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Abstract

We introduce a natural variant of the (metric uncapacitated) k-median problem that we call the on-
line median problem. Whereas thek-median problem involves optimizing the simultaneous placement
of k facilities, the online median problem imposes the following additional constraints: the facilities are
placed one at a time; a facility, once placed, cannot be moved; the total number of facilities to be placed,k, is not known in advance. The objective of an online median algorithm is to minimize competitive
ratio, that is, the worst-case ratio of the cost of an online placement to that of an optimal offline place-
ment. Our main result is a linear-time constant-competitive algorithm for the online median problem. In
addition, we present a related, though substantially simpler, linear-time constant-factor approximation
algorithm for the (metric uncapacitated) facility location problem. The latter algorithm is similar in spirit
to the recent primal-dual-based facility location algorithm of Jain and Vazirani, but our approach is more
elementary and yields an improved running time.

�Department of Computer Science, University of Texas at Austin, Austin, TX 78712. This research was supported by NSF
Grant CCR–9821053. Email:framgopal, plaxtong@cs.utexas.edu.



1 Introduction

Recently the first constant-factor approximation algorithm was discovered for thek-median problem by
Charikaret al. [3]; in this paper, we ask whether a constant competitive ratio can be achieved for a natural
online extension of thek-median problem. LetU be a nonempty set ofn points and letd be a metric distance
function onU . Thek-median problem is concerned with markingk points such that the sum over all pointsx of the weight ofx times the distance fromx to the closest marked point is minimized. For the online
median problem, we wish to find an ordering of then points such that for alli, 0 � i < n, the firsti points
provide a “good” solution (e.g. constant factor approximation) to thei-median problem.

An obvious approach to the online median problem is to iteratively choose the point that minimizes the
objective function. Greedy strategies of this kind are commonly applied in the design of online algorithms [1,
9]. It turns out, however, that for the online median problem, the simple strategy suggested above has an
unbounded competitive ratio. We show that a modification of this strategy that we callhierarchically greedy
can be used to obtain a constant-competitive linear-time algorithm for the online median problem. We
develop this strategy by first considering a simple greedy algorithm for facility location.

1.1 Problem Definitions

Without loss of generality, throughout this paper we consider a fixed set of pointsU with an associated
distance functiond : U � U ! IR and nonnegative functionsf;w : U ! IR. We are primarily interested
in the case where the functiond is a metric, that is, whered is nonnegative, symmetric, satisfies the triangle
inequality, andd(x; y) = 0 iff x = y. For the online median problem, it will prove to be useful to consider a
slightly more general class of distance functions in which the triangle inequality is relaxed to the following
“�-approximate” triangle inequality, where� � 1: For any sequence of pointsx0; : : : ; x` in U , d(x0; x`) �� �P0�i<` d(xi; xi+1). We refer to such a distance function as a�-approximate metric. We letn = jU j,
and define a subset ofU to be aconfiguration iff it is nonempty. For any pointx and configurationX, we
defined(x;X) asminy2X d(x; y).

We consider three computational problems:k-median, online median, and facility location. For thek-median and online median problems, thecost of a configuration, denotedcost(X), is defined to bePx2U d(x;X) � w(x). The input to thek-median problem is(U; d), w, and an integerk, 0 < k � n.
The output is a minimum-cost configuration of sizek. The input to the online median problem is(U; d) andw. The output is a total order onU . We define the competitive ratio of such an ordering as the maximum
over allk, 0 < k � n, of the ratio of the cost of the configuration given by the firstk points in the ordering
to that of an optimalk-median configuration. We define thecompetitive ratioof an online median algorithm
as the supremum, over all possible choices of the input instance(U; d) andw, of the competitive ratio of the
ordering produced by the algorithm.

For the facility location problem, thecostof a configuration, denotedcost(X), is defined as the sum ofPx2X f(x) and
Px2U d(x;X) � w(x). The input to the facility location problem is(U; d), f , andw. The

output is a minimum-cost configuration.

