POOCLAPACK: Parallel Out-of-Core Linear Algebra Package

Wesley C. Reiley
Robert A. van de Geijn

Department of Computer Sciences
The University of Texas
Austin, TX 78712

{rvdg,wesley }@cs.utexas.edu

November 8, 1999

Abstract

In this paper parallel implementation of out-of-core Clslefactorization is used to introduce the Parallel Out-
of-Core Linear Algebra Package (POOCLAPACK), a flexibleastructure for parallel implementation of out-of-core
linear algebra operations. POOCLAPACK builds on the Parblhear Algebra Package (PLAPACK) for in-core par-
allel dense linear algebra computation. Despite the exdr@mplicity of POOCLAPACK, the out-of-core Cholesky
factorization implementation is shown to achieve in exa&s80% of peak performance on a 64 node configura-
tion of the Cray T3E-600. Preliminary results from the HP ipéar X-Class that demonstrate the portability of
POOCLAPACK are also given.

1 Introduction

There are only a few applications left that require the sotubf extremely large dense linear systems. They tend
to arise from boundary-element formulations for the solutdf integral equations in the areas of electro-magnetics
and acoustics [5, 7, 10]. Even for those applications, mingaper methods based on multi-pole expansions, fast
multipole methods (FMM), have recently become popular8jnetheless, there are still many such applications that
are solved by forming large dense systems of equations.ne sases, this is simply because the users are naive. In
other cases it is a conscious decision since a considerfibfeis required to reformulate the problem in a fashion
that allows fast multi-pole methods to be utilized. Furthere, there are applications requiring the solution ofdarg
linear least squares problems that also give rise to vegelinear systems [2]. For applications that do still lead
to large dense linear systems, the matrices involved ageiéretly so large that they do not fit even in the combined
memories of the processors of a large distributed memomwllphsupercomputer. Such problems are often referred to
as out-of-core problems, since they do not fit in the core migrabthe computer. The matrices are instead stored on
disk.

The preeminent library for sequential computers and cotmweal (shared memory) vector supercomputers is the
Linear Algebra Package (LAPACK) [1]. This package does nptieitly include out-of-core capabilities, although on
machines with virtual memory the library can be used to sphablems larger than fit in-core. For larger problems,
a version of this library called ScaLAPACK [4], designed flistributed memory parallel architectures, can be used.
This extension of LAPACK does include prototype out-of&onplementations of some of the ScaLAPACK routines,
including general linear solvers via LU factorization, jiwe definite linear solvers via Cholesky factorizationda
linear least squares solvers via QR factorization [6].

A more serious effort to add out-of-core capabilities to IMIK and ScaLAPACK is provided by SOLAR [15],

a portable library for scalable out-of-core linear algeboanputations. This library uses ScaLAPACK routines for
in-core computation, but provides an I/O layer that managgtsix input-output. SOLAR achieves better I/O rates by
allowing a different storage scheme for matrices on dishk teaised in-core by ScaLAPACK. Impressive performance
is reported for up to four nodes of an IBM SP-2. Lack of perfante on larger numbers of nodes is in part blamed
on nonscalability of some of the in-core parallel kerneksdis

Our own approach is somewhat different. Since we develdpeBRarallel Linear Algebra Package (PLAPACK) [16]
used as a basis for the Parallel Out-of-Core Linear Algelack&ge (POOCLAPACK), we have more flexibility to
customize both the in-core and the out-of-core algorithhigs in turn allows us to code the out-of-core algorithms in
such a way that the I/O of matrices becomes trivial, reduttiegamount of code required to port between platforms
and improving performance.

It should be noted that the above described parallel outod-library efforts are in addition to a number of parallel
out-of-core implementations of individual operations caahine specific libraries for dense linear systems reported
in the literature [2, 12, 3, 13, 14]. Additional referencespplications requiring large dense linear solves arengive
in [5, 7, 10]. Additional references to research using fastmation methods like FMM are given in [9].

This paper is organized as follows: Section 2 introducesrétyns for solving the Cholesky factorization used
to later illustrate the use of POOCLAPACK. Section 3 disessssues regarding the in-core and out-of-core imple-
mentation of sequential Cholesky factorization. Sectiamebduces the POOCLAPACK approach to coding parallel
out-of-core dense linear algebra algorithms. Performanceported in Section 5. Concluding remarks and future
directions are given in the final section.

2 Cholesky Factorization

Given ann x n symmetric positive definite matrid, its Cholesky factorization is given byt = LLT whereL is

a lower triangular matrix. In this section, we develop twiiatient algorithms for this operation,rgght- and aleft-
looking algorithm, using LAPACK terminology. While the tittlooking algorithm is more appropriate for (parallel)
in-core implementation, the left-looking algorithm haslm advantages for out-of-core computation. We will de-
velop blocked versions of the algorithm, since these arevkirto yield better ratios of the number of computations to
memory operations, thus allowing better utilization ofraiehical memories.

