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Abstract

We introduce a natural variant of the (metric uncapacifatechedian problem that we call the on-
line median problem. Whereas themedian problem involves optimizing the simultaneous @taent
of k facilities, the online median problem imposes the follogvadditional constraints: the facilities are
placed one at a time; a facility, once placed, cannot be mdkedotal number of facilities to be placed,
k, is not known in advance. The objective of an online medigorithm is to minimize competitive
ratio, that is, the worst-case ratio of the cost of an onlilaegment to that of an optimal offline place-
ment. Our main result is a linear-time constant-competiilgorithm for the online median problem. In
addition, we present a related, though substantially mihear-time constant-factor approximation
algorithm for the (metric uncapacitated) facility locatiproblem. The latter algorithm is similar in spirit
to the recent primal-dual-based facility location aldgamitof Jain and Vazirani, but our approach is more
elementary and yields an improved running time.
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1 Introduction

Recently the first constant-factor approximation algonittvas discovered for the-median problem by
Charikaret al. [3]; in this paper, we ask whether a constant competitivie I@n be achieved for a natural
online extension of thé-median problem. L&l be a nonempty set af points and let! be a metric distance
function onU. Thek-median problem is concerned with markihagoints such that the sum over all points
x of the weight ofz times the distance from to the closest marked point is minimized. For the online
median problem, we wish to find an ordering of th@oints such that for all, 0 < i < n, the firsti points
provide a “good” solution (e.g. constant factor approxioma) to thei-median problem.

An obvious approach to the online median problem is to ket choose the point that minimizes the
objective function. Greedy strategies of this kind are camipapplied in the design of online algorithms [1,
9]. It turns out, however, that for the online median prohlé¢ne simple strategy suggested above has an
unbounded competitive ratio. We show that a modificatiorisf$trategy that we cdflierarchically greedy
can be used to obtain a constant-competitive linear-tirgerdéhm for the online median problem. We
develop this strategy by first considering a simple greedgrihm for facility location.

1.1 Problem Definitions

Without loss of generality, throughout this paper we coasia fixed set of point§/ with an associated
distance functionl : U x U — IR and nonnegative function§ w : U — IR. We are primarily interested
in the case where the functiahis a metric, that is, wheré is nonnegative, symmetric, satisfies the triangle
inequality, andi(z, y) = 0 iff « = y. For the online median problem, it will prove to be useful tmsider a
slightly more general class of distance functions in whightriangle inequality is relaxed to the following
“\-approximate” triangle inequality, whepe> 1: For any sequence of pointsg, ..., z, in U, d(zg, zg) <

X Do<icrd(zi, iq1). We refer to such a distance function as-approximate metric We letn = |U],
and define a subset 6f to be aconfiguration iff it is nonempty. For any poing and configurationX, we
defined(z, X') asminycx d(z,y).

We consider three computational problenismedian, online median, and facility location. For the
k-median and online median problems, thest of a configuration, denotedost(X), is defined to be
Y ecv d(z, X) - w(x). The input to thek-median problem igU, d), w, and an integek, 0 < k < n.
The output is a minimum-cost configuration of sizeThe input to the online median problem(ig, d) and
w. The output is a total order oi. We define the competitive ratio of such an ordering as themmax
over allk, 0 < k < n, of the ratio of the cost of the configuration given by the firgtoints in the ordering
to that of an optimak-median configuration. We define thempetitive ratioof an online median algorithm
as the supremum, over all possible choices of the inputriostd/, d) andw, of the competitive ratio of the
ordering produced by the algorithm.

For the facility location problem, theostof a configuration, denoteebst(X), is defined as the sum of
Yeex f(x)andy cyd(z, X) - w(z). The input to the facility location problem {¢/, d), f, andw. The
output is a minimum-cost configuration.

