
Efficient Parallel Out-of-Core Implementation of the Cholesky
Factorization

Wesley C. Reiley

December 15, 1999

CS379H Honors Thesis: Efficient Parallel Out-of-Core Implementation of the Cholesky Factorization
Supervising Professor: Robert A. van de Geijn

1

Abstract

In this paper we describe two efficient parallel out-of-coreimplementations of the Cholesky factorization. We use
the Parallel Out-of-Core Linear Algebra Package (POOCLAPACK) as an extension to the Parallel Linear Algebra
Package (PLAPACK) to implement our out-of-core algorithms. The first algorithm uses in-core kernels with additional
code to manage the I/O. This is the classical approach to out-of-core implementations of the Cholesky factorization.
Our second algorithm adds an out-of-core implementation ofthe triangular solve with multiple right hand sides,
which doesn’t simply bring code in-core and run the in-core algorithm. This algorithm has the added benefit of
requiring fewer copies of the matrix to be in-core at one time, thus allowing more of the matrix to be in-core at one
time. Despite the extreme simplicity of POOCLAPACK and our out-of-core algorithm, the out-of-core Cholesky
factorization implementation is shown to achieve in excessof 80% of peak performance on a 64 node configuration of
the Cray T3E-600.

Contents

1 Introduction 3
1.1 Background 3

1.1.1 Distributed Memory Parallel Computing 3
1.1.2 Basic Linear Algebra Subprograms 3
1.1.3 Message Passing Interface 4
1.1.4 PLAPACK 4
1.1.5 Data Distribution onto Nodes 4
1.1.6 Notation 4

1.2 Related Work 5
1.2.1 ScaLAPACK 5
1.2.2 SOLAR 5
1.2.3 Other Out-of-Core Efforts 5

1.3 Contributions of this study 5
1.4 Organization of this Paper 6
1.5 Acknowledgements 6

2 Cholesky Factorization 7
2.1 Right Looking Variant 7
2.2 Left Looking Variant 8
2.3 Sequential Implementation 9
2.4 In-Core Parallel Implementation 9

3 Out-of-Core Parallel Cholesky Factorization 11
3.1 POOCLAPACK 11

3.1.1 Data Distribution onto Disk 11
3.1.2 Flexible File Input/Output 11
3.1.3 Storage by Row Panels 12

3.2 Out-of-Core Implementation 12
3.2.1 Two-Tile Implementation 12
3.2.2 One-Tile Implementation 14

3.3 Out-of-Core Routines 14
3.3.1 POOCLASyrk: Symmetric Rank-K Update .. 14
3.3.2 POOCLAGemm: Generic Matrix-Matrix Multiply 17
3.3.3 POOCLATrsm: Triangular Solve with Multiple Right Hand Sides 19

1

4 Performance 22
4.1 Testing Environment 22
4.2 Implementations tested 22
4.3 Results 23

4.3.1 Classical Two-Tile Approach 23
4.3.2 New One-Tile Approach 24

5 Conclusions 26

2

Chapter 1

Introduction

There are only a few applications left that require the solution of extremely large dense linear systems. They tend
to arise from boundary-element formulations for the solution of integral equations in the areas of electro-magnetics
and acoustics [5, 7, 11]. Even for those applications, much cheaper methods based on multi-pole expansions, fast
multipole methods (FMM), have recently become popular [10]. Nonetheless, there are still many such applications
that are solved by forming large dense systems of equations.In some cases, this is simply because the users are naive.
In other cases it is a conscious decision since a considerable effort is required to reformulate the problem in a fashion
that allows fast multi-pole methods to be utilized. Furthermore, there are applications requiring the solution of large
linear least squares problems that also give rise to very large linear systems [2]. For applications that do still lead
to large dense linear systems, the matrices involved are frequently so large that they do not fit even in the combined
memories of the processors of a large distributed memory parallel supercomputer. Such problems are often referred to
as out-of-core problems, since they do not fit in the core memory of the computer. The matrices are instead stored on
disk.

1.1 Background

1.1.1 Distributed Memory Parallel Computing

Parallel computers consist of a collection of processors, also known as nodes. There are two major types of memory
architectures in parallel computers. One is shared memory,where memory is one large common pool accessed by all
processors. Communication between nodes is then usually done through this memory. The other memory architecture
is distributed memory, where each node has its own memory, with all nodes connected in a certain network topology,
or mesh, for communication. This mesh is made up of a number ofrows and columns of nodes. The Cray T3E, the
machine used in this thesis, follows the distributed memorymodel.

1.1.2 Basic Linear Algebra Subprograms

Basic Linear Algebra Subprograms[8, 9, 14], generally referred to as BLAS, are computational kernels widely used
by applications and libraries dealing with linear algebra.The BLAS routines perform linear algebra operations such as
inner product, matrix-vector and matrix-matrix multiplication. Since these kernels are standard, vendors can develop
highly optimized routines for their platforms, allowing high performance implementations to be portable.

The BLAS standard defines operations in three distinct categories, called levels. Level 1 deals with vector-vector
operations, such as the inner (dot) product. For these operations,O(n) computation is performed onO(n) data. Level
2 deals with matrix-vector operations. The single right hand side triangular solve falls in this category and for these

3

operations,O(n2) computation is performed onO(n2) data. Level 3 deals with matrix-matrix operations. Triangular
solves with multiple right hand side falls in this category.For these operations,O(n3) computation is performed onO(n2)data.

The Level 3 BLAS is very advantageous for our purposes because of its favorable operations to data ratio. For
out-of-core operations, this means we will spend more time in computation then in fetching data.

1.1.3 Message Passing Interface

With the rapid advances in technology and the fast pace of change in hardware, MPI[12] was developed as a standard-
ized communication interface for parallel computers and networks of workstations. MPI was developed by a broad
group of software writers, application scientists and parallel computer vendors as a portable library. MPI itself is a
specification for a library of routines. Calls to such a library are easily made from FORTRAN or C.

1.1.4 PLAPACK

The Parallel Linear Algebra Package (PLAPACK) [20] is a flexible infrastructure for implementing parallel dense
linear algebra routines. An MPI-like programming interface, which hides details about matrices and vectors like
distribution from the user, makes both the library implementation and its use considerably simpler than more conven-
tional packages like ScaLAPACK. In addition, the simple programming approach allows more complex algorithms to
be implemented, which often yield better performance.

1.1.5 Data Distribution onto Nodes

For in-core matrices PLAPACK uses a two-dimensional Cartesian cyclic data distribution. Thus matrixB is partitioned
like B = 0BBB� B00 B01 � � � B0(N�1)B10 B11 � � � B1(N�1)

...
...

...B(M�1)0 B(M�1)1 � � � B(M�1)(M�1) 1CCCA
whereB00 is d�d. The processing nodes of the parallel architecture are viewed as a logicalr� mesh of nodes, withp = r. Row blocksBi� and column blocksB�j are all assigned to the same row and column of nodes, respectively.
An over-decomposition (N >> r;) is used to achieve load balance as the computation unfolds.

1.1.6 Notation

In this paper, certain conventions are used. Scalars are represented by Greek letters,�, �, etc. Vectors are represented
by lower case lettersa, b, etc. All vectors are assumed to be vertical, unless marked as aT . Matrices are represented
by uppercase lettersA, B, etc. A lower triangular matrix is thus represented byL and an upper triangular matrix byU .

