TSN-31
November 1972

DIRECTED GRAPH STRUCTURES FOR DATA BASE
MANAGEMENT; THEORY, STORAGE
STRUCTURES AND
ALGORITHMS

by

Frank Barnett Ray

November 1972 TSN-31

This paper constituted the author's dissertation for the Ph.D,
degree at The University of Texas at Austin, December 1972,

THE UNIVERSITY OF TEXAS AT AUSTIN

COMPUTATION CENTER

1 LR

TSN~-31

TABLE OF CONTENTS

Chapter
I. INTRODUCTION.csesccsccccocncssnccoccscosccance
II. THE ACYCLIC DATA BASEcssccscecesceccssscscas
III. RETRIEVAL WITH A NON-PROCEDURAL LANGUAGE..
IV. A PROCEDURAL APPROACH TO RETRIEVAL:sccssse
V. STRUCTURAL REPRESENTATIONesccscscscsccscscscoe
VIi. RETRIEVAL ALGORITHMS:oesescescscscesssssncs
VII. CONCLUSION:.ccsscoccoscessccssoccscsnscsccaancss

APPENDIX A - BANG'S RE3ULTeccsccscsscscccs
APPENDIX B - AN INTERESTING MAPPINGesececoss

QIB&IQGRAPHY“3096966005360GOQOQ.O'OGO‘QOG

Page

12
47
66
73
o4

114

118
122

129

Figure

W = Oy ot s L N b

Pt el e e
WO ke O

TSN-31

LIST OF FIGURES

Description Page

ACYCLIC DIGRAPH..cccocoscssssscscccass 22
TYPE HIERARCHY cccccossccsccsscsscsasocse 27
SAMPLE DATA BASE:ccsecccsccsccscccsssesccs 33
TYPE HIERARCHY coccccccsceocccesscsccse 34
ACYCLIC DIGRAPH WITH EDGE LABELS.ccc.. 35
SAMPLE DATA BASE:cccccacccacccsssescss S5/
SAMPLE DATA BASEccecscccccssccscsssscs 38
SAMPLE DATA BASE.ccccsoscsccccscsosess 41
RETRIEVAL PROCESScsccccsccsccscsoccsse 49
SAMPLE CONTEXTcceccscssosaccccsnssasse 1
TRACE TABLE:cccscocosccsosssssssacscsss I2
INVERTED FILEcccccccsocsossccscscscecs 100

FOREST OF TREES:cccccccsccscsssscscsss 120

ii

TSN-31

INDEX OF SPECIAL TERMS

TERM PAGE

acyﬂlic éata base‘OC.‘COOQQ000&9..0‘0‘60."00’9.. 31

2djaCeNtcecscscesccscosscscssccccscscccssscssscss 20
ADJUST e oococccoscococsscsccscssasscssccsssssanscoscs OF
ANCEStOrcesecsscssscnssssccccsossoctosacssconssssce 26
attribuUtCececssccoccosssccscconccsssccsoscoasssss le

éttribﬁte“value pairﬁotsoo-eccooeoooootcooooooosa 17
BOL T S cccoceococcsssoovsosnseesnsooebeeodacssedsssas 66

context definitionaace--;aoaooo-ac.settoo-oeosoos 28
context JrOUDececcesoosecsvee006eese09006088¢e02080600606 000 97

context Shiftﬁ“‘o.ﬁc’ﬁ’..‘&.‘O.‘0.0QO..‘..""“ 164

28

C"'setccﬁeesseeooeeeooascesit‘ooeosoto‘aoctacoee.t

78

C”traceG$.‘¢Q'QOOSOQOCQOCOOO'O‘OO!QO...”’.C.’.’Q

103

cwﬁypeQGGGOQOSOﬁﬁﬁ%@ﬁ@ﬁ‘ﬂe‘G.GGO‘QOQOOGOQQSGi.OOQ

20

CyC},eeeaeéeeocoasseeeaeeeaeeeeeeoe.ooooecceaoo.oa

17

éatasetQééﬁﬁiSOCOCGOQBQQ.OQQCOQQGQ.O.QOOO0.‘0!05‘

éireét ancestoraesoeeeeaoéaeooeco‘egtceoeao.e.ooe 26

29

-
famliYeaecceeeseeoeesebeesoeoeoess;eoeooeoas-eaaa
fields95@953333G’ﬁeesg"Qs“""’,.""'..‘Q"“. 7?

finite acyclic directed graph. 19

L]
®

R NN EEXNNXENENEESEENRNE]

finite acyclic networkecsecssessccsscsscccscossssscs 18

fiawgte ﬂadai treecéﬁ330039639963090#0‘6@3066&'30é 17

iii

T8N-31

TERM

hierarchical relationshipessscecss

hierarchyeecsscsocescccesss
inverted fil€ccosesssocssce
levelesssvsecnsscosecsssscos
node label.eea‘e....e;...,.
node sSequenCesssescscocsssse
pathecccssscsccscccccsossss
path exclusionescscccecscce
projectionscecsccccccossccs
qualifying clausS€@cseccocsoss
repeating groupPesccesesscesses
representationescscssssccse
retrieval expressionececscse

retrieval mapping F.so.

&
@

L 4
SﬁT.Q$98¢66099@0303030909Q6

SgLGQOQGO&BO‘QO*@”QQGG’@’?

SELECTcccscscvesccsscssssass
simple conditionsccscosccoce
S8loteccccessscccssccsssssne
structural representation..
structure file.sssscecssses

structure tablessocsssssesss

2
ﬁraceecsoeeeeeeeeeasesseceo

iv

& @ 9 &

ee 28 e 8 % 2e 9

L BN A ENESE]

e 8 2 e @

® @ $ T e

e e % O 0 @B BB @8

e 69 e P SDeS

e ©@ ©B L O @S

e e 2 20 28 ¢

e e e ¢ 2606 20

e e e e

2 9% @

ve 29 @

e 20 @

® G L8P R2ED BT DS RSP

e % e 922 29 288

e 2@ CD® 0 ® O

b 2B O 28 D@

e Qe BB e B e

® e S P

% e e e

@& e 5 e

2 ¢ 200 @B D OG @BES

e ¢ 28 B LE @B

& 9 % 52 &% 09 ¢

& e © O 9BV SO

29 29 & S 839 8 D

88 Qe 22 2¢O

e &8 2 2 05 @@

G e & 0D PO E& e

e e ®ePede s P

D e 9B Q e e e

@ ¢ 2 5 ¢ 9 5% 88

B e €9

e 28 B

e e % 8 2

¢ ® 88 8

e 2 e 8

& 2 & e @

L

& & ¢ 8 &

PAGE

26
23
4
21
40
24,44
75
89
56
52
86
75
52,53
56
51
51
67
50
74
31
94
81
76

TSN=-31

TERM PAGE

tree aigebrasseeee@.g..,ee.g.oee,ee@.ﬁ.e;eees.ee 48
TYPEsccccessscocesssssncsssossesssodsscotsssesesss &7
type familvecsosccecssvsevcssccccsssossncssensoss 29
type partitioningeecscssccscocsccscscocasssccossss 16
typesetoecasoeococeeaoooosoeoooe.aoecceeessseaoe 17
type StruCtUr€ccccccccosscscscccscsssssssscsssccasns 31
ValU o oosso0cce060c0so0ce00eecscsssceesasssssssss ase 17

TSN-31
CHAPTER I

INTRODUCTION

The massive April 1971 Report of the CODASYL Data
Base Task Group (C4), in setting guidelines for future
data management systems, includes a section on network-
related data bases, in recognition that "natural”™ data
relationships exist which may not be economically repre-
sented by structures with less richness than that possessed
by a graph. The CODASYL Report does not dwell on imple-
mentation nor on the explicit types of graphical repre-
sentation. It does, however, include an archetypal exam-
ple of school children and classes, pointing out the
fact that one class containing many students produces a
one-to-many relationship of each class to students, and
that one student may be in many classes produces a one-
to-many relationship of each student to a number of classes.
The suggestion of this "natural" example is to group classes
as a set of labelled "nodes”, group students likewise,
and make an "edge' connection between classes and stu-
dents to indicate the relationships. Without defining
specifically what is meant by “node" and "edge®, the
following diagram would be a good representation of the

structure:

classes

students

This diagram indicates that class A consists at least
of student 2, and student 2 is in classes A and C, class
B consists at least of students 1, 3 and 4, etc.

This simple two-group example may obviously be
separated into a "hierarchy” in which one group is placed
above the other. It is also possible to introduce a third
category for the above example which naturally would
be separated by "classes” from “students“. Consider the
category of subject areas, i.e., science, art, social
science, etc, Several "classes® fall into one subject area
and it is reasonable to relate a student's involvement
in & subject area via his class involvement; hence the
natural separation of students and subject areas by classes.

While there are natural data structures which
do not easily separate into hierarchical groupings, and
s%§§ci§fes which allow cyclic relationships to occur,
it is with the various natural data structures which do
separate into hierarchical groupings that this paper is
concerned. The following example regarding the classifi-
cation of documents by subject has been derived directly
from information selected from the Library of Congress

Subiect Headings 1list (Ql), and is logically hierarchical:

C‘;’v;'f;'za Lien s;?(;’a’/s fé/;:? fo n‘g /8/3;’/0:5' 0/9/3/!,/ = e (JEQ /i;‘S}?}
[/ Pr i Tive /

re//j/ ons ehics

archacolcgy)"f/;’f/'on s

\

@

Bahism Brahmanism myﬂ:o/oj/ 5iFivism| \alfrdism | o <

Babism

animals, my?%f‘ca,/E ?’;‘janau Ls s oo | Folerrism

Throughout this list, there is a rough idea of hierarchy,
for example, archaeology is more specific than civiliza-
tion, altruism "comes under” ethics, totemism is a part
of primitive religion and primitive religion is "under"
religion.
In more commercial areas, data base designers

re faced with problems such as the purchase-order/vendor
problem given as an example for the Integrated Data Store
System (Bl), where for each item purchased there are several
vendors, and for each vendor, there are several items,
which produces a common natural data structure for the
demonstration of the Integrated Data Store. This example
may be readily expanded to one which appears later in this
paper to a manufacturing situation involving suppliers,

parts, subassemblies, components and buyers. Here the

hierarchy is effectively established by the three cate-

3

TSH-31

ories, parts, subassemblies, and components, because
3 ¥

parts collectively form subassemblies, according to the
manufacturer, and subassemblies collectively form com-
ponents. For the other two categories, since suppliers
supply parts and buyers buy components, these categories
belong at the "parts” and "components"” ends of the data
hierarchy, respectively. Thus the wﬁcle hierarchy could

be diagrammed as follows:

Suppliers
Parts
Subassemblies
Components

Buyers

A detailed example of a data structure constructed on this
particular hierarchical basis is presented in Chapter V.

A great many natural data structures exhibit
a hierarchy, and it would be pointless to ignore this
if it exists, for even a primitive ordering of data can
be useful when organizing it within a data management
system. Special cases of hierarchical data have been
shown to be readily imbedded in "tree” structures, and the
use of "tree®” data structures in data management applica-
tions is well known today (Ll:Landamer, L4:Lowenthal,
S6, Di:D'Imperio, H2:Hardgrave). Several attempts have

been made to generalize both hierarchical and non-~hierar-

TSN-31

chical data structures to allow richer and more varied
associations of data entities than those which are allowed
by tree structures. But although computer systems have
been designed to manipulate graphical data structures,
they are, in a practical sense, too general in scope for
data management application.

The GRASPE system, for example, developed at
the University of Texas at Austin (Pl:Pratt and Friedman),
has been constructed by first specifying the semantics
of a basic "core®” of graph operations, and then extending
a high-level computer programming language (LISP 1.5) to
define the syntax of GRASPE and the operations on its
graphs. In theory, one could construct a data management
system in GRASPE, but it is possible that the complete
generality of such a system would make it so slow it would
be commercially useless, although perhaps an interesting
tool to study network problems with. The set of functions
on graphs provided by Pratt and Friedman does, however,
supply the experimenter with a handy superset of data
management operations.

The General Electric-Honeywell Integrated Data

1
Store System, or IDS, (Bl:Bachman, Il), a semi-automatic™

zThe adjective "semi-automatic” seems applicable to IDS
because no attempt is made to implicitly order the data sets
making up the chains in a way which would decrease the
storage required, decrease the retrieval times, and appear
totally transparent to the user. A truly automated data
management system should require very little of its user

TSN-31

£ile management system, is somewhat less general than

the GRASPE system. Here the semantics of particular kinds
of operations on particular kinds of graphs are defined.

A very significant feature in the system is the use or the
chain, a form of directed graph, as a basis for the ab-
Stract data structures. As Bachman (Bl:Bachman,C., In-
tegrated Data Store) states,

The task of organizing data records for meaning-

ful association... is achieved through the use

of chains, which provide cross-referencing
linkage between recordse.
The integrated Data Store thus attempts to supply the
user with a more powerful graphical data structure than
a "tree” can provide, by using explicit linkage informa-
tion in the form of pointers to construct chains.

In the search for other attempts to represent
data structures more general than trees, two interesting
papers on the organization of semantic data provide a
valuable insight. Stanley Su (S5) uses an elaborate
associative net to connect data items and to define se-
mantic relations, as does Ross Quillian (M2:Minsky), al-
though these appear in greatly differing forms. The

following quote from Quillian’s paper in Semantic Infor-

mation Processing brings to light the significance of the

data network, and although it was written in the context

in the way of his knowledge of internal orderings and
yet still provide retrieval times he can tolerate.

TSN=31

of semantic information processing, today it has a strong
bearing on the more sophisticated data management systems:

As anyone who has ever reorganized a paper
several times will realize, an outline organiza-
tion is only adequate for one hierarchical
grouping, when in fact the common elements
existing between various meanings of a word
call for a complex cross-classification. In
other words, the common elements within and
between various meanings of a word are many,
and any one outline designed to get some of
these together must at the same time separate
other common elements, equally valid from some
other point of view. Making the present memory
network a general graph rather than a tree

(the network equivalent of an outline) and
setting up tokens as distinct nodes makes it
possible to loop as many points as necessary
back into any single node and hence in effect
to show any and every common element within

and between the meanings of a word.

Quillian‘'s comments about cross-classification
are equally vaiid for several noteworthy examples of
natural data structures in which automated processing is
already desirable and is rapidly becoming an economic
necessity. Libraries, in general, and large libraries
such as the U.S. Patent library and the Library of Congress
in particular depend heavily on the structural richness
of cross~classification. Any librarian would feel severely
handicapped if the data structure in his subject card
catalog were limited to a tree structure. Large-scale
industrial and commerclal inventories are frequently
plagued with the problem of imposing a tree-like data
structure on data which is in fact heavily cross-linked.

The technique of mass production and the interchangeability

TSN-31

of mechanical parts has made it possible for individual
parts and whole subassemblies of parts to be used (cross-
classified, therefore) in different, larger assemblies.
Indeed, the success or failure of an industrial designer
may well depend upon his ability to recognize the exis-
tence of some usable entity already designed for something
perhaps quite removed from his immediate sphere of acti-
vity, and this ingenuity must eventually be recorded in
some inventory.

Orderly arrangements of knowledge, in libraries,
industrial systems, commercial records, and public records,
are imbedded by their designers within data structures
in order to decrease updating and search times. These
structures usually involve a hierarchy of some sort,
cross-indexing, and many forms of data-oriented sorting.
This is true whether the systems are implemented with
machines or a host of clerks. Both hierarchical and data-
oriented ordering are methods used to speed the various
functions of the data management. Linkages, indexing,
and cross-relating are enhancements to the data structure
which pay off in terms of data retrieval speed, although
they cost in terms of storage space.

