
Verifying and enforcing network paths with ICING

Jad Naous∗, Michael Walfish†, Antonio Nicolosi‡, David Mazières§, Michael Miller†, and Arun Seehra†

∗MIT †UT Austin ‡Stevens Institute of Technology §Stanford

ABSTRACT

We describe a new networking primitive, called a Path Verifi-
cation Mechanism (PVM). There has been much recent work
about how senders and receivers express policies about the
paths that their packets take. For instance, a company might
want fine-grained control over which providers carry which
traffic between its branch offices, or a receiver may want traf-
fic sent to it to travel through an intrusion detection service.

While the ability to express policies has been well-studied,
the ability to enforce policies has not. The core challenge is:
if we assume an adversarial, decentralized, and high-speed
environment, then when a packet arrives at a node, how
can the node be sure that the packet followed an approved
path? Our solution, ICING, incorporates an optimized cryp-
tographic construction that is compact, and requires negligi-
ble configuration state and no PKI. We demonstrate ICING’s
plausibility with a NetFPGA hardware implementation. At
93% more costly than an IP router on the same platform, its
cost is significant but affordable. Indeed, our evaluation sug-
gests that ICING can scale to backbone speeds.

Categories and Subject Descriptors: C.2.1 [Computer-Comunication Net-
works]: Network architecture and design; C.2.0 [Computer-Communication Net-
works]: General—Security and protection; C.2.2 [Computer-Communication
Networks]: Network protocols; D.4.6 [Operating Systems]: Security and
Protection—Access controls; Authentication; Cryptographic controls;
General Terms: Algorithms, Design, Experimentation, Performance, Security
Keywords: Path enforcement, consent, NetFPGA, default-off

1 INTRODUCTION

The current Internet provides a simple delivery mechanism:
we put destination addresses in packets and launch them into
the network. We leave the network to decide the path that
our packets take and the intermediate providers that the path
passes through. Even network operators have little control
over the paths that packets take toward them, or after leav-
ing them. There are times, however, when senders, receivers,
and operators would prefer to control packets’ paths—and be
sure that their preferences are enforced.

For example, an enterprise might want the packets that
it receives to pass through several services, such as an ac-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ACM CoNEXT 2011, December 6–9 2011, Tokyo, Japan.
Copyright 2011 ACM 978-1-4503-1041-3/11/0012 . . . $10.00.

counting service and a packet-cleaning service. Or a com-
pany might want fine-grained control over which providers
carry which traffic between its branch offices, yet the net-
work paths must respect the providers’ pairwise business re-
lationships. Or providers might want to make sure that they
are carrying traffic only from friendly nations.

The functionality above does not exist in the Internet to-
day, though there are proposals that address various aspects
of the problem. However, there is no general-purpose mech-
anism that enforces these policies (short of allocating dedi-
cated connections, which is expensive).

This paper tries to fill that void. We describe a new prim-
itive that we call a PVM (Path Verification Mechanism). A
PVM is a protocol and mechanism for forwarding (sending
a packet to its next hop), as distinct from topology discov-
ery and path selection, or routing. Enriching routing pol-
icy [8, 28, 33, 47, 57, 59, 64, 67, 68, 70] has received much
attention. Our focus, in contrast, is enforcing those poli-
cies during forwarding, which has received less attention and
which we view as complementary: if it is important that rout-
ing produce policy-compliant paths, then it is important that
packets actually be forwarded along those paths. (Note that
this is orthogonal to the problem of securing routing proto-
cols [6, 16, 36, 37, 38, 40, 43, 70].)

A PVM provides two properties:

1. Path Consent: Before a communication, every entity on
the path of the communication (including the sender and
receiver) or a delegate of that entity consents to the use
of the whole path, based on the entity’s or the delegate’s
particular policy [61].

2. Path Compliance: On receiving a packet, every entity
can verify (1) that it or its delegate had approved the
packet’s purported path, and (2) that all previous entities
on the path have already forwarded the packet in the order
specified by the path.

Realizing a PVM is a challenging technical problem: when
a packet arrives at a node, how can the node be sure that
the packet followed an approved path? Many “first-guess”
solutions are ruled out by our target environment, which we
assume is:

• Adversarial: Nodes may try to thwart the mechanism.
• High-speed: To work at Internet backbone speeds, a PVM

cannot rely on per-packet public key operations (ruling
out a signed log in every packet [18]), per-flow state in
forwarders (which stymies fail-over), and ideally not even
per-flow public key operations.

• Decentralized: There is no authority that could configure
every node per-flow (ruling out Ethane [19], which pro-
vides Path Consent but only inside an enterprise).