When representing vectors or matrices, double vertical or horizontal lines are used to indicate which portions of the
linear algebra objects have been used. For example, at the beginning of a computation, a matrixA may be described
in the following way: A = 0� A00 A01 A02A10 A11 A12A20 A21 A22 1A

4

After the computation the matrixA is described in the following way:A = 0� A00 A01 A02A10 A11 A12A20 A21 A22 1A
This shift in the double line essentially shows the progression of the algorithm through the object, including the

direction of the progress.

1.2 Related Work

1.2.1 ScaLAPACK

The preeminent library for sequential computers and conventional (shared memory) vector supercomputers is the
Linear Algebra Package (LAPACK) [1]. This package does not explicitly include out-of-core capabilities, although on
machines with virtual memory the library can be used to solveproblems larger than fit in-core. For larger problems,
a version of this library called ScaLAPACK [4], designed fordistributed memory parallel architectures, can be used.
This extension of LAPACK does include prototype out-of-core implementations of some of the ScaLAPACK routines,
including general linear solvers via LU factorization, positive definite linear solvers via Cholesky factorization, and
linear least squares solvers via QR factorization [6]. However, this implementation does not readily allow for a full
out-of-core extension.

1.2.2 SOLAR

A more serious effort to add out-of-core capabilities to LAPACK and ScaLAPACK is provided by SOLAR [18], a
portable library for scalable out-of-core linear algebra computations. This library uses ScaLAPACK routines for in-
core computation, but provides an I/O layer that manages matrix input-output. SOLAR achieves better I/O rates by
allowing a different storage scheme for matrices on disk than is used in-core by ScaLAPACK. Impressive performance
is reported for up to four nodes of an IBM SP-2. Lack of performance on larger numbers of nodes is in part blamed
on non-scalability of some of the in-core parallel kernels used.

1.2.3 Other Out-of-Core Efforts

It should be noted that the above described parallel out-of-core library efforts are in addition to a number of parallel
out-of-core implementations of individual operations or machine specific libraries for dense linear systems reported
in the literature [2, 13, 3, 16, 17]. Additional references to applications requiring large dense linear solves are given
in [5, 7, 11]. Additional references to research using fast summation methods like FMM are given in [10].

1.3 Contributions of this study

The primary contribution is the out-of-core infrastructure, POOCLAPACK, that we added to PLAPACK. This ex-
tension allows out-of-core routines to be developed very easily when combined with PLAPACK. We developed
POOCLAPACK on the Cray T3E architecture, but it is easily portable[15].

We introduced an out-of-core implementation of the Cholesky factorization that varies from the classical out-of-
core implementation. Our new one-tile approach allows moreof the matrices to be in-core during the out-of-core
operation. This improves memory utilization, and improvesthe number of operations to disk I/O ratio.

5

Our implementation of the Cholesky factorization led to theintroduction of three common out-of-core linear
algebra subroutines: the symmetric rank-k update, matrix-matrix multiplication, and triangular solve with multiple
right hand sides. These subroutines are built in such a way that they can be readily re-used in future implementations
of other linear algebra routines.

1.4 Organization of this Paper

This paper is organizes as follows: Chapter 2 introduces twoalgorithms for solving the Cholesky factorization. Chap-
ter 3 discusses the out-of-core implementations of of the Cholesky factorization. This chapter also introduces the
out-of-core I/O library, POOCLAPACK, which is used in our out-of-core Cholesky factorization implementations.
Chapter 4 discusses the performance attained for the different implementations of the Cholesky factorization. Con-
cluding remarks and future directions are given in Chapter 5.

1.5 Acknowledgements

It is the in-core work on PLAPACK that has made this thesis possible. I am especially grateful to Professor Robert
van de Geijn for his patience and help on selected problems encountered throughout this project. I appreciate the time
Professor Alan Cline has spent as my second reader. I would like to thank Professor Mohamed Gouda, as the honors
advisor, for his support of this thesis.

Access to equipment for development of the described infrastructure was provided by the National Partnership for
Advanced Computational Infrastructure (NPACI) and The University of Texas Advanced Computing Center (TACC).
We also gratefully acknowledge access to the Cray T3E-600 System at the Goddard Space Flight Center provided by
the NASA HPCC Earth and Space Science Project.

6

Chapter 2

Cholesky Factorization

Given ann � n symmetric positive definite matrixA, its Cholesky factorization is given byA = LLT whereL is
a lower triangular matrix. In this section, we develop two different algorithms for this operation, aright- and aleft-
looking algorithm, using LAPACK terminology. While the right-looking algorithm is more appropriate for an (parallel)
in-core implementation, the left-looking algorithm has known advantages for an out-of-core implementation. We will
develop blocked versions of the algorithm, since these are known to yield better ratios of the number of computations
to memory operations, thus allowing better utilization of hierarchical memories.

2.1 Right Looking Variant

The right-looking algorithm for implementing this operation can be described by partitioning the matricesA = � A11 ?A21 A22 � and L = � L11 0L21 L22 �
whereA11 andL11 areb� b sub-matrices. The? indicates the symmetric part ofA, which will not be updated. Now,A = � A11 ?A21 A22 � = � L11 0L21 L22 �� LT11 LT210 LT22 � = � L11LT11 ?L21LT11 L21LT21 + L22LT22 �
From this we derive the equations A11 = L11LT11A21 = L21LT11A22 � L21LT21 = L22LT22
An algorithm for computing the Cholesky factorization is now given by

1. PartitionA = � A11 ?A21 A22 �
2. A11 L11 = Chol:fat:(A11)
3. A21 L21 = A21L�T11
4. A22 A22 � L21LT21

7

5. Continue recursively withA22
Note that only the upper or lower triangular part of a symmetric matrix needs to be stored and the above algorithm

only updates the lower portion of the matrix with the resultL. As a result, in the stepA22 A22 � L21LT21 only the
lower portion ofA22 is updated, which is typically referred to as asymmetric rank-k update (with k = b).

One question that may be asked about the above algorithm is what is stored in the matrix after a number of recursive
steps. We answer this by partitioningA = � ATL ?ABL ABR � = � LTL 0LBL LBR �

(2.1)

whereATL andLTL arek � k. Here “TL” , “BL”, and “BR” stand for “Top-Left”, “Bottom-Left”, and “Bottom-
Right”, respectively. As seen beforeA = � ATL ?ABL ABR � = � LTL 0LBL LBR �� LTTL LTBL0 LTBR � = � LTLLTTL ?LBLLTTL LBLLTBL + LBRLTBR �

(2.2)
so that ATL = LTLLTTL (2.3)ABL = LBLLTTL (2.4)ABR = LBRLTBR + LBLLTBL (2.5)

It can be easily verified that the above algorithm maintains the conditions� ATL has been overwritten byLTL,� ABL has been overwritten byLBL, and� ABR has been overwritten byABR � LBLLTBL.

while at each step increasing the size ofATL by b. Thus, the matrix with which the algorithm is continued at each
step is the sub-matrixABRand to complete the Cholesky factorization, it suffices to compute the factorization of the
updatedABR. This motivates the algorithm given in Fig. 2.1.