The widely~used tree structure is adequate for
hierarchical data groupings which have a characteristic
tree form, for example, data organized by cities within

a county, by counties within a state, by states within a

TSN-31

region, 5y regions within a country, etc. However, the
tree structure is inadequate for the types of data struc-
ture indicated by the various examples noted above because
adjacent hierarchies may have many kinds of interconnec-
tions.

The research presented here is the result of
the search for formalisms which will lead to efficient
data management systems permitting more general struc-
turing of data than simple tree structures. Specifically,
the problem of this paper may be stated in 4 parts:

(1) Find a formal analogue to a hierarchical
data structure which allows cross-classification between
the strata of the hierarchy, and which also has some re-
lationship to a "tree® structure.

(2) Define an appropriate storage structure
for the formal model, using previous data management
formalisms as much as possible.

(3) Define the semantics of basic retrieval
operations on the data structure, in the framewofk of a
retrieval language, in such a way as to insure that the
laws of a Boolean algebra are followed. This is necessary
for the predictability and stability of the retrieval
operations, and because it permits certain types of pro-
cessing optimization. A

(4) Provide in addition to the basic operatiocnal

definitions the fundamental algorithms of a retrieval

TSH-31

package, i.e,, an algorithmic definition for the ele-
mentary retrieval operations on the defined storage
structure,

The paper is accordingly organized with five
succeeding chapters concentrated on the above problems.

Chapter II exploits the natural hierarchy of
a finite acyclic directed graph and poses this graph
as a candidate for the model of a hierarchical data struc-
ture in which cross-classification is allowed.

Chapter III extends retrieval mechanisms
previously defined by Lowenthal (L4) for.trees, and the
differences in the syntax and semantics of the retrieval
expression for a more general structure are examined.

Chapter IV examines the possibility of using
a more primitive retrieval language developed by Hardgrave
(H2) which can both simulate the operations defined by
the language in Chapter III and provide the capability
of more general types of data processing. Hardgrave's
language, initially developed in the context of tree
structures, can easily be adapted to apply to networks.

Chapter V is involved with the definition of an
abstract representation for the actual data structure,
and provides a finite solution for this representation,
in the form of a structure table. It is intended that
this structure table be an abstract model of a real

storage structure, and its significance is in its rela-

TSN-31

tionship to the trace table of Lowenthal (L4).

Chapter VI outlines the various basic algorithms
necessary to perform retrieval operations in the data
base, and is provided both as a demonstration of the
efficacy of the structure table and as a basis for

future programmatic experimentation.

11

TSN-31

CHAPTER II

THE ACYCLIC DATA BASE

Characterization

We seek to define a hierarchical data base which
is more general than a tree-like data base, capable of
fulfilling the following characteristic necessities:

(1) the representation of data partitioned by
a finite set of levels hi,ggsgik,

{2) the representation of a labelled partition
of the data entities in each level, and the characteri-
zation of each class in that partition by predefined
Yattributes®,

(3) the representation of hierarchical relation-
ships between two data entities in non-adjacent levels,
i,e., in the Library of Congress Subject Headings List
example in Chapter I, totemism is hierarchically related

to primitive religions, and these two data entities are

not at adjacent levels, and

(4) the representation of exactly those hier-
archical relationships of data entities which a user
considers important, i.e., in the Library of Congress
Subject Headings List example, a user might wish to dis-
allow the access to totemism by way of civilization and

archaeology, and allow it only by way of gods, religions,

12

TEW-31

mythology, or religion, religions, mythology, or religion,
primitive religion.

Whatever reason the user might have fc exclude
such an accession is not as important in the treatment
of this subject as the possibility that he may have such
a reason.

Tree-based data structures characteristically
satisfy (1) and (2) above, but not properties (3) or (4).
The characteristic form of a tree is that it branches
in one direction and only to the adjacent level in that
direction. For example, if a,b,c, and d are data entities

at levels Li and Li+1’ as illustrated,

where Li is between the "'root? level of the tree and

L there may be only the following hierarchical re-

i+l’

lationships:

direction

©

TSN-31

This 1s because the "branching” of the tree must be in
only one direction, or away from the root. A data base
constructed on the four characteristics noted above has
the following possibilities for relating these same four

entities:

14.

14

TSN~31

In addition, there is also the possibility from property
(3) above that data entities may be hierarchically re-
iated across several levels, i.e., if a, b, ¢, and 4

are data entities at levels Ll’ L2, L33 L4, the fol-

lowing possibility exists from property (3):

ot
T T

Property (4) above exists because of the fol-

iowing‘typical construction:

Suppose a, b, c, d, and e are data entities;

a and b at level L c at Lz, and d and e at level L3.

1?

entity ¢ is related to a and to b, and d and e are re-
lated to ¢, but d is not related to a and e is not re-

lated to be.

15

TSN-31

In order for this type of hierarchical relationship to be
recorded in a data structure; it is necessary that it have
characteristic (4), which requires that specific hierar-
chical relationships of data entities must be represented.
The significance of the four properties noted
above 1s that they characterize the data structure of
large classes of data which have a structural richness
not efficlently represented in simple tree-based data
structures.
It is convenient at this point to state some
fundamental definitions important for subsequent dis-

cussione.

Basic Definitions

The following constructions are useful in
viewing the bases for data organization and for under-
standing subsequent more formal discussion in this chap-
ter:

(1) An attribute is, conceptually, the name of
a piece of data. In a data management system, each attri-

bute is identified by a unique attribute identifier.

The set of all attribute identifiers in a system is finite,
and 1is denoted by AIl.

(2) A type partitioning of the set AI may be

m

represented by the equation AI = |} Ti’ where each Ti;
i=1

i=l,.:20,m, i5 8 set of attribute identifiers such that

16

TSN-31

if 1#j then Tiﬂ 'rjs é¢. In the type partitioning of AI,

zTi,...,Tm} , each set 'I‘i of attribute identifiers is
ordered arbitrarily as ai,l""’ai,ki'
{(3) A finite set of value identifiers V specifies

all of the values which can occur in a data base. The
special value identifier null denotes the empty value.

(4) An attribute-value pair is an attribute

identifier paired with a value identifier, and is ab-
breviated "a/v pair".

(5) A dataset of type Ti is a set of attribute-
/Vk.)} , where each ainez’ri,

i i
Note that each dataset must contain all

value pairs 1(31,1/V9’°“’(ai,2
for §=l,.a.,ki,
the attributes of its type class.

(6) A typeset of type Ti = {x}x is a dataset of
type Ti} « Since each of the attributes ai,l""’ai,ki
is associated with the type Ti, the phrase "the type of
aiaj"ﬁ where 153:’:1(1, refers to the symbol "T,". The
phrase "dataset x is in T,", on the other hand, means
x is an element of the typeset of type Ti‘

The characteristics of a finlte nodal tree

{(S,P,R) may be stated as follows:
i. S is a finite set of nodes, and R& S
ii. P is a function such that P:S- {R} -5

iii. For all x in S5, and for Q defined as
6, if x = R
Q{x) =
P(x) |J { U Q(y)§
Y

=P(x)
17

TSN=-31

then x%@ix}é
The element R is the "root" of the tree, Q(x) is the
set of all ancestors of the node x, and P(x) is the set
of all the ancestors of x which are directly connected
to x (one level away from x toward the root, R). Be-
cause P is a function, if x is in S-R then there is only
one node y in S such that y=P(x).

A finite acyclic network is an ordered triple

{§§SQ§P} which is characterized by the following pro-
perties:
i. S is a finite set of nodes, and SO§;S,
ii. P is a mapping from S--SO into 23e
iii. For Q defined as
¢, if xéSG
Qi{x) =

P{x) U { U Q(y}} , otherwise
yEP(x)

then for all x in S, x&a(x).
The condition that x§§@€x}, for all x€ 5, assures us
that there can be no cycles in the graphe.

This definition, which is analogous to that
given for a tree above, provides far the basic algebraic
structure upon which later data structures of concern
in this paper will be based. Some trivial cases of the
agyﬁéig network will no doubt prove gnint@resting with
respect to data management application. For example,
if §$ = 5 there is no real "linkage" of any node to any
other through the mapping P, and the acyclic network is

18

TSN-31

reduced to an unordered set of nodes. In the case where
the mapping P maps each node into a relatively large
subset of S, the network will prove not only uninteresting
but also impractical for a reasonable data management
data structure. If every node in S were connected to
95% of the nodes above it, for example, then there
would be very little information to distinguish the various
nodes from one another, and yet the structural represen-
tation of the system would be overloaded with connection
information. These matters of what is "reasonable® are
implementation~dependent and are beyond fhe scope of this
papers.

An interesting characteristic of the acyclic
network is that if S, = R, a single node, and P is a
function from 5 - {Rf into S5, then the acyclic network
is equivalent to a trees; The importance of this algebraic
relationship is that it retains the possibility of a
systematic simplification of certain data structures,
which happen to be represented as acyclic networks, to
trees, for which searching algorithms may operate on the
assumption that Ss is a singleton and P is a function.

To maintain a unity between the ideas in this
paper and those which have gone before, we now present
a graphical analogue to the finite acyclic network, the

finite acyclic directed arashe.

A finite acyclic directed graph is a directed

TSN-31

graph, or digraph, with a finite number of nodes such that
if x is a node in the digraph, there does not exist a
directed path from x to x. Formally, a finite acyclic
digraph is defined as follows:

Definition. A finite digraph D is an ordered pair (N,E)

where N is a finite set of nodes and E is a subse£ of
N x N Each element of E is called an edge of D.
The notational descriptors "head" and “tail®

will be used as follows:

In the diagram where a and b are elements
of N, and e = (a,b) is an element of E, a is

said to be at the tail of e, and b is said to

be at the head of e.

Definition. A cycle in a finite digraph is a finite

sequence of directed edges, dencted by (ei,.aagek) such

that for each i, 1<1i<k-~l, the node at the head of e

is the node at the tail of CHRE and the node at the head

of e, is the node at the tall of e, -

Definition. A finite acyclic digraph is a finite digraph

which contains no cycles.

An equivalent of the following theorem is given
in Harary (Hl) and we will not present a restatement of
the proof here:

Theorem. In the finite acyclic digraph (N,E}, there
exists a subset ﬁ@ of N such that if Kéiﬁﬁ then x 1is not
at the tail of any edge in E.

By defining, for an acyclic digraph (N,E},

20

TSN~-31

S =N ,
S, = ?nésﬁ,ﬂ/mésa(n?m)ézf
P(x) = {mé€s | (x,m) €Ef
it is easy to see that the acyclic digraph and the acyclic
network are essentially the same. The digraph is defined

in terms of sets and the network in terms of an %ancestor®

mapping P.

The level concept.

With a view toward organizing the representa-
tion of the acyclic digraph for efficient data management
applications, it is convenient to relate it as closely
as poséibie to the tree. In this light, perhaps the most
relevant characteristic of the tree structure is its
natural separation into levels, where the level of a
node x is a way of measuring its distance from the root,
R, of the tree. We seek an analogous partitioning of
a finite acyclic digraph in order to produce a workable
storage structure later. In the finite acyclic digraph
(N,E), let F be the subset of N x N such that (a,bJEF
if and only if there exists e&E such that e is the edge
from a to b, or @ plus all pairs of the form (a,NIL),
where a€ N and a is not at the tail of any edge, and NIL
denotes the second element of the pair, which is not a
node in N. Algorithm Al provides the mechanism for

partitioning N into disjoint levels, denoted by Ly,

21

TSN-31
1 = (1,2,+++) by operating on the set F.

Algorithm Al.
Al.l. Let I be one.
Al.2. Remove all pairs from F with second element NIL.
Al.3., Collect the nodes expressed as first elements of
pairs from this set, and call this level iie
Al.4. If no pairs remain in F, then stop.
Al.5. For all pairs (a,b) remaining in F, if béELI and
there does not exist a pair (a,c) in F such that
@é%LE? then replace b by NIL. Otherwise delete
(a,b)from F.
Al.6. Increment I by l.
Al.7. Go to step Al.Z2.
The operation of this algorithm is illustrated
by the example which follows.

Example. Let D be the directed graph illustrated by

Fig. 1. We may form the set of pairs F as {(a,NlL),
(b,NIL), (ec,NIL), (e,a), (g,a), (e,b), (d,b), (1,c), (f,c),
(o,d), (g,d), (i,f), (j,h), (m,1), (n,1), (0,37, (r,1),

(p,m), (1,n), (k,n), (q,p), (r,q), (s,q), (h,e)} .

TSN-31

The first iteration of Al produces L, as (a,b,c). The
pair (g,a) is deleted entirely from F because aéibl and
(g,d) exists in F. After the first level, L,, is pro-
duced, F is reduced to 1(e,NIL),(,NIL),(f,NIL), (0,d),
(g,a),(1,£),(3,h),(m,;1),(n,1i),(0,3),(r,1),(p,m),{1,n),
(k,né,iq?p),(fiqé,és,qbf . PFurther application of Al

produces in sequence the sets

L, = (d,e,f)
LB = {(g,h,1)
L, = (j,m,n)
Lg = (o,p,k,1)
Lg = (g’

L, = (r,s).

The hierarchy of an acyclic digraph is defined
as the L-partition of levels of nodes produced by algo-
rithm Al. HNote that if a node x is directly connected
by edges to several nodes (nlgge,,nk}, at levels (Li R

1

essyl, J, respectively, then x must be in level Lo

i

k

where m = maxiil,gss,ik} + 1. In the above example, node
0 is in level L53 because it is adjacent to node j, which
is in level Lé? even though it is alsoc adjacent to node

d, in level Lye

The data base

The hierarchical partitioning of the acyclic

digraph suggests forming a definition of a related data

23

TEN~31

structure, an acyclic data structure, which can provide

(1) a graphical representation of nodes parti-
tioned by a finite set of levels, ngs.s,Lk,

{2) the representation of direct hierarchical
relationships (by directed edges) between nodes at any
two different levels. What is lacking in the acyclic
digraph (N,E) as described is the capacity to represent
a partition of the nodes in a single level Lgs and the
capacity to represent specific hierarchical relationships,

or specific node sequences in the digraph. To provide

this capacity the graph must be embellished with two

additional specifications, the partition mapping P, and

a set of node seqguences NS.

The partition mapping P maps each level Li

2 2 2 T I’

into a partition M§§E,Q§Q,Li’k{i}, where k(i) is the
number of elements in the partition of level Lig and if
there are n(i) nodes in level L,, then 1£x(i)Y<n(i).

The set of node seguences NS, on which later

definitions of path and ancestor will be based, specifies
all of the hierarchical relationships among various nodes
which exist. For an acyclic digraph (NE) partitioned
into levels Légse@§im by algorithm Al, the set of node
sequences NS must have the following properties:

A (1) If (a,b) is a subsequence of some node
sequence in NS, where %éELi and %%ELj? then it must be

true that 1<j.

24

TSN-31

(2) If (b,a)&€E, then there exists a node

sequence SE& NS such that (a,b) is a subsequence of S.

We note that while it is not necessary for NS
to contain E as a subset, property (2) guarantees that
each simple hierarchical relationship indicated by a
single directed edge in the directed graph diagram will
be represented somewhere within a sequence in NS. The
power gained in the specification of NS is the control
of all paths longer than one directed edge. For example,

in the diagram

the node sequence set {{a,b,c),(d,b)} represents all
of the edges of the graph, but eliminates the access to
¢ through d. In other words, we may say that a is an
"ancestor™ of ¢ and d is not, which suggests forming the
definition of ancestry on the basis of the sequences of
NS.