1.2 Previous Work

There has been much prior work on the facility location &ndedian problems; here we focus on the work
that is most relevant to our results. The first constanifaapproximation algorithm for facility location is
due to Shmoyst al.[17] and is based on rounding the (fractional) solution timedr program. Chudak [4]
gives an LP-based + 2/¢)-approximation algorithm for facility location. This waset best constant factor
known until the recent work of Charikar and Guha [2], whicltablishes a slightly lower approximation
ratio of 1.728. The first constant-factor approximation for themedian problem was recently given by



Charikaret al. [3] and is also LP-based. That work follows a sequence oftbita results utilizing LP-
based techniques [14, 15]. Jain and Vazirani [10] give tist fiearly linear-time combinatorial algorithms
for the facility location andk-median problems, achieving approximation ratios3 @nd 6, respectively.
While the latter algorithms are combinatorial, the prirdakl approach used in their analysis is based on
linear programming theory. (See [6] for an excellent intrctibn to the primal-dual method.)

Strategies based on local search and greedy techniqueacftityflocation and the:-median problem
have been previously studied. The work of Korupetuwal. [11] shows that a simple local search heuristic
proposed Kuehn and Hamburger [13] yields both a constamifapproximation for the facility location
problem and a bicriteria approximation for thenedian problem [11]. Guha and Khuller [7] showed that
greedy improvement can be used as a postprocessing steprtavarthe approximation guarantee of certain
facility location algorithms. Guha and Khuller also prawithe best lower bound known ®f463 on the
approximation ratio for this problem. More recently, Ckariand Guha [2] achieved the best approximation
ratio known for facility location by combining a local sehrbeuristic with the best LP-based algorithm
known. Charikar and Guha also givedeapproximation for thek-median problem by building on the
techniques of Jain and Vazirani [10].

To the best of our knowledge, the online median problem had®en previously studied. Note that
any constant-competitive algorithm for the online mediambfem is also a constant-factor approximation
algorithm for thek-median problem, but the converse does not hold. In paaticabnstant-factor approxi-
mation algorithms for thé-median problem known prior to this work [2, 3, 10] seem ty tetavily on the
knowledge ofk. As such it is unclear whether any of these algorithms canakédyemodified to obtain a
constant-competitive online median algorithm.

1.3 Contributions

Algorithms for problems in discrete location theory arisemany practical applications; see [5, 16], for
example, for numerous pointers to the literature. Givehrany of these problems are NP-hard, it is desir-
able to develop fast approximation algorithms. As mentibaleove, it is not uncommon for approximation
algorithms to be based on a greedy approach. In this papeshm& that greedy strategies yield a fast
constant-factor approximation algorithm for the facilibcation problem and a fast constant-competitive
algorithm for the online median problem.

We give a linear-time algorithm for the facility locationgiem that achieves an approximation ratio of
3. The main idea of the algorithm is to compute and use the &Jatfiballs about every point in the metric
space. In retrospect, the idea of value is implicit in thekaafrJain and Vazirani [10]. We make this idea
explicit and use the values of balls to make greedy choiceglit@@nally, our algorithm is faster than the
Jain-Vazirani algorithm by a logarithmic factor.

While a simple greedy algorithm yields a constant-factgrapimation bound for the facility location
problem, it appears that a more sophisticated approactededeto obtain a constant-factor approximation
guarantee for thé-median problem, let alone a constant-competitivenesstres the online median prob-
lem. For example, in Section 3 we show that perhaps the magtah@reedy approach to tHemedian
(resp., online median) problem leads to an unbounded ajppation (resp., competitive) ratio.

Our main result is a linear-time constant competitive athor for the online median problem. We
achieve this result using a “hierarchically greedy” apptoa The basic idea behind this approach is as
follows: Rather than selecting a point based on a singledgreaterion, we greedily choose a region (the
set of points lying within some ball) and then recursiveliesea point within that region. Thus, the choice
of point is influenced by a sequence of greedy criteria addrgsuccessively finer levels of granularity.