2.2 Left Looking Variant

To derive aleft-looking variant for computing this factorization, consider again Eqns. (2.1)–(2.5). This time assume
that at the current stage� ATL has been overwritten byLTL,� ABL has been overwritten byLBL, and� ABR has not been changed

To derive an algorithm that maintains this condition, whilemoving the computation ahead, repartitionA = 0� A00 ? ?A10 A11 ?A20 A21 A22 1A and L = 0� L00 0 0L10 L11 0L20 L21 L22 1A (2.6)

8

whereA00 = ATL andL00 = LTL. Notice thatA = 0� A00 ? ?A10 A11 ?A20 A21 A22 1A = 0� L00 0 0L10 L11 0L20 L21 L22 1A0� L00T L10T L20T0 LT11 LT210 0 LT22 1A (2.7)

Since A11 = L10LT10 + L11LT11A21 = L20LT10 + L21LT11
and realizing thatA10 has been overwritten byL10 andA20 has been overwritten byL20, we find that the following
computations computeL11 andL21:A11 L11 = Chol:fat:(A11 � L10LT10)A21 L21 = (A21 � L20LT10)L�T11
The algorithm for the left-looking version of Cholesky factorization is now given in Fig. 2.2.

2.3 Sequential Implementation

Either of the two algorithms presented can be used for efficient sequential in-core implementation of the Cholesky fac-
torization. In practice, the right-looking algorithm is favored for a rather curious reason: The bulk of the computation
in the right-looking algorithm is in the rank-k updateA22 A22 � L21LT21 and for the left-looking algorithm in the
matrix-matrix multiplyA21 A21�L20LT10. While there is no technical reason for this, the level-3 BLAS [8] kernel2syrk that implements the symmetric rank-k update tends to achieve higher performance than the matrix-matrix
multiply kernel2gemmfor the special case where one of the matrices is transposed. From our experience, we believe
the reason is that the symmetric rank-k update is a modification of the general rank-k update, which is at the heart of
fast implementations of the LINPACK benchmark. Vendors tend to pay a lot of attention to this kernel since it is key to
the performance on the benchmark. Some vendors tend to spendless time optimizing other cases of the matrix-matrix
multiply, while other vendors pride themselves on delivering highly optimized versions of all BLAS. Packages like
LAPACK favor the right-looking variants of these kinds of algorithms.

2.4 In-Core Parallel Implementation

The in-core parallel implementation we will be using throughout this study is the PLAPACK Cholesky factorization
PLA Chol routine. This routine implements the right-looking algorithm due to its favorable performance advantages.
The details of the implementation is beyond the scope of thisthesis [19].

9

partition A = � ATL ?ABL ABR �
whereATL is 0� 0

do until ABR is 0� 0
repartition� ATL ?ABL ABR � = 0� A00 ? ?A10 A11 ?A20 A21 A22 1A whereATL is b� bA11 L11 = Chol:fat:(A11)A21 L21 = A21L�T11A22 A22 � L21LT21
continue with� ATL ?ABL ABR � = 0� A00 ? ?A10 A11 ?A20 A21 A22 1A

enddo

Figure 2.1: Blocked right-looking Cholesky factorizationalgorithms.

partition A = � ATL ?ABL ABR �
whereATL is 0� 0

do until ABR is 0� 0
repartition� ATL ?ABL ABR � = 0� A00 ? ?A10 A11 ?A20 A21 A22 1A whereATL is b� bA11 A11 �A10AT10A21 A21 �A20AT10A11 L11 = Chol:fat:(A11)A21 L21 = A21L�T11
continue with� ATL ?ABL ABR � = 0� A00 ? ?A10 A11 ?A20 A21 A22 1A

enddo

Figure 2.2: Blocked left-looking Cholesky factorization algorithms.

10

Chapter 3

Out-of-Core Parallel Cholesky
Factorization

Our out-of-core implementations will be based on the left-looking algorithm presented in Section 2.2. There are two
basic reasons for this: First, the left-looking Cholesky requires approximately half the I/O operations of the right-
looking algorithm. Second, it is easer to addcheck-pointing to a left-looking algorithm. Check-pointing allows for a
restart partially into the computation in case of a system failure. Before we can discuss our out-of-core implementa-
tions, we must discuss the out-of-core library that we use for our implementations.

3.1 POOCLAPACK

The Parallel Out-of-Core Linear Algebra Package (POOCLAPACK) is an extension to PLAPACK that allows out-of-
core problems to be solved in the same convenient manner in which in-core problems are solved. The handling of the
disk I/O is the main functionality that needs to be added in order to allow PLAPACK to handle out-of-core problems.
This is done by adding file I/O routines, and implementing them in such a way that the user can copy matrices to and
form disk just as he would copy matrices in memory. With this minimal additional functionality, PLAPACK is able to
handle out-of-core algorithms in the same fashion as their in-core counterparts.

3.1.1 Data Distribution onto Disk

Out-of-core matrices are distributed to nodes identicallyto in-core matrices (Section 1.1.5), except that the data is
stored in a file.

3.1.2 Flexible File Input/Output

The Cray T3E Systems have an extended IO system, called Flexible File IO (FFIO). This system allows the user to
insert layers through which data is passed. Within the layer, the user can insert various kinds of buffers and caches.
Cache and/or buffer sizes and properties, like striping across multiple disks, can be controlled by command line
routines. We experimented with putting a small cache between disk and memory and used default striping settings. It
should be noted that changes in the configuration of the files and cache sizes did not seem to affect performance of our
algorithms much. In particular, the more sophisticated algorithms that allowed larger blocks of contiguous data to be
read did not seem to be affected at all.

11

3.1.3 Storage by Row Panels

We must briefly discuss the storage of the matrix on disk. In-core, we will assume that the matrices are stored in
column-major order. Thus, elements in columns are in contiguous memory. When reading from disk, one must
consider the fact that a disk access carries a large startup cost, after which contiguous data can be read at a rate
determined by the limits of the hardware. Thus, reading noncontiguous data can be costly.

While columns of matrices are in contiguous memory, readinga sub-matrix of sizet� b, as is encountered in the
out-of-core symmetric rank-k updates described in Section3.3.1, requires either noncontiguous data to be read or a
more complex storage scheme. In our implementation, we experimented with the parallel equivalent of two storage
schemes: The first stores the matrix in a file much like it wouldbe stored in memory, in column-major order. The
second partitions by row blocks oft rows each, wheret is equal to the tile size discussed above. These blocks of rows
are then stored in separate files. As a result, we often only need to read from one of these files, and that read is a
contiguous block. For this second scheme, the Cholesky factorization views the matrix as a collection of blocks of
rows.

3.2 Out-of-Core Implementation

We only describe the parallel implementations of the algorithm that uses the more complex algorithm where blocks of
rows are treated as separate matrices. The primary reason isthat the actual code comfortably fits on one page (Fig. 3.1
and Fig. 3.2). PLAPACK and POOCLAPACK manage complexity by hiding details of size, distribution, and storage.
This approach allows us to createviews into matrices which reference sub-matrices. Each block oft rows is passed to
the routine as a view of this data.

We describe two variants of this implementation. The first variant uses two in-core tiles of data, which allows an
in-core triangular solve with multiple right hand sides to be called. The second variant only uses one in-core tile of
data, where we can call an out-of-core triangular solve withmultiple right hand sides. The second variant allows us to
use larger in-core tile sizes, but involves more I/O than thefirst.