2.1 Right-looking variant

The right-looking algorithm for implementing this operatican be described by partitioning the matrices

A | * Li;| O
A= and L=
(Azr | Az > < Ly | La22)

whereA;; andLy; areb x b submatrices. The indicates the symmetric part df, which will not be updated. Now,

- (Cetn) - (k) CHE) - (bt
A21 A22 L21 | L22 0 | ng L21L{1 | Lzngl + L22L§2

From this we derive the equations

Ay, = LyLY
Ay = LalLf,

Agy — Loy LY Ly L3,

An algorithm for computing the Cholesky factorization isasngiven by

" A]_]_ *
1. Partitiond =
(Azr | Az)

2. A1 + Ly; = Chol.fact.(411)
3. Ay ¢ Loy = Asy L)1

4. Agy Agy — Lt LT,

5. Continue recursively withl,,

Note that only the upper or lower triangular part of a syminetratrix needs to be stored and the above algorithm
only updates the lower portion of the matrix with the redultAs a result, in the stels; < A2y — Lo LI, only the
lower portion ofA,, is updated, which is typically referred to asyanmetric rank-k update (with £ = b).

One question that may be asked about the above algorithnaisiswtored in the matrix after a number of recursive
steps. We answer this by partitioning

A L 0
A:(o | * >:< e || >)
Apr || Apr Lpr || LBr
whereAry, andLry arek x k. Here “T'L” , “ BL", and “BR" stand for “Top-Left”, “Bottom-Left”, and “Bottom-
Right”, respectively. As seen before

A:<ATL *)_(LTL” 0)(L%LHLgL>:(LTLL%L” x) @)

Apr [Apr)/ \ LsL | Lsr 0 || LEg LpL%T, | LerLE, + LerLEg
so that
Arp = LriLip 3
Apr = Lprlyg (4)
Apr = LprLEip+LprLy; %)

It can be easily verified that the above algorithm maintaiesdonditions
e Ary has been overwritten by,
e Apy has been overwritten bpy, and
e App hasbeen overwritten bgr — LprL%; .

while at each step increasing the sizedsf;, by b. Thus, the matrix with which the algorithm is continued attea
step is the submatrid grand to complete the Cholesky factorization, it suffices tmpaote the factorization of the
updatedd gr. This motivates the algorithm given in Fig. 1 (right-loogigariant).

2.2 Left-looking variant

To derive aleft-looking variant for computing this factorization, consider agagnk. (1)—(5). This time assume that
at the current stage

e Ary has been overwritten by,

e Apy has been overwritten bpy, and

e Appr hasnot been changed

To derive an algorithm that maintains this condition, wiileving the computation ahead, repartition

Al o |+ Lol 0] 0
A=\ Ap || An | * and L=\ L[L.| O (6)
Az || A1 | A Lo || La1 | Lo
whereAdyy = A7, andLyy = Lrr. Notice that
A || » | * Loo | 0 | 0 Loo" || Lio” | Lao™
A= Ap || A | * =\ Liw| L1 | O 0 LT | LT (7)
Az || A21 | A2z Log || La1 | Loz 0 0 LT,
Since
Ay = LioLiy+ L LY

Az LoyoLiy + Ly LT

and realizing thatd;, has been overwritten b, and A»y has been overwritten b, we find that the following
computations computB;; andL;:

A11 +~ L, = Chol.fact.(A11 — LlOL{O)
Ay ¢ Lo = (A2 — LzoLfo)LﬁT

The algorithm for the left-looking version of Cholesky fadzation is now given in Fig. 1 (left-looking algorithm).

partition A = < Ary al) whereArr is0 x 0
Apr | ABr
dountil Agris0 x 0
repartition
AOO || * | *
A
(%) = (Ao [Ay | *) whereAry isb x b
pL il mBR Az | Aoy | Ane

right-looking algorithm left-looking algorithm

A11 — Lll = Chol.fact.(All) All — All — AlOA,{O

A1 ¢ Loy = AzlLﬂT Aoy Agp — Agp ATy

Azy < Ay — Ly LY A1 < Ly; = Chol.fact.(A;;)

A1 Loy = A21L1_1T

continue with
AOO * *
() - (A o)
Br il #en Ago | Azt || Az

enddo

Figure 1: Blocked right- and left-looking Cholesky factmation algorithms.

3 Sequential Implementation

3.1 Sequential In-core Implementation

Either of the two algorithms presented in Section 2 can bd tmeefficient sequential in-core implementation of the
Cholesky factorization. In practice, the right-lookingatithm is favored for a rather curious reason: The bulk of
the computation in the right-looking algorithm is in the kakaupdateAs, < Ass — L2y LY, and for the left-looking
algorithm in the matrix-matrix multiplyds; < As; — LooL%,. While there is no technical reason for this, the level-
3 BLAS [8] kernelOsyrk that implements the symmetric rank-k update tends to aeti@her performance than
the matrix-matrix multiply kerneigemmfor the special case where one of the matrices is transposed. From our
experience, we believe the reason is that the symmetrickamidate is a modification of the general rank-k update,
which is at the heart of fast implementations of the LINPAGKabhmark. Vendors tend to pay a lot of attention to this
kernel since it is key to the performance on the benchmarkneSeendors tend to spend less time optimizing other
cases of the matrix-matrix multiply, while other vendorglprthemselves on delivering highly optimized versions of
all BLAS. Packages like LAPACK favor the right-looking varits of these kinds of algorithms.

3.2 Sequential Out-of-Core Implementation

The left-looking Cholesky factorization is favored for enftcore implementations. There are two basic reasons for
this: First, the left-looking Cholesky requires approxteig half the 1/0 operations of the right-looking algorithm
Second, itis easier to adtieck-pointing to a left-looking algorithm. Check-pointing allows for sstart partially into
the computation in case of a system failure.