Our solution, ICING, has three key aspects. First, we de-
velop a protocol whereby a node can tell, given a packet,
whether the packet’s stated path is approved and whether the
prior nodes on that path actually handled the packet. The
protocol condenses what appears to be quadratic informa-
tion into linear space, without requiring a PKI or any sig-
nificant configuration state; it composes cryptographic con-
structions (e.g., MAC aggregation [39]) with security tech-
niques (e.g., self-certifying names [7, 49, 51]). Second, the
protocol does not require each entity to approve every flow;
it allows an entity to selectively delegate its authority (for in-
stance, a provider delegates to its customers, who delegate to
their customers, etc.). Third, since we aim for high speeds,
and since processing protocols cost-effectively at backbone
speeds requires hardware, we apply careful engineering to
make our design amenable to implementation in hardware.1

To validate our design, we have implemented ICING in
hardware, on NetFPGA [2]. This implementation achieves a
minimum throughput of 3.2 Gbits/s at an equivalent gate cost
of 54% more than a simple IP forwarder running at 4 Gbits/s;
thus, per unit of throughput, our ICING implementation costs
93% more than IP. Our evaluation further suggests that, if im-
plemented on a custom ASIC (as in a modern router), ICING
would scale to backbone speeds at acceptable cost (§5–§6).

We have also implemented an overlay, ICING-ON, which
uses ICING for forwarding and is incrementally deployable.

We treat related work later in the paper (§7). For now we
just note that some of ICING’s components are reminiscent
of or inspired by prior mechanisms [7, 10, 11, 13, 17, 19,
24, 28, 29, 30, 31, 49, 51, 57, 58, 65, 69], and ICING can en-
force many previously proposed policies. However, we know
of only one proposal that offers both Path Consent and Path
Compliance [18] and none that offers these two properties
in an environment that is adversarial, high-speed, and feder-
ated. More specifically, this paper’s contributions are:
• A new networking primitive, the PVM, and the design of

an efficient PVM, called ICING.
• A fast and affordable hardware implementation of ICING,

and a software implementation in an overlay.
• A packet header format and an optimized construction that

demonstrate the plausibility of rich per-packet cryptogra-
phy at network line rates.

Motivating scenarios and caveats We gave several moti-
vating scenarios above (controlling inbound packet paths for
packet cleaning, etc.), and Section 4 goes into more detail.
Here, we just note that a PVM complements the many works
on routing policy [8, 28, 33, 47, 57, 59, 64, 67, 68, 70] by

1Recent work [23] has examined high-speed software forwarders. However,
backbone forwarders seem likely to continue to require dedicated hardware
for the medium-term future. Besides, our design, being parallelizable, can
run efficiently on multicore general-purpose processors.

verifying that packets take the routes expressed by policy.
We now give three caveats. First, a PVM lets principals re-

strict paths to specific providers but does not guarantee that
those providers are trustworthy. In particular, to guarantee
that a packet hasn’t transited a particular network requires
trusting every provider on the path not to tunnel through that
network or copy packets there. Second, many of the applica-
tions that we give can individually be addressed by special-
purpose mechanisms—at the expense of the other examples.
A PVM, in contrast, provides these functions together.

Third, we are not trying to convince the reader that a PVM
is advantageous on all axes; indeed, our PVM has disadvan-
tages (including complexity and some cost). However, before
this study, researchers did not know whether it was possible
to build a PVM, let alone how to build one or what it would
cost. Indeed, a routinely deferred item in papers on routing
security is “data plane security”, and we found that realizing
a PVM required careful design.

2 OVERVIEW OF ICING

We now describe ICING at a high level, including its threat
model, deferring design details to Section 3.

2.1 Architecture and components

ICING is a packet forwarding mechanism that allows a for-
warder to verify that a packet is following its pre-approved
path—and hence that packet forwarding is complying with
the path policies of all entities on the path—before letting the
packet consume further network resources. An ICING net-
work comprises ICING nodes, which may include end-hosts.

There are two natural deployment scenarios for ICING:
(1) at layer 3 (the network layer) and (2) in an overlay. In
the first case, transit providers would deploy ICING nodes at
the ingress of their networks. Internal forwarders need not
run ICING, just as today’s internal forwarders may imple-
ment a different protocol from that of the border router. This
scenario is default-off [12, 22, 34, 46, 65, 69], which ne-
cessitates careful bootstrapping; the details are beyond this
paper’s scope but can be found in [52, §4], and similar prob-
lems have been treated elsewhere [9, 46, 69]. In the overlay
case, the ICING nodes are waypoints interconnected by the
regular IP network. In this case, ICING’s guarantees refer to
the waypoint-level paths, not IP-level paths. This section will
be agnostic about the deployment scenario.