3.2.1 Two-Tile Implementation

The two tile variant calls an in-core triangular solve with multiple right hand sides. We briefly describe the different
parts of the routine shown in Fig. 3.1.� The matrix is passed to the POOCLAPACK OOC Cholesky factorization as an array ofN views, each of which

references a panel of rows, as described in Section 3.1.3 (line 1).� The algorithm loops over the panels, partitioning the current panel intoL10 andA11 (lines 6–9).� An in-core matrix is created to holdA11 and that sub-matrix is read from disk (lines 10–12). Notice that this
requires only a local copy from disk to the in-core matrix.� A parallel out-of-core symmetric rank-k update,POOCLASyrk , updatesA11 A11 � L10LT10 whereA11 is
in-core andL10 resides on disk (line 13–14). We describe this routine in more detail in Section 3.3.1� Once updated,A11 is factored by a call to the parallel Cholesky factorizationPLA Chol (lines 15–16).� A11 is written to disk, and a copy is retained in memory (lines 17–18).� The inner-most loop updatesA21 (A21�L20LT10)L�T11 . To accomplish this, we loop over the remaining row
panels, partitioning each intoL20 andA21 (lines 21–23).� An in-core matrix is created to holdA21 and that sub-matrix is read from disk (lines 24–26).

12

1 int POOCLA_Chol_by_panels_2_tiles(int N, PLA_Obj *A_row _panels)
2 {
3 < declarations >
4 size_done = 0; /* number of columns finished */
5 for (j=0; j<N; j++){
6 PLA_Obj_global_length(A_row_panels[j], &t); /* get tile size */
7 /* View current L_10 and A_11 submatrices */
8 PLA_Obj_vert_split_2(A_row_panels[j], size_done, &L_1 0, &temp);
9 PLA_Obj_vert_split_2(temp, t, &A_11, PLA_DUMMY);

10 /* Create an in-core matrix into which to copy A_11 */
11 PLA_Matrix_create_conf_to(A_11, &A_11_in);
12 PLA_Copy(A_11, A_11_in);
13 /* Update A_11 <- A_11 - L_10 * L_10, A_11 in-core, L_10 out-of -core */
14 POOCLA_Syrk(PLA_LOWER_TRIANG, PLA_NO_TRANS, min_one, L_10, one, A_11_in);
15 /* Factor updated in-core A_11 and write out the result */
16 PLA_Chol(PLA_LOWER_TRIANG, A_11_in);
17 /* Write out A_11 */
18 PLA_Copy(A_11_in, A_11);
19 /* Loop over A_21 */
20 for (i=j+1; i<N; i++){
21 /* View current matrices L_20 and A_21 */
22 PLA_Obj_vert_split_2(A_row_panels[i], size_done, &L_2 0_1, &temp);
23 PLA_Obj_vert_split_2(temp, t, &A_21_1, PLA_DUMMY);
24 /* Create an in-core matrix into which to copy A_21 */
25 PLA_Matrix_create_conf_to(A_21_1, &A_21_1_in);
26 PLA_Copy(A_21_1, A_21_1_in);
27 /* Update A_21 <- A_21 - L_20 * L_10ˆT */
28 POOCLA_Gemm(PLA_NO_TRANS, PLA_TRANS,
29 min_one, L_20_1, L_10, one, A_21_1_in);
30 /* Update A_21 <- L_21 = A_21 * L_11ˆ-T */
31 PLA_Trsm(PLA_SIDE_RIGHT, PLA_LOWER_TRIANG,
32 PLA_TRANS, PLA_NONUNIT_DIAG,
33 one, A_11_in, A_21_1_in);
34 /* Write out A_21 */
35 PLA_Copy(A_21_1_in, A_21_1);
36 size_done += t;
37 }
38 PLA_Obj_free(&A_21_1_in);
39 }
40 < clean up >
41 }

Figure 3.1: POOCLAPACK Out-of-Core Cholesky factorization with 2 tiles. In this version, the matrix is presented
as a collection of panels of rows in an effort to improve disk performance.

13

� A parallel out-of-core matrix-matrix multiplication,POOCLAGemm, updatesA21 A21 � L20LT10. (lines
27–29). We describe this routine in more detail in Section 3.3.2� Once updated,A21 is overwritten withL21 = A21L�T11 and written to disk. Since all operands are in-core, a call
to the parallel triangular solve with multiple right hand sidesPLA Trsm accomplishes this task (lines 30–33).� A21 is written to disk, and its in-core object is freed from memory (lines 34-38).

3.2.2 One-Tile Implementation

The one tile variant calls an out-of-core triangular solve with multiple right hand sides. We briefly describe the different
parts of the routine shown in Fig. 3.2.

This implementation is very similar to the two tiled implementation, except for the following noted sections.� In the single tiled variant, we no longer need to keep a copy ofA11 in-core, and may free its space up immediately
following the call to the parallel Cholesky factorizationPLA Chol (lines 15–19).� Since we no longer haveA11 in-core, we need to call an out-of-core parallel triangularsolve with multiple right
hand sidesPOOCLATrsm instead of the in-corePLA Trsm routine (lines 31–32). We describe this routine in
more detail in Section 3.3.3.

These two modifications change our two tiled variant into a one tiled variant of out implementation of the Cholesky
factorization.

3.3 Out-of-Core Routines

During our discussion of the out-of-core Cholesky factorization, we found the need for a few out-of-core routines that
need to be implemented. These routines are the out-of-core symmetric rank-k update, matrix-matrix multiplication,
and triangular solve with multiple right hand sides. We now give a detailed analysis of these three operations.

3.3.1 POOCLA Syrk: Symmetric Rank-K Update

We now describe in detail the out-of-core implementation ofthe symmetric rank-k updateA11 A11 � L10LT10, or,
more generically,C C � AAT .

The algorithm for implementing this operation can be described by partitioning the matrix:A = � AL AR �
Now, C = C � � AL AR �� ATLATR �C = C �ALATL �ARATR
From this, if we assume we have reached the state whereC C � ALATL has been updated, then an algorithm

for computing the symmetric rank-k update is now given by:

1. Partition
� AL AR � = � A0 A1 A2 �

14

1 int POOCLA_Chol_by__panels_1_tile(PLA_Obj *A_row_pane ls)
2 {
3 < declarations >
4 size_done = 0; /* number of columns finished */
5 for (j=0; j<N; j++){
6 PLA_Obj_global_length(A_row_panels[j], &t); /* get tile size */
7 /* View current L_10 and A_11 submatrices */
8 PLA_Obj_vert_split_2(A_row_panels[j], size_done, &L_1 0, &temp);
9 PLA_Obj_vert_split_2(temp, t, &A_11, PLA_DUMMY);

10 /* Create an in-core matrix into which to copy A_11 */
11 PLA_Matrix_create_conf_to(A_11, &A_11_in);
12 PLA_Copy(A_11, A_11_in);
13 /* Update A_11 <- A_11 - L_10 * L_10, A_11 in-core, L_10 out-of -core */
14 POOCLA_Syrk(PLA_LOWER_TRIANG, PLA_NO_TRANS, min_one, L_10, one, A_11_in);
15 /* Factor updated in-core A_11 and write out the result */
16 PLA_Chol(PLA_LOWER_TRIANG, A_11_in);
17 /* Write out A_11 */
18 PLA_Copy(A_11_in, A_11);
19 PLA_Obj_free(&A_11_in);
20 /* Loop over A_21 */
21 for (i=j+1; i<N; i++){
22 /* View current matrices L_20 and A_21 */
23 PLA_Obj_vert_split_2(A_row_panels[i], size_done, &L_2 0_1, &temp);
24 PLA_Obj_vert_split_2(temp, t, &A_21_1, PLA_DUMMY);
25 /* Create an in-core matrix into which to copy A_21 */
26 PLA_Matrix_create_conf_to(A_21_1, &A_21_1_in);
27 PLA_Copy(A_21_1, A_21_1_in);
28 /* Update A_21 <- A_21 - L_20 * L_10ˆT */
29 POOCLA_Gemm(PLA_NO_TRANS, PLA_TRANS, min_one, L_20_1,
30 L_10, one, A_21_1_in);
31 /* Update A_21 <- L_21 = A_21 * L_11ˆ-T */
32 POOCLA_Trsm(PLA_NONUNIT_DIAG, one, A_11, A_21_1_in);
33 /* Write out A_21 */
34 PLA_Copy(A_21_1_in, A_21_1);
35 size_done += t;
36 }
37 PLA_Obj_free(&A_21_1_in);
38 }
39 < cleanup >
40 }

Figure 3.2: POOCLAPACK Out-of-Core Cholesky factorization with 1 tile. In this version, the matrix is presented as
a collection of panels of rows in an effort to improve disk performance.