The embellished acyclic digraph may be expressed
as an ordered quadruple D = (N,E,P,NS), where N is a
finite set of nodes, E is the edge set, P is a particular
partition mapping applied to the levels of D, and NS is

a pre-defined set of node sequences. In order to relate

TSN-31

the digraph D to a data structure, we make the following
correspondences between graph entities and data entities:
(1) Each node corresponds to exactly one dataset.
(2) Each element of the type partitioning of
the attribute set AI corresponds to exactly one element
of the partition mapping P. Since P is defined in terms
of levels, we thereby associate each type and each type-
set with a unique level, and thus the datasets in each level
are partitioned by a set of typesets.
(3) If datasets x and y correspond to nodes a
and b, respectively, the existence of the pair (a,b) as
a subseguence of some sequence in NS corresponds to the

existence of a hierarchical relationship of x and v, and

means that x is the direct ancestor of vy.

(4) The statement that x is an ancestor of vy
means that there exists a node seguence S in NS such that
(1) a corresponds to x,
biéi} b corresponds to v,
(iii) a and b are in S, and
(iv) a occurs to the left of b in S.

The statement that a path exists from node x to

node y means x is an ancestor of ve.

Two tvpes ?1 and Tz are said to be adjacent if
some dataset of one of the types is a direct ancestor
to a dataset of the other type. Typeset T, is ancestral

to typeset T, if some dataset in Tl is an ancestor of

TSN-31

some node in Tzo

The relationship of typesets may thus alsc be
indicated in the form of an acyclic digraph (T,E‘'), where
T is the set of all types, and E'& TxT, such that
(?isTj}éégﬁ means that Tj is ancestral to T,. For ex-
ample, suppose T = {T19T2’T3’T4’TS} , and E' = {(T2$T13,
(T4,Ty), (T,,T,),(Tg,Ty), (TT),(Tg,T,) } - Then we can
produce the figure below.

Ty

I
T‘///r %\T/{i:i/

Figure 2

In the same way that node sequences are required
to control hierarchies in the acyclic digraph, type sym-
bol sequences are required to exactly specify the hierar-
chies among typesets. The reason is that a type is charac-
terized by a set of attributes which have an inherent
semantic value for the data base. It may well be unsuitable
to define the ancestry of typesets on the basis of the
pairs in E and assume that ancestry is transitive (i.e.,
to assume that ancestry is defined by the transitive
closure of the pairs defining adjacency) for most speci-
fic data management applications. For example, in the

above figure TS may be related to T2 in a completely

27

TSN-31

different way than T% is related to ng and because of
this, TS‘S relationship to T, and ?2*5 relationship to
?3 may have nothing to do with each other. In general,
we must suppose that such cases can occur, and design
structural devices which will allow the specification

of limitations if they are required, and which will also

allow the complete transitivity if it truly exists in

the data structure. Hence the following definitions:

Suppose level L, = T1$11j««» U Ty k(1)
level Ly =T, 1 U " U Ty (o)
level L_ = ?m§i§}= SO Tk (m) ®
IfET =T, j then LEV(T) is defined as i.
¥

A context definition is a sequence of type symbols

T, T, ., *°- T. .
*10d1 t20d2 ek
simpler form, since each type T has a unique level, LEV(T},

1 Tt 4% ;%; g v % °
such tha liéuizé’ <;k In a

a context definition may be defined as a type symbol se-
guence ?iﬁfizaevﬁik where Lgv{Til§<»»~4< ng{Tik}a

It will be useful later to group the hierarchi-
cal information about a group of datasets according to
a single context. The following definition of a c¢c-set
pertalins to this forethought.

If D =T, T, @@@Ti is a context definition,

i, 1
1 -2 k
then the c-set C associated with D 1s an ordered pair

28

TSN-31

(CN,CNS) where

v - U Enéﬁﬁné?i §

e
éiéﬁ jo
P

and CNSE NS (CNS is a set of node sequences) such that
if {nigas@gn?}é56§sﬁ there exists an index ig such that
ilé iq.ﬁik? and

njéi?iq+jmz? for § = (l,eeesp)e

For example, suppose that in Figure 3, p.33, the node

set N is ?},2?3?4,§§§3?} and the set of node seguences

NS is %(igB,é‘iaE??{i?S?é?é}?{234%{2?6},{3?4??)} . Sup-
pose context definition D = TETSTS‘ The c-set C associated
with D is the subset of N contained in the typesets ng
TB’TS§ and the sequences in NS which conform to the type

sequence T2T3T58 Thus
. 7
¢ = 303,4,7}, U3,4,MY) .

Similarly for context definition D = TGTQTBTQ’ the c-set

C = gii§33§55,€§ s {{§?3§4?5}9<1?3,§,6}}} .

The context definition bears a close relation-

ship to the type family of Lowenthal (L4), and corres-

pondingly, a c~set bears a close relationship to a family

as defined by Lowenthal. Briefly, Lowenthal defines a

TSN-31

type family, for a tree structure as a list of type

symbols TQTi TiW§ somewhat similarly to a context defi-
1 72

nition. The differences are as follows:

(1) T, is a member of every type family, and
L %4

is the unique "top™ node's type. iTﬁ is the "root" of
the tree.)

However, in the acyclic digraph-based
structure, all of the context definitions will not, in
general, contain a common type symbol. Context defini-
tions may begin and end at any level, and may have no
common type symbols at alls

{2y If T.T, *+*- T and T,T, *°+ T, are two
O ii ik o Y 3?

different type families, then they can only be different

in the following sense:
There must exist an integer n such that
1<n<min{(k,p) and such that if m<n then

T and if m >n then Ti T, ,

im gm m Im
whereas two context definitions may differ in only one

type symbol. In order for two context definitions

T, =T, and T, -»«T, +to be the same, it must be true
ST 3y 3

that k = p and iﬁ = §ﬁ§ for n = (1,...,k).

(3) Two adjacent type symbols in a type famil

must be at adjacent levels. 1In a context definition,

this is not a criterion. The only requirement is that

the levels of the types be increasing to the right, i.e.,

TSN-31

if TxTy appears in a context definition, then the level
of Tx is less than the level of Ty. In a type family,
the level of Ty would be the level of TX plus one.

For this paper, an acyclic data base consists

of two basic parts, (1) a structural définition, which

defines each type in terms of its attributes, and the
contexts, or type sequences, in the data base, and (2)

a representation,; which records the node sequences speci-

fied by NS, in a more efficient manner. It is thus neces-
sary in a structural definition to specify (a) the attri-
butes comprising each type, and (b) the context definitions,
which give information as to the type sequences or the

type structure.

Example.

The following discussion is based on the small
data base diagrammed in Fig. 3, where N = {1,2,3,4,5,6,?} 5
E = 1(3,1),(4,3),(4,2),(5,4),(6,4),(6,2),(7,4)§ , and
NS = §(1,3,4,5),(1,3,4,6),(2,4),(3,4,7),(2,6)5 . Ap-

plying algorithm Al to (N,E) produces the partition L, =

1,2§ . 1, = {53, Ly = {4 y Ly = 15,6,75 . we

wish to partition each level by type sets, where TG =

b ,or = {2f,r, = 38, 1, - {4}, 1, = {s,6%,

T {?} , and the types are characterized by attributes

5
as follows:

fl

31

TSH-31

TG: GROUP
?lﬁ FED. TAX REVIEW
TE: STATE
TS: CITY
?4: DISTRICT
DoA.
?52 PARK
MANAGER

A diagram of the data base as an acyclic digraph
appears in Fig. 3, with a data value supplied for each
attribute. Node 2 is a reflection of a decision to ignore
state boundaries in designing a tax review area and both
the city Pampa and the district number 2 in Pampa are
related to node 2. Several relationships exist in the
data base as depicted which are undesirable for a retrieval
operation. Let us suppose that the type of each node is
depicted by the type symbol in Fig. 2, and that the data
base designer has sgécifieé a structural definition which
allows the following contexts:

TAT, T, T

0727374

7,7,

T,T4Tg

Tiﬁgg

These are diagrammed as follows:

ii ?&

crour f4

37

STATE /TEXAS

Tsn-31

2:7

fED.ﬁux‘?EWEMQKQEz,AQ

7

Ciry /PAMPA

3l

oisrercT /o

DA /TONES

¢ % s
LsTReCcr /2 PARK fELWeoD
D.A. /SmirTH MANACER /Currs
Figure 3

33

TSN-31

iz

Figure 4

A problem in structural over-richness that

appears in the acyclic digraph is that the context TETBTg

appears to exist in the data structure in Figure 3 but

does not occur in the structural definition. This is also
T 4 T e
true of the sequences ?3?3,4 and QTsz?g However,
if we embellish the acyclic digraph with a simple edge-
label scheme, the preoblem can be solved.
First, let us number the contexts specified as
» 7T o7 o 1 .
1:ToT,T3T,, 2:T, T, 5T3Tc, and 4:T;T,.

an edge with the number of the context if it belongs in

3:7 Then we label

that context. Figure 5 shows the structure with edge

labels.

L0
Lo

I+ To 2:T,
(1)
3.7, | @ e
(1,3)
4:2”3*; (>
3
(0 L‘?,‘)“"'j j

5Ty c:Ty | 7:Ts

Acyclic Digraph with Edge Labels

Figure 5

The augmentation of the data structure with
edge labels, in this example, removes the possibility
of finding spurious relationships due to unspecified type
adjacencies. Thus, the digraph so labelled corresponds
to a data base defined with structural context specifica-
tion.

A more elaborate edge label could be applied
to each edge to record the information about node sequences
on the acyclic digraph. The node sequences would be labelled,
like the context definitions, and if an edge was a part
of a particular node sequence it would carry the label
of that sequence. Because of the complexity of this

sort of scheme aﬁé‘bécause it is not useful as a data

TSN-31

management tool, it will not be developed. It is worth
mentioning as a representation of the node sequence set

NS, however, because there do exist general graph-pro-
cessing software systems in which small prototypes of these
data structures could be implemented for algorithmic

design researche.

The following more comprehensive example of an
acyclic data base is related to current research in the
field of data management, and shows how a tree-structured
data base may be imbedded within an acyclic data base.
Its importance gréws out of a great deal of debate re-
volving about the semantics of Boolean operations on
structured data bases, centered about this example. It
provides the necessary stereotype structures for a tree,
and the opportunity for expansion into an acyclic data
base,

Sample Data Base

We wish to demonstrate the relationship of the
acyclic data base to a use of the tree structure proposal
by Lowenthal (L4). Lowenthal's sample data base is

reproduced in Figures 6 and 7.

(o2

L2

TEN-31

Types and Associated Attributes

le States
Al;lz Name of Startc

Az ¢ Population of 5State
’ ;

Tzz Congressional Districts in States
A

2.1° Population of District
H

A : Name of Congressman

2,2
T3: Voting Record of Congressman

A3 1° House Bill Number

? .

A3’2: Vote |

T4: Financial Involvement of Congressman
A : Name of Company

TS: Major Cities in State

AS,I: Name of City

A : Population of City
5,2

A5,3: Growth Rate

Hierarchical Relationships Among Types
To
|
T
e \,
/Tz 5
T3 \?4

= TOP

Figure 6

37

TSN-31

rOP

i e
e —
l\‘z\\\\i\.\a]flif::i;é&tf.!.siiill
\.\3\\%\\1\9 T
e T
e T ——, P
a e T
Ay 1 = lilinois Ay 1™ Wyoming Aq g = Texas
Ay g = 11000000 Ag g = 314000 & g = 11000000
™~ e
. ///,
. ,, \ ///
a e St 8 b i : K
/,f' -
Ap 3 = Chicago Ag 1 ® 30000 A, 1 = Peora Ag 1= 16000 Ag j = 10000 Mg q = 15000 Ag 1 = Dallas Ag 1 =< null >
Ap g = 3460000 Ag 9= Jones, X. ¥ Ag o = 136000 Ag g™ Smith, A.| |Ag g = Snort, 8. 8. Ag g = Thompson Ag g = T95000 Ag o= Thompson
Ag g e <null > Ag a= 2.3 Ap g =34
//.!
N
///
/ T
//f
1 m S B © 4 g 8
Agy = 415 hgy =418 Agq= ATT Agq1 = GM Agg =211 Ag,q =416 Agq =211 Agq=GM
Ag g = For Ag o= Agalnst Az g™ Against Ag.n = For Ag o =< null >

Ty = JW??@M

Tg = mwé.ﬁ.ﬁkm

Tg = mmrséaw

Ty = w?&w

E
ES

Level

Level 2

Level 3

Figure 7

38

TSN-31

Lowenthai allows several "families” of types
here, T19T29T3’ Tl’Tz’T4§ and Tl’TS‘ In this example
and in the standard "tree-based® data structure, if a
“family" is implied by the type structure, then it is
assumed to have some meaning in the data structure. That
is to say, the contexts of the data base on which retrieval
may be performed are implicit in the data base definition
and are not explicitly stated as families. We will soon
see that by requiring an explicit definition of contexts
we may produce a freer interconnection of nodes and eli-
minate Spﬁrious relationships between nodes and types
which may arise from this freedom.

It is interesting to make an expansion of Lowen-
thal‘s example to produce an acyclic network. Let us
suppose that for each company in the data base, there are
a number of states in which the company has headquarters,
and within each state, we wish to store information about
the companies' headquarters for each city. Thus, the
nodes in type Tl’ the "state" nodes, become candidates
for repeating groups, or repeating datasets, for each
node in type Tég and the location of company headguarters
becomes a repeating group for each state. Let us suppose
further that each Congressman's vote has some relation-
ship to a particular group of company headquarters. We
may provide this relationship and the company headgquar-

ters' repeating groups at the same time by adding a set

39

TSN=31

of "city" nodes at one level less than the state nodes,
allowing connections from “company™ nodes to "state"”
nodes ithis crosses two levels), and connections from
"vote"™ nodes to Ycity" nodes. This is diagrammed in
Figure 8.

Node labels, shown as lower case letters above

the nodes, represent uniquevaddresses of datasets, in
the case of the acyclic network. In Lowenthal's exam-
ple, they represent node addresses, which may not be

the same as dataset addresses, in the way Lowenthal de-
fines his tree data base. For the écyclic network, how-

ever, nodes and datasets are in 1:1 correspondence.

40

TSN-31

Sample Data Base Definition

{A) Types and Associated Attributes

le Company Headguarters
Ai;lz Name of City
Ai 2° Address of Headquarters
H

AE,B: Phone Numbe;

T2: States
Agﬁl: Name of State
A : Population of State
2,2
T3: Congressional Districts T4:
A : District Number
3,1

33§2: Population

ﬁ3§3: Congressman

Major Cities

A4,l: Name of City

A4,2: Population
A4’3: Growth Rate

Financial Involve-
ment of Congressman

A ¢ Name of Company
6,1

Type Structure

?S: Voting Records Tsz
A : House Bill Number
5,1
3532 Vote
(B) Context Definitions Graph of
19 TTs
2t ToTy

(1
(4,5

32 ?ITZ?B

4 TrT3Tg

Figure 8

2‘\£323
: T T
3) 4
CS; ‘T2T3T6 {4 57
T, T

Ty
£

T

{continued on next page)

41

TSN-31

G b c d e f
Py) [SRING A1 E4.O A,/ ertcas o Ay \m?sm.a%%» Ayl Cooy A \m%w%gi e S AUSTIN
2 %va N&E& fy 2/ 203 STarE ST o/ Y06 3RD 7. A2/ F6 N MAIN o Sl Ay, 2 /o4 concr
Avs/ 756- 0934 A3/ 672=7143 A3/ 733~ 611/ A3/ 462 3/ <nuilD s/ Y66~ 7213

%// - P

Ay, /coLorn00 Ay, /WrommneG by, S TEXAS
Az [1LLINOIS ’ 7
Wz s/ 26 ! 3K s / 14
3
y \\\\
o
o
4 t £ - r
ho, Voreaao\\ [7vez | [Ae7rEoRa foy /920 | [/omsas |y, /0l
?w\%&&& M ,,,. m.&&w\m%\ﬁ &N\\,w.m. sz As n\x&.ﬁ &&\.*\A 3,2 S5 K »N\.\a‘w%\a uus\éek\xv
ps/ Smeht> |\ Yy 5 froves, e Wys /2.3 5 famirs, A Ay 3 fswiorr, 5.5 | VAzs /THOmPSO xw\,w. 4 5/ THom? SN
- ,. ,,,, W \\ W \ \\x X M Y
h&\\%\&g \u&\ J4se \\ \ 5 /217 \N,m\ S 4G .\%m\ Sz7/
AL SATT Ay F6M
Asy [For As 2 SaGains | ' 52 (acaisr Aga /FoR 2 /Ol
T,: 1a,b,c,d,e, £} T,: {k,m,q}
mn m@wﬁwﬂm&auw % Amm tyw %wwxw
{1,n,0,p,r} ﬁ 2 {u,v}

Figure 8 (continued)

TSN-31

Node Sequences (specified by some data input language and

procedure)

NS = {(a,t),(b,s),(e,w),(£,w),(g,k),(g,m),(5,q),(a,q),
{(b,g,v),{c,h,ul,{(d,1),(e,i1),{(f,j),(g,1,8),(g,1,t)
(i,n),{(i,0,w),(j,p,x),{J,p,¥v),(j,r),{(g,1,u),(i,n,v),
(j,rgv}}

Figure 8 (continued)

43

TSN-31

Explanation of Figure 8.

