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Abstract

In this paper we describe two efficient parallel out-of-con@plementations of the Cholesky factorization. We use
the Parallel Out-of-Core Linear Algebra Package (POOCLEBRAas an extension to the Parallel Linear Algebra
Package (PLAPACK) to implement our out-of-core algorithifise first algorithm uses in-core kernels with additional
code to manage the I/O. This is the classical approach t@obre implementations of the Cholesky factorization.
Our second algorithm adds an out-of-core implementatiotheftriangular solve with multiple right hand sides,
which doesn’t simply bring code in-core and run the in-cogodathm. This algorithm has the added benefit of
requiring fewer copies of the matrix to be in-core at one tithes allowing more of the matrix to be in-core at one
time. Despite the extreme simplicity of POOCLAPACK and ouwt-of-core algorithm, the out-of-core Cholesky
factorization implementation is shown to achieve in excd$9% of peak performance on a 64 node configuration of
the Cray T3E-600.



Contents

I ntroduction

1.1 Background . . . . . . . e e e
1.1.1 Distributed Memory Parallel Computing . . . . . . . . . . ... . L
1.1.2 Basic Linear Algebra Subprograms . . . . . . ...
1.1.3 Message Passing Interface . . . . . . . . ... o
1.1.4 PLAPACK . . . e
1.1.5 DataDistributionontoNodes . . . . . . . . ... e
1.1.6 Notation . . . . . . . . e e

1.2 Related Work . . . . . o e
1.2.1 ScaLAPACK . . . .
1.2.2 SOLAR . . .
1.2.3 Other Out-of-Core Efforts . . . . . . . . . . . . . . .

1.3 Contributionsofthisstudy . . . . . . . . .. .

1.4 OrganizationofthisPaper . . . . . . . . . e e

1.5 Acknowledgements . . . . . . . e

Cholesky Factorization

2.1 RightLookingVariant . . . . . . . . . . . e e e
2.2 LeftLookingVariant . . . . . . . . . L e e
2.3 Sequential Implementation . . . . . . .. L e
2.4 In-Core Parallel Implementation . . . . . . . . . . . e

Out-of-CoreParallel Cholesky Factorization

3.1 POOCLAPACK . . . e
3.1.1 DataDistributiononto Disk . . . . . . . ... e
3.1.2 Flexible File Input/Output . . . . . . . . . e e
3.1.3 StoragebyRow Panels . . . . . . . . . e

3.2 Out-of-Core Implementation . . . . . . . . . . . . e e e
3.2.1 Two-TileImplementation. . . . . . . . . . ... e
3.2.2 One-Tilelmplementation . . . . . . . . . . . ..

3.3 Out-of-Core RoUtiNES . . . . . . . . . e e
3.3.1 POOCLASyrk: Symmetric Rank-KUpdate . .. ......................
3.3.2 POOCLAGemm: Generic Matrix-Matrix Multiply . . . . ... ... ... ... . .....
3.3.3 POOCLATrsm: Triangular Solve with Multiple Right Hand Sides . . . . . . .. .. ..

SO TadLPENpw®

©©o o~



4 Performance
4.1 Testing Environment . . . . . . e e 22
4.2 Implementationstested . . . . . . .. L e e 22
4.3 Results. . . . . . e 23
4.3.1 Classical Two-Tile Approach. . . . . . . . . . . 23
4.3.2 NewOne-Tile Approach . . . . . . . . .. e e 24
26

5 Conclusions



Chapter 1

| ntroduction

There are only a few applications left that require the $sotubf extremely large dense linear systems. They tend
to arise from boundary-element formulations for the solutbf integral equations in the areas of electro-magnetics
and acoustics [5, 7, 11]. Even for those applications, muaper methods based on multi-pole expansions, fast
multipole methods (FMM), have recently become popular [I0bnetheless, there are still many such applications
that are solved by forming large dense systems of equatiois®me cases, this is simply because the users are naive.
In other cases it is a conscious decision since a consideeffoirt is required to reformulate the problem in a fashion
that allows fast multi-pole methods to be utilized. Furthere, there are applications requiring the solution ofdarg
linear least squares problems that also give rise to vegelinear systems [2]. For applications that do still lead
to large dense linear systems, the matrices involved ageiérely so large that they do not fit even in the combined
memories of the processors of a large distributed memomwllphsupercomputer. Such problems are often referred to
as out-of-core problems, since they do not fit in the core mgrabthe computer. The matrices are instead stored on
disk.

1.1 Background
1.1.1 Distributed Memory Parallel Computing

Parallel computers consist of a collection of processdss, kmown as nodes. There are two major types of memory
architectures in parallel computers. One is shared memdrgre memory is one large common pool accessed by all
processors. Communication between nodes is then usualy/ttioough this memory. The other memory architecture
is distributed memory, where each node has its own memotly,allinodes connected in a certain network topology,
or mesh, for communication. This mesh is made up of a numbmves and columns of nodes. The Cray T3E, the
machine used in this thesis, follows the distributed menmoogel.

1.1.2 BasicLinear Algebra Subprograms

Basic Linear Algebra Subprograms[8, 9, 14], generallymreféto as BLAS, are computational kernels widely used
by applications and libraries dealing with linear algefifae BLAS routines perform linear algebra operations such as
inner product, matrix-vector and matrix-matrix multi@iton. Since these kernels are standard, vendors can gevelo
highly optimized routines for their platforms, allowingghi performance implementations to be portable.

The BLAS standard defines operations in three distinct caies, called levels. Level 1 deals with vector-vector
operations, such as the inner (dot) product. For these tpesa0(n) computation is performed afi(n) data. Level
2 deals with matrix-vector operations. The single rightdhaidle triangular solve falls in this category and for these



operations()(n?) computation is performed ai(n?) data. Level 3 deals with matrix-matrix operations. Trialagu
solves with multiple right hand side falls in this categoFar these operationg§)(n?) computation is performed on
O(n?)data.

The Level 3 BLAS is very advantageous for our purposes becafigs favorable operations to data ratio. For
out-of-core operations, this means we will spend more timeimputation then in fetching data.

1.1.3 Message Passing Interface

With the rapid advances in technology and the fast pace afgga hardware, MPI[12] was developed as a standard-
ized communication interface for parallel computers antvaeks of workstations. MP| was developed by a broad
group of software writers, application scientists and f@raomputer vendors as a portable library. MPI itself is a
specification for a library of routines. Calls to such a lityrare easily made from FORTRAN or C.

114 PLAPACK

The Parallel Linear Algebra Package (PLAPACK) [20] is a fi@eiinfrastructure for implementing parallel dense
linear algebra routines. An MPI-like programming intedaevhich hides details about matrices and vectors like
distribution from the user, makes both the library impletadion and its use considerably simpler than more conven-
tional packages like ScaLAPACK. In addition, the simplegraonming approach allows more complex algorithms to
be implemented, which often yield better performance.