15

1 int POOCLA_Syrk(int uplo, int transa,
2 PLA_Obj alpha, PLA_Obj A_ooc,
3 PLA_Obj beta, PLA_Obj C)
4 {
5 < declarations >
6 < get size b, the number of columns to be read at a time >
7 /* Scale C <- beta * C */
8 PLA_Local_scal(beta, C);
9 /* A_ooc_cur view the part of A_ooc yet to be used */

10 PLA_Obj_view_all(A_ooc, &A_ooc_cur);
11
12 while (TRUE){
13 /* Check if part of A_ooc yet to be used is of width 0 */
14 PLA_Obj_global_width(A_ooc_cur, &size);
15 if ((size = min(size, b)) == 0) break;
16 /* view current A */
17 PLA_Obj_vert_split_2(A_ooc_cur, size, &A_ooc_1, &A_ooc _cur);
18 /* Create an in-core matrix into which to copy A */
19 PLA_Matrix_create_conf_to(A_ooc_1, &A_in_1);
20 PLA_Copy(A_ooc_1, A_in_1);
21 /* Perform in-core symmetric rank-k update */
22 PLA_Syrk(uplo, transa, alpha, A_in_1, one, C);
23 }
24 < cleanup >
25 }

Figure 3.3: POOCLAPACK symmetric rank-k update routine. Matrix A, passed in as objectA ooc , is assumed to be
stored on disk, and matrixC, passed in as objectC, is assumed to be in-core. This version does not attempt to overlap
I/O with computation.

16

2. C C �A1AT1
3. Continue with

� AL AR � = � A0 A1 A2 �.
A parallel implementation of this operation using POOCLAPACK is given in Fig. 3.3. We briefly describe the

different parts of this routine.� MatricesA andC are passed in as viewsA ooc andC, whereA ooc references a matrix stored on disk, andC
references a matrix stored in-core (line 1).� The algorithm starts by scalingC �C (line 8).� Next, the algorithm loops over blocks of columns, partitioning off the current blockA1 as A ooc 1 (lines
13–17).� An in-core matrix is created to holdA1 and that sub-matrix is read from disk (lines 18–20).� An in-core parallel symmetric rank-k update,PLA Syrk , updatesC C � A1AT1 whereA1 is in-core,
referenced byA in 1 (line 22).

3.3.2 POOCLA Gemm: Generic Matrix-Matrix Multiply

We now describe in detail the out-of-core implementation ofthe matrix-matrix multiplyA21 A21 � L20LT10 , or,
more generically,C C � ABT .

The algorithm for implementing this operation can be described by partitioning the matrices:A = � AL AR �
and B = � BL BR �

Now, C = C � � AL AR �� BTLBTR �C = C �ALBTL �ARBTR
From this, if we assume we have reached the state whereC C � ALBTL has been updated, then an algorithm

for computing the matrix-matrix multiply is now given by

1. Partition
� AL AR � = � A0 A1 A2 �

2. Partition
� BL BR � = � B0 B1 B2 �

3. C C �A1BT1
4. Continue with

� AL AR � = � A0 A1 A2 � and
� BL BR � = � B0 B1 B2 �

A parallel implementation of this operation using POOCLAPACK is given in Fig. 3.4. We briefly describe the
different parts of this routine.� MatricesA, B andC are passed in as viewsA ooc , B ooc andC, whereA ooc andB ooc reference matrices

stored on disk, andC references a matrix stored in-core (line 1).� The algorithm starts by scalingC �C (line 9).

17

1 int POOCLA_Gemm(int transa, int transb,
2 PLA_Obj alpha, PLA_Obj A_ooc,
3 PLA_Obj B_ooc,
4 PLA_Obj beta, PLA_Obj C)
5 {
6 < declarations >
7 < get size b, the number of columns to be read at a time >
8 /* Scale C <- beta * C */
9 PLA_Local_scal(beta, C);

10 /* A_ooc_cur/B_ooc_cur view the part of A_ooc/B_ooc yet to b e used */
11 PLA_Obj_view_all(A_ooc, &A_ooc_cur);
12 PLA_Obj_view_all(B_ooc, &B_ooc_cur);
13
14 while (TRUE){
15 /* Check if part of A_ooc yet to be used is of width 0 */
16 PLA_Obj_global_width(A_ooc_cur, &size);
17 if ((size = min(size, nb_ooc)) == 0) break;
18 /* view current A and B */
19 PLA_Obj_vert_split_2(A_ooc_cur, size, &A_ooc_1, &A_ooc _cur);
20 PLA_Obj_vert_split_2(B_ooc_cur, size, &B_ooc_1, &B_ooc _cur);
21 /* Create an in-core matrix into which copy A and B */
22 PLA_Matrix_create_conf_to(A_ooc_1, &A_in_1);
23 PLA_Copy(A_ooc_1, A_in_1);
24 PLA_Matrix_create_conf_to(B_ooc_1, &B_in_1);
25 PLA_Copy(B_ooc_1, B_in_1);
26 /* Perform in-core matrix-matrix multiply */
27 PLA_Gemm(transa,transb, alpha, A_in_1, B_in_1, beta, C);
28 }
29 < cleanup >
30 }

Figure 3.4: POOCLAPACK matrix-matrix multiply routine. Matrix A andB, passed in as objectA ooc andB ooc ,
are assumed to be stored on disk, and matrixC, passed in as objectC, is assumed to be in-core. This version does not
attempt to overlap I/O with computation.

18

� Next, the algorithm loops over blocks of columns, partitioning off the current blockA1 asA ooc 1 andB1 as
B ooc 1 (lines 15–20).� In-core matrices are created to holdA1 andB1 and those sub-matrices are read from disk (lines 21–25).� A in-core parallel matrix-matrix multiply,PLA Gemm, updatesC C �A1BT1 whereA1 andB1 are in-core,
referenced byA in 1 andB in 1 (line 27).