1.4 Outline

The rest of this paper is organized as follows. In Section&pvesent our facility location algorithm and
prove that it achieves a constant approximation ratio. kctiSe 3, we present our online median algorithm
and prove that it is constant-competitive. Section 4 ofserme concluding remarks.

2 Facility Location

The following definitions are used throughout the presecti@e as well as Section 3.
e For any nonnegative integérlet [¢] denote the sefi | 0 < i < (}.

e Aball Ais apair(z,r), where thecenterz of A, denotedcenter(A), belongs td/, and theradiusr
of A, denotedradius(A), is a nonnegative real.

e Given a ballA = (z,r), we let Points(A) denote the sefy € U | d(z,y) < r}. However, for
the sake of brevity, we tend to writé instead ofPoints(A). For example, we write € A” and
“A U B”instead of ‘iz € Points(A)” and “Points(A) U Points(B)”, respectively.

e Thevalueof aballA = (z,r), denotedvalue(A), is 3°,c 4(r — d(z,y)) - w(y).

e For any ballA = (z,r) and any nonnegative reglwe definecA as the bal(z, cr).

2.1 Algorithm

In the first step of the following algorithm, we assume for Hake of convenience that there is at least
one pointz such thatw(xz) > 0. (The problem is trivial otherwise.) The output of the alguon is the
configurationZ,,, which we also refer to ag§. Remark: The indexing of the se has been introduced
solely to facilitate the analysis.

e For each point;, determine an associated bdl} = (z, r,) such thawalue(A;) = f(z).
e Determine a bijectiorp : [n] — U such thatr,;_1) < ry(;), 0 <i < n.

e LetB; = (z;,r;) denote the ball,;), 0 < i < n. LetZp = 0.

e Fori=0ton —1: If Z;N2B; = 0 thenletZ;,; = Z; U {x;}; otherwise, letZ;,; = Z;.

We now sketch a simple linear-time implementation of thevabalgorithm. For each point, the
associated radius, can be computed i®(n) time. (This is essentially a weighted selection problem.)
Thus the first step requir@(n?) time. The second step involves sortingalues and can be accomplished
in O(nlogn) time. The running time for the third step is negligible. E&elnation of the fourth step can be
easily implemented i®(n) time, for a total ofO(n?) time.

2.2 Approximation Ratio

In this section we establish the following theorem.
Theorem 1 For any configurationX, cost(Z) < 3 - cost(X).

Proof: Immediate from Lemmas 2.3 and 2.7 below. ]



Lemma 2.1 For any pointz;, there exists a point; in Z such thatj < i andd(z;,z;) < 27;.

Proof: If there is no such point; with j < ¢, thenZ; N 2B; is empty, and sa; belongs taZ. [

Lemma 2.2 Letz; andx; be distinct points irZ. Thend(x;, ;) > 2 - max{r;, r;}.

Proof: Assume without loss of generality thak . Thusr; > r;. Furthermored(z;, z;) > 2r; sincex;
belongs taZ; andZ; N 2B; is empty. |

For any pointz and any configuratiotk, let

chargdz, X) = d(z,X)+ Z max{0,r; — d(z;,z)}.
r;eX

Lemma 2.3 For any configurationX, Y-, . charge(z, X) - w(z) = cost(X).

Proof: Note that

> charge(z, X) -w(x) = D Y (ri—d(wi,z)) w(z)+ > dz,X) w(z)

zeU z;€X zEB; zeU
= Zvalue +deX w(z),
z;€X zeU
which is equal tacost (X)) sincevalue(B;) = f(x;). [

Lemma 2.4 Letz be a point, letX be a configuration, and let; belong toX. If d(z, z;) = d(z, X) then
charge(z, X) > max{r;, d(z, z;)}.

Proof: If = does not belong td;, then charge(z, X) > d(x,z;) > r;. Otherwise,charge(z,X) >
(ri —d(z, ;) +d(z,x;) =r > d(z, x;).