(1) The strutture has four levels, and six
types. Note that nodal (dataset) redundancy is not pre-
sent. By this statement we mean that only unique nodes
are represented in the digraph so that, for example, the
node where As?l is paired with GM is connected to two nodes
in the level directly above, rather than being duplicated
as in Lowenthal'’s tree.

{(2) In the context definitions, we do not allow
transitivity in the sense that the existence of context
definitions TZTZTS and T2T4 does not imply the existence
of a context definition T1T2T4T6¢ The context defini-
tions ére the exact specification of the allowable paths
among nodes of various types.

{3) The node seguences are specified by some

data input process. These represent certain "paths”
through the network. Notice the omission of particular
paths or possible node sequences, such as (a,g,v), even
though (a,g) and (b,g,v) are elements of NS5. The drawing
of the acyclic digraph thus is somewhat misleading about
the nodal hierarchies when the edges are left unlabelled.
(4} The c-sets for context definitions Cl through
C

g may be listed as follows:

C

L é{aﬁb?cgdseyf,s,t,w,x} , iéagtE,{b?sigieﬁw}g(f,w)i}A

‘S:m
g

TSN-31

2°¢ é{gghsiyjsksm;f:i} 3 ‘{{gﬁ’c)s(gym):(j)q)}}

C3: iia?bgc?d?eﬁf?g?h?i?j?u’v} 3 {(a‘fg)?(b?gSV}g(C’h’u)?
(d,1),(e,1), (£, }}
Cgf {ig?h§i?j?1?ﬁ?65p9r’s’t’w’x’Y} b {(g’lis)’(gil’t)?

(i,n),(i,0,w),(1,p,%),(i,p,y), (3,02}
5; {{g?h’i§j§}?n907p§r!a?v} 2 {{g71§u)!(j"nQV}?(j?r’V}}}

There is much redundancy in these c-sets. One
of the prcblems in suggesting a form for the storage
structure to represent c-sets is to manage this redun-

dancy in an efficient way.

Summary

In summary, the acyclic digraph has two pro-
perties commensurate with the classes of data structures
introduced in Chapter I. It provides connections across
several levels, and provides for the connection of a
node at any particular level to many nodes at many dif-
ferent levels, both lower and higher. These qualities
are ideal for data which is organized into hierarchies
and in which cross-classification and multiple classifi-
cation can occur. It is clear that‘the problems with
an unlabelled acyclic digraph are mostly a result of its

richness. The specification of contexts when defining

TSK~31

a data structure removes the possibility of making im-
proper associations between classes of datasets in
various types. The problem of efficiently recording
exactly those node sequences which the user specifies
will be considered in Chapter IV, with the development
of a storage structure concept.

To gain a clear understanding of how the storage
structure is to be used, it is necessary first to des-
cribe the syntax and semantics of the retrieval expres-

sion. This is the major topic in Chapter III.

TSN-31

CHAPTER III

RETRIEVAL WITH A NON-PROCEDURAL LANGUAGE

The two basic approaches to the retrieval of
data from the acyclic data base will be the procedural
language approach, and the non-procedural language ap-
proach. The non-procedural language defined in this chap-
ter stems from previous data management systems which
were based on tree structures. The advantage of the
non—pr&cedurai language is that it 1s a high-level lan-
guage using English;like imperatives to demand various
sorts of retrievals of the system. It is thus designed
for users with little or no knowledge of programming
languages or formal data structures. Various semantic
problems with the non-procedural language can cause dif-
ficulties with users, and they can be overcome by building
up the user's knowledge of the data structure. Since
this somewhat defeats the purpose of the non-procedural
language, there is room for development of a procedural
language, which naturally requires more in the way of
programming knowledge, but which operates at a more primi-
tive level and is thus less fraught with semantic difficul-

ties. A recent development by Hardgrave (H2) is used in

TSH-31

Chapter IV to show how a procedural language could be
applied to networks.

In exploring the possibilities of a non-pro-
cedural retrieval language the three major problems are
as follows:

(1) to define the syntax of & non-procedural

retrieval expression,

(2) to give rules which govern the formation
of the semantically valid retrieval expression, and

(3) to define the result, or meaning of pro-
cessing a retrieval expression for the acyclic data base.

In presenting soclutions to these three problems,
sev%zai key ideas maintain the continulty of the research
in this area with that performed mainly in the context of
tree~based data structures.

Lowenthal (L4) formalizes the retrieval expres-
sion by considering Boolean operations on simple retrieval

conditions. The development of a tree algebra for the

data structure provides for Boolean combinations of sets
of nodes at different levels. Hardgrave (H2) introduces
a broader retrieval algebra for tree structures which
gives the user much more control over the method in which
sets of nodes at different levels are combined in Boolean
operations. S.Y. Bang, in a recent study (B2}, charac-

terizes the problems of retrieval from data structures

in terms of showing that certain essential operations
are non-homomcrphic.

The work of Bang mentioned is algebraically
fundamental, and thus applies nicely to the acyclic data
base. Lowenthal's tree algebra shows the need for certain
kinds of operations in the data structure. Hardgrave's
results lend a measure of strength to the retrieval method
stated here, for he finds it expedient to define a fairly
similar process for trees, again allowing the user to
control the manner in which sets of nodes are combined

(see Ch. IV).

The Retrieval Expression

In rough terms, a retrieval expression is a
means of (1) specifying a certain condition which the
user feels is adequate to identify those datasets he is
interested in, and (2) ordering a retrieval processor

to access the data structure and produce those datasets

gualified.
user user condition retrieval data
processor structure
gualified
datasets
Figure 9

The information-flow diagram above summarizes this rough

idea.

49

TSN-31

The general form of a retrieval expression, or
a request to the data management retrieval processor to

extract some explicit information from the data base 1is

PRINT <A WHERE <qc)

where <{AY is a set of attributes of a single type, and

<qc)> is a gualifying clause.

The information extracted will be the values
of the attributes listed in A which are in datasets hierar-
chically related to the nodes qualified by the qualifying
clause {qc} . Thus the final operation implied by the

retrieval expression is a projection (to be defined later)

of the qualified set to the type of the attributes in A.
The idea that this projection should be included in a
formal definition of retrieval is attributed to S5.Y. Bang

(B2).

The CGualifving Clause

Since data sets are made up of attribute/value
pairs, the simplest retrieval expression would contain a
qualifying clause which consists of an attribute symbol,
a relational symbol and a value. This simplest qualifying

clause is called a simple condition and its form may be

expressed by the symbol aRv (attribute-relation symbol-

value). Since the attribute a may appear in only one

50

T8N-31

type, the type of aRv is uniquely defined as the type of
a. Although relatiocnal symbols are normally taken from
the set {=g £, <, <, >, 2:} , we will simply assume
the existence of a finite relational symbol set RS and

let the symbol R denote a member of RS.

Definition of the predicate SAT (aRv,n)

Suppose that n is a dataset of type T, and the
type of aRv is T, and n contains the attribute/value

pair a/v'. We define the predicate SAT(aRv,n) as follows:

1, if v' bears the relationship R to v

"

SAT (aRv,n)

0, otherwise
L

i

If SAT(aRv,n) 1 the dataset n is said to satisfy the
simple gendiﬁion aRv.

With the use of the predicate SAT, we may define
the result of applying a simple condition against an

entire typeset.

Definition of SEL

If S is a simple condition of the form aRv,

where a is of type T, then the selection function SEL

for 5 in T is defined as

51

SEL(S,T)

i
P

n€T | SAT(S,n) = 1} .

Syntax of the qualifying clause

The syntax of the qualifying clause, where <a)
denotes an attribute, <R> denotes a member of the re-
lational set RS, {v)> denotes a value, A denotes a set
of attributes of the same type, and <C) denotes a con-

text label, is given below.

{simple condition> ::= <ad> <R> <>

{selection clause? ::= (simple condition) | (<a) HAS
<qualifying clause>) §

((a> HAS <qualifying clause?> IN <Cp }z

{ {selection clause>) f

{ {selection clause> or <selection clause)) J

({selection clause) and <selection clause)) E

not <selection clause)

gqualifyin ﬁiaase> Pi= selection CE&L&S@} % (< ualify-
| g 9
ing izlaugé}ég

({qualifying clause> OR <qualifying clause>) %
({qualifying clause) AND <qualifying clause>)]
NOT <qualifying clause)

{retrieval expression) ::= PRINT <{A > WHERE fffgﬁalifyiﬁg I

clause > |

PRINT <(A) WHERE <qualifying clause> IN <C)

(941
N

TEN=-31

Semantics of the retrieval expression

The fairly orthodox syntax on the previous page
is sufficient to provide Boolean combinations of simple
conditions. The use of two sets of Boolean operators

{and, or, not} ; and {AND, OR, NOT} as suggested by
Bang (B2) arises from difficulties in processing the
qualifying clause to produce the set of nodes said to be
"qualified". A discussion of Bang's result appears in
Appendix A,

The following semantic rules control the forma-
tion of the retrieval expression:

Sl. The type of a simple condition <ad < R D>
{v> is the type of the attribute a.

S2. If a selection clause is a simple condition,
the type of the selection clause is the type of the sim-
ple condition.

$3. If a selection clause is of the form
{<SC3.> or <’sc2>),(<{sc; > and (sc2>), not (scz} ,
where sCy and sc, are selection clauses, then the type
of sCqy must be the type of sc, and this is the type of
the selection clause.

S4. If a selection clause is of the form <a >
HAS <qc > 1IN <C>§ then the type of the selection clause
is the type of the attribute a.

S5. If a selection clause is of the form <a >

HAS <gc?, then the type of the selection clause is the

53

TSHN-31

type of attribute a.
S6. In a retrieval expression, the image type
?ﬂ is the type of the attributes listed in the set A,

57. If a retrieval expression is of the form

PRINT <A > WHERE <qc) ,

({qc> is a gualifying clause)

the type Tg and the types of the selection clauses making
up {zﬁ:} must all appear in the same context definition.
If these types all appear in more than one context defini-
tion, they do not uniquely determine a context and the
retrieval expression is ambiguous and therefore illegal.

If the image type Tg and the types of the selection clauses
making up < qgc> do not all appear in a single context
definition, then the retrieval expression is illegal.

58, If a retrieval expression is of the form
PRINT <A > WHERE <qgc > IN <C),
the type Té and the types of the selection clauses making
up <gc > must all appear in the context definition C.

89, If a selection clause is of the form

<a» HAS <qgc >,

L
‘ﬁm

TSH-31

then the type of attribute a and the types of the selec-
tion clauses making up <qgc> must all appear in the same
context definition. If these types all appear in more

than one context definition, they do not uniquely determine
a context and the selection clause is ambiguous. If the
type of attribute a and the types of the selection Clauses
making up <qgc> do not all appear in a single context
definition, then the selection clause is illegal.

510, If a selection clause is of the form
<a> HAS Jdgc> IN <C> |
where C is a context label, then the type of attribute a
and the types of the selection clauses making up <gc>

must all appear in the context definition C.

The Retrieval Mapping

For the results of retrieval expressions, we
define a retrieval mapping F, from the set of all retrie-
val expressions which are semantically correct, to the
power set of the set of all nodes, or QN,

In order to define F, we have need of a pro-

ection mapping P, defined as follows:

Suppose that D is an acyclic data base corres-

ponding to the acyclic digraph (N,E,P,N5), and C is a

T8N-31

context definition TiieegTik, T = Ti , for some i,

1<3=k, and si"’i?i , where 1€m=<k. Then the projection P
m

of set S into T is defined in three cases, as follows:

i. 4if m = j, then P(T,C,S) = §
ii. 4if m>j, then P(T,C,S) = {xeT]| 3 {nlguegnm“j)éﬁg
such that (dp,q, where 1< p<q<m-j, such that x=n§gnqé sy,

aﬁé ﬁkéﬁ?i ¢ k::}i?@e@?m”‘jf
j+k-1
1i4. if m j, then P(T,C,S) = {xeT|3 (n),eee,ny_ JENS
such that (3 p,q where 1€ p<q= j-m, such that =0, nﬁgg}f

and ?LéT 9 kzﬁ.?@éegj“m}
% im%kml

where NS is, of course, the set of node sequences.

The projection mapping P thus utilizes those

node sequences which conform to certain type sequences,
or contexts.

The retrieval mapping F may now be defined on

the various syntactic forms of the retrieval expression

grammar.

Fl1. If S is a simple condition of type T, then

F(5) = SEL(S,T)

F2, If <ad> HAS <qc> is a selection clause where attri-
bute a is of type T, and C is a context uniquely deter—

mined by T and the types of the selection clauses making

56

TEN-31

up <qc? , then

F3.

If

F(<ad> HAS dqc>) = P(T,C,F({qc>))

(<ad HAS <qc> 1IN <CD) is a selection clause

where a is of type T, and the clause is valid by rule

s10,

F4.

FS.

F6.

For

then

If

If

If

F({a» HAS {qc>» IN <C>) = P(T,C,F{ <qc>))

S is a selection clause, then

F((s)) = F(S)

S, and 52 are selection clauses of type T, then

1

?£31 or 52} = F{513L33(523s and

F(s, and S,) = F(s,)NF(s,)
S is a selection clause of type T, then

F(not S) = {sfix is of type Tf - S.

the following definitions, if Q is a qualifying

clause preceded by HAS, then T' denotes the type of the

attribute preceding the HAS operator. If Q is not

57

TEN-31

preceded by HAS, then T’ denotes the type of the attri-
bute set A, or TAs
F7, If Q is a qualifying clause, then

F((Q)) = F(Q)

F8. If Q, and Qz are qualifying clauses of types Ti

1
and T2§ respectively, and the context C is uniquely

determined by T' and the types of the selection clauses
making up Q; and Q,, then if Q is of the form Q, OR Q,,

then

F(Q) = F(Q; OR Q,) = ?{Tg?c;?€QEE}Li?iT*,C,F(Q2§},
and if Q is of the form Ql AND Qgg then

F(Q) = F(Q; AND Q,) = ?{T‘§Cg?{ﬁl3}f§?iT’iﬁg?iﬁz}E

F9, If Q is a qualifying clause composed of selection

clauses of types TiiggéﬁﬁTiﬁ, and C is the context

k
which is uniquely determined by T' and TilggeﬁgTikg
then NOT implies complementation in the universe U de-

fined as

u= { (p(rr,c,T,)), and
j=1 J

TSH-31
F(NOT Q) = U - P(T',C,F(Q))

F10. If RE is a retrieval expression, the attribute
set A is of type T, and the context C is uniquely deter-
mined by the type TA and the types of the selection

clauses making up <gqc)> , then

F(RE) = P(T,,C,F(<qge >))

Boolean Algebras

All operations of retrieval produced by the
selection clause occur as set operations within a single
type. If the type is T, then, all selection operations
in T produce members of the power set 2T? which together
with the set operators U ?f3§ -, form an archetypal Boolean
algebra. The importance of this, of course, is to enable
the reduction of selection clauses to elementary forms,
such as disjunctive normal form, and to maintain the
predictability of which datasets will be selected by
any given selection clause.