3.3.3 POOCLA Trsm: Triangular Solve with Multiple Right Hand Sides

We now describe in detail the out-of-core implementation ofthe triangular solve with multiple right hand sidesL21LT11 = A21, or, more generically,CLT = B, overwritingB with C.
The algorithm for implementing this operation can be describe by partitioning the matrices:C = � CL CR �

and L = � LTL 0LBL LBR �
and B = � BL BR �

Now, � CL CR �� LTTL LTBL0 LTBR � = � BL BR �� CLLTTL CLLTBL + CRLTBR � = � BL BR �
From this we derive the equations CLLTTL = BLCLLTBL + CRLTBR = BR

or CL = BLL�TTLCRLTBR = BR � CLLTBL
If we assume that we have reached the state whereCL = BLL�TTL andBR = BR � CLLTBL have been updated,

then an algorithm for computing the triangular solve with multiple right hand sides is now given by

1. Partition
� BL BR � = � B0 B1 B2 �

2. Partition
� CL CR � = � C0 C1 C2 �

3. Partition

� LTL 0LBL LBR � = 0� L00 0 0L10 L11 0L20 L21 L22 1A
4. C1 B1 � C0LT11
5. C2 B2 � C1LT21

19

1 int POOCLA_Trsm(int diag, PLA_Obj alpha,
2 PLA_Obj A_ooc, PLA_Obj B)
3 {
4 < declarations >
5 < get size b, the number of columns to be read at a time >
6 /* Scale B <- beta * B */
7 PLA_Local_scal(alpha, B);
8 /* A_ooc_cur/B_curr view the part of A_ooc/B to be used */
9 PLA_Obj_view_all(A_ooc, &A_ooc_cur);

10 PLA_Obj_view_all(B, &B_curr);
11
12 k = 0;
13 while (TRUE){
14 /* Check if part of B yet to be used is of width 0 */
15 PLA_Obj_global_width(B_curr, &size);
16 if (0 == (size = min(b, size))) break;
17 /* Copy (0 | A_11 | A_21)ˆT into the in-core A_in_1 */
18 PLA_Obj_vert_split_2(A_ooc_cur, size, &A_ooc_1, &A_ooc _cur);
19 PLA_Matrix_create_conf_to(A_ooc_1, &A_in_1);
20 PLA_Copy(A_ooc_1, A_in_1);
21 /* view current L_11 and L_21 */
22 PLA_Obj_horz_split_2(A_in_1, k, PLA_DUMMY, &A_in_1);
23 PLA_Obj_horz_split_2(A_in_1, size, &L_in_11, &L_in_21) ;
24 /* view current B_1 */
25 PLA_Obj_vert_split_2(B_curr, size, &B_1, &B_curr);
26 /* Solve B_1 <- C_1 = C_1 - B_1 L_11ˆT */
27 PLA_Trsm(PLA_SIDE_RIGHT, PLA_LOWER_TRIANGULAR,
28 PLA_TRANS, diag, one, L_in_11, B_1);
29 /* Solve B_1 <- C_2 = C_2 - B_1 L_21ˆT */
30 PLA_Gemm(PLA_NO_TRANS, PLA_TRANS,
31 minus_one, B_1, L_in_21, one, B_R);
32 k += size;
33 }
34 < cleanup >
35 }

Figure 3.5: POOCLAPACK triangular solve with multiple right hand sides routine. MatrixA passed in as object
A ooc , are assumed to be stored on disk, and matrixB, passed in as objectB, is assumed to be in-core. This version
does not attempt to overlap I/O with computation.

20

6. Continue with
� BL BR � = � B0 B1 B2 � and

� CL CR � = � C0 C1 C2 � and� LTL 0LBL LBR � = 0� L00 0 0L10 L11 0L20 L21 L22 1A
A parallel implementation of this operation using POOCLAPACK is given in Fig. 3.5. We briefly describe the

different parts of this routine.� MatricesA andB are passed in as viewsA ooc andB, whereA ooc references a matrix stored on disk, abdB
references a matrix stored in-core (line 1).� The algorithm starts by scalingB �B (line 7).� Next, the algorithm loops over blocks of columns ofB, partitioning off the current block

� 0 L11 L21 �T
asA ooc 1 (lines 14–18).� An in-core matrix is created to holdA1 and that sub-matrix is read from disk (lines 19–20).� PartitionA ooc 1 intoL11 andL21, eliminating the extra zeros read into memory (lines 21–23).� Partition off the current blockB1 (lines 24–25).� An in-core parallel triangular solve with multiple right hand sides,PLA Trsm , updatesC1 = C1 � B1LT11,
whereB1 is overwritten byC1 (lines 26–28).� An in-core parallel matrix-matrix multiply,PLA Gemm, updatesC2 = C2�B1LT21, whereB2 is overwritten byC2 (29–31).

21

Chapter 4

Performance

4.1 Testing Environment

We demonstrate performance on the Cray T3E-600 (300 MHz), with all computations performed in 64-bit arithmetic.
The algorithms were implemented using an alpha release of PLAPACK Version R2.0, which performs all communi-
cation by means of MPI. We report performance measuring MFLOPS/processor (millions of floating point operations
per second per processor). For reference, the following table shows performance of matrix-matrix multiplication on a
single processor of the T3E-600 in MFLOPS: n MFLOPS

500 418
1000 443
1500 425

All performance reported in this section for the T3E-600 wasmeasured with data streams turned on (a hardware feature
that adds about 15–20% to the performance of the local matrix-matrix multiply kernel).

The Cray T3E-600 at the Goddard Space Flight Center used for the experiments has a 54 Gigabyte partition striped
across 14 disks1. This partition was used for all I/O experiments.

4.2 Implementations tested

We report performance for six different versions of the code:

PLA Chol : This version is the in-core PLAPACK Cholesky factorization.

POOCLAChol : This version views the matrix as one matrix, with each processor accessing a single file in which the
local matrix is stored. The matrix is stored in this file much like an in-core matrix would be stored, i.e., it is
viewed as a two-dimensional array. No effort is made to overlap I/O with computation.

POOCLAChol async : This version is identical toPOOCLAChol except that it overlaps I/O and computation
during the updatesA11 A11 � L10LT10 andA21 A21 � L10LT10.

POOCLAChol by panels 2 tiles : This version is given in Fig. 3.1 and views the matrix as a collection of row
panels, as described in Section 3.1.3. This version uses twoin-core tiles, and calls the in-core triangular solve
with multiple right hand sides. No effort is made to overlap I/O with computation.

1the/tmp directory.

22

POOCLAChol by panels async : This version is identical toPOOCLAChol by panels except that it over-
laps I/O and computation during the updatesA11 A11 � L10LT10 andA21 A21 � L10LT10.

POOCLAChol by panels 1 tile : This version is given in Fig. 3.2 and views the matrix as a collection of row
panels, as described in Section 3.1.3. This version uses onein-core tile, and calls the out-of-core triangular solve
with multiple right hand sides. No effort is made to overlap I/O with computation.

4.3 Results

We collected two sets of results, from the two-tile implementation and from the one-tile implementation. The classic
two-tile approach uses an in-core triangular solve with multiple right hand sides. This requires two in-core tiles to
be present in memory at the same time, and restricts the size of the in-core tiles. The new one-tile approach uses an
out-of-core triangular solve with multiple right hand sides. This only requires one in-core tile to be present in memory,
and allows the size of the in-core tile to be increased. We first present our results from the many versions of the two-tile
approach. We then present our results for the row panel versions of the two-tile and one-tile approaches.