To communicate with a receiver, the sender first chooses
a path of nodes. How senders find paths depends on the sce-
nario; the sender might query DNS to get a path, purchase
access to a remote ISP via its Web site, statically config-
ure paths, etc. This paper mostly assumes that the sender has
candidate paths in hand, as ICING is concerned with forward-
ing and is orthogonal to path retrieval (routing).

Figure 1 summarizes ICING’s forwarding. For each node
on the path, the sender requests from the node’s provider
a Proof of Consent (PoC), which certifies the provider’s
consent to carry packets along that path. The PoC is cre-

Server 1

Consent

Server 3

Consent

Server 2

node 2node 1Sender

Consent

Receiver

1 11

2 3 4

Figure 1—Forwarding in ICING. Ê The sender logically gets PoCs
from the consent servers of all nodes on the path (a consent server
can delegate PoC-issuing, making this step lightweight). Ë The
sender creates and sends the packet to the first ICING node, having
used the PoCs to construct tokens that Ì each forwarder verifies
and transforms for its successors until Í it arrives at the receiver.

ated by a consent server owned by the provider or acting
on its behalf. A consent server is a general-purpose server
separate from a provider’s forwarding nodes; as articulated
in [17, 19, 30, 31], this separation lets policies be flexible,
fine-grained, and evolvable. We note that a provider’s nodes
and consent servers trust each other (they are a trust domain).

As a packet travels through the network, each node verifies
that the packet is following its approved path. This job de-
composes into three tasks: (1) the node checks that the path
is approved; (2) it checks that the path has been followed so
far; and (3) it proves to downstream nodes that it has seen
the packet. To perform these functions, ICING nodes use the
construction depicted in Figure 2. The construction relies on
PoCs and on Proofs of Provenance, or PoPs. PoPs allow up-
stream nodes to prove to downstream nodes that they carried
the packet. These proofs require pairwise PoP keys, but these
keys do not require significant configuration or coordination,
as nodes derive keys on demand from each other’s IDs.

2.2 Goals and non-goals

ICING seeks to provide a PVM’s two properties, Path Con-
sent and Path Compliance. We refine these properties into
the following requirements for ICING:
• Delegation: A consent server must be able to delegate its

path approval function.
• Path Consent: When a node receives a packet with path

P, it must be able to verify that its consent server, or a
delegate, approved P.

• Path Compliance: When a node Ni with index i in path
P receives a packet with path P, the node must be able
to verify that the packet was sent by the purported sender
(index 0) and has been forwarded by each of the nodes at
indices 1, 2,. . ., i−1, in that order.

ICING is designed to meet the above requirements while be-
ing amenable to an affordable high-speed hardware imple-
mentation and while not requiring a central authority, PKI,
or significant configuration state. Our threat model, which
is strongly adversarial, gives us further constraints. We de-
scribe this model in the next subsection.

There are several functions that ICING is not designed for
(these are either seemingly infeasible or outside the scope of

42

N3N3 N0 N1 N2

Payload Payload

P

V1

V2

V3 ⊕

⊕A2 PoP0,2 PoP1,2

PoP2,3

⊕⊕A1 PoP0,1

A2 ⊕ PoP0,2

⊕A3 PoP0,3 ⊕

PoP0,1A1

⊕

⊕

A3 PoP0,3 PoP1,3

N0 N1 N2

Figure 2—Simplified ICING packet at steps Ë and Í from Fig-
ure 1. Two crucial header fields are the path (P) and the verifiers
(Vj’s). The sender (N0) initializes the verifiers with path authentica-
tors (Aj’s) derived from the PoCs and the packet content. Each node
Ni checks its own verifier (Vi) and updates the verifiers for down-
stream nodes (Vj for j > i) to prove that it passed the packet. PoPi,j

is a proof to Nj that Ni has carried the packet. ⊕ represents XOR.

our problem of path enforcement):
The statement of Path Compliance does not guarantee a

packet’s future. After a packet departs a node, any down-
stream node can send it anywhere. It seems extremely hard
to prevent such misbehavior. However, ICING can contain it:
honest nodes drop packets that do not contain a proof of hav-
ing passed through every prior node on the path.

ICING nodes can copy packets and send them elsewhere,
or pass packets through hidden nodes. This, too, seems very
hard to prevent in a federated environment. However, unlike
in the status quo, ICING senders and receivers can restrict
the path to providers that they trust not to leak their packets.
(This choice is an alternative to onion routing, which is not
always feasible [21].)