1.1.5 DataDistribution onto Nodes

Forin-core matrices PLAPACK uses a two-dimensional Catesyclic data distribution. Thus matriXis partitioned
like

Byo By, e Bon-1)
By By e By~n—1
B = . . .
Bavr—1o | Bov—11 | | Biv—1yv-1)

whereByg is d x d. The processing nodes of the parallel architecture areadeag a logicat x ¢ mesh of nodes, with
p = rc. Row blocksB;.. and column blocks3, ; are all assigned to the same row and column of nodes, regglgcti
An over-decomposition’{ >> r, ¢) is used to achieve load balance as the computation unfolds.

1.1.6 Notation

In this paper, certain conventions are used. Scalars aresemted by Greek letters, 3, etc. Vectors are represented
by lower case letters, b, etc. All vectors are assumed to be vertical, unless marked aMatrices are represented
by uppercase letterd, B, etc. A lower triangular matrix is thus representedlbgnd an upper triangular matrix by
U.

When representing vectors or matrices, double verticabdrbntal lines are used to indicate which portions of the
linear algebra objects have been used. For example, at ¢fientiiey of a computation, a matrix may be described
in the following way:

Aoo || Ao1 | Ap2
A= Ao || Ain | A
Asp || Aoy | Aaa




After the computation the matrid is described in the following way:

Ao | Ao1 || Aoz
A= Ao | Air || A1
Aso | Aoy || Az

This shift in the double line essentially shows the progoesef the algorithm through the object, including the
direction of the progress.

1.2 Related Work
1.2.1 ScaL APACK

The preeminent library for sequential computers and coimeal (shared memory) vector supercomputers is the
Linear Algebra Package (LAPACK) [1]. This package does nptieitly include out-of-core capabilities, although on
machines with virtual memory the library can be used to sphablems larger than fit in-core. For larger problems,
a version of this library called ScaLAPACK [4], designed flistributed memory parallel architectures, can be used.
This extension of LAPACK does include prototype out-of&onplementations of some of the ScaLAPACK routines,
including general linear solvers via LU factorization, e definite linear solvers via Cholesky factorizationgda
linear least squares solvers via QR factorization [6]. Hmvethis implementation does not readily allow for a full
out-of-core extension.

122 SOLAR

A more serious effort to add out-of-core capabilities to IAAK and ScaLAPACK is provided by SOLAR [18], a
portable library for scalable out-of-core linear algebomputations. This library uses ScaLAPACK routines for in-
core computation, but provides an 1/O layer that managesixriaput-output. SOLAR achieves better I/O rates by
allowing a different storage scheme for matrices on disk teaised in-core by ScaLAPACK. Impressive performance
is reported for up to four nodes of an IBM SP-2. Lack of perfante on larger numbers of nodes is in part blamed
on non-scalability of some of the in-core parallel kernedsdi

1.2.3 Other Out-of-Core Efforts

It should be noted that the above described parallel oubod-library efforts are in addition to a number of parallel
out-of-core implementations of individual operations caahine specific libraries for dense linear systems reported
in the literature [2, 13, 3, 16, 17]. Additional referencesapplications requiring large dense linear solves arengive
in [5, 7, 11]. Additional references to research using fastimation methods like FMM are given in [10].

1.3 Contributions of this study

The primary contribution is the out-of-core infrastruguPOOCLAPACK, that we added to PLAPACK. This ex-
tension allows out-of-core routines to be developed vesilavhen combined with PLAPACK. We developed
POOCLAPACK on the Cray T3E architecture, but it is easilytpble[15].

We introduced an out-of-core implementation of the Choldaktorization that varies from the classical out-of-
core implementation. Our new one-tile approach allows nodréhe matrices to be in-core during the out-of-core
operation. This improves memory utilization, and improtresnumber of operations to disk 1/O ratio.



Our implementation of the Cholesky factorization led to thioduction of three common out-of-core linear
algebra subroutines: the symmetric rank-k update, matatdix multiplication, and triangular solve with multiple
right hand sides. These subroutines are built in such a vaythiry can be readily re-used in future implementations
of other linear algebra routines.

1.4 Organization of this Paper

This paper is organizes as follows: Chapter 2 introducesatgorithms for solving the Cholesky factorization. Chap-

ter 3 discusses the out-of-core implementations of of thel€dky factorization. This chapter also introduces the
out-of-core /O library, POOCLAPACK, which is used in ourtenf-core Cholesky factorization implementations.

Chapter 4 discusses the performance attained for the efiffémplementations of the Cholesky factorization. Con-
cluding remarks and future directions are given in Chapter 5

1.5 Acknowledgements
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advisor, for his support of this thesis.
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Advanced Computational Infrastructure (NPACI) and Thewdrsity of Texas Advanced Computing Center (TACC).
We also gratefully acknowledge access to the Cray T3E-68@&8yat the Goddard Space Flight Center provided by
the NASA HPCC Earth and Space Science Project.



Chapter 2

Cholesky Factorization

Given ann x n symmetric positive definite matri¥, its Cholesky factorization is given by = LL”T whereL is

a lower triangular matrix. In this section, we develop twiiatient algorithms for this operation,rgght- and aleft-
looking algorithm, using LAPACK terminology. While the hitflooking algorithm is more appropriate for an (parallel)
in-core implementation, the left-looking algorithm haolum advantages for an out-of-core implementation. We will
develop blocked versions of the algorithm, since these aogvk to yield better ratios of the number of computations
to memory operations, thus allowing better utilization @frarchical memories.

2.1 Right Looking Variant

The right-looking algorithm for implementing this operatican be described by partitioning the matrices

All * > ( L11 0 >
A= and L=
< A21 A22 L21 L22

whereA;; andL;; areb x b sub-matrices. The indicates the symmetric part aff, which will not be updated. Now,
o= (i) - (i) CHE) - ()
Az | Az Ly | Ly 0 | ng L21L1T1 | L21L§1 + L22ng

From this we derive the equations

An = LulLf)
Ay = LyLl
Asy — Ly L3, = LaL3,

An algorithm for computing the Cholesky factorization isangiven by

.. A11 *
1. Partition4d =
< Aoy | Ao >

2. A1y + L1 = Chol.fact.(A11)
3. A21 < L21 = AglLflT
4. A22 < A22 — Lzngl



5. Continue recursively withl s

Note that only the upper or lower triangular part of a syminetratrix needs to be stored and the above algorithm
only updates the lower portion of the matrix with the redultAs a result, in the stelsy < Ass — Loy L1, only the
lower portion ofA», is updated, which is typically referred to asyanmetric rank-k update (with & = b).

One question that may be asked about the above algorithnaisisvtored in the matrix after a number of recursive
steps. We answer this by partitioning

A L 0
A:( o | * >:< | > 2.1)
Apr || ABr LpL || Lsr
whereAry, and Ly arek x k. Here “T'L” , “ BL”, and “BR” stand for “Top-Left”, “Bottom-Left”, and “Bottom-
Right”, respectively. As seen before

A:(ATL” * ):<LTL|| 0 ><L%LHL§L):<LTLL%L” * )
Ay || Ar Lgr || Ler 0 || LEg LprLT, || LerLY, + LerLY g

(2.2)
so that
Arr, = LppLi, (2.3)
Apr, = LpiLT, (2.4)
Apr = LprLEp+LprLy; (2.5)

It can be easily verified that the above algorithm maintaiesdonditions
e Ar; has been overwritten by,
e Apy has been overwritten by, and
e Apgr has been overwritten b pr — L LL;.

while at each step increasing the sizeAsf;, by b. Thus, the matrix with which the algorithm is continued atlea
step is the sub-matrid zrand to complete the Cholesky factorization, it suffices tmpate the factorization of the
updatedd s. This motivates the algorithm given in Fig. 2.1.