Similarly, the qualifying clause produces set
operations in the set of nodes of type T', whether T'
be Tg or the type of an attribute preceding the HAS opera-
tor. The universe for these operations is U as defined,
so that, for any given qualifying clause, the set opera-

H
tions and 2Y form a Boolean algebra.

L
=]

Examples gg_Seiecﬁicﬁ

TSN-31

and Qualification (Clauses

Several examples of selection and qualification

clauses will help to illustrate these ideas. These ex-

pressions are based on the sample data base depicted in

Figure 8.

El. PRINT A WHERE

2,1

1. Ty =1,

2. Types T2 and
ng 20 52 is uniquely
3. F(PRINT %2?1
=P(T,,C,,F(A

4,

Rég} EQ PEORIA.

T@ occur together only in context
determined by these types.

WHERE A EG PEORIA)

4,1

1 EQ PEORIA))

x?{Tzsczs imi) = ?g}

E2. PRINT A WHERE
3,1
% T = T
SR W

2. Types TB and

3, F(PRINT §3§1

=P(T4,C,,F(A

407 5

=P(T;,C,, (F(A
s?{T3§C£%§ {s

=P(T,,C,, #

(A EQ 415 and AS 2 EQ AGAINST)
H

5,1

TS uniquely determine the context C§$

WHERE {AS§E EQ 415% and R%,Z

EGQ 415 and gi 5 EQ AGAINST)
b

EQ AGAINST)

1
EQ 415)NF(A

1
Nnit,wt)

)= @

wapn % 0%
5,2 EQ AGAINST}))

TSH-31
= 7
E3. PRINT A3§i WHERE {ngi EQ 415 AND AS,E EQ AGAINST)

ii T% :T3

2. The types TS and ?5 unigquely determine the context Cﬁ.
7

3. F{(PRINT %391 WHERE <AS,1 EQ 415 AND A5,2 EQ AGAINST)

=P(T,,C4,F(Ag | EQ 415 AND Ag , EQ AGAINST)

ap<T3§c45?<T3,cdgFiA5,1 EQ 415))1) P(TB,C43F(AS’2

EQ AGAINST)))

=P(T,,C,,P(T4,C,, {s} YN p(Ty,c,, {t,wf)

=P(T3,C4, {130 {1,001 = p(Ty,c,, 12}) = {1}

Examples E2 and E3 point out the difference
between the two operators and and AND.
E4., PRINT A WHERE ((not(A EQ GM)) OR A EQ AUSTIN)
2,1 6,1 1,1
13 Tﬁ g?z

2. Types T13T2§ and Tg uniquely determine context ﬂse

3. F(PRINT A WHERE ((not(A EQ GM)) OR A

2,1
EG AUSTIN)

6,1 1,1

2?{?2§C33?i§n0t{£ EQ GM)) OR A EQ AUSTIN))

=P(T,,C4,P(T,,Cy, (F(not(A

1,1

6,1 EQ GM)I MY U

P(T,,C,, (F(A; . EQ AUSTIN))))
=P(T,,C5,P(T,,Cq,(Ty - TviNUP(T,,Cy, {£])
3?§T29€3$?<T23C3? ial }ij{,}})

=P(T,,cy, 1hiU 131 ={?55}

61

TSN-31

Note that the not operation produces a complement

relative to the nodes in type Tee

[
o
&

PRINT A, ., WHERE NOT (A EQ GM OR %i

2,1 6,1 EQ AUSTIN)

’l

1. Tg = Tz

2. Types ?3§ ng and Té uniquely determine context
CE for this expression.

3. F(PRINT Az WHERE NOT (A EQ GM OR A EQ AUSTIN)
2

1 6,1 1,1

2§C3§{ﬁw?{ﬁégi EQ GM OR Ay , EQ AUSTIN)}))

=P(T,,Cy,1g,h,1,3] ~(P(T,,Cy,F(Ag | EQ GM))

=P (T

P(ngcg,?(ﬁ EQ AUSTIN)}))

1,1
=P(T,,Cy, {g,h,1,3} ~({gf U 138D
=P(T,,Cs, {h,i]) = {n,i}
E6. PRINT A, , WHERE (NOT A EQ GM) AND (NOT A EQ AUSTIN)
2,1 6,1 1,1

e Ty =T

2. Types Ti? Tg? and Té uniquely determine context Cge
3, F{PRINT gg,l WHERE (NOT Aégl EQ GM) AND (NOT A1§Z
EQ AUSTIN)
= §T23£3§{{§mpingsggiv%}}fﬁ <gﬁ?<T2,c3§é§ M)
=P(T,,Cs, (U-{g}) N w-43iN
g?§T22C3§E§§§stf}i%s%gig) = ‘{hsi§

Notice tké%§ in contrast to example E4, the com-

el

b

plementation here is with respect to U, which is the pro-

jection, as defined in semantic rule F9, of the types

62

TSN-31

in the qualifying clause, in context C3.

E7. PRINT A WHERE (A

2,2
EQ 416))

4,1 EQ DALLAS AND (A292 HAS Aﬁyi

e Ty =%

2. The types of the selection clauses, T2 and ng
and the type TA uniquely determine the context CZ’
3. In the second selection clause, the types of the

attributes A2 > and AS 2 unigquely determine the context
3 = 9

of that selection clause as C4.

4, F(PRINT A WHERE (A EQ DALLAS AND
2,2 4,1

(A, 5 HAS Ag) EQ 416))
=P(T2,C2;(P(T2,C2?fq§)(Ep(Tz,c4,F(AS’l EQ 416))))
z?(Tzﬁcz,{ijEfE?{T29C4,{%,x}}))
=P(T,,C,, (133N {g,5D)

= {3}

E8. PRINT §2,i WHERE {{AZ,E HAS A6,l EQ ATT IN C3) OR
{g3§2 EQ 30K or (A392 HAS Azgl EQ COLORADO))) OR

fﬁéil EQ GM)) IN C5

e Ty =T

2. Context C§ is determined by the IN C5 phrase.

Recall that context Cg is defined by T,T,T..

63

TSN-31

3. The perectioﬁ for A2’2 HAS AG,l

occur in context §3, or TszTée

EQ ATT IN C3 must

4, Let the retrieval expression be denoted by Q.

HAS A EQ

F(Q) = P(T,,Cq, (P(T,,Cq,F (A, , 6,1

ATT IN C3) OR

(A EQ 30K or (A HAS A EQ COLORADO))))U

3,2
P(T,,Cq,F(A

3,2
RQ GM)))

2,1

=P(T,,Cc,P(T,,Cc,P(T,,Cc,F(A HAS A EQ ATT IN C3))

2,2 6,1
L}P{TgscsiFiAsiz EQ BGK}LIP(T3,C4,F(A2’1 EQ
COLORADO) }))

Up(r,,c.,Pla; , EQ GM)))

6,1
=P(T,,Cq,P(T,,Cq,P(Ty,Cq,PTy,Cq,F(Ag o
U p(T,,c., i1{y P(T,,C,, {h} INUP(T,,C, {viN)
=P(T2,CS,P<T2,cs,p(TZ,cs,P(Tz,c3,i,u}))

P(T,,Cq, 13U snU 11,31
=P(T,,Cc,P(T,,C¢, fht U {g}rv{i, i})
=P(T,,Cq,{g,h,1,3}) = {g,h,1,3]

Note that the projection of node u to type T2

EQ ATT))).

in context C3 is h, and in context Cs it is g, which is

why the IN C3 phrase is used.

In summary, one approach to the problem of
Boolean processing on the acyclic data base is to augment
and redefine the retrieval expressidn as fouhd in Lowen-
thal (L4) to provide a basis for ?redictable results,

and to make the processing of the expression workable

TSN-31

with respect to data structures based on the acyclic net-
work. Bang's result (Appendix A) concerning the non-
homomorphic nature of hierarchical dataset qualification
leads to a separation of the Boolean operators into two
sets, and, or, not, operating at the "selection" level,
on datasets or nodes of a single type, and AND, OR, NOT,
ope;ating also within a single type, but upon sets of
relatives of the selected nodes. Thus within the type
specified in set A of the retrieval expression, there
will be a set of nodes which satisfy the qualifying clause.
This is essentially the "meaning" of a retrieval expres-—
sion in a particular data base.

In the following chapter, another approach to
the retrieval problem uses a set of procedures which
are capable of doing Boolean as well as non-Boolean pro-

cessing on networks.

65

TSN-31

CHAPTER IV

A PROCEDURAL APPROACH TO RETRIEVAL

In a recent dissertation, Hardgrave (H2) defines
a set manipulation procedural language called BOLTS,
for Boolean Oriented Language for Tree Structures. Al-
though this language was originally designed to permit
both Boolean and non-Boolean retrieval processing on
tree-structured data bases, with slight modification it
serves as a procedural language for retrieval processing
in the acyclic data base. Such a language 1s useful in
implementation because it provides a ready-made syntax
for insertion into a programming language such as COBOL
or FORTRAN; and because it allows many *_’n@n»standardgg
"retrieval actions to be designed, such as searching through
the data base, or simple Ybrowsing”™ much as one would
do in a library.

BOLTS is defined in terms of two sets of func-
tions, set manipulation functions, and node extraction
functions. The set functions are straightforward, and
defined in terms of two sets of nodes, S1 and Szg they are
(1) UNION (5,,S,) = s, Us,

(2) INTER (s,,S,) = slﬁ S,

66

TSHN-31

(3) DIFFER (5;,5,) = S, - S,.

Node extraction functions TYPE, SELECT, and ADJUST are
defined by Hardgrave to provide the following sets:
(1) TYPE(i) is the set of all nodes of type T,
(2) SELECT((a,r,v))}, where a is an attribute
identifier, r is a relational operator, and v is a value
identifier, is the set of all nodes where SAT{arv) is true.
{(3) ADJUST(S,i), where S is a set of nodes, and
i is an integer, is the set of all nodes that are of type

Ti and are hierarchically related as ancestors or des-

cendants to the nodes in set S.

In terms of sets defined in this paper, TYPE(i) = typeset Ti,
SELECT(a,r,v) = SEL(S,T) where S = Lad{d{v> and a is an
attribute of type T. The function ADJUST(S,i) is roughly
correspondent to the projection function P defined in
Chapter III. What ADJUST lacks is a context parameter

to specify which kinds of paths are to be traversed in
finding a projection. The projection function P(T,C,S)
finds all of the nodes of type T which are related to
nodes in the set S, traversing only those node sequences
which conform to context C. Thus, by redefining ADJUST
with an additional parameter, BOLTS may be expanded

slightly to function in the acyclic data base. We define

67

TSN-31
ADJUST(S,1,C) = P(T,,C,S),

where C is a context, and S is a set of nodes.

Since the projection mapping P has a somewhat
complicated definition, involving the consideration of
the node sequences it uses, the implication of this re-
definition is that ADJUST for the acyclic data Ease will
need to be assisted by some form of structural information
in order to be efficient. We cannot design such a func-
tion and expect it to operate will if it must check each
and every node sequence for contextual validity.

The crucial difference in Hardgrave's treatment
of ADJUST and that given here lies in the concept of the
broom, which Hardgrave defines as a node plus all of its
ancestors and descendants. Since Hardgrave assumes that
all hierarchical relationships are transitive, he is able
to greatly reduce the amount of data necessary to repre-
sent various node sequences, or paths, in the tree, and
since we make no such assumption in the network, it is
conceivable that radically different methods of imple-
menting the ADJUST function must be invented. There is
nothing useful which is analagous to brooms in the acyclic
data base. We have, at best, the possibility of imposing
various orderings on contexts, c-sets, types, and nodes
to arrange the structural information of the acyclic

data base in an efficient way.

o
(e s

TSN-31

If we consider a revised BOLTS definition, using
the six procedures
UNION(S,,S,),
INTER(S,,S,),
DIFFER(S,,S,),
TYPE(i)
SELECT(a,R,v), and

ADJUST(S,i,C),

then the retrieval function F defined in Chapter III may
be recursively defined in terms of these six procedures,

as follows:

Bl., If S5 is a simple condition of the form <a>{R>{(v>, then

F(S) = SELECT (a,R,v)

B2, If <{a» HAS {qgc> is a selection clause where attribute
a is of type ?i and C is a context uniquely determined

by T and the types of the selection clauses making up

< qt:} s, then

F(<a> HAS {qc?) = ADJUST(F({qcl),i,C)

B3, If (¢a)> HAS<{qc)IN{CD) is a selection clause where

a is of type Tif and the clause is valid by rule 510, then

69

B4.

B5.

B6.

TSH=-31

F(<ayHAS qc> INKCD?) = ADJUST(F(<gc>),i,C)
If S is a selection clause, then
F({X)) = F(s)

It Si and S2 are selection clauses of type T, then
F(S, or 5,) = UNION (F(S,),F(S,))

2
F(S, and S,) = INTER (F(S,),F(S,))

2
If S is a selection clause of type Ti’ then

F{not S) = TYPE(i) - S

For the following definitions, if Q is a qualifying clause

preceded by HAS, then Tz denotes the type of the attribute

preceding the HAS operator. If Q is not preceded by

HAS,

Téa

B7.

B8,

then Tz denotes the type of the attribute set A, or

If Q is a qgualifying clause,; then
F({Q)) = F(Q)

If Q, and Qz are qualifying clauses of types Té and

70

TSH-31

T,, respectively, and the context C is uniquely deter-
J
mined by T' and the types of the selection clauses making

up Q, and QE’ then if Q is of the form Qi OR Qs then

F(Q) = ?gai OR Q2§ = UNION {ASJUST(?(Q13§27C},

AﬁiﬁgTi?{Qz}?z§C§§? and
if Q is of the form Ql AND Q2§ then
F(Q) = Eﬁ?ﬁﬁi&ﬁJﬁST{FiQi},Z?C),AQJUSTfF(Qz),z,Cé}

BS, If Q is a qualifying clause composed of selection
clauses of types Tizisee?Tik? and C is the context which
is uniquely determined by Tz and Til?"°’Tik’ then NOT
implies complementation in the universe U defined as

k
U = &Qé Aggﬁsti?i¢?z§£}§ and
J=4 J

F(NOT Q) = U - ADJUST(F(Q),z,C)
Bi0. If RE is a retrieval expression, the attribute set
A is of type ?z§ and the context C is uniquely determined
either by the type ?2 and the types of the selection sets

making up g¢ , or by an IN C phrase, then

F(RE) = ADJUST(F(<qc>),z,C)

71

Thus, BOLTS may be used in its modified form to
simulate the non-procedural language defined in Chapter
ITI. It is important to note that BOLTS is capable of
doing much more than just this, however. It is fully
general procedural system which can be used to manipu-
late sets of nodes in any way the user desires.

Because of the complexity of finding ancestors
and descendants in the acyclic data base, and because
such an operation is necessary both in the procedural
and non-procedural languages defined, it is necessary to
consider a structural representation which will tend to
2id in the functioning of such languages. Chapter V is
a discussion of a structural representation with this

capability.