Lemma 2.5 Letz be a point and let:; belong toZ. If z belongs taB;, thencharge(z, Z) < r;.

Proof: By Lemma 2.2, there is no point; in Z such that # j andz belongs toB;. The claim now
follows from the definition ofcharge(z, Z), sinced(z, Z) < d(z, ;). ]

Lemma 2.6 Let z be a point and letz; belong toZ. If x does not belong t®;, then charge(x, Z) <
d(z, z;).

Proof: The claim is immediate unless there is a paintn Z such that: belongs toB;. If such a point
x; exists, then Lemmas 2.2 and 2.5 imghy;, ©;) > 2 - max{r;, r;} andcharge(z, Z) < r;, respectively.
The claim now follows since(z, ;) > d(z;, ;) — d(x, zj) > 2r; —r; = ;. [

Lemma 2.7 For any pointz and configurationX, charge(z,Z) < 3 - charge(z, X).

Proof: Letz; be some point inX such thati(z, z;) = d(z, X). By Lemma 2.1, there exists a poinf in
Z such thatj < i andd(z;,z;) < 2r;.

If = belongs toB;, then charge(z,Z) < r; by Lemma 2.5. The claim follows singe < i implies
r; < r; and Lemma 2.4 impliesharge(z, X) > r;.

If = does not belong ta3;, then charge(x, Z) < d(x,z;) by Lemma 2.6. Thusharge(z,Z) <
d(z,z;) +d(x;, zj) < d(x, z;)+2r;. The claim now follows by Lemma 2.4, since the ratial@f, x;) +2r;
to max{r;, d(z,z;)} is at most 3. ]



3 Online Median Placement

In the previous section, we found that a simple greedy dlguoriyields interesting results for the facility
location problem. Ideally, we would like to formulate a dianialgorithm for the online median problem.
The most obvious greedy algorithm is to select as the nexit fioithe ordering the one that minimizes the
objective function. Unfortunately, this algorithm gives anbounded competitive (resp., approximation)
ratio for the online median (resp:;median) problem. To see this, consider an instance compistn > 3
points, one “red” and the rest “blue”, such that the follogviconditions are satisfied: the red point has
weight0; each blue point has weigltt the distance from the red point to any blue point;ishe distance
between any pair of distinct blue points2s The aforementioned greedy algorithm chooses the red point
first in the ordering, since that gives a costof- 1 while choosing any other point gives a costaf — 4.
But then the ratio for a configuration of size— 1 is unbounded since the greedy cost isnd the optimal
cost is0. (This example also shows that no online median algorithmacdieve a competitive ratio below
2—--2.)

V?/elshow that a more careful choice of the point, which we daltanchically greedy, works well. Let
A (resp.,6) denote the largest (resp., smallest) distance betweeristioct points in the metric space.
We define a certain ball about each point, and select a/dall maximum value. But rather than simply
choosing the center of ball as the next point in the ordering, we apply the approach saaly to select
a point within A. At each successive level of recursion, we consider gearayr smaller balls about the
remaining candidate points. With®(log %) levels of recursion, we arrive at a ball containing only aykin
point, and we return this point as the next one in the orderiNgte that whereas the greedy algorithm
discussed in the previous paragraph makes a single greethedb select a point, the hierarchically greedy
algorithm make®)(log %) greedy choices per point.

Throughout this section, let, «, 3, andy denote real numbers satisfying the following inequalities

A > 1 (1)

a > 1+ (2
AMa—1)

B = a1\ (3
ao? a

T > (%fﬁm)x @

The online median algorithm of Section 3.1 below makes ushefollowing additional definitions.
A child of a ball (z,) is any ball(y, =) whered(x,y) < Br. For any pointz, let isolated(z,()) denote
the ball (z, maxycy d(z,y)). For any pointz and configurationX, let isolated(z, X) denote the ball
(z,d(xz,X)/v). For any nonempty sequengewe lethead(p) (resp.,tail(p)) denote the first (resp., last)
element ofp.
3.1 Algorithm

Let Zy = 0. Fori = 0 ton — 1, execute the following steps:

e Leto; denote the singleton sequencé) whereA is a maximum value ball igisolated (z, Z;) | x €
U\ Z;}.