1.2 Previous Work

There has been much prior work on the facility location andk-median problems; here we focus on the work
that is most relevant to our results. The first constant-factor approximation algorithm for facility location is
due to Shmoyset al. [17] and is based on rounding the (fractional) solution to a linear program. Chudak [4]
gives an LP-based(1+2=e)-approximation algorithm for facility location. This was the best constant factor
known until the recent work of Charikar and Guha [2], which establishes a slightly lower approximation
ratio of 1:728. The first constant-factor approximation for thek-median problem was recently given by
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Charikaret al. [3] and is also LP-based. That work follows a sequence of bicriteria results utilizing LP-
based techniques [14, 15]. Jain and Vazirani [10] give the first nearly linear-time combinatorial algorithms
for the facility location andk-median problems, achieving approximation ratios of3 and6, respectively.
While the latter algorithms are combinatorial, the primal-dual approach used in their analysis is based on
linear programming theory. (See [6] for an excellent introduction to the primal-dual method.)

Strategies based on local search and greedy techniques for facility location and thek-median problem
have been previously studied. The work of Korupoluet al. [11] shows that a simple local search heuristic
proposed Kuehn and Hamburger [13] yields both a constant-factor approximation for the facility location
problem and a bicriteria approximation for thek-median problem [11]. Guha and Khuller [7] showed that
greedy improvement can be used as a postprocessing step to improve the approximation guarantee of certain
facility location algorithms. Guha and Khuller also provide the best lower bound known of1:463 on the
approximation ratio for this problem. More recently, Charikar and Guha [2] achieved the best approximation
ratio known for facility location by combining a local search heuristic with the best LP-based algorithm
known. Charikar and Guha also give a4-approximation for thek-median problem by building on the
techniques of Jain and Vazirani [10].

To the best of our knowledge, the online median problem has not been previously studied. Note that
any constant-competitive algorithm for the online median problem is also a constant-factor approximation
algorithm for thek-median problem, but the converse does not hold. In particular, constant-factor approxi-
mation algorithms for thek-median problem known prior to this work [2, 3, 10] seem to rely heavily on the
knowledge ofk. As such it is unclear whether any of these algorithms can be easily modified to obtain a
constant-competitive online median algorithm.

1.3 Contributions

Algorithms for problems in discrete location theory arise in many practical applications; see [5, 16], for
example, for numerous pointers to the literature. Given that many of these problems are NP-hard, it is desir-
able to develop fast approximation algorithms. As mentioned above, it is not uncommon for approximation
algorithms to be based on a greedy approach. In this paper, weshow that greedy strategies yield a fast
constant-factor approximation algorithm for the facilitylocation problem and a fast constant-competitive
algorithm for the online median problem.

We give a linear-time algorithm for the facility location problem that achieves an approximation ratio of3. The main idea of the algorithm is to compute and use the “value” of balls about every point in the metric
space. In retrospect, the idea of value is implicit in the work of Jain and Vazirani [10]. We make this idea
explicit and use the values of balls to make greedy choices. Additionally, our algorithm is faster than the
Jain-Vazirani algorithm by a logarithmic factor.

While a simple greedy algorithm yields a constant-factor approximation bound for the facility location
problem, it appears that a more sophisticated approach is needed to obtain a constant-factor approximation
guarantee for thek-median problem, let alone a constant-competitiveness result for the online median prob-
lem. For example, in Section 3 we show that perhaps the most natural greedy approach to thek-median
(resp., online median) problem leads to an unbounded approximation (resp., competitive) ratio.

Our main result is a linear-time constant competitive algorithm for the online median problem. We
achieve this result using a “hierarchically greedy” approach. The basic idea behind this approach is as
follows: Rather than selecting a point based on a single greedy criterion, we greedily choose a region (the
set of points lying within some ball) and then recursively select a point within that region. Thus, the choice
of point is influenced by a sequence of greedy criteria addressing successively finer levels of granularity.
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1.4 Outline

The rest of this paper is organized as follows. In Section 2, we present our facility location algorithm and
prove that it achieves a constant approximation ratio. In Section 3, we present our online median algorithm
and prove that it is constant-competitive. Section 4 offerssome concluding remarks.