7z

TSN=31

CHAPTER V

STRUCTURAL REPRESENTATION

The structural characteristics of the finite
acyclic network with which this paper deals can readily
be explicitly represented by a system which uses pointers,
with the arrows in the various diagrams being represented
by the address of the node at the "head" of each arrow.
Such mechanisms have been implemented for tree-structured
data management systems, for example, in System 2000(s6),
and in a system described in a paper by Landamer(Ll),
and in at least one network-like system, the Integrated
Data Store (Bl). These "pointer® systems typically pro-
vide reasonable retrieval times and falrly cheap updating
procedures. However, in large data bases, rather compli-
cated schemes are necessary to preserve the pointer struc-
ture, with a consequent increase in retrieval times.

We therefore seek an implicit structural representation
for the acyclic data base which'is not pointer-oriented
in the belief that this type of representation will pro-
vide an opportunity for consistently better retrieval
times as the acyclic data base gets larger and older.

It is hoped that these fundamental definitions will pro-

vide a basis for further study and possibly an effective

73

TSN-31

implementation of an efficient network-structured data

management system.

The Slot Concept

Since each typeset consists of a finite number
of nodes, it is natural to set up a finite number of
available slots for each type, with each slot being rep-
resented by an integer. The treatment of the slot as an
abstract entity rather than as an implementation "worry"”
has several advantages:

{1) The amount of storage needed for structural
representation may be estimated accurately only when the
cardinality (number of slots) for each type is pre-de-
fined.

(2) For each type, each slot may be easily
represented by an integer, which allows an internal or-
dering of slots which amounts to an ordering of nodes
which is transparent to the data base user. This means
that in the view of the user, the nodes are essentially
unordered within a typeset.

(3) The assumption of a finite number of “slots"
for gaéh type admits considerations of various techniques
which have so far been applied only slightly to data manage-
ment, il.e.,

(i) sparse storage techniques (such as in

sparse matrices)

74

(ii) virtual storage management techniques,

akin to virtual memory techniques.

Path Representation

Since each node within a typeset is unique,
and each slot number is unique, it is natural to form a
1:1 correspondence between nodes within a typeset and
a set of slot numbers for that type. Therefore, each

node label as depicted in Figures 3,5,7, and 8, may be

identified by the specification of a type label and a slot
number, |

For a given seguence of m types, ordered from
fthe type of lowest level to the type of highest level,
szgsg,,T§@§ a path is a sequence of m integers iig.“9
img such that i% is the slot number of a node of type
?jk, for k=1l,c.0,me With this basic definition in mind,

the function of a data base loader is to specify the con-

tents of individual nodes and the paths between individual

nodes. The function of a structural representation is to

store the information supplied by the data base loader,
in such a way that the representation may act as an aid
to the retrieval operation.

Lowenthal (L4) points out the information-
%ichnéss.ef a similar construct, the trace, which allows
efficient retrieval operations. The attractiveness of

this scheme prompts the development of a similar construct

TYPE NODE POSITION(SLOT NO.}
X 6
¥ g

?g u 6
v 8

The table above and on the previocus page in-

dicates that node a occupies slot 2, type ng node b

7

occupies slot 3, type T,, etc. The nodes may be ordered

o

within a type by their slot number.

The node sequence set NS, in Figure 8 lists
the sequence (i,o0,w). These nodes are of types ?2, T33
?gy respectively, so that the sequence exists in context
C§@ The seguence of slot numbers corresponding to this
node sequence is (6,3,5). Here m = 3 from the length
of the context definition, and by setting dk to iﬁmékg

we have

Similarly, the node seguences {(e,w) and (f,w) are ele-
from the position table, these
produce traces for w of 75 and 95, respectively, in

ontext C.. The c-~trace for node w would thersefore be

€y

o

5, 95, in context C, .

TSN=-31

Structure table

The ;révious listing suggests a structure table

t+o record the association of contexts, types, nodes, and
traces, with appropriate embellishment to allow for group-
ings of traces and contexts, according to the following

syntactic rules:

{c—trace) ::= {trace > | {trace)> , {c-trace>
{1-pair> ::= <node labely < c-trace >

{ pair list> ::= <1«pair>§ {1-pair > {pair-list)>
{ type group) ::= {type label> <pair list>

e-1istd ::= {type groupy |{type group> <t-list>
{ c—group > ::= {context labeld> < t-list»

{ structure table) ::= <c-group) [<c-group> <structure

table

The above syntax includes the node label in the struc-
ture table construction, which is an obvious redundancy,
since for each slot number in a type there may only be
one node label, and vice versa. However, the in-
clusion of the node label makes the structure table
easier to follow, and thus it has been included. No
doubt there will be cause for eliminating this label in
some future implementation.

The information contained in the structure table is

intended to record the paths, if any, to each node from

81

those in higher (lower numeric) levels, and to indicate
when the node is not connected hierarchically to any node
of a higher level., This may be formally defined in three
stages, as follows:

Suppose x is a node of type C is a context with

e

T,
definition T, @@@?j , where §z§g>§jﬁﬁ and SSN =
-1 m

%{ii?i?@’%g%l}, ﬁéﬁg@‘%?{i?}%}“?@@&?i

% 8%

§} denotes the set of n
},m

slot number sequences, each m integers in length, which

are to be associated with node %. Then

{1) if x does not appear in the c-set associated with
context C, then n = 0 and no slot number sequences are
defined, otherwise

{2) if x appears in the c-set associated with C
but not in a node sequence in the c-=set, n = 1, and iz,k
= 0 except when k = p, for k = 1,...,m, and when k = p,

Py

i, p = the slot number of x, otherwise
k

{2) n is the number of node secusnces in the c-set
g

associated with C in which x appears, and for r = l,ses,n
b %

(i) ifﬁk = 0, for k> p,

3 3 = ER &}
(ii) irp slot number of x,
{iiﬁ.} f@f@ = 3;3%9@??% E:g

o0
Pad

TSN-31

[/ 0, if 4 = 0, or if there

r,p-q+l
is no node g places to the left of

x in the node sequence, otherwise

i =
ryp—q i
the slot number of the node g
places to the left of x in the node
sequence
—

Each member of the set SSN is a slot number sequence which
corresponds to a node seguence containing x, for a par-
ticular context. The traces to be associated with x in
the structure table are the integers generated by the
sequence of sums

m

tf = jzl djlrgj§ r = 1,oce9ng(dj pre-deflned)

If n = 0, we do not store a trace for x relative to con-
text C. There will be at least one non-empty trace for x,
therefore. Also, if two slot number sequences produce

the same trace, it is stored only once in the table.
The following is a structure table so derived

£rom the nodes and slot numbers listed above, based on

the c-sets of Figure 8:

83

Context

TEN-31

Structure Table from Figure 8

Type

Ty

3

Node

C=trace

20
30
40
50
70
90
31
32
75,95
06
20
30
60
80
23
24
87
200
300
400
500.
700
900

220,320

Corresponding
node seguences

{b,s)
(a,t)

(e,w),(f,w)

(g,k)
(g,m}
(j,q9)

{(a,g),(b,g,v)

TSN-31

Context Type Node c-trace Corresponding
node sequences
h 430 (c,h,u)
i 560,760 (d,i),(e,i)
j 380 (£,3)
T, u 436 (c,h,u)
v 328 (b,g,v)
C4 T2 g 200
h 300
i 600
3 800
T, 1 210 (g;1,8),(g,1,t)
n ' 620 (i,n)
o 630 (i,0,w)
p 840 (3,pyx),(i,p,y)
r 850 (j,r)
T s 211 {(g,1,s)
t 212 (g,1,t)
W 635 (i,0,w)
% 846 , (j,p,x}
¥ 849 (i,p,y)
Ce T, g 200
h 300
i 600
i 800
Ty 1 210 (g,1,u)

Context Type Node c-trace Corresponding
node sequences

n 620 {(i,n,v)
o 030
D 040
r 850 (3,r,v])
Te u 216 (g,1,u)
v 628,858 (i,n,v),(j,r,v)

The data structure in Figure 8 is relatively
simple. Application of trace and context concepts to a
more complex example may be useful. Consider the fol-
lowing hypothetical situation:

a manufacturer defines a hierarchical arrange-

ment of entities he terms as suppliers, parts, subassem-

blies, components and buyers. These are represented as

types.

1~ suppliers

2 parts

#=oor3 e
§

3 - subaszemblies

3

4~ components

b
i

5 buyers

The term repeating group, now commonly used in

data management theory, will be used in the following

sense. To say that T, and T, are types and T, is a re-

0
o

TSN-31

eating group with respect to ‘I‘1 means that for each node

of type Tl there may be many nodes of T2 associated with
it. HNotice that in the acyclic data base there is no
limitation upon the levels of T} and Tze

The manufacturer requires a data base which
will reflect the following relationships:

(1) several suppliers sell several parts each,
implying parts must be a repeating group with respect to
suppliers,

(2) several parts come from various suppliers,
implying suppliers must be a repeating group with respect
to parts,

(3) a part may be used in several subassemblies,

implying subassemblies must be a repeating group with

respect to parts,

(4) most subassemblies require several parts,
implying parts must be a repeating group with respect to
subassemblies,

(5) some subassemblies are used in several com-

ponents, implying components must be a repeating group

with respect to subassemblies,
{6) most components require several subassemblies,

implving subassemblies must be a repeating group with

respect to components,

(7) there are gaps in the structure, i.e., some

87

parts may not be used in any subassembly, or some component
may not require any subassembly, or there may be suppliers
listed who do not currently supply anything,

{8) there is a need for specificity about which

parts are used in which components, for example, the
manufacturer finds it more economical to build subassem-
bly a with parts b or ¢ from suppliers d, e, or f, but
has no market for component g unless it is specifically
constructed with subassembly a with part b only, supplied
by supplier f. Thus, for example, the exisﬁence'cf the

structure

suppliers
parts
subassemblies

components

in the network must definitely be controlled to elimi-
nate all of the extraneous paths to node g,

(9) each component may be sold to several buyers,
and each buyer may require several components, so that T%
and T§ must be repeating groups with respect to each

other .

88

TSN-31

We are thus led to the following network structure:

T}: SUPPLIERS (RG in PARTS)

Tzz PARTS (RG in SUPPLIERS, RG in SUBASSEMBLIES)
TE: SUBASSEMBLIES (RG in PARTS, RG in COMPONENTS)
ng COMPONENTS (RG in SUBASSEMBLIES, RG in BUYERS)
?Si BUYERS (RG in COMPONENTS)

There is a single context: T1T2T3T4TS‘

Figure 10 will serve as a concrete example of just such
a structure, with the various exclusions listed, rather
than labelling the graphe.

In developing the structure table for the Figure
10 context, it is assumed for the sake of simplicity
that each nodes' slot number in its type is the position
of the node in the type from the left, as indicated in
the figure. Figure 11 shows the structure table for the
context. Note the absence of traces 01210, for node
N17, 04662, for node N27, 35780, for node N24, and as
a result;, the absence of traces 35784 and 35785 for nodes
N29 and N30, respectively. These absences are a direct

result of the path exclusions mentioned in Figure 10.

The specification of which paths between data-
sets are to be excluded must occur at the time the data
is actually locaded. This, of course implies that there

must exist some data input language capable of excluding

39

correspondence between the ret

defined and the structure tab

expression is designed to be processed by

ile,

structure table is organized on the

In the next chapter
of retrieval processing with

inverted file are presented.

, th

the

val ecpress
because the
o

basis of

2 actual ba
structure ¢

TSN-31

Type Slot number

PATH EXCLUSIONS: 1. Buyer N27 will buy component N22
only if it is made with subassembly
N1l2.

2. Component N17 made with subassembly
N10 uses part N5 only, not part N4.

3. N3 supplies N8 for N25 only, not N24.

NOTE: This is a graph of a single context.

Sample Context

Figure 10

91

Type

Node

N1O

c=-trace

25000,35000
00100
01200,12200
12300
13400
13500

25700, 35700
00800
00110,12210
00120
01230,12230
12340
12350,13450

13460,04660

T5H-31

Type Node c-trace

NZ23 13570,04670

N24 13580,25780

N25 25790,35790,00890
T N26 12351,13451

N27 13462

N28 13463,04663

N29 13584,25784

N30 13585,25785

N31 25796,35796,00896

N32 25797,35797,00897

Figure 11
(continued)

93

TSN-31

CHAPTER VI

RETRIEVAL ALGORITHMS

Introduction

We assume the existence of three files in this
chapter, the structure file, the inverted file, and the
data file. These files are usually Ilmplemented on mass
storage devices for data management systems, and serve
the following essential functions: |

(1) The structure file is the storage place

for relationships between datasets. It doess not contain
the actual data, but rather some entity which corresponds
to a dataset, a label, a pointer, an address, etc. The
structure file is assumed to be as defined in Chapter V,
which utilizes traces grouped by c-sets, and augmented
by a pointer tc the location of the dataset in the data
file comprising the content of the node represented by
the set of traces in the table.

(2) The inverted file is a representation of a

mapping from a/v pairs to nodes or to a set which corres-
ponds to the node set. It 1s desirable to have the ini-
tial retrieval operators SEL or SELECT access the inverted
file to give the informations about those datasets which

satisfy simple conditionse.

W
e

TSH-31

(3) The data file is where the actual data
values (or references to data literals) are stored,
grouped by datasets. The ordering of datasets in the

file may be arbitrary.

The inverted file and selection operations

At the root of retrieval processing is the

selection of those nodes satisfying a simple condition

aRv, where a is an attribute, v, a value, and R is a re-
lational symbol. We assume the existence of an inverted
file which serves as a helpful tool in finding those nodes
directly. For a given simple condition aRv, the inverted
file must contain structural information about those nodes
which (1) contain attribute a, and (2) contain a value

v'! paired with a such that’v' and v may be compared to

see if v' bears the relation R to v. The structural in-
formation for the nodes is necessary to form Q-projections
into a given type, in the processing generated by the
gualifying clause.

The function SEL, defined in Chapter III as
SEL(S,T) = {n€T| SAT(aRv,n) = 1}

is the set-theoretic node selector for a simple condi-
tion aRv. However, for the retrieval algorithms, the

structural information contained in the inverted file

95

a vy c~trace for §1§¢@§§cmtrace for 9y

c-trace for gzgag§§€ﬁ%§a¢§ for 9y

&
4
Ed

vj c~trace for giygs@?cw%fag@ for 9y
If a type T has m attributes, then these are grouped

together as follows:

T entry for ay
entry for a,

&
&

entry for a.

For convenience, in Figure 13, the context
groups are numbered, to show a typical inverted file
representation, based on the example in Figure 8. It
is usually convenient to sort the values associated with
each attribute, to allow a binary searche.

Algorithm Rl produces a set of traces from the

&

inverted file, when given a context label C and a simple

o=

condition § = aRv.

Algorithm R1

Rl.1. Select the context group G associated

with the type T of a which includes context symbol C.

98

TSN-31

Rl.2. Search for type T in the inverted file.
Select the traces in context group G associated with
attribute a and value v' such that v' bears the relation-
ship R to v.

Rl1.3. This set of traces is denoted as R1(aRv).

Examples of Rl
1. AS 1 EQ 211, in context CS' This simple
7

condition is of type TS‘ The context group in the table
in Figure 13 associated with type TS and which includes
context CS is G4. According to the definition of an
inverted file entry, the traces associated with AS,I in
the context group G5 are listed in the second groupe.

Thus, R1(A. . EQ 211) = (635,849),

5,1

2. EQ ILLINOIS, in context C3. The type

A2,1
Tz has three context groups associated with it, but

only G3 contains the context Cqe In the inverted file,
associated with the a/v pair AzﬁiiiLLlﬁels, in the se-
cond position, are the traces (220,320,420).