¢ While the balltail(o;) has more than one child, append a maximum value chitdidfo;) to o;.

o LetZ; 1 = Z; U{center(tail(o;))}.



The output of the online median algorithm is a collection ol setsZ; such thatZ;| = ¢, 0 <i < n,
andZ; C Z; 11,0 < i < n. Note that it is sufficient for an implementation of the algun to maintain the
ball tail(0;), as opposed to the entire sequeageThe sequence; has been introduced in order to facilitate
the analysis.

We discuss two implementations of the online median algorin Section 3.4. The firstimplementation
has a slightly superlinear running time. The second imptgat®n runs in linear time, but assumes a
(linear) preprocessing phase in which all distances araded down to the nearest integral powerof
(Note that for the preprocessing phase to be well-definedegaire A > 1.) If the input distance function
is a metric, it is straightforward to see that such roundirggpces a\-approximate metric.

3.2 Competitive Ratio

Before proceeding with the analysis, we introduce a numbadditional definitions.

e Let z; denote the unique point iff;; \ Z;, 0 < i < n.
e For any configurationX’ and set of point&’, let cost(X,Y) = 3 cy d(y, X) - w(y).

e For any configurationX, we partitionU into | X| sets{cell(z,X) | « € X} as follows: For each
pointy in U, we choose a point in X such thatl(y, X) = d(z,y) and addy to cell(z, X).

e For any configurationX, pointz in X, and set of pointy”, we definein(z, X,Y") ascell(z, X) N
isolated (xz,Y) andout(z, X,Y") ascell(z, X) \ in(z, X,Y).

e For any configuratioX and set of point¥”, we definein(X,Y) asUzcxin(z, X,Y) andout(X,Y)
asU \ in(X,Y).

In this section we present our main result, Theorem 2 belowrdier to minimize the competitive ratio
of 2A(y + 1) implied by the theorem, we satto 1, seta to approximately3.455 and set3 and~ to the
right-hand sides of Equations (3) and (4), respectively.théecby establish a competitive ratio of slightly
below 40 for the online median problem. In Section 3.4 we describex@ali-time implementation of the
online median algorithm for which the parameleis required to be strictly greater thanThe degradation
in the competitive ratio that results by settingyreater thari can be made arbitrarily small by choosiig
sufficiently close tdl.

Theorem 2 For any configurationX, cost(Z x|) < 2A(y + 1) - cost(X).

Proof: LetY = in(X, Z|x|) and letY’ = out(X, Z|x|) = U \ Y. Note thatcost(X) = cost(X,Y) +
cost(X,Y') andcost(Z x|) = cost(Z|x|,Y)+cost(Z x|, Y'). Thus the theorem follows immediately from
Lemmas 3.2, 3.4, and 3.5 below. [

Lemma 3.1 For any configurationX, pointz in X, and pointy in out(z, X, Z|x|), d(y, Z|x|) < A(y +

Proof: Letisolated (x, Z|x|) = (x,r). Note thatd(z,y) > r. Also, by the definition ofsolated (z, Z x),
there is a point in Z x| such thati(z, z) = yr. Henced(y, z) < Ad(x,y) +d(z, z)] = Ald(z,y) +r] <
Ald(z,y)+v-d(z,y)] = AMy+1)-d(z,y) = A(y+1)-d(y, X). The claim follows sincé(y, z) > d(y, Zx|)-

n



Lemma 3.2 For any configurationX,
cos(Z x|, out(X, Z|x|)) < Ay +1)- cost(X,out(X, Zx)))-
Proof: Summing the inequality of Lemma 3.1 over glin out(z, X, Z x), we obtain
cos(Z x|, out(z, X, Z|x)) < Ay +1)- cost(X, out(z, X, Z x))-