4.3.1 Classical Two-Tile Approach

tile 1� 1 tiles (n = t) 2� 2 tiles (n = 2t) 3� 3 tiles (n = 3t)
size MFLOPS Time (sec) MFLOPS Time (sec) MFLOPS Time (sec)

Algorithm p t /proc. Total I/O /proc. Total I/O /proc. Total I/O

In-core Chol 1 2088 263 11.5
Chol 1 2088 243 12.5 1.1 253 96 23 260 315 84
Chol async 1 2088 257 11.8 0.4 252 96 20 266 308 61
Chol by panel 1 2088 245 12.4 1.0 296 82 9 334 245 17
Chol by panel async 1 2088 227 13.3 2.0 291 83 8 327 250 12

In-core Chol 4 4704 304 28.5
Chol 4 4704 278 31.1 2.6 183 380 182 183 1282 598
Chol async 4 4704 278 31.2 2.7 176 393 182 189 1239 501
Chol by panel 4 4704 276 31.5 2.6 331 209 10 353 663 24
Chol by panel async 4 4704 278 31.2 2.6 336 206 8 361 649 16

In-core Chol 16 8448 304 41.3
Chol 16 8448 277 45.3 4.1 294 342 47 299 1135 ???
Chol async 16 8448 277 45.3 4.1 * * * * * *
Chol by panel 16 8448 273 46.1 4.3 321 313 13 343 989 32
Chol by panel async 16 8448 277 45.3 4.1 326 308 10 347 977 21

In-core Chol 64 18432 263 124
Chol by panel 64 18432 267 122 15.0 315 827 53 331 2654 125
Chol by panel async 64 18432 271 121 15.2 317 822 53 339 2594 105

Table 4.1: Performance of the various Cholesky factorization routines using In-Core TRSM on the Cray T3E-600.

First we test all of our two-tile implementations in order todetermine which of the implementations performs the
best. These results are reported in Table 4.1. For a fixed number of processors, we report performance for a problem

23

equal to the tile sizet� t, (2t)� (2t), and(3t)� (3t). For those familiar with PLAPACK, a distribution block sizeof24 and algorithmic block size of128 was used.
It is interesting to compare the performance of the in-core Cholesky factorization with that of the out-of-core

factorizations for at � t problem size. The moderate drop in performance illustratesthe fact thatO(t3) operations
are being performed onO(t2) data and thus the I/O has only minor impact on performance. Recall that when the
problem sizen is much greater thant, this reading and writing of the tiles is amortized over evenmore computation.
We used this observation to justify not overlapping the reading and writing of the diagonal blocksA11 and tilesA(i)21 . As the problem size increases, the out-of-core versions yield better performance than the in-core Cholesky
factorization. While on the surface this may be puzzling, notice that the larger the problem, the more computation is
being performed in matrix-matrix multiplication (to updateA21), which executes at a higher rate of computation than
the Cholesky factorization of the diagonal blocksA11.

There is a noticeable improvement in performance when the specialized storage described in Section 3.1.3 is used.
As predicted, the fact that the “panel” based versions read contiguous data greatly improves I/O performance. The
benefits of asynchronous I/O (overlapping some of the computation with reading of data) is less dramatic. This is due
to the fact that only a small percentage of execution time is being spent in I/O.

A final note: The performance numbers presented were collected on the NASA Goddard Space Flight Center Cray
T3E, a heavily loaded machine where many of the applicationsbeing executed are I/O intensive. Since we did not have
exclusive use of this machine, the performance reported paints a pessimistic picture. We have observed performance
as high as 351 MFLOPS per processor on 64 processors for the(3t)� (3t) problem.

4.3.2 New One-Tile Approach

tile 1� 1 tiles (n = tl) 2� 2 tiles (n = 2tl) 3� 3 tiles (n = 3tl)
size MFLOPS Time (sec) MFLOPS Time (sec) MFLOPS Time (sec)

Algorithm p t /proc. Total I/O /proc. Total I/O /proc. Total I/O

Chol by panel 2-tile 1 ts=2088 268 39.4 4.1 311 272 21 347 823 53
Chol by panel 1-tile 1 tl=3168 267 39.8 5.4 331 256 19 354 809 47

Chol by panel 2-tile 4 ts=4704 297 80 5.2 350 546 21 362 1782 71
Chol by panel 1-tile 4 tl=6600 311 77.1 5.9 361 532 25 365 1771 122

Chol by panel 2-tile 16 ts=8448 289 124 7.8 339 850 29 337 2882 163
Chol by panel 1-tile 16 tl=12000 315 114 9.0 355 812 39 364 2674 134

Chol by panel 2-tile 64 ts=18432 272 342 32 294 2545 348
Chol by panel 1-tile 64 tl=26160 306 305 33 323 2316 299

Table 4.2: Performance of the various Cholesky factorization routines using Out-of-Core TRSM on the Cray T3E-600.
The test sizes of these matrices were based on the 1-tile tilesize.

Once we have determined the best two-tile implementation, we compare the two-tile and one-tile versions of that
implementation, which was the row panel version. We assume that the one-tile version of the implementation will also
perform the best of the one-tile implementations. We reporttwo sets of performance results. The first set of results
determines the problem size from the one-tile tile size. These results are reported in Table 4.2. The second set of
results determines the problem size from the two-tile tile size. These results are reported in Table 4.3. For a fixed
number of processors, we report performance for a problem equal to the respective tile sizet � t, (2t) � (2t), and(3t)� (3t). We use the same distribution and algorithmic block sizes.

It is interesting to look at the two tables, Table 4.2 and Table 4.3, and notice which version performs better. The
results where the one-tile tile size is used, Table 4.2, showthat the one-tile version performs better than the two-tile

24

tile 1� 1 tiles (n = ts) 2� 2 tiles (n = 2ts) 3� 3 tiles (n = 3ts)
size MFLOPS Time (sec) MFLOPS Time (sec) MFLOPS Time (sec)

Algorithm p t /proc. Total I/O /proc. Total I/O /proc. Total I/O

Chol by panel 2-tile 1 ts=2088 245 12.4 1.0 296 82 9 334 245 17
Chol by panel 1-tile 1 tl=3168 222 13.7 2.1 275 88 11 329 248 19

Chol by panel 2-tile 4 ts=4704 276 31.5 2.6 331 209 10 353 663 24
Chol by panel 1-tile 4 tl=6600 261 33.1 3.4 319 218 17 345 680 37

Chol by panel 2-tile 16 ts=8448 273 46.1 4.3 321 313 13 343 989 32
Chol by panel 1-tile 16 tl=12000 275 45 4.3 320 313 18 331 1026 64

Chol by panel 2-tile 64 ts=18432 267 122 15.0 315 827 53 331 2654 125
Chol by panel 1-tile 64 tl=26160 270 121 16 296 881 81 253 3482 759

Table 4.3: Performance of the various Cholesky factorization routines using Out-of-Core TRSM on the Cray T3E-600.
The test sizes of these matrices were based on the 2-tile tilesize.

version. However, The results where the two-tile tile size is used, Table 4.3, show that the two-tile version performs
better than the one-tile version. This is most easily explained by the fact that each version performs better when its
problem size is a multiple of its respective tile size. This allows each in-core iteration through the problem to use
the maximum amount of available memory. However, when one version is running with a problem size that is not
a multiple of its tile size, the last iteration will not fill upmemory, and hence will not achieve its peak performance.
This is especially the case since at max three iterations arecomputed. For these results, when one version is run with
a problem size that is not a multiple of its tile size, at max two iterations are running at peak, while the third is running
below peak performance. In order to overcome this situation, much larger problem sizes would need to be tested.
However, due to lack of disk space on our test machines, we were limited to the sizes of our problems sets.

25

Chapter 5

Conclusions

The applications which use the Cholesky factorization routinely have large data sets. These large data sets often do not
fit into the in-core memory of a machine, and hence an out-of-core solution must be used. An efficient parallel out-
of-core Cholesky factorization would allow these data setsto be processed in a timely manner regardless of memory
limitations. Such an implementation would not only processthe data faster, but gives the ease of a library call.