Let us examine in more detail how to implement an out-of-&melesky factorization. Partition

LOO || % | *
A= Lo | A *
Lo || A1 | Aao

whereLg ism x m and we assume that,, have been computed, while the other partd dfave been left untouched.
Here A, is of sizet x t, which we will later call aile of sizet. All data is assumed to exist on disk.

The following steps will advance the computation so that and L,; have been computed and have overwritten
the corresponding blocks of:

1. Read4,; from disk into memory.
2. Updated;; < A;; — LypL%, whereL, is on disk.

3. Updated;; < L;; = Chol.fact.(A4;1). SinceA;; isin memory, this requires an in-core Cholesky factorozati
As mentioned, typically a right-looking variant is favorfed this subproblem.

4. Write L1 to disk, leaving a copy in memory.

5. Updateds; « (A2 — LzoLTO)LﬁT, whereAs;, Loy and Ly are on disk and.;; is in memory.
6. Flush all memory.

We must give further details on how to perform steps 2 and 5:

Step 2: Ay« Agg — LlOLTO: Here A, is in memory, butl is on disk. At first glance, this appears to require a
read ofL, followed by an in-core symmetric rank-k update. This regsii x m data to be read, after which
mt? floating point operations are performed to upddig, for a ratio oft floating point operations for every

floating point number read. However, readibg, requires a considerable amount of memory, thereby limiting
the size oft, and thus affecting this ratio.

The following approach retains the benefits of the same tatf@omputation to disk accesses, while maximiz-
ing the size of and thus this ratio: Partitioh,y = (Lg%) e ‘ L:(l’f)’l)) WhereL:(l{)) has approximately
columns. Notice that

Ay — Lol = Ay — LE%)L%)T - Lglgil)L%il)T

Thus, the following procedure will perform the updateAf For eachL&’O), read this submatrixt(x b items
read), and perform an in-core rank-k updat floating point operations). Notice that this maintains thigor
of ¢ computations for each item read from disk. However, by pighi relatively small, very little memory is
needed fotl, thus allowingt to be chosen to be much larger. The block $ize typically chosen to equal a
block-size that maximizes the performance of the in-coreragtric rank-k update.

This “sequence of narrow symmetric rank-k updates” apgrdaadmplementating a larger symmetric rank-k
update yields an excellent parallel in-core implementatibsymmetric rank-k update. Thus, the out-of-core
approach fits naturally with a very good in-core algorithm

Step 5: Ay < Loy = (A21 — L20LTO)L;1T: Here onlyL;; is in memory. This time, we partition

Ay Liy

A21 = andL20 = :
(M-T1) M—1

A2l L20

whereAg’f is approximatelyt x ¢. Note that each tnqu? must be updated b)Ag’l) — Aé’l) - ng)Lm after
which Ag’l) — Lg’l) = Ag’l)Ll_lT can be computed. The out-of-core algorithm for this prosessifollows: for
eachi,

. ReadAg?.

. UpdateAéil) — Aé’l) - Lg’gLfO by readingb columns ofLéf)) andL, at a time and performing a general
rank-k update, much like for the out-of-core symmetric rénlipdate described above. The ratio of
computation to disk accesses is equally favorable for thesation as it was for the symmetric rank-k
update.

o UpdateAg’f — Lg’l) = Agil)Ll‘lT. Notice that all matrices involved in this operation are iamory, since
a copy ofLi; is kept in memory.

o Write Ag’l)

This “sequence of narrow rank-k updates” approach to imphgating a matrix-matrix multiply yields an excel-
lent parallel in-core implementation of matrix-matrix rtiplication [16, 11] and thus the out-of-core approach
fits naturally with the a very good in-core algorithm for tobigeration.

Careful consideration of the complete out-of-core aldgwnitshows that in addition to two tiles of size< ¢ (one

for 4;; and forAéil)) only a small amount of workspace is needed for storing a fewshs of columns of_; andLgQ.
Naturally,t is chosen as large as possible, thus improving the ratioropedation to disk accesses.

1Unfortunately, the only reference for this is the actuaityplementation of symmetric rank-k update in the PLAPACKrseu Most likely,
Scal APACK uses a similar approach.

3.3 Overlapping I/0O with computation

It is possible to exploit asynchronous 1/O operations torlagecomputation with 1/O operations. We now discuss
opportunities and trade-offs:

1. ReadLgi) while A1, is being factored to compute; .
2. Write L{; while Agi) is being read.

3. ReadAg’frl) while Ag’l) is being updated: Notice that this requires storage of ttilesin memory {1, Ag’l)
andAé’l“)). This affects the tile sizg and thus the ratio between computation and 1/O operations.

4. ReadAgif“l) while Ag’l) is being written to disk: One could carefully orchestrawhiting of parts ong’f with
reading parts 01‘4&’1“) so that no extra memory is required.

5. ReadL;; while Lgfff—” from the previous iteration is being updated: Sidge from the previous iteration is
required for the final update 04211”’1) to form Lgff“”, this again requires space for a third tile in memory,

affecting the tile size.