The claim now follows by summing the above inequality ovérah X. [

Lemma 3.3 For any configurationX and pointz in X,
cosl(Z x|, in(z, X, Z|x|)) < Aly+1)[cost(X,in(z, X, Z|x|)) + value(isolated (z, Z x)))-

Proof: Assume thaisolated (z, Z|x|) = (z,r). Note thaid(z, y) = yr for somey in Z x|. Thus, for any:
in isolated(z, Z|x|), d(y, z) < A[d(y, z) +d(z,2)] < A(y+1)r. Itfollows thatcost(Z x|, in(z, X, Z|x/))
is at mostA(y + 1) times

Z row(z) < Z d(z,z) - w(z) + Z (r —d(z,z2)) - w(z)

z€in(z,X,Z)x|) z€in(z,X,Z)x|) z€isolated(z,Z x))
= cos(X,in(z, X, Zx|)) + value(isolated (z, Z) x|))-

]
Lemma 3.4 For any configurationX and pointz in X,
cos(Z x|, in(X, Z|x|)) < Ay + D[eost(X,in(X, Zx|)) + Z value(isolated (z, Zx/))]-
zeX
Proof: The claim follows by summing the inequality of Lemma 3.3 oakrr in X . |

Our main technical lemma is stated below. The proof is givethé next subsection.

Lemma 3.5 For any configurationX, > - x value(isolated(z, Zx|)) < cost(X).

3.3 Proof of Lemma 3.5

In this section we establish our main technical lemma, Ler8rba
Lemma 3.6 Let A = (z,r) belong tos;. Thend(z, Z;) > ~r.

Proof: Letz be a point inZ; such that(z, z) = d(z, Z;). If A = head(o;) thenA = isolated(x, Z;) and
the result is immediate. Otherwise, Bt= (y, s) denote the predecessor 4fin o; and assume inductively
thatd(y, Z;) > ~s. Note thatd(z,y) < Bs ands = ar. Thusd(z, Z;) = d(z,z) > d(y,z)/\ —d(z,y) >
(v/A = B)ar > ~r, where the last step follows from Equation (4). [

Lemma 3.7 LetA = (z,r) belong tos; and letB = (y, s) belong too;. If i < j andd(z,y) < r+ s, then
the following claims hold: (iyadius (head (o)) < Z; (i) A # tail(o;); (iii) the successor of in o3, call
it C, satisfiesvalue(C) > value(head(o;)).



Proof: Lethead(o;) = (y',s"). For part (i), we know thad(y', z;) > vs' by Lemma 3.6. Also, we have
d(y',z) < A[d(Y',y) +d(y, @) + d(z, z)]
!
< )\[ﬁ (s’+%+---+as> +s+r+ﬁ<r+§+--->]
=

o —

IN

T (T‘+s')+r] A.
Combining the two inequalities and applying Equation (4¢,atbtain

<M+a>)\s' < [aﬁl-(r—i—s')—i—r])\.

a—1 o —

Multiplying through by(a — 1)/ and rearranging, we get> O‘;M# -s' = as’, establishing the claim.

B+a—1

For part (i), note thati(z,y) < r + L < @r by part (i) and Equation (3). Thud has at least two
children; the claim follows.

For part (iii), we use Equations (2) and (3) and part (i) toeslss that

d(z,y") < Md(z,y)+d(y,y')]
< A[r+s+ (as+a2s+---+s’)ﬁ]

< Ar+ aﬁ)\-s'
a—1
< Ar+ aﬁ)\'z
a—1 «o
< < b +1>)\r,
a—1

which is at mospr by Equation (3). It follows thakead (o) is contained in a child ofl. Thusvalue(C) >
value(head(oj)). [