Algorithm Rl satisfies the need in the retrie-
val mapping defined in Chapter III for a primitive selec-—
tion condition SEL. Rules F5, F6, F8, and F9 for the
retrieval mapping F demand algorithms which perform the
standard set operations of union, inéersecticﬂ and com-

plement. The rules F2 and F3, for the HAS operator,

require an algorithm to form the projection of a set

99

Context Groups

G
ot
i
i,
"
Nt

et

Gy
%]
it
.
o'
S

[
L
i
e
@]
[08] %)
S

G
s
i
L9
o
St

G5 = (C.)

G6 = (C,,Cc)

TSN-31

Type Inclusions

B4
?E is
T. i=s
&
T. is
3
Tg is
Tg is
T, is
S

G

-
(!

ot

oy

P
Gl

Inverted File from Fig. 8 Data Base

Type Attribute
Ty A
®1,2

Value
AUSTIN
CHICAGO

CODY

COLC. SPRINGS

JACKSON HOLE

L
e

PRINGFIEL

le

Py
i

)24 WALTE

Mi
<

203 STATE ST.
36 N. MAIN
406 3RD ST.

804 CONGRESS

[#8]

Lok
-l

G
o

c-traces

(50),(900)
(30),(300)
(50}, (500)
(40, (400)
(70),(700)
{20),(200)
(20,0200}
(30}),(300)
(50} ,(500)
(40),(400)
(90),(800)

{70),(700}

3,2

TSN-31

446-7213
462
672-7143
733-6111
756-0934
{null)
COLORADO
ILLINOIS
TEXAS
WYOMING

11M

2.6M
314K

1

2

420

462

601

14K

15K

30K

< null>
JONES ,X .Y«
SMITH,A.

Figure 12
{continued)

i01

(90), (900)
(50),(500)
(30),(300)

(40), (400}
(20),(200)
(70),(700)
(30),(430), (300)
(20),(220,320),(200)
(80),(980),(800)
(60),(560,760), (600)

(20,80), (220,320,
980),(200,800)

(30),(430),(300)

(60),(560,760),
(600)

(630)
(620)
(840)
(210)
(850)
(630)
(8403
(210)
(850)
(210)
(620)

31

4

N

B3

NORT,S.S.
THOMP SON

e
=

[
[t
S

]

aﬂwa

wp

»mmé

Ty
wf
(94

g’

3

XTA

PEOH

P
wf

s

138K

(4]

wf

(a8}

gt

o
g
N

Rlugasl®

e

£

oo

N
()

(8

W

s

b

o
(oM

o

<=

L

W

W w0

o

4
o,
[f3]
h
W
{7
(At
LS4 B
@
O pd
O O

g g

[

INST

AGAI

5,2

)

211,846

e

b

o

(]
N

[og
p
o4}

s

Eaa

(o))

g

[N 81

el
[ad}
Aﬁ%@

R

mwxﬂ

<

o

£
%MM

Ea
&
[aY
Sy
g
o

L)

(o

e
0
o~

St

oy

s

¥
(e

TSN-31

of traces, and possibly to change the traces after
projection to those of another context. This would be
the case, for example, in example E7, p. , where the
context changes fiom CQ{AE,E HAS A§$1 EQ AUSTIN), to
62(?R1NT Az,z WHERE <A4’1 EQess))e Qualifying clauses
based on the operators AND, OR, NOT require projections
to type T', whether T' is Tﬁ or the type of an attribute
preceding a HAS.

Therefore, there are three basic algorithmic
mechanisms required by the retrieval mapping. They are

(1) a procedure to form unions; intersections,
and complements of sets of traces,

(2) a procedure to form the projection from
a set of traces of one type to traces of another type,
and

(3) a procedure to find the traces in one con-
text when given traces of the same node in another con-

text.

Relationships of traces

Within each context, a trace méy be assoclated
with only one type in the structure table. 3ince é@t
operations on traces produced from the inverted file
by algorithm Rl are to be defined, it is useful to attach
a context-type identity to trace sets selected by Rl.

We therefore define the c-type of a set of traces selected

T8H=-31

from the inverted file from a simple condition of type

?§§ in context Ci? to be the ordered pair (i,j).
For example, the trace set (635,84%) produced
from the simple condition A_ EQ 211, in context C.,

5,1

is of c-type (5,5). Likewise, the trace set (220,320,
420) produced from the simple condition §2§1,§§ ILLINOIS,
in context C, is of c-type (3,2).

The definitions of relationships between traces
which are needed for the three algorithmic mechanisms
described above are (1) eguality, (2) ancestry, and
(3) context shift. A definition of equality is needed
to define set operations on trace sets. A definition of
ancestry is needed to form projections of traces. A

definition of context shift is needed, to allow algorith-

mic definition of projections implied by the HAS opera-
tor, since it is entirely possible that the context of
a selection clause <a) HAS <qc> and the context of Jgc
may be different (see example E7, Chapter III). We
therefore make the following definitions:

(1) Bguality.

If %} and t, are traces of c-types (i,3}),

{(k,m), r@spé@%i?ezy? then t; = t, only in case i = k,
j = m, and the respective fields of %i and tg are equal.

{2) Ancestry.

If trace ti§ formed by the concatenation

TSN-31

of fields Iyseces Iy, is of c-type (i,3), and trace tzg

formed by the concatenation of fields Jl”"’J is

k?
of c-type (k,m), are such that there exists an integer

p such that Ea = J n = l,ses,p; and Eﬁ = 0 for all

ﬁ?

U

p n k, and {1 k, then ti is said to be an ancestor
of t, and the predicate ﬁﬁC(tl,tzl has a true value,
The statement that tl is a descendant of t2 may be ex-
pressed as éNC(%zstl},
(3) Context shift.
Suppose that context Cp is defined as Tizseé
essl . Wwhere

n X 1 I Jx
= 3

T, 26T, , and C_ is defined as T,
i i q 3

2

i, and t is a trace of c-type ipgiﬁ}a Then all

m%
traces of c—-type (qgjm} in the structure table are in the

context shift of trace t from Cp to an

Examples

Referring to the structure table illustrated
on p. , trace 849, of c-type (4,5), is a descendant of
trace 840, also of c-type (4,5) because the fields com-
pare identically from the left, or are zero in the
higher trace, 840,

Consider the context i42?2§3T5 and the context
€33T3T2TS for the same structure %ab;e. We wish to find

the context shift from C@ to C3 of the trace 600 of c-type

(4,2). Traces of c-=type (3,2) which have a 6 in the second

field are 560, 760, and these form the context shift.

105

Algorithm UI

Algorithm UI is used to form the union and
intersection of a palr of trace sets of the same type,
and in the same context. We assume that Q = Gyseeesdpe
and R = rigggéﬁrﬁ are two sets of traces of the same
type, and in the same context. We assume they are both

sorted in ascending order. Algorithm UI follows.

UI.l. Set i to 1l and j to 1. Set U to &6 and I to §

I.2. Set

o

to aj - Set s to fja
UI.3. Add t to the set U,
UI.4. If t s, go to step UI.1l9.

UI.5., If t

it

$, go to step UI.lZ2,

Ul.6. I

by

i

i n, go to step UI.10,
Ul.7. Set j to j+l1,

UI.8. Set s to rj@

UI.%. To step Ul.4.

UI.10. Add the rest of set Q to U, in order.
UIl.ll. Stop.

Ul.12. Add t to set I (intersection).
UI.13. If i=m go to step UI.Z24.
UIl.14. ifyéxﬁ go to step UI.10.
UI.15. Set i to i+l.

UI.16. Set j to j+l.

UI.17. Set t to q; s and s to r,.

F

106

UIl.1l8.
UIL.19.
UL.20.
UI.21.
UI.22.
UI.23.
UIL.24.

UI.25.

TSN-31

Go to step UI.3.

Add s to the set U.

If i=m go to step Ul.

Set i to i+l.

Set t to qy .

Go to step UI.3.

Add the rest of set R to U.

Stope.

Complement within a type

Suppose M = (tl""’tk) is a set of traces of

c-type (i,j), sorted in ascending order, and N is the

set of all traces of c-type (i,j). Let N be sorted in

ascending order and represented by N = (sl,...,sj).

Since MEN, j=k. The following algorithm COM, produces

in the set C the complement of M with respect to type

§ in context Cis

COM.1l.
COM.2,
COM.3.
COM.4.
COM.5.
COM.6.
COM.7.

COM.B.

If M is empty, go to COM.17.
If k=3, go to COM.16.

Set C to & .

Set i and h to 1.

Set m to t .

h

Set n to Si’
If m=n go to COM.1ll.

Add trace n to set C.

- 107

TSN-31

COM.S. Set 1 to i+l.

COM.10. Go to COM.6.

COM.11. If h k go to COM.15.

COM.12. Set i1 to i+l.

COM.13. Set h to h+l.

COM.14. Go to COM.S.

COM.15. Add the remaining traces in N to C. Stop.
COM.16, C is the empty set. Stop.

COM.17, € is the set N. Stop.

The Structure File and projection operations

The projection mapping P(T,C,S) defined in
Qhaptei IITI requires an algorithm to form the pro-
jection of a set of traces of a single c-type. Suppose
éi is a context and S = tl""’tk is an ordered set of
traces of c-type (i,j). Let the number of type symbols
in context Qi be m, so that each trace may be represented
by m fields figgsg,fmﬁ The following algorithm produces
P(T, ,C,,5):
P.,1. If @ﬁ?i?k}£§L§¥§Tj} go to P.5.

T

P.2, If LE¥§T§}<iLE¥{) go to P.7.

k
P.3. The set 5 is the projection ?iTR?Ci?S}, because

i

LEV(T,).
J

P.4, Sort the traces in the structure table at type Tk

ir
&E%iT%E

in ascending order. Assign this set to T,

108

TSN-31

P.5. Using algorithm UI, find the intersection of the
sets S and T, at step UI.5 comparing only the non-
zZero fieiﬁé of the traces in the set T with the
corresponding fields in traces in set S. This
intersection is P(Tkscigs}.

P.6. Stopes

P.7. Sort the traces in the structure table at type Tk
in ascending order. Assign this set to T.

P.8. Using slgorithm UI, find the intersection of the
sets S and T, at step UI.5 comparing only the non-
zero fields of the traces in the set S with the
corresponding fields of the traces in the set T.
This intersection is P(Tkgci,s)a

?Qgﬁ Sto?&

Examgie

For example, in Figure 11 consider the set S5
of traces of type Tg (13463,25785,13585). We wish to
project these to the traces at type T;. Since LEV(TSE

is greater than LEV(T,), the algorithm directs us to

3
step P.7. The set S in sorted order is (13463,13585,
25785}, and at P.7. this must be intersected with the
non-zero fields of the traces at TE’ in sorted order, or
(00100,00800,01200,04600,12200,12300,13400,13500,25700,
35700). The non-zero fields match for 13400, 13500, 25700,

and therefore this is the projection of 5 into the traces

109

TSN-31

of type TBQ

Context Shift algorithm

Suppose that context Cp is defined as T, ...

1

T, @@@?i s and context C_ is defined as T, e¢eoeT, oo-T, ,

“n K < J1 Im Tk

where i@ = jﬁ, t is a trace of c-type ipﬁin}s The fol-
lowing algorithm produces the context shift of t from

text C_ to context C .
conte o g

CS5.1. Select the n® field of trace t. Assign this to F.

CS.2. Among the traces of c-type {qgjmi'in the struc-
ture table, compare the mib field with F. If it
matches F, add the trace to the context shift of
t. The set of traces so generated is the context

shift of & from context Cp to context Cqs

Examgle

Consider the traces in the structure table for
Figure 8, listed in Chapter IV, Let p=3, g=4, and let
t=430. The definition for C3 is TszTé, and for Cé is

TE?E?S* Therefore, by algorithm CS, we select the 2nd

Lo

field of t, since izzzajig and compare this field, or 3,
with traces of c-type (4,2) in the structure table. These
are 200, 300, 600, 800. The only trace which compares

is 300. Thus 300 is the context shift of 430 from con-

text Cg to context Cég

It is significant to note that these three

algorithms are ve simple, In a recent dissertation,

Everett (El) shows that additional structure in a data
management system is likely to reduce retrieval effort.
This is reflected in the simplicity of the algorithms

just presented.

Examples

A few final examples will illustrate how the
inverted file, structure table, and the algorithms on the
previous pages might be used to process some retrieval

expressions for Figure 8,

Example 1.

PRINT A WHERE A EQ GM

1,2 6,1

(1) The context is well-defined as 23@
{2) The inverted file vields traces 228, 328

for EG GM in context C

Aé§§ 3°
{3) The attribute A o specified a projection
7
to type Tz@ From the structure table, the

traces for type ?} at context C3 are 200,
300, 400, 500, 700, 9S00,

(4) Comparison on the non-zero fields of the
two trace lists yields the intersection,

which is 200, 300.

111

(5)

Example 2,

PRINT A WHERE (ﬁ6

(1) The type T, = T

 TSN-31

Inverting these traces, we get nodes a,b.

EG ATT AND (Az HAS

2,1 ,1 ,1

EQ 14K)) IN C

Az 2 3

2

(2) Context CB is specified, by the IN C3 phrase.

(3)
(4)

(5)

(6)

Context C3 is defined as T1T2T6° Note that
the IN C3 phrase is important here because
there are relationships of nodes in type T,
with nodes of type Té with nodes of type T3
in betwéen§ but in context CS.

R1L{A

EQ ATT) {(436), in context group G3.

it

6,1

R1(A EQ 14K)

i

3.2 (630), in context group G&.
]

Note that here, the context of the selection

clause A HAS (A EQ 14K) is ambiguous,

2,1 3,2
but it does not matter, since the ambiguity
involves types not used in the expression,

T, and T..

5 6
We project 630 to type Tz? using algorithm -—-
P and the structure table. In context C§§
?(T25C4,(6363) = 600,

The trace 600 of c-type (4,2) must be shifted

in context to a trace set of c-type (3,2).

Using algorithm CS, the context shift of

(7)

(8)

TSN-31

600 from C, to C, is (560,760).

4 3
To carry out the intersection implied by

AND, the trace (436) must be projected to

?A or ?2 by algorithm P, giving 430,

The intersection of the two trace sets,

(430) and (560,760), is empty. The retrieval

expression therefore does not specify any

dataset in the data base.

113

CHAPTER VII

CONCLUSION

It is concluded that the basic ideas for a
graphical data structure which is (1) more general than
a tree, (2) less general than a directed graph, and
(3) imbued with enough potential internal ordering pos-
sibilities to allow reduction of retrieval times, have
been explored to the extent that appropriate storage
structures and algorithms suitable for data management
appications have been identified. In fact, it has been
demonstrated that the traditional tools of the data manage-
ment system designer can be applied to this more general
data structure.

Some important ideas have come out of this
study. They are listed below.

(1) Because there are too many inherent possi-
bilities for the grouping of type hierarchies in a data
structure based on the acyclic digraph, the central idea
of a general context is introduced to control these
groupings.

{2} In the same spirit as the context idea is

the use of a structure table based on traces of nodes

114

TSH-31

which exclude spurious hierarchical relationships, which
would cause no problem in tree-like structures, but must
be eliminated to get firm answers from the acyclic data
base.

(3) It is demonstrated that there need be only
simple algorithmic mechanisms to produce a data retrieval
from a request. Although it is true that more structure
is required than for tree-based systems, there are no
doubt structures which exist which are seldom updated,
or updated in a batch mode, or sparse enough to avoid a
great deal of mass storage paging, and which also demand
a richer structure than that available in e tree. For
these structures, the acyclic network has a real chance
of becoming cost effective. In this regard, a simple
algorithmic process for retrieval keeps the operating cost
down at the design stage, which is a useful characteris-
tic to have when developing any prototype system.