2 Facility Location

The following definitions are used throughout the present section as well as Section 3.� For any nonnegative integer`, let [`] denote the setfi j 0 � i < `g.� A ball A is a pair(x; r), where thecenterx of A, denotedcenter(A), belongs toU , and theradius r
of A, denotedradius(A), is a nonnegative real.� Given a ballA = (x; r), we letPoints(A) denote the setfy 2 U j d(x; y) � rg. However, for
the sake of brevity, we tend to writeA instead ofPoints(A). For example, we write “x 2 A” and
“A [B” instead of “x 2 Points(A)” and “Points(A) [ Points(B)”, respectively.� Thevalueof a ballA = (x; r), denotedvalue(A), is

Py2A(r � d(x; y)) � w(y).� For any ballA = (x; r) and any nonnegative realc, we definecA as the ball(x; cr).
2.1 Algorithm

In the first step of the following algorithm, we assume for thesake of convenience that there is at least
one pointx such thatw(x) > 0. (The problem is trivial otherwise.) The output of the algorithm is the
configurationZn, which we also refer to asZ. Remark: The indexing of the setsZi has been introduced
solely to facilitate the analysis.� For each pointx, determine an associated ballAx = (x; rx) such thatvalue(Ax) = f(x).� Determine a bijection' : [n]! U such thatr'(i�1) � r'(i), 0 < i < n.� LetBi = (xi; ri) denote the ballA'(i), 0 � i < n. LetZ0 = ;.� For i = 0 to n� 1: If Zi \ 2Bi = ; then letZi+1 = Zi [ fxig; otherwise, letZi+1 = Zi.

We now sketch a simple linear-time implementation of the above algorithm. For each pointx, the
associated radiusrx can be computed inO(n) time. (This is essentially a weighted selection problem.)
Thus the first step requiresO(n2) time. The second step involves sortingn values and can be accomplished
in O(n logn) time. The running time for the third step is negligible. Eachiteration of the fourth step can be
easily implemented inO(n) time, for a total ofO(n2) time.

2.2 Approximation Ratio

In this section we establish the following theorem.

Theorem 1 For any configurationX, cost(Z) � 3 � cost(X).
Proof: Immediate from Lemmas 2.3 and 2.7 below.
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Lemma 2.1 For any pointxi, there exists a pointxj in Z such thatj � i andd(xi; xj) � 2ri.
Proof: If there is no such pointxj with j < i, thenZi \ 2Bi is empty, and soxi belongs toZ.

Lemma 2.2 Letxi andxj be distinct points inZ. Thend(xi; xj) > 2 �maxfri; rjg.
Proof: Assume without loss of generality thatj < i. Thusri � rj . Furthermore,d(xi; xj) > 2ri sincexj
belongs toZi andZi \ 2Bi is empty.

For any pointx and any configurationX, let

charge(x;X) = d(x;X) + Xxi2Xmaxf0; ri � d(xi; x)g:
Lemma 2.3 For any configurationX,