2.2 Left Looking Variant

To derive aeft-looking variant for computing this factorization, consider agaank (2.1)—(2.5). This time assume
that at the current stage

e Ary has been overwritten by,
e Apy has been overwritten by, and
e Appg hasnot been changed
To derive an algorithm that maintains this condition, winileving the computation ahead, repartition

Ago | x | * Loo | 0| 0
A= Ay [ Au [ * and L= Ly [[Lu| O (2.6)
A20 A21 A22 L20 L21 L22




whereAy = A7y, andLgy = Lrr,. Notice that

AOO || * | * LOO || 0 | 0 LOOT || LlOT | LQOT
A=1 Aol Ai | * =\ Lio|| L1 | O 0 L | Ly (2.7)
Aso || A21 | A22 Lyo || Loy | Lo 0 0 LT
Since
An = LloLfO + L11L1T1
Ay = LogLiy+ Lo LT}

and realizing thatd,, has been overwritten b, and A,o has been overwritten b, we find that the following
computations computt;; and Lo :

A11 — L1 = Chol.fact.(AH — LlOL{O)
Aot Lo = (Ao — L20Lfo)L1_1T

The algorithm for the left-looking version of Cholesky fadzation is now given in Fig. 2.2.

2.3 Sequential | mplementation

Either of the two algorithms presented can be used for efficiequential in-core implementation of the Cholesky fac-
torization. In practice, the right-looking algorithm is/éaed for a rather curious reason: The bulk of the computatio
in the right-looking algorithm is in the rank-k updatie, + A»» — Lo; LI, and for the left-looking algorithm in the
matrix-matrix multiply A»; < As; — Loo L. While there is no technical reason for this, the level-3 B8] kernel
Osyrk that implements the symmetric rank-k update tends to aehigyher performance than the matrix-matrix
multiply kerneldOgemntor the special case where one of the matricesis transposed. From our experience, we believe
the reason is that the symmetric rank-k update is a modificatf the general rank-k update, which is at the heart of
fastimplementations of the LINPACK benchmark. Vendorsltenpay a lot of attention to this kernel since it is key to
the performance on the benchmark. Some vendors tend to Esntiime optimizing other cases of the matrix-matrix
multiply, while other vendors pride themselves on delimgrhighly optimized versions of all BLAS. Packages like
LAPACK favor the right-looking variants of these kinds ofafithms.

24 In-CoreParallel Implementation

The in-core parallel implementation we will be using thrbagt this study is the PLAPACK Cholesky factorization
PLA_Chol routine. This routine implements the right-looking alglonh due to its favorable performance advantages.
The details of the implementation is beyond the scope oftttasis [19].



partition A = (%’%) whereArr, is0 x 0
BL BR

dountil Agris0 x 0

repartition
AOO || * | *
A
<%> == AlO All * WhereATL iS b X b
BL BR Ao || A21 | Ao

A11 «— L11 = Chol.fact.(An)
Aoy ¢ Loy = A21L1_1T
Ao Azy — L21Lgl
continue with
ATL . AOO * *
o [ dpn )~ |\ olAu] x
BL Il #BR Azo [ Azt || A

enddo

Figure 2.1: Blocked right-looking Cholesky factorizatialgorithms.

partition A = (%’%) whereArr is0 x 0
BL BR

dountil Agris0 x 0

repartition
A | » | *
A ||+ _
<A—Zﬂﬁ> = | Aw || Au | x| wheredr; isbxb
f A20 A21 A22

A A — AlOAiFO
Aoy Aoy — A20Af0
A11 <~ L11 = Chol.fact.(An)
Aoy« Loy = A21L1_1T
continuewith
ATL « AOO * *
T e i
pLL R Azo [ Aoy [[ Azz

enddo

Figure 2.2: Blocked left-looking Cholesky factorizatidgarithms.
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Chapter 3

Out-of-Core Parallel Cholesky
Factorization

Our out-of-core implementations will be based on the leftking algorithm presented in Section 2.2. There are two
basic reasons for this: First, the left-looking Choleskguiees approximately half the I/O operations of the right-
looking algorithm. Second, it is easer to adeck-pointing to a left-looking algorithm. Check-pointing allows for a
restart partially into the computation in case of a systeifarfa Before we can discuss our out-of-core implementa-
tions, we must discuss the out-of-core library that we usetw implementations.

3.1 POOCLAPACK

The Parallel Out-of-Core Linear Algebra Package (POOCLBRAIs an extension to PLAPACK that allows out-of-
core problems to be solved in the same convenient manneriaghwiicore problems are solved. The handling of the
disk 1/0 is the main functionality that needs to be added @reoto allow PLAPACK to handle out-of-core problems.
This is done by adding file 1/0 routines, and implementingrtie such a way that the user can copy matrices to and
form disk just as he would copy matrices in memory. With thisimal additional functionality, PLAPACK is able to
handle out-of-core algorithms in the same fashion as theiore counterparts.

3.1.1 DataDistribution onto Disk

Out-of-core matrices are distributed to nodes identicallyn-core matrices (Section 1.1.5), except that the data is
stored in a file.

3.1.2 Flexible File Input/Output

The Cray T3E Systems have an extended IO system, callecdbidxile 10 (FFIO). This system allows the user to
insert layers through which data is passed. Within the |ayeruser can insert various kinds of buffers and caches.
Cache and/or buffer sizes and properties, like stripingssmultiple disks, can be controlled by command line
routines. We experimented with putting a small cache betvdésk and memory and used default striping settings. It
should be noted that changes in the configuration of the fildcache sizes did not seem to affect performance of our
algorithms much. In particular, the more sophisticatedaiyms that allowed larger blocks of contiguous data to be
read did not seem to be affected at all.

11



3.1.3 Storage by Row Panels

We must briefly discuss the storage of the matrix on disk. drecwe will assume that the matrices are stored in
column-major order. Thus, elements in columns are in caotig memory. When reading from disk, one must
consider the fact that a disk access carries a large stadstp &fter which contiguous data can be read at a rate
determined by the limits of the hardware. Thus, reading notiguous data can be costly.

While columns of matrices are in contiguous memory, readisgb-matrix of size x b, as is encountered in the
out-of-core symmetric rank-k updates described in Se@i8il, requires either noncontiguous data to be read or a
more complex storage scheme. In our implementation, wergwrpated with the parallel equivalent of two storage
schemes: The first stores the matrix in a file much like it wdaddstored in memory, in column-major order. The
second partitions by row blocks ofows each, whereis equal to the tile size discussed above. These blocks of row
are then stored in separate files. As a result, we often ordy i@ read from one of these files, and that read is a
contiguous block. For this second scheme, the Choleskgriaation views the matrix as a collection of blocks of
rows.