6. ReadL;; while ng”—” from the previous iteration is being written.

Notice that all of the above optimizations would yield mimihbenefit: the cost of reading and/or writing these tiles is
amortized over many computations, and thus comprises osityadl percentage of the total execution time. Thus, we
do not consider these optimizations worth the added corpliexthe code.

Itis in the updated;; « Ai1 — LioLY, andAéil) — Aé’l) - Léf)) L%, that there is a more profitable opportunity for
overlapping:

7. Asdiscussed in Section 3.2, — L1oL%, = Ay — L LT — ... - k= . Notice that whiled; ;
is being updated withd;; — L)L) the next block of column& /™) can already be read from disk.

k—1)T
0

8. SimilarIyAgil) is updated using a few columnsbfo) andL,, at a time, and thus the next blocks of columns of
these matrices can be read while the current blocks are hee)

Notice that these last optimizations require minimal ewtoakspace, since only a few extra columns need to be stored.
Moreover, reading of these blocks of columns isn’'t amodiaeer nearly as much computation, and thus the benefits
may be more noticeable.

3.4 Storage considerations

We must briefly discuss storage of the matrix on disk. In-carewill assume that the matrices are stored in column-
major order. Thus, elements in columns are in contiguousangnWhen reading from disk, one must consider the
fact that a disk access carries a large startup cost, afehwbntiguous data can be read at a rate determined by the
limits of the hardware. Thus, reading noncontiguous datcbeacostly.

While columns of matrices are in contiguous memory, readisgbmatrix of size x b, as is encountered in the
out-of-core rank-k updates described above, requiresraithncontiguous data to be read or a more complex storage
scheme. In our implementation, we experimented with thelfghequivalent of two storage schemes: The first stores
the matrix in a file much like it would be stored in memory, irluman-major order. The second partitions by row
blocks oft rows each, where is equal to the tile size discussed above. These blocks of eve then stored in
separate files. As a resultx ¢ matricesA;; andAgl) can be read as one contiguous block, asbgh and blocks

of columns ongiO). For this second scheme, the Cholesky factorization vikshtatrix as a collection of blocks of
rows.

4 Parallel Implementation
4.1 PLAPACK

The Parallel Linear Algebra Package (PLAPACK) is a flexilm&astructure for implementing parallel dense linear
algebra libraries. An MPI-like programming interface, eihides details about matrices and vectors like distidiouti
from the user, makes both the library implementation anasiésconsiderably simpler than more conventional packages
like ScaLAPACK. In addition, the simple programming apprieallows more complex algorithms to be implemented,
which often yield better performance. The code segmentaded in this section are typical of PLAPACK code, in-
core as well as out-of-core.

4.2 Data Distribution and File Management

Forin-core matrices PLAPACK uses a two-dimensional Catesyclic data distribution. Thus matriis partitioned
like

Byo By e Byn—1)
Bio Bu e Bi(n-1)
B = . . .
Biv—1o | Br-11 | 0 | Bvr—1)m-1)

whereBy is d x d. The processing nodes of the parallel architecture areadeag a logicat x ¢ mesh of nodes, with
p = rc. Row blocksB;,. and column blocks,; are all assigned to the same row and column of nodes, regglgcti
An over-decomposition{ >> r, ¢) is used to achieve load balance as the computation unfolaisof-core matrices
are distributed to nodes identically, except that the dasddred in a file.

4.3 Paralle out-of-core Cholesky factorization

We only describe the parallel implementation of the aldponithat uses the more complex algorithm where blocks of
rows are treated as separate matrices. The primary reagwt the actual code comfortably fits on one page (Fig. 2).
PLAPACK and POOCLAPACK manage complexity by hiding detaflsize, distribution, and storage. This approach
allows us to createiews into matrices which reference submatrices. Each blodkrodvs is passed to the routine as a
view of this data.

We briefly describe the different parts of the routine: Therirads passed to the POOCLAPACK OOC Cholesky
factorization as an array df views, each of which references a panel of rows, as desciib8dction 3.4 (line 1).
The algorithm loops over the panels, partitioning the aurpanel intoL;o andA;; (lines 6-11). An in-core matrix
is created to holdd;; and that submatrix is read from disk (lines 14—15). Notic this requires only a local copy
from disk to the in-core matrix. A parallel symmetric rankyidate POOCLASyrk , updatesd;; « A1 — LlOLTD
whereA;; is in-core andL»; resides on disk (line 18). We describe this routine in motaitleelow. Once updated,
Ay, is factored by a call to the parallel Cholesky factorizatitinA Chol and written to disk (retaining a copy in
memory for now) (lines 21-22). The inner-most loop updates < (Aa; — L20L1T0)L1‘1T. To accomplish this, we

loop over the remaining row panels, partitioning each m@’é andAé? (lines 24—-28). An in-core matrix is created to
hold Agl) and that submatrix is read from disk (lines 30-32). A patatiatrix-matrix multiplication POOCLAGemm

updatesAg’f — A;? - LgiO)LTO. Implementation of this routine is similar to that BOOCLASyrk (lines 34-36).
Once updatedd; is overwritten withLy; = AzlLflT and written to disk. Since all operands are in-core, a call to
the parallel level-3 BLAS routinPLA Trsm (triangular solve with multiple right-hand-sides) accdisipes this task
(lines 38-43).