Px2U charge(x;X) � w(x) = cost(X).
Proof: Note thatXx2U charge(x;X) � w(x) = Xxi2X Xx2Bi(ri � d(xi; x)) � w(x) + Xx2U d(x;X) � w(x)= Xxi2X value(Bi) + Xx2U d(x;X) � w(x);
which is equal tocost(X) sincevalue(Bi) = f(xi).
Lemma 2.4 Letx be a point, letX be a configuration, and letxi belong toX. If d(x; xi) = d(x;X) thencharge(x;X) � maxfri; d(x; xi)g.
Proof: If x does not belong toBi, thencharge(x;X) � d(x; xi) > ri. Otherwise,charge(x;X) �(ri � d(x; xi)) + d(x; xi) = ri � d(x; xi).
Lemma 2.5 Letx be a point and letxi belong toZ. If x belongs toBi, thencharge(x;Z) � ri.
Proof: By Lemma 2.2, there is no pointxj in Z such thati 6= j andx belongs toBj. The claim now
follows from the definition ofcharge(x;Z), sinced(x;Z) � d(x; xi).
Lemma 2.6 Let x be a point and letxi belong toZ. If x does not belong toBi, thencharge(x;Z) �d(x; xi).
Proof: The claim is immediate unless there is a pointxj in Z such thatx belongs toBj. If such a pointxj exists, then Lemmas 2.2 and 2.5 implyd(xi; xj) > 2 �maxfri; rjg andcharge(x;Z) � rj , respectively.
The claim now follows sinced(x; xi) � d(xi; xj)� d(x; xj) > 2rj � rj = rj .
Lemma 2.7 For any pointx and configurationX, charge(x;Z) � 3 � charge(x;X).
Proof: Let xi be some point inX such thatd(x; xi) = d(x;X). By Lemma 2.1, there exists a pointxj inZ such thatj � i andd(xi; xj) � 2ri.

If x belongs toBj , thencharge(x;Z) � rj by Lemma 2.5. The claim follows sincej � i impliesrj � ri and Lemma 2.4 impliescharge(x;X) � ri.
If x does not belong toBj, then charge(x;Z) � d(x; xj) by Lemma 2.6. Thuscharge(x;Z) �d(x; xi)+d(xi; xj) � d(x; xi)+2ri. The claim now follows by Lemma 2.4, since the ratio ofd(x; xi)+2ri

tomaxfri; d(x; xi)g is at most 3.
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3 Online Median Placement

In the previous section, we found that a simple greedy algorithm yields interesting results for the facility
location problem. Ideally, we would like to formulate a similar algorithm for the online median problem.
The most obvious greedy algorithm is to select as the next point in the ordering the one that minimizes the
objective function. Unfortunately, this algorithm gives an unbounded competitive (resp., approximation)
ratio for the online median (resp.,k-median) problem. To see this, consider an instance consisting of n > 3
points, one “red” and the rest “blue”, such that the following conditions are satisfied: the red point has
weight0; each blue point has weight1; the distance from the red point to any blue point is1; the distance
between any pair of distinct blue points is2. The aforementioned greedy algorithm chooses the red point
first in the ordering, since that gives a cost ofn� 1 while choosing any other point gives a cost of2n � 4.
But then the ratio for a configuration of sizen� 1 is unbounded since the greedy cost is1 and the optimal
cost is0. (This example also shows that no online median algorithm can achieve a competitive ratio below2� 2n�1 .)

We show that a more careful choice of the point, which we call hierarchically greedy, works well. Let� (resp.,�) denote the largest (resp., smallest) distance between twodistinct points in the metric space.
We define a certain ball about each point, and select a ballA of maximum value. But rather than simply
choosing the center of ballA as the next point in the ordering, we apply the approach recursively to select
a point withinA. At each successive level of recursion, we consider geometrically smaller balls about the
remaining candidate points. WithinO(log �� ) levels of recursion, we arrive at a ball containing only a single
point, and we return this point as the next one in the ordering. Note that whereas the greedy algorithm
discussed in the previous paragraph makes a single greedy choice to select a point, the hierarchically greedy
algorithm makesO(log �� ) greedy choices per point.

Throughout this section, let�, �, �, and
 denote real numbers satisfying the following inequalities.� � 1 (1)� > 1 + � (2)� � �(�� 1)�� 1� � (3)
 �  �2� + ���� 1 + �!� (4)

The online median algorithm of Section 3.1 below makes use ofthe following additional definitions.
A child of a ball (x; r) is any ball(y; r�) whered(x; y) � �r. For any pointx, let isolated (x; ;) denote
the ball (x;maxy2U d(x; y)). For any pointx and configurationX, let isolated (x;X) denote the ball(x; d(x;X)=
). For any nonempty sequence%, we lethead (%) (resp.,tail (%)) denote the first (resp., last)
element of%.