(4) A redefinition of the syntax and semantics
of the retrieval expression makes it applicable to the
acyclic data base. It is demonstrated that this expres-
sion may be stated in terms of Boolean expressions of
simple conditions, or in terms of a primitive set of
procedures, the set described in the BOLTS language of
Hardgrave (H2), with very slight modificatione

In the area of this research, the following

are some related tasks which could be explored:

115

TSN=-31

(1) A model implementation needs to be made,
to study the various implementational difficulties which
inevitably occur, such as how to page the large files,
the structure of the inverted file, the size of the
trace fields, etc. It is felt that until some model
can be constructed, further abstract treatment of the
area of networks will be progressively more difficult
to delineate. Also, a model would allow some experimen-
tation with various forms of the retrieval expression,
and the sub-problems of how to specify context, type
projection, etc., could be approached on firmer ground.

(2) A study of the possibility of more parallel
retrieval operations could lead to a higher efficiency
in retrieval and possibly in updating. Given the hard-
ware, the retrieval expression as defined in terms of
selection sets, projections, and Boolean combinations of
projected sets, could 5@ speeded up considerably with
the use of parallel operations to select and project
traces.

(3) The problem of updating and loading trace-
oriented structures, both tree-based and acyclic network-
based, has been studied little, and needs a great deal of
work.

(4) Some characterization of various data
structures which could predict whether they would be

best represented by an acyclic data base or a tree-

116

TSN-31

structured data base would be highly useful in future
studies. Perhaps there is a way of setting up parameters
to model such characteristics as types of data, richness
Qf connections, depth, bushiness of connections, etc., It
would be useful also to know whether a single context
should be transformed to a tree by the T-mapping in
Appendix B or not, in various cases.

{5) The retrieval expression defined in this
paper is simplified to de-emphasize the action dictated
by the left-hand side. It would be useful and important
to define and possibly standardize the types of operators
besides PRINT which could occur in the left-hand side,
and the various options which control processing both
after and during the retrieval. These operators would
most likely include averaging, counting, summing, etc.

There are, no doubt, other areas to be explored
with respect to the subject of networks in data manage-
ment. The question of which applications are most appro-
priate and of the costs involved will remain unanswered
until the tasks above, and possible some others, can be

undertaken.

TSH=-31
APPENDIX A

S.Y. Bang (B2) presents a general result about
a gualification mapping, which applies to acyclic data
bases. We assume the existence of a PATH predicate, and
a means of discovering whether or not a path, or sequence
cfédges9 exists between any two nodes in the data base.
The exact mechanism used is unimportant for Bang's re-
sulte.

Suppose that node x in typeset Ti satisfies
some selection clause, and we wish to determine which
datasets in typeset Tj are qualified by their path asso-
ciation with node x. The most straightforward approach
to this is to let all the nodes in Tj which are connected
to x by some path be qualified. If PATH (x,y) = 1 means
there is a path from x to y, we may define a gualifica-

tion mapping Q from Ti to Tj as
Q{i,3,x) =§3r€ﬁ} }PATH{xgy} = 1} s
and extend this to a set X@E?i§ by the definition
ati,j,x) = U ati,i,x).
x€X

Bang has shown that such a qualification mapping fails

118

TSN-31

to be a homomorphism because in general
Q(i,3,XNY) # Q(i,j,x)Na(i,;,Y)
and
e P
Q(igjgxé ﬁ Q{igj;X}a

Bang's result is applicable to the acyclic digraph-based
data structure, and therefore produces the following
semantic problem:

Suppose a is an attribute of tyre Tj and S1 and
S2 are simple conditions of type ?i and 2 is a retrieval

expression of the form
PRINT a WHERE S1 AND S2

The problem is, in designing the retrieval algorithms for
this type of expression, defining the domain of the opera-
tor AND in the phrase S1 AND S2, Clearly this must
correspond to some intersection of sets of datasets, but
how are they to be produced? There are really two choices
here. We may find a set in Ti to satisfy Siraad a set

in ?i to satisfy S22, use the Q»mapging to find relatives
of these sets in type TE? and then form the intersection

of the relatives. Or, we may first satisfy the clause

ot
ot
O

Sl AND 32" with an intersection of datasets in

then find the relatives of that set in ?%%
@
sult assures us that these two methods wil

produce different answers. The proce

[42]
Ui
v

is possible. The mapping Q, where X ?i?
will be referred tc as a Q-proijection of X
the set Q{i,3,X) as the imaqge of Xin T..
oB8rEc T TYAE
7
e

?i% and
Bang's re-

1, in general,

A E

by

7 A

>

e ﬂw#ﬂﬂww

%Kw“‘uwuﬂmmwm'ﬂ““"'ww

§ / /
\ ; 5\ /
AN £ 4
\\MX
) \
7\ /..
f'éaﬂ"‘a s{j\%ég
X QO g, 0) Rl A
image of 7, Image
¢ ‘ 4
Bang (B2) has shown that if X<T, then Q(i,j,X)<Q(i,3,T.
£
so the figure above depicts accurately the general Q-pro-

jection scheme.

ot
B~
[

T8N-31

Although Bang does not consider contexts of
the acyclic data structure, the indication of a non-homo-
morphism in the general Q-projection is enough to warrant
separating the operations of selection and qualification,

as is done in this paper.

121

TSN-31

APPENDIX B

One solution to the problem of structural

ted o a

*@.8»

it

frte

ase 1

ur

representation of the acyclic data
single context is to map the structure table into a forest
of trees. This may prove to be useful in situations for
which the system needs a structure table in a form such
that (1) a node label may be represented more than once,
and (2) each node label is paired with exactly one trace.

Thne trace mapping, or T-mapping, is defined to produce

+his form from a structure table.

Definition of T-mapp

Suppose Q is a structure table with m types

?E?$3®?Tm§ one context C;Ti

each trace in the table is an m-digit integer, with pre-

g?@?mi and k traces. Then

specified fields fz$g@§?§@§ numbered from left to right.

£

Let Elsgﬁ@gzm each be integers based on the fields fzﬁg@@?

_

a4

icity

Goometh

f?g respectively. In general because of the multip
Hh

{

of traces, the field sizes for the I fields will need to

be greater than or equal to the field sizes for the f
fields. The example to come shortly will illustrate a
| &

case where, in the structure table, only digits up to
9 were sufficient to record the various traces. After

the T-mapping, it will be seen that larger digits are

gt
Pt
[

TSN-31

necessary., In terms of computer storage "larger digit"
may be translated to "larger field". We assume that the
structure table has been sorted into k ordered pairs

(N ﬁtz}?aQﬁ?(ﬁ%?tk}ﬁ where t, <t i=l,ees,k~1, and

i+l?’

1
each ti is a trace of Nic The following is an algorithm

which describes the T-mapping for one context:

THM.1. Set m integers Nyjecsyn to zerc.
TM.2. Set j to one.
TM.3. For i = 1,sss,m, set éi = 0,

TM.4. Assign the m fields of tj to the variables élgoseg
dm’ respectively.
TM.5. For all i, i = 1,2,.0..,m,

if di = 0, then set Ii to zero,

otherwise
if 1. d, then set I, ton. + 1 and se . to
£ }1 # i 5 i t nl t
ﬁi+1§
otherwise
set I, to 1,.
P e
T%ﬁag@ FGE i = };3@@®3m3 S@t E‘i = dia

T™.7. Form the trace ?j by concatenating the integers

e

Iyseee,I , and form the ordered pair (Nj3?j3.

TM.8, If j = m then stop. The segquence of pairs
{ngTi}’*egﬁixk?Tk} is the result of the T-mapping.

THM.9. Increment j by one.

TM.10. Go to step TM.4. For a structure table with

several contexts, Ciie‘a,C?F the T-mapping must

123

ot

TSN-31

be carried for each context, and the resulting

sets of Tj traces stored separately.

T-mapping exXample

The following mapping is derived from Figure 11

and is an example of the T-mapping of that structure

tables

3 Ny £ T

1 N9 00100 00100
2 N17 00110 00110
3 N18 00120 00120
4 N16 00800 00200
5 N25 00890 00230
6 N31 00896 00231
7 N32 00897 00232
8 N4 01000 01000
9 N10 01200 01300
10 N19 01230 01340
11 N7 04000 02000
12 N14 04600 02400
13 N22 04660 02400
14 N23 04670 02460
15 N1 10000 10000
16 NS 12000 13000

124

17
18
19
20

22
23
24
25
26
27
28
29
30

32
33
34
35

36
.3?

39

N1O
N17
N19
N1l
N20
N21
N26
N6

N12
N13
NZ3
NZ24
N29
N30
N2

N15
N24
N30
N25
N31
N32

N3

TSN-31

125

12200
12210
12230
12300
12340
12350
12351
13000
13400
13500
13570
13580
13584
13585
20000
25000
25700
25780
25785
25790
25796
25797
30000

13500
13570
13580
13600
13690
136A0
136A3
14000
13700
14800
14880
148C0
148C4
148C5
20000
25000
25900
25900
259D6
259E0
259E7
259E8
30000

TSN-31

/5

Figure 13

28/ \3p 35

ﬂ‘zmm&_‘_@ N30

TEN-31

3 Nj tj Tj

40 N8 35000 36000
41 N15 35700 36A00
42 N25 35790 36AF0
43 N31 35796 - 36AF9
44 N32 35797 36AFA

Note the sequence of digits 1,2,e0039,A,B,00.,F.
We have resorted to this single character representation

of digits for the sake of simple illustration.

The mechanism of generating new digits in algorithm
TM produces a different association of node labels and
traces; wherein nodes may be redundantly represented.,
As is shown by Figure 13, diagramming the above example
of a structure table, after the T-mapping, produces a
digraph which appears to be a "forest" of trees. The
structure table of the acyclic digraph, which contains
no spurious path information, may be mapped onto a
structure table of the sort first $pecified by Lowen-
thal (L4). Briefly, Lowenthal has defined a '"trace
table”, in which nodes of a tree are paired one-to-one
with a "trace”. The trace is an n-tuple which records
the linear position of the ancestors of a node, and thus

specifies the path to the node via its ancestors. The

127

TSN-31

"trace®, as defined in (L4) however, is based upon the
assumption that all nodes are descendants of a unique
"TOP" node, unlike the Tj‘s which are produced by al-
gorithm TM. Because of this difference, the Tj traces
produced by algorithm TM will be referred to as T-traces.

A similar T-trace table may be produced by creating

a new sequence of nodes in one-to-one correspondence
with the T-traces.

Algorithm TM does not produce T-traces with a
common digit having different digits to the left, because
the condition 1 # d, at step TM.5 compares each new digit
to those that were last produced, so that any difference

produces an increase in I the digit used in forming the

i?
T-trace. Therefore, each node associated with a T-trace
has at most one ancestor. In other words, the structure
represented by the T-traces is a set of trees, whose roots

may be at any level.

Bl

B2

B3

B4

C1

ce

c3

C4

D1

D2

El

TSN-31

BIBLIOGRAPHY

Bachman, Charles, "Introduction to Integrated Data
Store," GE Computer Department, Industrial
Publication, General Electric Company, P.0.
Box 2691, Phoenix, Arizona 85002,

Bang, S. Y., unpublished paper, University of Texas
Department of Computer Sciences, Austin, Texas,
1972,

Bleier, R. E., "Treating Hierarchical Data Struc-
tures in the SDC Time-shapred Data Management
System, " Proceedings of the ACM, 22nd Annual
Conference, 1967, pp. 41-49,

Bloom, Burton H., "Some Techniques and Trade-offs
Affecting Large Data Base Retrieval Times,"”
Proceedings of the ACM, 24th Annual Conference,
1969, p.83.

Childs, D. L., "Description of a Set-theoretic Data
Structure," Tech Report 3, Concomp Project,
University of Michigan, 1968.

"Feasibility of a Set-theoretic Data

Structure,” Communications of the ACM, August,
1968,

Clifford, W. D., "A Comparison of the Conventional
3-pointer Data Management System with the Trace
System, " unpublished paper, Department of Com-
puter Sciences, University of Texas, Austin,
Texas, 1971.

CODASYL Data Base Task Group Report, April 1971,

Association for Computing Machinery, 1971.

D'Imperioc, Mary, "Data Structures and Their Repre-
sentation in Storage, Parts I and II,” NSA
Tech Journal, vol. IX, nos. 3 & 4, 1964.

Dixon, P. J., and Sable, J., "DM-1, A Generalized
DMS, " AFIPS Conference Proceedings, Spring
Joint Computer Conference, vol. 30, pp. 185~
198, Thompson Books, Washington, D.C., 1968.

Everett, G. E., Data Structure and Algorithmic
Determinacy: A Formal Model for the Compari-

Fad

son of Data Management Systems, dissertation,

129

H1

H2

H3

I1

Kl

L1

L2

L3

L4

.
L

Ml

TSN=-31

Department of Computer Sciences, University of
Texas, Austin, Texas, 1971..

Harary, F., Graph Theory, Addison-Wesley, Reading,
Massachusetts, 1968,

Hardgrave, W. T., Theoretical Aspects of Boolean
Operations on Tree Structures and Implications
for Generalized Data Management, dissertation
Department of Computer Sciences, University
of Texas, Austin, Texas, 1972.

Hsiao, D., and Harary, F., "A Formal System for
Information Retrieval from Files,¥ Communica-
tions of the ACM, February, 1970, pp. 67-73.

IDS/COBOL, GE Information System, CPB-~144, General
Electric Corporation, August, 1966.

Katzan, Harry, Jr., "Storage Hierarchy Systems,”
AFIPS Conference Proceedings, Spring Joint
Computer Conference, 1971, vol. 38, pe. 325,

Landamer, W. I., "The Balanced Tree and Its Utili-
zation in Information Retrieval," Transactions
on Electronic Computers, IEEE Journal, vol.
EC-xii, no. 5, Dec. 1963,

LePape, Brice, "Study of a Descriptive Language for
Statistical Data,"™ Osiris Project, Statistical
- Office, The European Communities, Brussels,
September, 1970,

Levien, R., and Marm, M. E., "Relational Data File:
A Tool for Mechanized Inference Execution and
Data Retrieval," publ. no. RM-4793-PR, The
RAND Corporation, Santa Monica, California,
December, 1965,

Lowenthal, E. I., A Functional Apprcach tc the De-
sign of Storage Structures for Generalized
Data Management Systems, dissertation, Depart-
ment of Computer Sciences, University of Texas,
Austin, Texas, 1971,

Lum, V. Y., "Multi-attribute Retrieval with Combined
Indexes,” Communications of the ACM, wvol. 13,
no. 11, November 1970, pp. 660-665.

McLuskey, William A., "On Automatic Design of Data
Organization," AFIPS Conference Proceedings,

130

M2

Pl

Ql

R1

S1

TSN=-31

Fall Joint Computer Conference, 1970, p. 187.

Minsky, M., Semantic Information Processing, MIT
Press, Cambridge, Massachusetts, 1968.

Pratt, T. W., and Friedman, D. P., "A Language Ex-
tension for Graph Processing and its Formal
Semantics,” Communications of the ACM, vol. 14,
no. 7, July 1971.

Quattlebaum, M. V., Subject Headings, Library of
Congress, Seventh Edition, Washington, D.C.,
1966,

Ramamoorthy, C. V., "Analysis of Graphs by Connec-
tivity Considerations,”™ Journal of the ACM,
vole. 13, no. 2, April 1966, pp. 211-222.

Salton, G., Automatic Information Organization and
Retrieval, McGraw-Hill Book Company, New York,
New York, 1968.

131