1 int POOCLA_Chol_by panels(int N, PLA_Obj *A_row_panels)

2 |

3 < declarations >

4

5 size_done = 0; /* number of columns finished */
6 for (j=0; j<N; j++ X

7 PLA_Obj_global_length(A_row_panels[j], &t); [* get tile size */
8

9 /* View current L_10 and A_11 submatrices */

10 PLA_Obj_vert_split_2(A_row_panels[j], size_done, &L_1 0, &temp);

11 PLA_Obj_vert_split_2(temp, t, &A 11, PLA_DUMMY);

12

13 /* Create an in-core matrix into which to copy A_11 */

14 PLA_Matrix_create_conf_to(A_11, &A_11 in);

15 PLA_Copy(A_11, A_11_in);

16

17 /* Update A_11 <- A 11 - L_10 * L_10, A_11 in-core, L_10 out-of -core */
18 POOCLA_Syrk(PLA_LOWER_TRIANG, PLA_NO_TRANS, min_one, L_10, one, A_11_in);
19

20 /* Factor updated in-core A_11 and write out the result */

21 PLA_Chol(PLA_LOWER_TRIANGULAR, A_11_in);

22 PLA_Copy(A_11_in, A_11),

23

24 /* Loop over A 217 */

25 for (i=j+1; i<N; i++)}

26 /* View current matrices L_20% and A_21% */

27 PLA_Obj_vert_split_2(A_row_panels[i], size_done, &L_2 0_1, &temp);
28 PLA_Obj_vert_split_2(temp, t, &A_21_ 1, PLA_DUMMY);

29

30 /* Create an in-core matrix into which to copy A 217 */

31 PLA_Matrix_create_conf_to(A_21 1, &A 21 1 in);

32 PLA Copy(A_21_1, A 21 1 in);

33

34 /* Update A 217 <- A 21% - L 20 * L_10°T %

35 POOCLA_Gemm(PLA_NO_TRANS, PLA_TRANS,

36 min_one, L_20_1, L_10, one, A_ 21 1 in);

37

38 /* Update A 217 <- L_21% = A_21% * L_11°-T */

39 PLA Trsm(PLA_SIDE_RIGHT, PLA_LOWER_TRIANG, PLA_TRANS, PLA NONUNIT_DIAG,
40 one, A_11 in, A 21 1 in);

41

42 /* Write out A 217 */

43 PLA Copy(A_21_1 in, A 21 1);

44

45 size_done += t;

46 }

47 }

48 < clean up >

49 }

Figure 2: POOCLAPACK Out-of-Core Cholesky factorizatidmn this version, the matrix is presented as a collection
of panels of rows in an effort to improve disk performance.

4.4 Paralld out-of-core symmetric rank-k update

We now describe in detail the out-of-core implementatiothefsymmetric rank-k updaté;; «+ A;; — LlOLlTO, or,
more genericallyl' «+ aAAT + BC. A parallel implementation of this operation using POOCIM&K is given in
Fig. 3.

MatricesA andC are passed in as viewsooc andC, whereA ooc references a matrix stored on disk, while
Creferences a matrix stored in-core (line 1). The algorithants by scaling” < GC (line 7). Next, the algorithm
loops over blocks of columns, partitioning off the currefadk A) asA ooc _1 (lines 11-16). An in-core matrix
is created to holdd¥) and that submatrix is read from disk (lines 17-19). A in-cpagallel symmetric rank-k
update POOCLASyrk , updates” « a AW AW T + ¢ whereAl) is in-core, referenced bicin _1 (line 21). An
asynchronous version is given in Fig. 4.

4.5 Paralld out-of-core matrix-matrix multiplication

The Parallel out-of-core matrix-matrix multiply used todmeAéil) — Aé’l) - Léf)) L% is implemented similarly.

5 Performance

In this section, we report preliminary performance achiewéh the described PLAPACK based parallel out-of-core
implementations of the Cholesky factorization.

5.1 Target Architectures

We demonstrate performance on two different platforms: Ghey T3E-600 (300 MHz) and the HP Exemplar X-
Class, with all computations performed in 64-bit arithraefihe algorithms were implemented using an alpha release
of PLAPACK Version R2.0, which performs all communicationineans of MPI. We report performance measuring
MFLOP/s/processor (millions of floating point operatioms pecond per processor). For reference, the followingtabl
shows performance of matrix-matrix multiplication on agdeprocessor of the T3E-600 and HP Exemplar X-Class
in MFLOP/s:

| n || Cray T3E| HP Exemplar|

500 418 398
1000 443 496
1500 425 497

All performance reported in this section for the T3E-600 wesasured with data streams turned on (a hardware feature
that adds about 15-20% to the performance of the local matattix multiply kernel).

The Cray T3E-600 at the Goddard Space Flight Center usebld@axperiments has a 54 Gigabyte partition striped
across 14 disks The Cray T3E Systems have an extended 10 system, calleibEdsile 10 (FFIO). This system
allows the user to insert layers through which data is pas®éthin the layer, the user can insert various kinds of
buffers and caches. Cache and/or buffer sizes and propékiestriping across multiple disks can be controlled by
command line routines. We experimented with putting a smadhe between disk and memory and used default
striping settings. It should be noted that changes in théguaration of the files and cache sizes did not seem to affect
performance of our algorithms much. In particular, the memphisticated algorithms that allowed larger blocks of
contiguous data to be read did not seem to be affected at all.