3.1 Algorithm

LetZ0 = ;. For i = 0 to n� 1, execute the following steps:� Let �i denote the singleton sequencehAi whereA is a maximum value ball infisolated (x;Zi) j x 2U n Zig.� While the balltail(�i) has more than one child, append a maximum value child oftail(�i) to �i.� LetZi+1 = Zi [ fcenter (tail(�i))g.
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The output of the online median algorithm is a collection of point setsZi such thatjZij = i, 0 � i � n,
andZi � Zi+1, 0 � i < n. Note that it is sufficient for an implementation of the algorithm to maintain the
ball tail(�i), as opposed to the entire sequence�i. The sequence�i has been introduced in order to facilitate
the analysis.

We discuss two implementations of the online median algorithm in Section 3.4. The first implementation
has a slightly superlinear running time. The second implementation runs in linear time, but assumes a
(linear) preprocessing phase in which all distances are rounded down to the nearest integral power of�.
(Note that for the preprocessing phase to be well-defined, werequire� > 1.) If the input distance function
is a metric, it is straightforward to see that such rounding produces a�-approximate metric.

3.2 Competitive Ratio

Before proceeding with the analysis, we introduce a number of additional definitions.� Let zi denote the unique point inZi+1 n Zi, 0 � i < n.� For any configurationX and set of pointsY , let cost(X;Y ) =Py2Y d(y;X) � w(y).� For any configurationX, we partitionU into jXj setsfcell(x;X) j x 2 Xg as follows: For each
point y in U , we choose a pointx in X such thatd(y;X) = d(x; y) and addy to cell(x;X).� For any configurationX, point x in X, and set of pointsY , we definein(x;X; Y ) ascell(x;X) \isolated (x; Y ) andout(x;X; Y ) ascell(x;X) n in(x;X; Y ).� For any configurationX and set of pointsY , we definein(X;Y ) as[x2X in(x;X; Y ) andout(X;Y )
asU n in(X;Y ).

In this section we present our main result, Theorem 2 below. In order to minimize the competitive ratio
of 2�(
 + 1) implied by the theorem, we set� to 1, set� to approximately3:455 and set� and
 to the
right-hand sides of Equations (3) and (4), respectively. Wethereby establish a competitive ratio of slightly
below 40 for the online median problem. In Section 3.4 we describe a linear-time implementation of the
online median algorithm for which the parameter� is required to be strictly greater than1. The degradation
in the competitive ratio that results by setting� greater than1 can be made arbitrarily small by choosing�
sufficiently close to1.

Theorem 2 For any configurationX, cost(ZjXj) � 2�(
 + 1) � cost(X).
Proof: Let Y = in(X;ZjXj) and letY 0 = out(X;ZjXj) = U n Y . Note thatcost(X) = cost(X;Y ) +cost(X;Y 0) andcost(ZjXj) = cost(ZjXj; Y )+cost(ZjXj; Y 0). Thus the theorem follows immediately from
Lemmas 3.2, 3.4, and 3.5 below.

Lemma 3.1 For any configurationX, point x in X, and pointy in out(x;X;ZjXj), d(y; ZjXj) � �(
 +1) � d(y;X).
Proof: Let isolated (x;ZjXj) = (x; r). Note thatd(x; y) > r. Also, by the definition ofisolated (x;ZjXj),
there is a pointz in ZjXj such thatd(x; z) = 
r. Henced(y; z) � �[d(x; y) + d(x; z)] = �[d(x; y) + 
r] <�[d(x; y)+
�d(x; y)] = �(
+1)�d(x; y) = �(
+1)�d(y;X). The claim follows sinced(y; z) � d(y; ZjXj).
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Lemma 3.2 For any configurationX,

cost(ZjXj; out(X;ZjXj)) � �(
 + 1) � cost(X; out (X;ZjXj)):
Proof: Summing the inequality of Lemma 3.1 over ally in out(x;X;ZjXj), we obtain

cost(ZjXj; out(x;X;ZjXj)) � �(
 + 1) � cost(X; out (x;X;ZjXj)):
The claim now follows by summing the above inequality over all x in X.