3.2 Out-of-Core Il mplementation

We only describe the parallel implementations of the atharithat uses the more complex algorithm where blocks of
rows are treated as separate matrices. The primary reasat the actual code comfortably fits on one page (Fig. 3.1
and Fig. 3.2). PLAPACK and POOCLAPACK manage complexity kdirig details of size, distribution, and storage.
This approach allows us to creafews into matrices which reference sub-matrices. Each bloakroivs is passed to
the routine as a view of this data.

We describe two variants of this implementation. The firstarat uses two in-core tiles of data, which allows an
in-core triangular solve with multiple right hand sides ®dalled. The second variant only uses one in-core tile of
data, where we can call an out-of-core triangular solve withtiple right hand sides. The second variant allows us to
use larger in-core tile sizes, but involves more 1/O tharfitise

3.2.1 Two-Tilelmplementation

The two tile variant calls an in-core triangular solve witlultiple right hand sides. We briefly describe the different
parts of the routine shown in Fig. 3.1.

e The matrix is passed to the POOCLAPACK OOC Cholesky factdion as an array oV views, each of which
references a panel of rows, as described in Section 3.he3 )i

e The algorithm loops over the panels, partitioning the aurpanel intoL;o and A, (lines 6-9).

e An in-core matrix is created to hold,; and that sub-matrix is read from disk (lines 10-12). Nothcat this
requires only a local copy from disk to the in-core matrix.

e A parallel out-of-core symmetric rank-k updaRQOCLASyrk , updatesd;; < A;; — LigLY, whereA,; is
in-core andL4, resides on disk (line 13—-14). We describe this routine inen@tail in Section 3.3.1

e Once updated4,; is factored by a call to the parallel Cholesky factorizaf®irA Chol (lines 15-16).
e Ay is written to disk, and a copy is retained in memory (lines118)-

e The inner-most loop updatek; < (A2 — LzoLlTO)LﬁT. To accomplish this, we loop over the remaining row
panels, partitioning each inthy,y and A, (lines 21-23).

e Anin-core matrix is created to hold,; and that sub-matrix is read from disk (lines 24-26).

12



1 int POOCLA_Chol_by panels_2_tiles( int N, PLA_Obj *A_row _panels )

2 |

3 < declarations >

4 size_done = 0; /* number of columns finished */
5 for (j=0; j<N; j++ )}

6 PLA_Obj_global_length( A_row_panels[ j ], &t ); [* get tile size */
7 /* View current L_10 and A_11 submatrices */

8 PLA_Obj_vert_split_2( A_row_panels[ j ], size_done, &L_1 0, &temp );

9 PLA_Obj_vert_split_2( temp, t, &A 11, PLA_DUMMY );
10 [* Create an in-core matrix into which to copy A_11 *

11 PLA_Matrix_create_conf_to( A_11, &A 11 in );

12 PLA_Copy( A_11, A_11 in );

13 /* Update A_11 <- A 11 - L_10 * L_10, A_11 in-core, L_10 out-of -core */
14 POOCLA_Syrk( PLA_LOWER_TRIANG, PLA_NO_TRANS, min_one, L_10, one, A 11 in );
15 [* Factor updated in-core A_11 and write out the result */

16 PLA_Chol( PLA_LOWER_TRIANG, A 11 in );

17 /* Write out A_11 */

18 PLA_Copy( A_11_in, A_11 );

19 /* Loop over A_21 */

20 for (igj+1; i<N; i++ )

21 /* View current matrices L_20 and A 21 */

22 PLA_Obj_vert_split_2( A_row_panels[ i ], size_done, &L_2 0_1, &temp );
23 PLA_Obj_vert_split_2( temp, t, &A_21_ 1, PLA_DUMMY );

24 [* Create an in-core matrix into which to copy A_21 */

25 PLA_Matrix_create_conf_to( A_21_1, &A_21_1_in );

26 PLA_Copy( A 21 1, A 21 1 in);

27 [* Update A 21 <- A 21 - L_20 * L_10°T *

28 POOCLA _Gemm( PLA_NO_TRANS, PLA TRANS,

29 min_one, L_20_1, L_10, one, A 21 1 _in );

30 [* Update A 21 <- L 21 = A 21 * L_11°-T %/

31 PLA_Trsm( PLA_SIDE_RIGHT, PLA_LOWER_TRIANG,

32 PLA_TRANS, PLA_NONUNIT_DIAG,

33 one, A_11 in, A 21 1 in);

34 [* Write out A_21 */

35 PLA_Copy(A_21_1_in, A 21 1);

36 size_done += t;

37 }

38 PLA_Obj_free( &A_21_1 in );

39 }

40 < clean up >

41 1}

Figure 3.1: POOCLAPACK Out-of-Core Cholesky factorizatiwith 2 tiles. In this version, the matrix is presented
as a collection of panels of rows in an effort to improve diskfprmance.

13



e A parallel out-of-core matrix-matrix multiplicatioPOOCLAGemmupdatesds; < As; — LagLly. (lines
27-29). We describe this routine in more detail in Secti@2.

e Once updatedd,; is overwritten withZ,; = A,; L7, and written to disk. Since all operands are in-core, a call
to the parallel triangular solve with multiple right handesPLA Trsm accomplishes this task (lines 30-33).

e A,y is written to disk, and its in-core object is freed from megngines 34-38).

3.2.2 One-TileImplementation

The one tile variant calls an out-of-core triangular solnmultiple right hand sides. We briefly describe the didfetr
parts of the routine shown in Fig. 3.2.
This implementation is very similar to the two tiled implemtation, except for the following noted sections.

e Inthe single tiled variant, we no longer need to keep a cop,efin-core, and may free its space up immediately
following the call to the parallel Cholesky factorizatiBh A Chol (lines 15-19).

e Since we no longer havé;; in-core, we need to call an out-of-core parallel triangstave with multiple right
hand side®OOCLATrsm instead of the in-cor®LA Trsm routine (lines 31-32). We describe this routine in
more detail in Section 3.3.3.

These two modifications change our two tiled variant into@atiled variant of outimplementation of the Cholesky
factorization.

3.3 Out-of-Core Routines

During our discussion of the out-of-core Cholesky factatiizn, we found the need for a few out-of-core routines that
need to be implemented. These routines are the out-of-gammstric rank-k update, matrix-matrix multiplication,
and triangular solve with multiple right hand sides. We ndaveg detailed analysis of these three operations.