The Exemplar we used for our experiments is physically letat Caltech and is part of the National Partnership
for Advanced Computational Infrastructure (NPACI). TheeBwplar is a Cache-Coherent, Non-Uniform Memory

2the/tmp directory.

10

int POOCLA_Syrk(int uplo, int transa, PLA_Obj alpha, PLA_O

{

}

PLA_Obj beta,

< declarations >

< get size b, the number of columns to be read at a time >
/¥ Scale C <- beta * C */

PLA_Local_scal(beta, C);

/* A_ooc_cur view the part of A _ooc yet to be used */
PLA_Obj_view_all(A_ooc, &A_ooc_cur);

while (TRUE)

}

/* Check if part of A_ooc yet to be used is of width 0 */
PLA_Obj_global_width(A_ooc_cur, &size);

if ((size = min(size, b)) == 0) break;

/* view current A7 */

PLA_Obj_vert_split_2(A_ooc_cur, size, &A_ooc_1, &A_ooc
/* Create an in-core matrix into which to copy A% */
PLA_Matrix_create_conf_to(A_ooc_1, &A in_1);
PLA_Copy(A_ooc_1, A_in_1);

/* Perform in-core symmetric rank-k update */

PLA_Syrk(uplo, transa, alpha, A_in_1, one, C);

< cleanup >

bj A_ooc,
PLA_Obj C)

_cur);

Figure 3: POOCLAPACK symmetric rank-k update routine. Nat, passed in as objeatooc, is assumed to be
stored on disk, while matriX’, passed in as obje@, is assumed to be in-core. This version does not attempt to
overlap 1/0 with computation.

13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33

while (TRUE)

/* Check if part of A_ooc yet to be used is of width 0 */
PLA_Obj_global_width(A _ooc_L, &size);
if ((size = min(size, nb_ooc)) !=0) {

/* view next A%j and asynchronously read to in-core matrix */

PLA_Obj_vert_split_2(A_ooc_L, size, &A_ooc_2, &A_ooc_L
PLA_Matrix_create_conf_to(A_ooc_2, &A in_2);
PLA_Copy_async(A _ooc_2, A_in_2);
}
else {
if (last_time) break;
else last_time = TRUE;
}
if (Mirst_time)}
PLA_Copy_wait(A_out_1);
PLA_Syrk(uplo, transa, alpha, A_in_1, one, C);
}
else first time = FALSE;
PLA_Obj_view_swap(&A_in_1, &A_in_2);
PLA_Obj_view_swap(&A ooc_1, &A ooc_2);

Figure 4: Asynchronous implementation of the POOCLAPACHKsyetric rank-k update routine.

11

Architecture (CC-NUMA). It consists of a number of sharedmory hypernodes with 16 processors each. Programs
can use either shared-memory directives or message-pdsdsaries (MPI) to access memory on other nodes across
the Coherent Toroidal Interconnect (CTI) channels. POOPABK views this machine as a pure distributed memory
architecture programmed using MPI. We have less experigitce¢he Exemplar and did not experiment with different
I/O options: all I/0 on that machine was performed with vialiJNIX I/O calls. Also, parameters like the distribution,
algorithm and tile sizes were optimized for the Cray T3E antpy used for the Exemplar without further attempts
at optimization for that machine. The file system used on tteniplar stripes files across 12 disks. Thus performance
numbers for the Exemplar are very preliminary at best.

5.2 Implementationstested
We report performance for five different versions of the code
PLA_Chol : This version is the in-core PLAPACK Cholesky factorization

POOCLAChol : This version views the matrix as one matrix, with each pregeaccessing a single file in which the
local matrix is stored. The matrix is stored in this file muitelan in-core matrix would be stored, i.e., it is
viewed as a two-dimensional array. No effort is made to @a@erO with computation.

POOCLAChol _async : This version is identical ta?OOCLAChol except that it overlaps 1/0O and computation
during the updates,; « A, — LioL% andAl) « A% — LW LT

POOCLAChol _by _panels : This version is given in Fig. 2 and views the matrix as a ctibecof row panels, as
described in Section 3.4. No effort is made to overlap I/Ghwidmputation.

POOCLAChol _by _panels _async : This version is identical t@OOCLéCth _by_p’anels _except that it over-
laps 1/0 and computation during the updatss < A;; — Lo LT andA) « A — LW LT

The asynchronous versions were not used on the Exemplar.

5.3 Resultsonthe T3E

Performance attained on the Cray T3E-600 is reported ineTabl For a fixed number of processors, we report
performance for a problem equal to the tile sizet, (2¢t) x (2t), and(3t) x (3t). For those familiar with PLAPACK,

a distribution block size 024 and algorithmic block size of28 was used. The block size described in Section 3.2
used for partitioning-1 andLé’O), b, was taken to equal the algorithmic block size.

It is interesting to compare the performance of the in-conel€sky factorization with that of the out-of-core
factorizations for & x ¢ problem size. The moderate drop in performance illustritedact thatO(¢3) operations
are being performed o@(¢?) data and thus the I/O has only minor impact on performancealRthat when the
problem sizen is much greater thah this reading and writing of the tiles is amortized over ewggre computation.
We used this observation to justify not overlapping the imegénd writing of the diagonal blockd,; and tiles
Ag’l) As the problem size increases, the out-of-core versioalsl Yaetter performance than the in-core Cholesky
factorization. While on the surface this may be puzzlingjasothat the larger the problem, the more computation is
being performed in matrix-matrix multiplication (to updat,;), which executes at a higher rate of computation than
the Cholesky factorization of the diagonal blocks .