Lemma 3.3 For any configurationX and pointx in X,

cost(ZjXj; in(x;X;ZjXj)) � �(
 + 1)[cost (X; in(x;X;ZjXj)) + value(isolated (x;ZjXj))]:
Proof: Assume thatisolated (x;ZjXj) = (x; r). Note thatd(x; y) = 
r for somey in ZjXj. Thus, for anyz
in isolated (x;ZjXj), d(y; z) � �[d(y; x)+d(x; z)] � �(
+1)r. It follows thatcost(ZjXj; in(x;X;ZjXj))
is at most�(
 + 1) timesXz2in(x;X;ZjXj) r � w(z) � Xz2in(x;X;ZjXj) d(x; z) � w(z) + Xz2isolated(x;ZjXj)(r � d(x; z)) � w(z)= cost(X; in(x;X;ZjXj)) + value(isolated (x;ZjXj)):
Lemma 3.4 For any configurationX and pointx in X,

cost(ZjXj; in(X;ZjXj)) � �(
 + 1)[cost (X; in(X;ZjXj)) + Xx2X value(isolated (x;ZjXj))]:
Proof: The claim follows by summing the inequality of Lemma 3.3 overall x in X.

Our main technical lemma is stated below. The proof is given in the next subsection.

Lemma 3.5 For any configurationX,
Px2X value(isolated (x;ZjXj)) � cost(X).

3.3 Proof of Lemma 3.5

In this section we establish our main technical lemma, Lemma3.5.

Lemma 3.6 LetA = (x; r) belong to�i. Thend(x;Zi) � 
r.
Proof: Let z be a point inZi such thatd(x; z) = d(x;Zi). If A = head (�i) thenA = isolated (x;Zi) and
the result is immediate. Otherwise, letB = (y; s) denote the predecessor ofA in �i and assume inductively
thatd(y; Zi) � 
s. Note thatd(x; y) � �s ands = �r. Thusd(x;Zi) = d(x; z) � d(y; z)=� � d(x; y) �(
=�� �)�r � 
r, where the last step follows from Equation (4).

Lemma 3.7 LetA = (x; r) belong to�i and letB = (y; s) belong to�j . If i < j andd(x; y) � r+ s, then
the following claims hold: (i)radius(head (�j)) � r� ; (ii) A 6= tail(�i); (iii) the successor ofA in �i, call
it C, satisfiesvalue(C) � value(head (�j)).
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Proof: Let head (�j) = (y0; s0). For part (i), we know thatd(y0; zi) � 
s0 by Lemma 3.6. Also, we haved(y0; zi) � � �d(y0; y) + d(y; x) + d(x; zi)�� � �� �s0 + s0� + � � �+ �s�+ s+ r + � �r + r� + � � ���� � ���� 1 � (r + s0) + r��:
Combining the two inequalities and applying Equation (4), we obtain �2� + ���� 1 + �!�s0 � � ���� 1 � (r + s0) + r��:
Multiplying through by(�� 1)=� and rearranging, we getr � �2�+�2����+��1 � s0 = �s0, establishing the claim.

For part (ii), note thatd(x; y) � r + r� < �r by part (i) and Equation (3). ThusA has at least two
children; the claim follows.

For part (iii), we use Equations (2) and (3) and part (i) to observe thatd(x; y0) � � �d(x; y) + d(y; y0)�� � hr + s+ ��s+ �2s+ � � �+ s0��i� �r + ����� 1 � s0� �r + ����� 1 � r�� � ��� 1 + 1��r;
which is at most�r by Equation (3). It follows thathead (�j) is contained in a child ofA. Thusvalue(C) �value(head (�j)).