3.3.1 POOCLA_Syrk: Symmetric Rank-K Update

We now describe in detail the out-of-core implementatiothefsymmetric rank-k updaté;; + A4;; — LmLfO, or,
more generically «+ C — AAT.
The algorithm for implementing this operation can be désatiby partitioning the matrix:

A= (4| 4r)

Now,

C

A7
C—(AL||AR)<_AT_)

R
C = C—ALAT — AgAT

From this, if we assume we have reached the state wiiere C — A7, AT has been updated, then an algorithm
for computing the symmetric rank-k update is now given by:

1. Partition( Az | Ar ) =( Ao || A1 | 42 )
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37

39
40

int POOCLA_Chol_by__panels_1_tile( PLA_Obj *A_row_pane Is )
{
< declarations >
size_done = 0; /* number of columns finished */
for (j=0; j<N; j++ )}
PLA_Obj_global_length(A_row_panels[ j ], &t); /* get tile size */
[* View current L_10 and A_11 submatrices */
PLA_Obj_vert_split_2( A_row_panels[ j ], size_done, &L_1 0, &temp );
PLA_Obj_vert_split_2( temp, t, &A_11, PLA_DUMMY);
[* Create an in-core matrix into which to copy A_11 *
PLA_Matrix_create_conf_to(A_11, &A 11_in);
PLA_Copy(A_11, A_11_in);
/* Update A_11 <- A 11 - L_10 * L_10, A_11 in-core, L_10 out-of -core */
POOCLA_Syrk( PLA_LOWER_TRIANG, PLA_NO_TRANS, min_one, L_10, one, A_11_in);
[* Factor updated in-core A_11 and write out the result */
PLA_Chol(PLA_LOWER_TRIANG, A_11_in);
/* Write out A 11 */
PLA_Copy(A_11_in, A_11);
PLA_Obj_free( &A_11_in );
/* Loop over A_21 */
for (i=j+l; i<N; i++ ){
[* View current matrices L_20 and A_21 */
PLA_Obj_vert_split_2( A_row_panels[ i ], size_done, &L_2 0_1, &temp );
PLA_Obj_vert_split_2( temp, t, &A_21 1, PLA_DUMMY );
[* Create an in-core matrix into which to copy A_21 */
PLA_Matrix_create_conf_to(A_21_1, &A_21 1_in);
PLA_Copy(A_21_1, A 21 1 in);
/* Update A 21 <- A 21 - L_20 * L_10°T */
POOCLA_Gemm( PLA_NO_TRANS, PLA_TRANS, min_one, L_20 1,
L_10, one, A_21 1 in);
/* Update A 21 <- L 21 = A 21 * L_11°-T ¥
POOCLA_Trsm( PLA_NONUNIT_DIAG, one, A_11, A 21_1_in);
/* Write out A 21 */
PLA_Copy(A_21_1_in, A 21 1);
size_done += t;
}
PLA_Obj_free( &A_21_1 in );
}
< cleanup >
}

Figure 3.2: POOCLAPACK Out-of-Core Cholesky factorizatisith 1 tile. In this version, the matrix is presented as
a collection of panels of rows in an effort to improve diskfpemance.
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int POOCLA_Syrk( int uplo, int transa,
PLA_Obj alpha, PLA_Obj A_ooc,
PLA_Obj beta, PLA_Obj C )

< get size b, the number of columns to be read at a time >
/* Scale C <- beta * C */

1
2
3
4
5 < declarations >
6
7
8 PLA_Local_scal( beta, C );

9 /* A_ooc_cur view the part of A _ooc yet to be used */

10 PLA_Obj_view_all( A_ooc, &A_ooc_cur );

11

12 while ( TRUE )

13 [* Check if part of A_ooc yet to be used is of width 0 */
14 PLA_Obj_global_width( A_ooc_cur, &size );

15 if ( ( size = min( size, b ) ) == 0 ) break;

16 [* view current A */

17 PLA_Obj_vert_split_ 2( A_ooc_cur, size, &A_ooc_1, &A_ooc _cur );
18 [* Create an in-core matrix into which to copy A */

19 PLA_Matrix_create_conf_to( A_ooc_1, &A in_1 );

20 PLA_Copy( A_ooc_1, A_in_1);

21 [* Perform in-core symmetric rank-k update */

22 PLA_Syrk( uplo, transa, alpha, A_in_1, one, C );

23 }

24 < cleanup >

25 }

Figure 3.3: POOCLAPACK symmetric rank-k update routine tfiftaAd, passed in as objegtooc, is assumed to be
stored on disk, and matri¥, passed in as obje€ is assumed to be in-core. This version does not attemptedagy
I/O with computation.
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2.0« C— A AT
3. Continuewith( AL || Ar ) = ( Ao | 41 || 42 ).

A parallel implementation of this operation using POOCLARAIs given in Fig. 3.3. We briefly describe the
different parts of this routine.

e MatricesA andC are passed in as viewsooc andC, whereA_ooc references a matrix stored on disk, abd
references a matrix stored in-core (line 1).

The algorithm starts by scalir@ < sC (line 8).

e Next, the algorithm loops over blocks of columns, partitgnoff the current block4; asA ooc _1 (lines
13-17).

An in-core matrix is created to hold, and that sub-matrix is read from disk (lines 18—20).

An in-core parallel symmetric rank-k updatel A Syrk , updatesC' < C — A; AT where 4, is in-core,
referenced byin _1 (line 22).

3.3.2 POOCLA_Gemm: Generic Matrix-Matrix Multiply

We now describe in detail the out-of-core implementatiothef matrix-matrix multiply4s; < As; — LagLi, , or,
more generically «+ C — ABT.
The algorithm for implementing this operation can be désatiby partitioning the matrices:
A:(AL”AR) and B:(BL”BR)

Now,

C

Bf
C_(AL ||AR) BT

R
C = C-ALB[ — ARBj,

From this, if we assume we have reached the state wiHere C — A;, BT has been updated, then an algorithm
for computing the matrix-matrix multiply is now given by

1. Partition( Az || Ar ) = ( Ao || A1 | 42 )

2. Partition( B || Br ) =( Bo || B1 | B2 )

3.0« C—A,BF

4. Continuewith( Az || Ag ) =( Ao | A1 || A2 Yand( BL || Bk )= ( Bo | Bi || B2 )

A parallel implementation of this operation using POOCLARAIs given in Fig. 3.4. We briefly describe the
different parts of this routine.

e MatricesA, B andC are passed in as viewsooc , B_.ooc andC, whereA ooc andB_ooc reference matrices
stored on disk, an@ references a matrix stored in-core (line 1).

e The algorithm starts by scalin@ < SC (line 9).
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1 int POOCLA_Gemm( int transa, int transb,

2 PLA_Obj alpha, PLA_Obj A_ooc,

3 PLA_Obj B_ooc,

4 PLA Obj beta, PLA_Obj C)

5 {

6 < declarations >

7 < get size b, the number of columns to be read at a time >

8 /* Scale C <- beta * C *

9 PLA_Local_scal( beta, C );

10 /* A_ooc_cur/B_ooc_cur view the part of A_ooc/B_ooc yet to b e used */
11 PLA_Obj_view_all( A_ooc, &A_ooc_cur );

12 PLA_Obj_view_all( B_ooc, &B_ooc_cur );

13

14 while ( TRUE )

15 [* Check if part of A_ooc yet to be used is of width 0 */

16 PLA_Obj_global_width( A_ooc_cur, &size );

17 if ( ( size = min( size, nb_ooc ) ) == 0 ) break;