There is a noticeable improvement in performance when theialized storage described in Section 3.4 is used.
As predicted, the fact that the “panel” based versions readiguous data greatly improves 1/O performance. The
benefits of asynchronous I/O (overlapping some of the coatjputwith reading of data) is less dramatic. This is due
to the fact that only a small percentage of execution timeiadpspent in I/O.

12

tile 1x1tiles(n=1) || 2x2tiles (n = 2t) || 3 x 3tiles (n = 3¢)
Size || wrors | Time (sec) | wrors | Time (sec) | wrors | Time (sec)

Algorithm t poc. | TOt@l | /O]| e | Total | /O || o | Total | /O
In-core Chol 2088 | 263 | 11.5

Chol 2088 || 243 | 125| 1.1| 253 96 | 23 260 315| 84
Chol _async 2088 | 257 | 11.8| 0.4 | 252 96| 20| 266 | 308| 61
Chol _by _panel 2088 || 245 | 12.4| 1.0| 296 82 9 334 245 17

Chol _by _panel _async 2088 || 227 13.3| 2.0| 291 83 8 || 327 250 12

In-core Chol 4704 | 304 | 285

Chol 4704) 278 | 31.1| 26| 183 | 380|182 | 183 | 1282 | 598
Chol _async 4704 278 | 31.2| 2.7| 176 | 393|182 | 189 | 1239| 501
Chol _by _panel 4704 276 | 31.5| 26| 331 209| 10| 353 663 | 24

Chol _by _panel _async 4704 | 278 31.2| 26| 336 206 8 || 361 649 | 16

In-core Chol 8448 | 304 | 41.3

Chol 8448 | 277 | 45.3| 4.1 294 | 342 47| 299 | 1135 ???
Chol _async 8448 | 277 | 45.3| 4.1 * * * * * *

Chol _by _panel 8448 | 273 | 46.1| 4.3 321 | 313| 13| 343 989 | 32

PR R
ol ol o o ol BB BB P L i e [

Chol _by _panel _async 8448 | 277 | 45.3| 4.1 326 308 | 10| 347 977 | 21

In-core Chol 64 | 18432 263 124
Chol _by _panel 64 | 18432| 267 122 | 15.0|| 315 | 827| 53| 331 | 2654| 125
Chol _by _panel _async 64 | 18432 271 121 | 15.2 | 317 822 | 53| 339 | 2594 | 105

Table 1: Performance of the various Cholesky factorizattartines on the Cray T3E-600.

A final note: The performance numbers presented were cetlewrt the NASA Goddard Space Flight Center Cray
T3E, a heavily loaded machine where many of the applicabeirsy executed are I/O intensive. Since we did not have
exclusive use of this machine, the performance reportattpaipessimistic picture. We have observed performance
as high as 351 MFLOP/s per processor on 64 processors f¢sdhe (3¢) problem.

5.4 Resultson the Exemplar

Great careshould be taken when comparing theresults collected on the Exemplar and reported in Table 2 with
those given for the Cray T3E: For the Exemplar:

e We made no real attempt to optimize either the in-core omddere implementations. In particular, we believe
that performance on 8 and 16 processors is less impressa/eduspecific detail in the implementation of a
PLAPACK kernel that computes a local contribution to a syrtringank-k update. By recoding this detail,
memory conflicts within a hypernode can be reduced, impgperformance of this kernel.

e Parameters that optimized execution on the Cray were siagbiypted for the Exemplar. In particular the tile
sizet which determines the amount of in-core memory that was usedoansiderably smaller than it could be.
Recall that influences the ratio between communication and useful ctatipn. One reason for limitingwas
that there was limited disk space available for our expemnise

e We made no attempt to optimize 1/O. Indeed, straight-fodadnix calls were used by the 1/O related subrou-
tines. Furthermore, we did not implement asynchonous IfGhie Exemplar.

13

tile Ix1tiles(u=1) | 2x2tiles(n=2t) || 3 x3tiles(n = 3t)
size || wrors | Time (sec) | wrors | Time (Sec) | wrors | TiMe (sec)

t Iproc. TOtal | I/O | Iproc. TOtal | |/O | Iproc. TOtal | I/O
Chol 2088 | 179 | 17.0 4.7 || 213 114 | 40| 243 | 337| 109
Chol _by _panel 2088 | 194 | 15.6 3.8 299 84| 11| 333 | 246| 17

p
1
1
Chol 4 | 4704 | 257 | 33.8 45| 262 265 | 74
4
8

Algorithm

4704 259 | 335| 4.4 333 | 208| 20| 354 | 662| 72
[6144] 249 | 38.9] 4.3 273 | 283] 46| 288 | 907 146]
16| 8448 173 | 72.6] 19.44] 221 | 455] 135 245 | 1373] 359

Chol _by _panel

| Chol _by _panel |

| Chol _by _panel

Table 2: Performance of the various Cholesky factorizattrtines on the HP Exemplar X-Class. (Preliminary!)

