
30 else first_time = FALSE;
31 PLA_Obj_view_swap(&A_in_1, &A_in_2);
32 PLA_Obj_view_swap(&A_ooc_1, &A_ooc_2);
33 }

Figure 4: Asynchronous implementation of the POOCLAPACK symmetric rank-k update routine.

11

Architecture (CC-NUMA). It consists of a number of shared-memory hypernodes with 16 processors each. Programs
can use either shared-memory directives or message-passing libraries (MPI) to access memory on other nodes across
the Coherent Toroidal Interconnect (CTI) channels. POOCLAPACK views this machine as a pure distributed memory
architecture programmed using MPI. We have less experiencewith the Exemplar and did not experiment with different
I/O options: all I/O on that machine was performed with vanilla UNIX I/O calls. Also, parameters like the distribution,
algorithm and tile sizes were optimized for the Cray T3E and simply used for the Exemplar without further attempts
at optimization for that machine. The file system used on the Exemplar stripes files across 12 disks. Thus performance
numbers for the Exemplar are very preliminary at best.

5.2 Implementations tested

We report performance for five different versions of the code:

PLA Chol : This version is the in-core PLAPACK Cholesky factorization.

POOCLAChol : This version views the matrix as one matrix, with each processor accessing a single file in which the
local matrix is stored. The matrix is stored in this file much like an in-core matrix would be stored, i.e., it is
viewed as a two-dimensional array. No effort is made to overlap I/O with computation.

POOCLAChol async : This version is identical toPOOCLAChol except that it overlaps I/O and computation
during the updatesA11 A11 � L10LT10 andA(i)21 A(i)21 � L(i)10LT10.

POOCLAChol by panels : This version is given in Fig. 2 and views the matrix as a collection of row panels, as
described in Section 3.4. No effort is made to overlap I/O with computation.

POOCLAChol by panels async : This version is identical toPOOCLAChol by panels except that it over-
laps I/O and computation during the updatesA11 A11 � L10LT10 andA(i)21 A(i)21 � L(i)10LT10.

The asynchronous versions were not used on the Exemplar.

5.3 Results on the T3E

Performance attained on the Cray T3E-600 is reported in Table 1. For a fixed number of processors, we report
performance for a problem equal to the tile sizet� t, (2t)� (2t), and(3t)� (3t). For those familiar with PLAPACK,
a distribution block size of24 and algorithmic block size of128 was used. The block size described in Section 3.2
used for partitioningL10 andL(i)20 , b, was taken to equal the algorithmic block size.

It is interesting to compare the performance of the in-core Cholesky factorization with that of the out-of-core
factorizations for at � t problem size. The moderate drop in performance illustratesthe fact thatO(t3) operations
are being performed onO(t2) data and thus the I/O has only minor impact on performance. Recall that when the
problem sizen is much greater thant, this reading and writing of the tiles is amortized over evenmore computation.
We used this observation to justify not overlapping the reading and writing of the diagonal blocksA11 and tilesA(i)21 . As the problem size increases, the out-of-core versions yield better performance than the in-core Cholesky
factorization. While on the surface this may be puzzling, notice that the larger the problem, the more computation is
being performed in matrix-matrix multiplication (to updateA21), which executes at a higher rate of computation than
the Cholesky factorization of the diagonal blocksA11.

There is a noticeable improvement in performance when the specialized storage described in Section 3.4 is used.
As predicted, the fact that the “panel” based versions read contiguous data greatly improves I/O performance. The
benefits of asynchronous I/O (overlapping some of the computation with reading of data) is less dramatic. This is due
to the fact that only a small percentage of execution time is being spent in I/O.

12

tile 1� 1 tiles (n = t) 2� 2 tiles (n = 2t) 3� 3 tiles (n = 3t)
size MFLOP/s Time (sec) MFLOP/s Time (sec) MFLOP/s Time (sec)

Algorithm p t /proc. Total I/O /proc. Total I/O /proc. Total I/O

In-core Chol 1 2088 263 11.5
Chol 1 2088 243 12.5 1.1 253 96 23 260 315 84
Chol async 1 2088 257 11.8 0.4 252 96 20 266 308 61
Chol by panel 1 2088 245 12.4 1.0 296 82 9 334 245 17
Chol by panel async 1 2088 227 13.3 2.0 291 83 8 327 250 12