18 [* view current A and B */

19 PLA_Obj_vert_split_ 2( A_ooc_cur, size, &A_ooc_1, &A_ooc _cur );
20 PLA_Obj_vert_split_ 2( B_ooc_cur, size, &B_ooc_1, &B _ooc _cur );
21 [* Create an in-core matrix into which copy A and B */

22 PLA_Matrix_create_conf_to( A_ooc_1, &A in_1 );

23 PLA_Copy( A_ooc_1, A_in_1 );

24 PLA_Matrix_create_conf_to( B_ooc_1, &B_in_1 );

25 PLA_Copy( B_ooc_1, B_in_1 );

26 [* Perform in-core matrix-matrix multiply */

27 PLA_Gemm(transa,transb, alpha, A_in_1, B_in_1, beta, C);

28 }

29 < cleanup >

30 }

Figure 3.4: POOCLAPACK matrix-matrix multiply routine. M A and B, passed in as objeétooc andB_ooc,
are assumed to be stored on disk, and mditipassed in as obje€} is assumed to be in-core. This version does not
attempt to overlap I/O with computation.
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¢ Next, the algorithm loops over blocks of columns, partitimnoff the current blockd; asA_ooc 1 andB; as
B_ooc _1 (lines 15-20).

e In-core matrices are created to hold and B; and those sub-matrices are read from disk (lines 21-25).
e Ain-core parallel matrix-matrix multiplyPLA Gemmupdates” < C — A; BT whereA; andB, are in-core,
referenced byA_in _1 andB.in _1 (line 27).
3.3.3 POOCLA_Trsm: Triangular Solve with Multiple Right Hand Sides

We now describe in detail the out-of-core implementatiortt@f triangular solve with multiple right hand sides
Loy LT, = Ay, or, more genericallyy’ LT = B, overwriting B with C.
The algorithm for implementing this operation can be déschy partitioning the matrices:

_ _ M) _

Now,

Lty | Lhy
(Coll ) (FEEEE) = (Pul] Br)
0 Lyp
( CrLfy || Crlfy +Crly ) = ( Br| Br)
From this we derive the equations
CrLt, = Bg
CLL§L+CRLgR = Bg
or
Cr, = BrL;,
CrlLty, = Br-CrL},

If we assume that we have reached the state where- BLL;E andBgr = Bgr — CLLEL have been updated,
then an algorithm for computing the triangular solve withltiple right hand sides is how given by

1. Partition( By || Bk ) =( Bo || B1 | Bz )

N

. Partition( Cp, || Cr ) = (Co || G| Cy)

w

Ll 0 Lo | 0 | 0
. Partition L—HL— =\| Lol L1 | O
BL BR Log || Loy | Lo

4, Cl <« Bl — C()L,fl

5. 02 <« B2 — Cng’l
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1 int POOCLA_Trsm(int diag, PLA_Obj alpha,

2 PLA_Obj A_ooc, PLA_Obj B )

3 |

4 < declarations >

5 < get size b, the number of columns to be read at a time >
6 /* Scale B <- beta * B */

7 PLA_Local_scal( alpha, B );

8 /* A_ooc_cur/B_curr view the part of A_ooc/B to be used */
9 PLA_Obj_view_all( A_ooc, &A_ooc_cur );

10 PLA_Obj_view_all( B, &B_curr );

11

12 k = 0;

13 while ( TRUE ){

14 [* Check if part of B yet to be used is of width 0 */

15 PLA_Obj_global_width( B_curr, &size );

16 if (0 == ( size = min( b, size ) ) ) break;

17 /* Copy (0] A_11 | A_21 )T into the in-core A_in_1 */
18 PLA_Obj_vert_split_ 2( A_ooc_cur, size, &A_ooc_1, &A_ooc _cur );
19 PLA_Matrix_create_conf_to( A_ooc_1, &A in_1 );

20 PLA_Copy( A_ooc_1, A_in_1);

21 /* view current L_11 and L 21 */

22 PLA_Obj_horz_split_2( A_in_1, k, PLA_DUMMY, &A _in_1 );
23 PLA_Obj_horz_split_2( A_in_1, size, &L_in_11, &L_in_21 ) ;
24 [* view current B_1 */

25 PLA_Obj_vert_split_2( B_curr, size, &B_1, &B_curr );

26 /* Solve B.1 <-C1=C1-B1L11TH¥

27 PLA_Trsm( PLA_SIDE_RIGHT, PLA_LOWER_TRIANGULAR,
28 PLA_TRANS, diag, one, L_in_11, B_1 );

29 /* Solve B.1 <-C2=C2-B1L21'T?¥

30 PLA_Gemm( PLA_NO_TRANS, PLA TRANS,

31 minus_one, B_1, L_in_21, one, B_R );

32 k += size;

33 }

34 < cleanup >

35 }

Figure 3.5: POOCLAPACK triangular solve with multiple righand sides routine. Matrid passed in as object
A ooc, are assumed to be stored on disk, and mdgipassed in as objeB; is assumed to be in-core. This version
does not attempt to overlap I/O with computation.
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6. Continuewith( By, || Bgr ) = ( By | B, || By )and( CL || CR ) = ( C[) | Cl || 02 )and

Loy | O 0
BL |l =BR Lo | Loy || Lao

A parallel implementation of this operation using POOCLARAIs given in Fig. 3.5. We briefly describe the
different parts of this routine.

e MatricesA andB are passed in as viewsooc andB, whereA_ooc references a matrix stored on disk, d@d
references a matrix stored in-core (line 1).

e The algorithm starts by scaling « #B (line 7).

e Next, the algorithm loops over blocks of columnsBf partitioning off the current bIocI@ 0 | Lqq | Loy )T
asAooc -1 (lines 14-18).

e Anin-core matrix is created to hold; and that sub-matrix is read from disk (lines 19-20).
e PartitionA_ooc _1 into L1 andLs1, eliminating the extra zeros read into memory (lines 21-23)
e Partition off the current blocB; (lines 24-25).

e An in-core parallel triangular solve with multiple right e sides,PLA Trsm, updates”; = C; — By LT},
whereDB, is overwritten byC; (lines 26-28).

e An in-core parallel matrix-matrix multiphPLA Gemmupdates’, = Cs — B; L1, whereB; is overwritten by
C5 (29-31).
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Chapter 4

Perfor mance

4.1 Testing Environment

We demonstrate performance on the Cray T3E-600 (300 MH#), al computations performed in 64-bit arithmetic.
The algorithms were implemented using an alpha release AHAICK Version R2.0, which performs all communi-

cation by means of MPI. We report performance measuring MF&processor (millions of floating point operations
per second per processor). For reference, the following t&iows performance of matrix-matrix multiplication on a
single processor of the T3E-600 in MFLOPS:

| n || MFLOPS |
500 418
1000 443
1500 425

All performance reported in this section for the T3E-600 wesasured with data streams turned on (a hardware feature
that adds about 15-20% to the performance of the local mataittix multiply kernel).

The Cray T3E-600 at the Goddard Space Flight Center useldaxperiments has a 54 Gigabyte partition striped
across 14 disKs This partition was used for all I/O experiments.