Nonetheless, the performance numbers look encouragingntéfed to further optimize for this architecture in the
near future.

6 Conclusion

We have described a simple extension to the PLAPACK paratiear algebra infrastructure that allows for elegant
implementation of out-of-core dense linear algebra atgors. High performance is reported on the Cray T3E-600.

For now, we have concentrated on the use of existing in-cemedts provided by PLAPACK. However, since both
PLAPACK and its out-of-core extension provide a simple efggtprogramming interface, the implementations lend
themselves to customization to attain even higher perfoomaFor example, it is possible to implement an out-of-core
Cholesky factorization that requires only one tile to beedtian-core by implementing an out-of-core triangular solv
with multiple right-hand-sides. We are in the process oflamenting such customizations, which promise even better
performance than reported in this paper.

More information
For more information on PLAPACK and POOCLAPACK visit

http://www.cs.utexas.edu/users/plapack

Acknowledgments

Access to equipment for development of the described infretsire was provided by the National Partnership for
Advanced Computational Infrastructure (NPACI) and Thewdrsity of Texas Advanced Computing Center (TACC).
We also gratefully acknowledge access to the Cray T3E-68@8yat the Goddard Space Flight Center provided by

the NASA HPCC Earth and Space Science Project.
A special thanks to Heidi Lorenz-Wirzba at Caltech for hefpus obtain the performance results for the NPACI

HP Exemplar.

References

[1] E. Anderson, Z. Bai, J. Demmel, J. E. Dongarra, J. DuCfoZ5reenbaum, S. Hammarling, A. E. McKenney,
S. Ostrouchov, and D. SorensérAPACK Users' Guide. SIAM, Philadelphia, 1992.

14

[2] Gregory A. Bakerlmplementation of Parallel Processing to Selected Problemsin Satellite Geodesy. PhD thesis,
The University of Texas at Austin, 1998.

[3] Jean-Philippe Brunet, Palle Pederson, and S. Lennarisimn. Load-balanced LU and QR factor and solve
routines for scalable processors with scalable 1/OProceedings of the 17th IMACS World Congress, Atlanta,
Georgia, July 1994.

[4] J. Choi, J. J. Dongarra, R. Pozo, and D. W. Walker. ScalepA scalable linear algebra library for distributed
memory concurrent computers. Bnoceedings of the Fourth Symposium on the Frontiers of Massively Parallel
Computation, pages 120-127. IEEE Comput. Soc. Press, 1992.

[5] Tom Cwik, Robert van de Geijn, and Jean Patterson. Thécgion of parallel computation to integral equation
models of electromagnetic scatterirdgurnal of the Optical Society of America A, 11(4):1538-1545, April 1994.

[6] E. F. D'Azevedo and J. J. Dongarra. The design and impieation of the parallel out-of-core scalapack lu,
gr, and cholesky factorization routines. LAPACK Working tddl18 CS-97-247, University of Tennessee,
Knoxville, Jan. 1997.

[7] L. Demkowicz, A. Karafiat, and J.T. Oden. Solution of ¢lascattering problems in linear acoustics using
boundary element metho@omp. Meths. Appl. Mech. Engrg, 101:251-282, 1992.

[8] Jack J. Dongarra, Jeremy Du Croz, Sven Hammarling, amdDaff. A set of level 3 basic linear algebra
subprogramsACM Trans. Math. Soft., 16(1):1-17, March 1990.

[9] V. Fu, K. J. Klimkowski, G. J. Rodin, E. Berger, J. C. Brown]. K. Singer, R. A. van de Geijn, and K. S.
Vemaganti. A fast solution method for three-dimensionahyaparticle problems of linear elasticitylnt. J.
Num. Meth. Engrg., 42:1215-1229, 1998.

[10] Po Geng, J. Tinsley Oden, and Robert van de Geijn. Malsjparallel computation for acoustical scattering
problems using boundary element methadtsirnal of Sound and Vibration, 191(1):145-165, 1996.

[11] John Gunnels, Calvin Lin, Greg Morrow, and Robert varGddin. A flexible class of parallel matrix multiplica-
tion algorithms. InProceedings of First Merged International Parallel Processing Symposium and Symposium
on Parallel and Distributed Processing (1998 IPPSSPDP ' 98), pages 110-116, 1998.

[12] Ken Klimkowski and Robert van de Geijn. Anatomy of an-ofitcore dense linear solver. Rroceedings of the
International Conference on Parallel Processing 1995, volume 11l - Algorithms and Applications, pages 29-33,
1995.

[13] David S. Scott. Out of core dense solvers on Intel paraipercomputers. IRroceedings of the Fourth
Symposium on the Frontiers of Massively Parallel Computation, pages 484-487, 1992.

[14] David S. Scott. Parallel I/O and solving out-of-corestgms of linear equations. FProceedings of the 1993
DAGSPC Symposium, pages 123-130, Hanover, NH, June 1993. Dartmouth InstitutAdvanced Graduate
Studies.

[15] Sivan Toledo and Fred G. Gustavson. The design and imgai¢ation of SOLAR, a portable library for scalable
out-of-core linear algebra computation. Proceedings of IOPADS’ 96, 1996.

[16] Robert A. van de GeijnUsing PLAPACK: Parallel Linear Algebra Package. The MIT Press, 1997.

15