For ease of notation, throughout the remainder of this section we fix a configurationX, and letk denotejXj. We now describe apruning procedurethat takes as input thek sequences�i, 0 � i < k, and produces
as outputk sequences�i, 0 � i < k. The sequence�i is initialized to�i, 0 � i < k. The (nondeterministic)
pruning procedure then performs a number of iterations. In ageneral iteration, the pruning procedure checks
whether there exist two ballsA = (x; r) andB = (y; s) in distinct sequences�i and�j, respectively, such
that i < j andd(x; y) � r + s. If not, the pruning procedure terminates. If so, the sequence�i is redefined
as the proper suffix of (the current)�i beginning at the successor ofA. Note that part (ii) of Lemma 3.7
ensures that the pruning procedure is well-defined. Furthermore, the procedure is guaranteed to terminate
since each iteration reduces the length of some sequence�i.
Lemma 3.8 LetA = (x; r) belong to�i and letB = (y; s) belong to�j. If i < j thend(x; y) > r + s.
Proof: Immediate from the definition of the pruning procedure.

Lemma 3.9 Each sequence�i is nonempty.

Proof: Immediate from part (ii) of Lemma 3.7 and the definition of thepruning procedure.

8



Lemma 3.10 Letx be a point and assume that0 � i < j � n. Thenvalue(isolated (x;Zi)) � value(isolated (x;Zj)):
Proof: SinceZi � Zj , radius(isolated (x;Zi)) � radius(isolated (x;Zj)). The claim follows.

Lemma 3.11 Letx be a point and assume that0 � i < k. Thenvalue(head (�i)) � value(isolated (x;Zk)):
Proof: If x belongs toZi, thenradius(isolated (x;Zi)) = 0, so value(isolated (x;Zi)) = 0 and there
is nothing to prove. Otherwise,value(head (�i)) � value(isolated (x;Zi)) by the definition of the online
median algorithm, and the claim follows by Lemma 3.10.

Lemma 3.12 Letx be a point and assume that0 � i < k. Thenvalue(head (�i)) � value(isolated (x;Zk)):
Proof: We prove that the claim holds before and after each iterationof the pruning procedure. Initially,�i = �i and the claim holds by Lemma 3.11. If the claim holds before aniteration of the pruning procedure,
then it holds after the iteration by part (iii) of Lemma 3.7.

A ball A = (x; r) is defined to becoverediff d(x;X) < r. A ball is uncoverediff it is not covered.

Lemma 3.13 For any uncovered ballA = (x; r), cost(X;A) � value(A).
Proof: Note thatcost(X;A) �Py2A d(y;X) � w(y) �Py2A(r � d(y; x)) � w(y) = value(A).

Let I denote the set of all indicesi in [k] such that some ball in�i is covered. We now construct a
matching between the sets[k] andX as follows. First, for eachi in I, we matchi with a pointx in X that
belongs to the last covered ball in the sequence�i. (Note that such a pointx is guaranteed to exist by the
definition ofI. Furthermore, Lemma 3.8 ensures that we do not match the samepoint with more than one
index.) Second, for eachi in [k] n I in turn, we matchi with an arbitrary unmatched pointx in X.

We now construct a function' mapping each pointx in X to an uncovered ball. For eachx in X that is
matched with an indexi in [k] n I, we set'(x) to head (�i). For eachx in X that is matched with an indexi in I, we set'(x) to the successor of the last covered ball in�i unlesstail(�i) is covered, in which case we
set'(x) to the ball(x; 0).
Lemma 3.14 For any pair of distinct pointsx andy in X, '(x) \ '(y) = ;.
Proof: Immediate from Lemma 3.8 and the fact that the ball(x; 0) is contained intail(�i).
Lemma 3.15 For any pointx in X, value('(x)) � value(isolated (x;Zk)).
Proof: If x is matched with an indexi in [k] n I, the claim follows by Lemma 3.12. Ifx is matched
with an indexi in I, we consider two cases. Iftail(�i) is covered, thenx = zi sincetail(�i) has exactly
one child. The claim follows since'(x) = isolated (x;Zk) = (x; 0). If tail(�i) is uncovered, then the
predecessor of'(x) in �i, call itA = (y; r), exists and containsx. It follows thatvalue('(x)) � value(B),
whereB = (x; r=�) is the child ofA centered atx. Let C = (x; s) denote the ballisolated (x;Zk).
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Below we complete the proof of the claim by showing thatr=� � s, which implies thatB � C and hencevalue(B) � value(C).
It remains to prove thatr=� � s in the final case considered above. We haved(x; zi) � � [d(x; y) + d(y; zi)]� �r + ���r + r� + � � ��� �1 + ���� 1��r;