In-core Chol 4 4704 304 28.5
Chol 4 4704 278 31.1 2.6 183 380 182 183 1282 598
Chol async 4 4704 278 31.2 2.7 176 393 182 189 1239 501
Chol by panel 4 4704 276 31.5 2.6 331 209 10 353 663 24
Chol by panel async 4 4704 278 31.2 2.6 336 206 8 361 649 16

In-core Chol 16 8448 304 41.3
Chol 16 8448 277 45.3 4.1 294 342 47 299 1135 ???
Chol async 16 8448 277 45.3 4.1 * * * * * *
Chol by panel 16 8448 273 46.1 4.3 321 313 13 343 989 32
Chol by panel async 16 8448 277 45.3 4.1 326 308 10 347 977 21

In-core Chol 64 18432 263 124
Chol by panel 64 18432 267 122 15.0 315 827 53 331 2654 125
Chol by panel async 64 18432 271 121 15.2 317 822 53 339 2594 105

Table 1: Performance of the various Cholesky factorizationroutines on the Cray T3E-600.

A final note: The performance numbers presented were collected on the NASA Goddard Space Flight Center Cray
T3E, a heavily loaded machine where many of the applicationsbeing executed are I/O intensive. Since we did not have
exclusive use of this machine, the performance reported paints a pessimistic picture. We have observed performance
as high as 351 MFLOP/s per processor on 64 processors for the(3t)� (3t) problem.

5.4 Results on the Exemplar

Great care should be taken when comparing the results collected on the Exemplar and reported in Table 2 with
those given for the Cray T3E: For the Exemplar:� We made no real attempt to optimize either the in-core or out-of-core implementations. In particular, we believe

that performance on 8 and 16 processors is less impressive due to a specific detail in the implementation of a
PLAPACK kernel that computes a local contribution to a symmetric rank-k update. By recoding this detail,
memory conflicts within a hypernode can be reduced, improving performance of this kernel.� Parameters that optimized execution on the Cray were simplyadopted for the Exemplar. In particular the tile
sizet which determines the amount of in-core memory that was used was considerably smaller than it could be.
Recall thatt influences the ratio between communication and useful computation. One reason for limitingt was
that there was limited disk space available for our experiments.� We made no attempt to optimize I/O. Indeed, straight-forward Unix calls were used by the I/O related subrou-
tines. Furthermore, we did not implement asynchonous I/O for the Exemplar.

13

tile 1� 1 tiles (n = t) 2� 2 tiles (n = 2t) 3� 3 tiles (n = 3t)
size MFLOP/s Time (sec) MFLOP/s Time (sec) MFLOP/s Time (sec)

Algorithm p t /proc. Total I/O /proc. Total I/O /proc. Total I/O

Chol 1 2088 179 17.0 4.7 213 114 40 243 337 109
Chol by panel 1 2088 194 15.6 3.8 299 84 11 333 246 17

Chol 4 4704 257 33.8 4.5 262 265 74
Chol by panel 4 4704 259 33.5 4.4 333 208 20 354 662 72

Chol by panel 8 6144 249 38.9 4.3 273 283 46 288 907 146

Chol by panel 16 8448 173 72.6 19.44 221 455 135 245 1373 359

Table 2: Performance of the various Cholesky factorizationroutines on the HP Exemplar X-Class. (Preliminary!)

Nonetheless, the performance numbers look encouraging. Weintend to further optimize for this architecture in the
near future.

6 Conclusion

We have described a simple extension to the PLAPACK parallellinear algebra infrastructure that allows for elegant
implementation of out-of-core dense linear algebra algorithms. High performance is reported on the Cray T3E-600.

For now, we have concentrated on the use of existing in-core kernels provided by PLAPACK. However, since both
PLAPACK and its out-of-core extension provide a simple abstract programming interface, the implementations lend
themselves to customization to attain even higher performance. For example, it is possible to implement an out-of-core
Cholesky factorization that requires only one tile to be stored in-core by implementing an out-of-core triangular solve
with multiple right-hand-sides. We are in the process of implementing such customizations, which promise even better
performance than reported in this paper.