For ease of notation, throughout the remainder of this @eetie fix a configuratiod, and letk denote

| X |. We now describe pruning procedurethat takes as input thesequences;, 0 < ¢ < k, and produces
as outputt sequences;, 0 < i < k. The sequence; is initialized tog;, 0 < i < k. The (nondeterministic)
pruning procedure then performs a number of iterations.gereral iteration, the pruning procedure checks
whether there exist two balld = (z,r) andB = (y, s) in distinct sequences andr;, respectively, such
that: < j andd(z,y) < r + s. If not, the pruning procedure terminates. If so, the seqeienis redefined

as the proper suffix of (the current) beginning at the successor df Note that part (i) of Lemma 3.7
ensures that the pruning procedure is well-defined. Furtbes, the procedure is guaranteed to terminate
since each iteration reduces the length of some sequence

Lemma 3.8 Let A = (z,r) belong tor; and letB = (y, s) belong tor;. If i < j thend(z,y) > r + s.

Proof: Immediate from the definition of the pruning procedure. [

Lemma 3.9 Each sequence is nonempty.

Proof: Immediate from part (ii) of Lemma 3.7 and the definition of graning procedure. [



Lemma 3.10 Letz be a point and assume that< ¢ < j < n. Then
value(isolated (x, Z;)) > value(isolated (x, Z;)).

Proof: SinceZ; C Zj, radius(isolated(x, Z;)) > radius(isolated(x, Z;)). The claim follows. [

Lemma 3.11 Letz be a point and assume that< 7 < k. Then
value(head(o;)) > value(isolated (x, Zy)).

Proof: If = belongs toZ;, thenradius(isolated(x, Z;)) = 0, SO value(isolated (x, Z;)) = 0 and there
is nothing to prove. Otherwisegalue(head(o;)) > value(isolated(x, Z;)) by the definition of the online
median algorithm, and the claim follows by Lemma 3.10. [

Lemma 3.12 Letz be a point and assume that< 7 < k. Then
value(head(7;)) > value(isolated (z, Zy)).

Proof: We prove that the claim holds before and after each iteraifathe pruning procedure. Initially,
1; = o; and the claim holds by Lemma 3.11. If the claim holds beforéexation of the pruning procedure,
then it holds after the iteration by part (iii) of Lemma 3.7. [

Aball A = (z,r) is defined to be&overedff d(z, X) < r. A ball is uncoveredff it is not covered.
Lemma 3.13 For any uncovered balll = (z,r), cost(X, A) > value(A).

Proof:  Note thatcost(X, A) > >, c 4 d(y, X) - w(y) = YXycalr —d(y,z)) - w(y) = value(A). [

Let I denote the set of all indicesin [k] such that some ball im; is covered. We now construct a
matching between the sdig and X as follows. First, for eachin I, we match with a pointz in X that
belongs to the last covered ball in the sequenceNote that such a point is guaranteed to exist by the
definition of I. Furthermore, Lemma 3.8 ensures that we do not match the gaimewith more than one
index.) Second, for eachin [k] \ I in turn, we match with an arbitrary unmatched pointin X.

We now construct a functiop mapping each point in X to an uncovered ball. For eaehin X that is
matched with an indexin [k] \ I, we setp(z) to head(7;). For eache in X that is matched with an index
iin I, we setp(x) to the successor of the last covered bathininlesstail(7;) is covered, in which case we
sety(x) to the ball(z, 0).

Lemma 3.14 For any pair of distinct pointg: andy in X, ¢(x) N ¢(y) = 0.

Proof: Immediate from Lemma 3.8 and the fact that the ball0) is contained irtasl(7;). [

Lemma 3.15 For any pointz in X, value(p(z)) > value(isolated (z, Zy,)).

Proof: If = is matched with an index in [k] \ I, the claim follows by Lemma 3.12. If is matched
with an index: in I, we consider two cases. ttil(7;) is covered, them = z; sincetail(7;) has exactly
one child. The claim follows since(z) = isolated(z, Z) = (x,0). If tail(r;) is uncovered, then the
predecessor gf(z) in 7;, call it A = (y, ), exists and contains. It follows thatvalue(p(z)) > value(B),
whereB = (z,r/a) is the child of A centered at:. Let C = (z,s) denote the balsolated(x, Zy).