which is less than
r=� by Equation (4). The desired inequality follows sinced(x; zi) � 
s by the definition
of C.

Lemmas 3.13, 3.14, and 3.15 together yield a proof of Lemma 3.5.

3.4 Time Complexity

In this section we describe two implementations of the online median algorithm given in Section 3.1.
Throughout this section, let` denote the quantitylog �� . The first implementation runs inO((n+`)�n log n)
time. The second implementation runs inO(n2+ `n) time and assumes anO(n2)-time preprocessing phase
in which all distances are rounded down to the nearest integral power of�. To analyze the running time of
the implementations given below, we make use of the following lemma.

Lemma 3.16 LetA = (x; r) be a child of a ballB in sequence�i and letA0 = (x; r0) be a child of a ballB0 in sequence�j. If i < j thenr > (� + 1)r0.
Proof: First, note thatd(x; zi) � � (r + r=�+ � � �) � ��r=(� � 1). By Lemma 3.6,
r0 � d(x;Zj) �d(x; zi). Combining these inequalities and using Equation (4), we obtainr � (�� 1)
�� � r0> �� 1�� � �2� + ���� 1 � r0= (�+ 1)r0:

In the first implementation, for each pointx in U , we sort the remaining points by their distance fromx. The total sorting time isO(n2 log n). Using these sorted arrays, we can compute the value of any given
ball inO(logn) time. We also maintain the distance fromx to the nearest point inZi. Note thatd(x;Zi+1)
can be determined in constant time givend(x;Zi) andzi. The total time to maintain such distances is thusO(n2). It follows that the first step of each iteration can be implemented inO(n) time. The total time for
the second step isO(log n) times the sum over all ballsA appearing in some sequence�i, 0 � i < n, of the
number of children ofA. By Lemma 3.16, it is straightforward to see that the latter sum isO(`n), and thus
the total time for the second step isO(`n logn). The running time of the third step is negligible. Thus the
running time of the first implementation isO((n+ `) � n log n), as claimed above.

For the second implementation, note that after the preprocessing phase, there areO(`) distinct distances.
Thus, for each pointx,O(n+`) time is sufficient to construct anO(`)-sized table that can be used to compute
the value of any ball(x; r) in O(1) time. It follows that the total time for the second step can beimproved
to O(`n). The running time of the second implementation is thereforeO(n2 + `n), which is linear in the
size of the input (in bits).
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4 Concluding Remarks

We plan to investigate whether the ideas presented above canbe applied to other problems. The work
of Indyk [8] gives a technique to achieve sublinear time bounds for various location problems through
random sampling of the distance function; we would like to see if application of these techniques to our
algorithms yield sublinear time bounds. Korupoluet al. [12] give an algorithm and an efficient distributed
implementation for hierarchical cooperative caching in which the distance function is an ultrametric. We
would like to see if the hierarchical greedy strategy can be used or extended to solve the problem for an
arbitrary metric space. It would also be interesting to see if the hierarchical greedy strategy admits an
efficient distributed implementation for this problem.

A nice feature of our online median algorithm is its simplicity. Although we deal with a harder problem,
the algorithm is actually simpler to specify than existing constant-factor approximation algorithms for thek-median problem. It would be interesting to see whether our approach could be simplified to yield a fastk-median algorithm achieving a small approximation ratio.
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