4.2 |Implementationstested

We report performance for six different versions of the code
PLA Chol : This version is the in-core PLAPACK Cholesky factorization

POOCLAChol : This version views the matrix as one matrix, with each preceaccessing a single file in which the
local matrix is stored. The matrix is stored in this file muitelan in-core matrix would be stored, i.e., it is
viewed as a two-dimensional array. No effort is made to @gerO with computation.

POOCLAChol _async : This version is identical ta>OOCLAChol except that it overlaps I/O and computation
dUring the Updateﬁll <~ A11 — LloLrlFO andA21 — Agl — LIOL;TO-

POOCLAChol _by panels _2_tiles : This versionis given in Fig. 3.1 and views the matrix as asmibn of row
panels, as described in Section 3.1.3. This version usemtaore tiles, and calls the in-core triangular solve
with multiple right hand sides. No effort is made to overl&p With computation.

lthe/tmp directory.
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POOCLAChol _by _panels _async : This version is identical ttOOCLAChol _by _panels except that it over-
laps 1/0O and computation during the updatls < A1 — LioLT, and Ay < Asy — Lig LY.

POOCLAChol _by panels _1_tile : This version is given in Fig. 3.2 and views the matrix as aawibn of row
panels, as described in Section 3.1.3. This version useisaree tile, and calls the out-of-core triangular solve
with multiple right hand sides. No effort is made to overl&p With computation.

4.3 Reaults

We collected two sets of results, from the two-tile impleta¢ion and from the one-tile implementation. The classic
two-tile approach uses an in-core triangular solve withtipid right hand sides. This requires two in-core tiles to

be present in memory at the same time, and restricts the tthe in-core tiles. The new one-tile approach uses an
out-of-core triangular solve with multiple right hand ssd@his only requires one in-core tile to be presentin memory
and allows the size of the in-core tile to be increased. Wediesent our results from the many versions of the two-tile
approach. We then present our results for the row paneloressif the two-tile and one-tile approaches.

4.3.1 Classical Two-Tile Approach

tile 1x1tiles(n=1¢) || 2x2tiles (n=2t) || 3 x 3tiles (n = 3¢)
Size || mrors | Time (Sec) | wroes | Time (sec) | wrors | Time (sec)

Algorithm P t proc. | Total [ /O ]| wre | Total | /O || poe | Total [ 1/O
In-core Chol 1 2088 263 | 11.5

Chol 1 2088 243 | 125| 1.1 253 96| 23| 260 | 315| 84
Chol _async 1 2088| 257 | 11.8| 0.4 252 96| 20| 266 | 308| 61
Chol _by _panel 1 2088 245 | 12.4| 1.0| 296 82 9| 334 | 245\ 17
Chol _by _panel _async 1 2088 || 227 13.3| 2.0| 291 83 8| 327 250 | 12
In-core Chol 4 4704 | 304 | 285

Chol 4 4704 | 278 | 31.1| 2.6 183 | 380| 182| 183 | 1282 | 598
Chol _async 4 4704 278 | 31.2| 2.7| 176 | 393|182 | 189 | 1239| 501
Chol _by _panel 4 4704 | 276 | 31.5| 26| 331| 209| 10| 353 | 663| 24
Chol _by _panel _async 4 4704 | 278 | 31.2| 2.6 336 206 8 || 361 649 | 16
In-core Chol 16| 8448| 304 | 41.3

Chol 16| 8448 277 | 453| 4.1 294 | 342| 47| 299 | 1135| 7?77
Chol _async 16| 8448| 277 | 45.3| 4.1 * * * * * *
Chol _by _panel 16 | 8448| 273 | 46.1| 4.3| 321 | 313| 13| 343 | 989 | 32

16

Chol _by _panel _async 8448 | 277 | 45.3| 4.1 326 308 | 10| 347 977| 21

In-core Chol 64 | 18432 263 124
Chol _by _panel 64 | 18432| 267 | 122 | 15.0| 315 | 827| 53| 331 | 2654 | 125
Chol _by _panel _async 64 | 18432| 271 121 | 15.2|| 317 822 | 53| 339 | 2594 | 105

Table 4.1: Performance of the various Cholesky factoratoutines using In-Core TRSM on the Cray T3E-600.

First we test all of our two-tile implementations in orderdetermine which of the implementations performs the
best. These results are reported in Table 4.1. For a fixed euaflprocessors, we report performance for a problem
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equal to the tile sizeé x t, (2t) x (2t), and(3t) x (3t). For those familiar with PLAPACK, a distribution block siné
24 and algorithmic block size of28 was used.

It is interesting to compare the performance of the in-conel€&sky factorization with that of the out-of-core
factorizations for & x t problem size. The moderate drop in performance illustrdtedact thatO(¢*) operations
are being performed o@(t?) data and thus the I/O has only minor impact on performancealRéhat when the
problem sizen is much greater that this reading and writing of the tiles is amortized over exrre computation.
We used this observation to justify not overlapping the iegénd writing of the diagonal blockd,; and tiles
Aé’l) As the problem size increases, the out-of-core versioalsl yaetter performance than the in-core Cholesky
factorization. While on the surface this may be puzzlingjasothat the larger the problem, the more computation is
being performed in matrix-matrix multiplication (to upéat», ), which executes at a higher rate of computation than
the Cholesky factorization of the diagonal blocks, .

There is a noticeable improvement in performance when teeialized storage described in Section 3.1.3 is used.
As predicted, the fact that the “panel” based versions resdiguous data greatly improves 1/O performance. The
benefits of asynchronous I/O (overlapping some of the coatjputwith reading of data) is less dramatic. This is due
to the fact that only a small percentage of execution timeiadpspent in I/O.

A final note: The performance numbers presented were cetlent the NASA Goddard Space Flight Center Cray
T3E, a heavily loaded machine where many of the applicabeirsy executed are I/O intensive. Since we did not have
exclusive use of this machine, the performance reportataipessimistic picture. We have observed performance
as high as 351 MFLOPS per processor on 64 processors f@#he (3¢) problem.