Below we complete the proof of the claim by showing that > s, which implies thatB O C and hence
value(B) > value(C).
It remains to prove that/a > s in the final case considered above. We have

d(z,2;) < Ad(z,y) +d(y, 2)]
< )\r+6)\<r+£+--->

< <1+ b )Ar,

a—1

which is less thanr /o by Equation (4). The desired inequality follows sinffe, z;) > ~s by the definition
of C. [ ]

Lemmas 3.13, 3.14, and 3.15 together yield a proof of Lemtba 3.

3.4 Time Complexity

In this section we describe two implementations of the @nlnedian algorithm given in Section 3.1.
Throughout this section, Iétdenote the quantitiog %. The firstimplementation runs i0((n+¢)-n logn)
time. The second implementation runstiin? + ¢n) time and assumes & n?)-time preprocessing phase
in which all distances are rounded down to the nearest iat@gwer of\. To analyze the running time of
the implementations given below, we make use of the follgiamma.

Lemma 3.16 Let A = (z,r) be a child of a ballB in sequence; and letA’ = (z, ') be a child of a ball
B'in sequence;. If i < jthenr > (o + 1)r'.

Proof: First, note thati(z, z;) < B(r+r/a+---) < afr/(a —1). By Lemma 3.6;yr" < d(z, Z;) <
d(z, z;). Combining these inequalities and using Equation (4), wainb

ro> (a_l)’)/_rl
o
a—-1 a?B+aB |,
aﬁ' a—1 T
= (a+1)r.

In the first implementation, for each poiatin U, we sort the remaining points by their distance from
z. The total sorting time i€)(n? log n). Using these sorted arrays, we can compute the value of aag gi
ball in O(log n) time. We also maintain the distance franto the nearest point i&;. Note thatd(z, Z; 1)
can be determined in constant time givlm, Z;) andz;. The total time to maintain such distances is thus
O(n?). It follows that the first step of each iteration can be impdeed inO(n) time. The total time for
the second step 9(log n) times the sum over all balld appearing in some sequengg0 < i < n, of the
number of children ofd. By Lemma 3.16, it is straightforward to see that the latten$sO(¢n), and thus
the total time for the second stepGg¢n logn). The running time of the third step is negligible. Thus the
running time of the first implementation ((n + ¢) - nlog n), as claimed above.

For the second implementation, note that after the prepsitg phase, there af¥¢) distinct distances.
Thus, for each point, O(n+¢) time is sufficient to construct ai(¢)-sized table that can be used to compute
the value of any bal{z, ) in O(1) time. It follows that the total time for the second step carineroved
to O(¢n). The running time of the second implementation is theret(e? + ¢n), which is linear in the
size of the input (in bits).
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4 Concluding Remarks

We plan to investigate whether the ideas presented abovbeapplied to other problems. The work
of Indyk [8] gives a technique to achieve sublinear time lsufor various location problems through
random sampling of the distance function; we would like te Beapplication of these techniques to our
algorithms yield sublinear time bounds. Korupetual.[12] give an algorithm and an efficient distributed
implementation for hierarchical cooperative caching irichiithe distance function is an ultrametric. We
would like to see if the hierarchical greedy strategy can $edwr extended to solve the problem for an
arbitrary metric space. It would also be interesting to $ebéd hierarchical greedy strategy admits an
efficient distributed implementation for this problem.

A nice feature of our online median algorithm is its simgliciAlthough we deal with a harder problem,
the algorithm is actually simpler to specify than existirapstant-factor approximation algorithms for the
k-median problem. It would be interesting to see whether ppr@ach could be simplified to yield a fast
k-median algorithm achieving a small approximation ratio.
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