The Parallel Out-of-Core Linear Algebra Package (POOCLAPACK) allowed us to implement an out-of-core C-
holesky factorization in a timely and efficient manner. The constructs provided by POOCLAPACK allow us to refine
our implementation to create a highly efficient and simple approach to I/O.

We developed out-of-core implementations of three routines, that are used in our out-of-core Cholesky factor-
ization implementations: symmetric rank-k update, matrix-matrix multiplication, and triangular solve with multiple
right hand sides. These three out-of-core implementationsallow us to create two out-of-core Cholesky factorization
implementations.

Our first implementation of the out-of-core Cholesky factorization uses the out-of-core versions of the symmetric
rank-k update and matrix-matrix multiplication. This implementation uses an in-core triangular solve with multiple
right hand sides. This implementation is further enhanced by using an efficient storage scheme. These two-tile
implementations achieve high performance on the Cray T3E machines. However, we also implement a one-tile out-
of-core Cholesky factorization that calls an out-of-core version of the Triangular solve with multiple right hand sides.
This version also uses the efficient storage scheme.

Our results show that the one-tile version achieves higher performance on problem sizes that are a multiple of
its tile size. However, the two-tile version achieve higherperformance when the problem sizes are a multiple of the
two-tile tile size. This is natural, and is to be expected with problem sets of this size. In order to adequately compare
these two implementations, the problem sets need to be much greater. This would increase the amount of computation
done at the peak of each algorithm.

Further analysis of the two algorithms bring rise to a possible hybrid algorithm that uses both implementations.
The algorithm could use the two-tile implementation when itperforms the best, and an one-tile implementation when
it performs the best. This algorithm should then have betterperformance than either of the two current algorithms.
This would only be possible after analysing larger sets of data.

Our results show that it is fairly simple and efficient to implement an out-of-core Cholesky factorization using
POOCLAPACK and PLAPACK. These two packages allowed us to implement three out-of-core support routines,
which allowed a straight forward implementation of the out-of-core Cholesky factorization. This framework will
allow additional algorithms to be implemented in a similar fashion.

The performance of our algorithm can be improved by furthering the use of overlapping I/O with computation.
A version of our two-tile implementation was created that does some overlapping of I/O with computation, however
these improvements didn’t improve the performance of the code significantly. However, additional overlapping of I/O

26

with computation could improve the performance of our implementations significantly.
Having an out-of-core Cholesky factorization is not all that useful without an out-of-core triangular solve. This

routine would be a most useful addition to the out-of-core library we currently have. Adding an out-of-core triangular
solve will complete the overall purpose of introducing an out-of-core Cholesky factorization.

In addition to these four linear algebra routines, it would be most useful to have a full complement of out-of-core
routines. This would most easily be accomplished by adding out-of-core implementations of building block routines,
like the symmetric rank-k update and matrix-matrix multiplication. Once these routines are created, then more com-
plex out-of-core linear algebra routines, like an LU factorization or a QR factorization, could be implemented. The
goal is to implement a complete solver package for dense linear algebra routines.

27

Bibliography

[1] E. Anderson, Z. Bai, J. Demmel, J. E. Dongarra, J. DuCroz,A. Greenbaum, S. Hammarling, A. E. McKenney,
S. Ostrouchov, and D. Sorensen.LAPACK Users’ Guide. SIAM, Philadelphia, 1992.

[2] Gregory A. Baker.Implementation of Parallel Processing to Selected Problems in Satellite Geodesy. PhD thesis,
The University of Texas at Austin, 1998.

[3] Jean-Philippe Brunet, Palle Pederson, and S. Lennart Johnsson. Load-balanced LU and QR factor and solve
routines for scalable processors with scalable I/O. InProceedings of the 17th IMACS World Congress, Atlanta,
Georgia, July 1994.

[4] J. Choi, J. J. Dongarra, R. Pozo, and D. W. Walker. Scalapack: A scalable linear algebra library for distributed
memory concurrent computers. InProceedings of the Fourth Symposium on the Frontiers of Massively Parallel
Computation, pages 120–127. IEEE Comput. Soc. Press, 1992.

[5] Tom Cwik, Robert van de Geijn, and Jean Patterson. The application of parallel computation to integral equation
models of electromagnetic scattering.Journal of the Optical Society of America A, 11(4):1538–1545, April 1994.

[6] E. F. D’Azevedo and J. J. Dongarra. The design and implementation of the parallel out-of-core scalapack lu,
qr, and cholesky factorization routines. LAPACK Working Note 118 CS-97-247, University of Tennessee,
Knoxville, Jan. 1997.

[7] L. Demkowicz, A. Karafiat, and J.T. Oden. Solution of elastic scattering problems in linear acoustics usingh-p
boundary element method.Comp. Meths. Appl. Mech. Engrg, 101:251–282, 1992.

[8] Jack J. Dongarra, Jeremy Du Croz, Sven Hammarling, and Iain Duff. A set of level 3 basic linear algebra
subprograms.ACM Trans. Math. Soft., 16(1):1–17, March 1990.

[9] Jack J. Dongarra, Jeremy Du Croz, Sven Hammarling, and Richard J. Hanson. An extended set of FORTRAN
basic linear algebra subprograms.ACM Trans. Math. Soft., 14(1):1–17, March 1988.

[10] Y. Fu, K. J. Klimkowski, G. J. Rodin, E. Berger, J. C. Browne, J. K. Singer, R. A. van de Geijn, and K. S.
Vemaganti. A fast solution method for three-dimensional many-particle problems of linear elasticity.Int. J.
Num. Meth. Engrg., 42:1215–1229, 1998.

[11] Po Geng, J. Tinsley Oden, and Robert van de Geijn. Massively parallel computation for acoustical scattering
problems using boundary element methods.Journal of Sound and Vibration, 191(1):145–165, 1996.

[12] W. Gropp, E. Lusk, and A. Skjellum.Using MPI. The MIT Press, 1994.

[13] Ken Klimkowski and Robert van de Geijn. Anatomy of an out-of-core dense linear solver. InProceedings of the
International Conference on Parallel Processing 1995, volume III - Algorithms and Applications, pages 29–33,
1995.

28

[14] C. L. Lawson, R. J. Hanson, D. R. Kincaid, and F. T. Krogh.Basic linear algebra subprograms for Fortran usage.
ACM Trans. Math. Soft., 5(3):308–323, Sept. 1979.

[15] Wesley C. Reiley and Robert A. van de Geijn. Pooclapack:Parallel out-of-core linear algebra package. Technical
Report TR-99-33, The University of Texas at Austin, Dept. ofComputer Sciences, November 1999. Submitted
to the International Supercomputing Conference.

[16] David S. Scott. Out of core dense solvers on Intel parallel supercomputers. InProceedings of the Fourth
Symposium on the Frontiers of Massively Parallel Computation, pages 484–487, 1992.

[17] David S. Scott. Parallel I/O and solving out-of-core systems of linear equations. InProceedings of the 1993
DAGS/PC Symposium, pages 123–130, Hanover, NH, June 1993. Dartmouth Institute for Advanced Graduate
Studies.

[18] Sivan Toledo and Fred G. Gustavson. The design and implementation of SOLAR, a portable library for scalable
out-of-core linear algebra computation. InProceedings of IOPADS ’96, 1996.

[19] Robert van de Geijn. Zen and the art of high performance parallel computing. PLAPACK Tutorial available from
http://www.cs.utexas.edu/users/plapack .

[20] Robert A. van de Geijn.Using PLAPACK: Parallel Linear Algebra Package. The MIT Press, 1997.

29