4.3.2 New One-Tile Approach

tile 1 x 1tiles (n =¢;) || 2 x 2tiles (v = 2¢;) || 3 x 3 tiles (v = 3¢;)

size wriops | TIMe (Sec) | wrors | TimMe (sec) | wroes | Time (Sec)
Algorithm P t poc. | Total [ 1/O ]| e | Total | 1/O || . | Total [ 1/O
Chol _by _panel 2-tile 1 t,=2088| 268 | 39.4| 4.1 | 311 272 21| 347 | 823 53
Chol _by _panel 1-tile 1 t;=3168 | 267 | 39.8| 5.4 | 331 256 19| 354 809 47
Chol _by _panel 2-tile 4 ts=4704| 297 80| 5.2 350 546 21 || 362 | 1782 71
Chol _by _panel 1-tile 4 t;=6600| 311 | 77.1| 5.9 361 532 25| 365 | 1771 | 122
Chol _by _panel 2-tile 16| ts=8448| 289 | 124 | 7.8| 339 850 29 || 337 | 2882| 163
Chol _by _panel 1-tile 16 | ¢;=12000| 315 114 9.0 || 355 812 | 39| 364 | 2674 | 134
Chol _by _panel 2-tile 64 | t,=18432| 272 | 342| 32 294 | 2545| 348
Chol _by _panel 1-tile 64 | t;=26160| 306 305| 33| 323 | 2316| 299

Table 4.2: Performance of the various Cholesky factoratbutines using Out-of-Core TRSM on the Cray T3E-600.
The test sizes of these matrices were based on the 1-tikizde

Once we have determined the best two-tile implementatiencempare the two-tile and one-tile versions of that
implementation, which was the row panel version. We asstiaietie one-tile version of the implementation will also
perform the best of the one-tile implementations. We repwotsets of performance results. The first set of results
determines the problem size from the one-tile tile size. sEhesults are reported in Table 4.2. The second set of
results determines the problem size from the two-tile fite.s These results are reported in Table 4.3. For a fixed
number of processors, we report performance for a problamledq the respective tile sizex ¢, (2t) x (2t), and
(3t) x (3t). We use the same distribution and algorithmic block sizes.

It is interesting to look at the two tables, Table 4.2 and &abB, and notice which version performs better. The
results where the one-tile tile size is used, Table 4.2, dhaivthe one-tile version performs better than the two-tile
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tile 1 x Ltiles(n =t,) [| 2 x 2tiles (n = 2¢,) || 3 x 3tiles (n = 3t,)

size MFLOPS Time (sec) MFLOPS Time (sec) MFLOPS Time (SEC)
Algorithm D t poc. | TOtal [ /O || mrc | Total | 1/O ] s | Total | 1/O
Chol _by _panel 2-tile 1 t,=2088| 245 | 12.4| 1.0} 296 82 9| 334 | 245 17
Chol _by _panel 1-tile 1 t;=3168| 222 | 13.7| 21| 275 88 11| 329 248 19
Chol _by _panel 2-tile 4 ts=4704| 276 | 315| 26| 331 | 209 10| 353 | 663 24
Chol _by _panel 1-tile 4 t;=6600| 261 | 33.1| 3.4 | 319 218 17 || 345 680 37
Chol _by _panel 2-tile 16| t,=8448| 273 | 46.1| 43| 321 | 313 13| 343 | 989 32
Chol _by _panel 1-tile 16 | t;,=12000| 275 45| 43| 320 313 18 || 331 | 1026 64
Chol _by _panel 2-tile 64 | t,=18432| 267 | 122| 15.0| 315| 827 53| 331 | 2654 | 125
Chol _by _panel 1-tile 64 | ,=26160| 270 121| 16| 296 881 81 || 253 | 3482 | 759

Table 4.3: Performance of the various Cholesky factoiratbutines using Out-of-Core TRSM on the Cray T3E-600.
The test sizes of these matrices were based on the 2-tikzde

version. However, The results where the two-tile tile szesed, Table 4.3, show that the two-tile version performs
better than the one-tile version. This is most easily exgldiby the fact that each version performs better when its
problem size is a multiple of its respective tile size. THisvas each in-core iteration through the problem to use
the maximum amount of available memory. However, when omsime is running with a problem size that is not
a multiple of its tile size, the last iteration will not fill umemory, and hence will not achieve its peak performance.
This is especially the case since at max three iterations@mputed. For these results, when one version is run with
a problem size that is not a multiple of its tile size, at maa ttgrations are running at peak, while the third is running
below peak performance. In order to overcome this situatiouch larger problem sizes would need to be tested.
However, due to lack of disk space on our test machines, we liveited to the sizes of our problems sets.
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Chapter 5

Conclusions

The applications which use the Cholesky factorizationiraly have large data sets. These large data sets often do not
fit into the in-core memory of a machine, and hence an outoé-solution must be used. An efficient parallel out-
of-core Cholesky factorization would allow these data setse processed in a timely manner regardless of memory
limitations. Such an implementation would not only prociesdata faster, but gives the ease of a library call.

The Parallel Out-of-Core Linear Algebra Package (POOCL&RAallowed us to implement an out-of-core C-
holesky factorization in a timely and efficient manner. Thastructs provided by POOCLAPACK allow us to refine
our implementation to create a highly efficient and simplerapch to I1/O.

We developed out-of-core implementations of three rostirtleat are used in our out-of-core Cholesky factor-
ization implementations: symmetric rank-k update, matnixtrix multiplication, and triangular solve with multepl
right hand sides. These three out-of-core implementatdio® us to create two out-of-core Cholesky factorization
implementations.

Our first implementation of the out-of-core Cholesky faization uses the out-of-core versions of the symmetric
rank-k update and matrix-matrix multiplication. This ireplentation uses an in-core triangular solve with multiple
right hand sides. This implementation is further enhancediding an efficient storage scheme. These two-tile
implementations achieve high performance on the Cray T3&hinas. However, we also implement a one-tile out-
of-core Cholesky factorization that calls an out-of-coeesion of the Triangular solve with multiple right hand side
This version also uses the efficient storage scheme.

Our results show that the one-tile version achieves higheiopnance on problem sizes that are a multiple of
its tile size. However, the two-tile version achieve higherformance when the problem sizes are a multiple of the
two-tile tile size. This is natural, and is to be expectedwgitoblem sets of this size. In order to adequately compare
these two implementations, the problem sets need to be nreakeg. This would increase the amount of computation
done at the peak of each algorithm.

Further analysis of the two algorithms bring rise to a pdsditybrid algorithm that uses both implementations.
The algorithm could use the two-tile implementation whepeitforms the best, and an one-tile implementation when
it performs the best. This algorithm should then have bgieformance than either of the two current algorithms.
This would only be possible after analysing larger sets td.da

Our results show that it is fairly simple and efficient to implent an out-of-core Cholesky factorization using
POOCLAPACK and PLAPACK. These two packages allowed us tdémpnt three out-of-core support routines,
which allowed a straight forward implementation of the ofieore Cholesky factorization. This framework will
allow additional algorithms to be implemented in a simikstion.

The performance of our algorithm can be improved by furtigethe use of overlapping 1/0 with computation.
A version of our two-tile implementation was created tha¢sleome overlapping of /0 with computation, however
these improvements didn’t improve the performance of tliee@ignificantly. However, additional overlapping of I/O
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with computation could improve the performance of our impdatations significantly.

Having an out-of-core Cholesky factorization is not alltthaeful without an out-of-core triangular solve. This
routine would be a most useful addition to the out-of-cdsediy we currently have. Adding an out-of-core triangular
solve will complete the overall purpose of introducing at-oficore Cholesky factorization.

In addition to these four linear algebra routines, it woutdnbost useful to have a full complement of out-of-core
routines. This would most easily be accomplished by addirtepd-core implementations of building block routines,
like the symmetric rank-k update and matrix-matrix multiption. Once these routines are created, then more com-
plex out-of-core linear algebra routines, like an LU faization or a QR factorization, could be implemented. The
goal is to implement a complete solver package for densarialgebra routines.
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