More information

For more information on PLAPACK and POOCLAPACK visit

http://www.cs.utexas.edu/users/plapack

Acknowledgments

Access to equipment for development of the described infrastructure was provided by the National Partnership for
Advanced Computational Infrastructure (NPACI) and The University of Texas Advanced Computing Center (TACC).
We also gratefully acknowledge access to the Cray T3E-600 System at the Goddard Space Flight Center provided by
the NASA HPCC Earth and Space Science Project.

A special thanks to Heidi Lorenz-Wirzba at Caltech for helping us obtain the performance results for the NPACI
HP Exemplar.

References

[1] E. Anderson, Z. Bai, J. Demmel, J. E. Dongarra, J. DuCroz,A. Greenbaum, S. Hammarling, A. E. McKenney,
S. Ostrouchov, and D. Sorensen.LAPACK Users’ Guide. SIAM, Philadelphia, 1992.

14

[2] Gregory A. Baker.Implementation of Parallel Processing to Selected Problems in Satellite Geodesy. PhD thesis,
The University of Texas at Austin, 1998.

[3] Jean-Philippe Brunet, Palle Pederson, and S. Lennart Johnsson. Load-balanced LU and QR factor and solve
routines for scalable processors with scalable I/O. InProceedings of the 17th IMACS World Congress, Atlanta,
Georgia, July 1994.

[4] J. Choi, J. J. Dongarra, R. Pozo, and D. W. Walker. Scalapack: A scalable linear algebra library for distributed
memory concurrent computers. InProceedings of the Fourth Symposium on the Frontiers of Massively Parallel
Computation, pages 120–127. IEEE Comput. Soc. Press, 1992.

[5] Tom Cwik, Robert van de Geijn, and Jean Patterson. The application of parallel computation to integral equation
models of electromagnetic scattering.Journal of the Optical Society of America A, 11(4):1538–1545, April 1994.

[6] E. F. D’Azevedo and J. J. Dongarra. The design and implementation of the parallel out-of-core scalapack lu,
qr, and cholesky factorization routines. LAPACK Working Note 118 CS-97-247, University of Tennessee,
Knoxville, Jan. 1997.

[7] L. Demkowicz, A. Karafiat, and J.T. Oden. Solution of elastic scattering problems in linear acoustics usingh-p
boundary element method.Comp. Meths. Appl. Mech. Engrg, 101:251–282, 1992.

[8] Jack J. Dongarra, Jeremy Du Croz, Sven Hammarling, and Iain Duff. A set of level 3 basic linear algebra
subprograms.ACM Trans. Math. Soft., 16(1):1–17, March 1990.

[9] Y. Fu, K. J. Klimkowski, G. J. Rodin, E. Berger, J. C. Browne, J. K. Singer, R. A. van de Geijn, and K. S.
Vemaganti. A fast solution method for three-dimensional many-particle problems of linear elasticity.Int. J.
Num. Meth. Engrg., 42:1215–1229, 1998.

[10] Po Geng, J. Tinsley Oden, and Robert van de Geijn. Massively parallel computation for acoustical scattering
problems using boundary element methods.Journal of Sound and Vibration, 191(1):145–165, 1996.

[11] John Gunnels, Calvin Lin, Greg Morrow, and Robert van deGeijn. A flexible class of parallel matrix multiplica-
tion algorithms. InProceedings of First Merged International Parallel Processing Symposium and Symposium
on Parallel and Distributed Processing (1998 IPPS/SPDP ’98), pages 110–116, 1998.

[12] Ken Klimkowski and Robert van de Geijn. Anatomy of an out-of-core dense linear solver. InProceedings of the
International Conference on Parallel Processing 1995, volume III - Algorithms and Applications, pages 29–33,
1995.

[13] David S. Scott. Out of core dense solvers on Intel parallel supercomputers. InProceedings of the Fourth
Symposium on the Frontiers of Massively Parallel Computation, pages 484–487, 1992.

[14] David S. Scott. Parallel I/O and solving out-of-core systems of linear equations. InProceedings of the 1993
DAGS/PC Symposium, pages 123–130, Hanover, NH, June 1993. Dartmouth Institute for Advanced Graduate
Studies.

[15] Sivan Toledo and Fred G. Gustavson. The design and implementation of SOLAR, a portable library for scalable
out-of-core linear algebra computation. InProceedings of IOPADS ’96, 1996.

[16] Robert A. van de Geijn.Using PLAPACK: Parallel Linear Algebra Package. The MIT Press, 1997.

15