ICING does not try to provide authenticated information
about the location of silent errors or failures on the path. An
ICING node can signal an error to the sender (Section 3.4);
however, the sender cannot discover the location of a fault if
none of the nodes on the path initiates this signal.

ICING does not provide information about whether a
packet received any contracted-for services at a node. For
instance, if a sender chooses to send a packet through a par-
ticular node because the node advertised a virus-scanning
service, the receiver can check if the packet was forwarded
through the node but not that it was actually scanned.

ICING makes a binary decision about whether a path is
acceptable; it does not regulate the amount of traffic sent
along a path, or associated to a PoC. Other work [69] has
shown how to perform such accounting with little forwarder
state, and ICING could be extended with this technique.

2.3 Threat model

Machines that obey the protocol we term honest. We assume
that some providers, nodes (including end-hosts), and con-
sent servers are not honest and specifically that they are con-
trolled by attackers. These machines can engage in Byzan-
tine behavior that deviates arbitrarily from ICING’s specified
packet handling. For instance, the attacker can send arbitrary
packets or try to flood links to which it connects. The attacker
can also observe legitimate data packets that pass through

it. We make no assumptions about how malicious nodes are
implemented: they may connect to one another and be con-
trolled by a single attacker, or they may collude, potentially
bracketing honest nodes on paths. Furthermore, even honest
machines may give service to malicious parties; for instance,
a consent server can grant PoCs to an attacker.

The attacker tries to make ICING fail some of its goals
(Section 2.2), for instance by trying to abuse the delegation
mechanism, or trying to make an honest node Ni accept a
packet whose path was not approved by Ni’s consent server
(or a delegate), or whose actual path skipped some of the
honest nodes upstream of Ni in the approved path.

2.4 Naming

Each ICING node assigns itself an identifier, called a node
ID, that is a unique public key. The node keeps secret the
private key. The identifier space is large enough to make the
probability of a collision negligible. With such self-certifying
names [7, 49, 51], a central naming authority or PKI is not
needed. This fits the Internet’s federated structure.

A path is a list of 〈nodeID, tag〉 pairs. The tag identifies a
specific set of local actions that a node performs on packets
with this tag. For example, a tag can describe a priority level
for queuing, identify a customer to bill, select an output link,
request virus-scanning services, or specify a combination of
these. It can be thought of as a generalized MPLS label [25]
(and shares some functionality with the vnode mechanism
in [28]). The provider conveys the particular meaning of a
tag on a node to the users of that tag through out-of-band
means, such as an agreement with the user or a Web page.

2.5 Proofs of consent (PoCs)

After a sender has determined a path, it contacts a consent
server for each node N on the path to obtain PoCs for that
path. Each consent server is preconfigured with its provider’s
policy, so it can check whether paths are compliant. To aid
its checks, the consent server may use external information
(billing, authentication, etc.). If the check passes, the consent
server creates a PoC and returns it to the sender.

For a node N, the PoC is a cryptographic token indicating
that N’s provider consents to the full path, including N’s tag
in that path. This token is computed under a tag key, which
is unique to the 〈N, tag〉 pair. This key is known to both the
consent server and the local node.

Consent serving is flexible. A provider with multiple
ICING nodes can deploy a single consent server. It can also
delegate the ability to create PoCs for a particular node and
tag (by divulging that tag’s key to the delegate) or disinter-
mediate itself altogether (by disclosing all of its tag keys).

2.6 Packet creation and proofs of provenance (PoPs)

The sender uses the PoCs it obtains to construct the packet
header; the construction is such that when a packet arrives at
node N, N can tell whether the sender held a PoC issued by
N’s consent server. The sender also computes PoPs for each
of the nodes on the path. These PoPs prove to the nodes that

the sender created the packet; each PoP includes a MAC of
the packet under a shared symmetric PoP key.

These shared PoP keys do not require the network to be
configured with pairwise keys; ICING nodes derive PoP keys
on demand. By using non-interactive Diffie Hellman key ex-
change, an ICING node (such as the sender) derives the PoP
key that it shares with any other node N from its own private
key and N’s node ID (which is a public key). Nodes cache
PoP keys after deriving them.

2.7 Packet processing: Verification and forwarding

Each node that receives the packet does the following:
1. It computes the PoC from the path and the tag key that the

node shares with its consent server;
2. For each upstream node in the path:

(a) The node derives the PoP key it shares with this up-
stream node (using the upstream’s ID, from the path);

(b) It computes the PoP (a MAC) under the PoP key.
3. It checks that the PoC and PoPs are correct.

The PoPs computed in step 2 prove to the node that the
packet has passed through all the upstream nodes. If the PoC
is correct and the PoPs are all correct, then the packet has
been following an approved path. Otherwise, the node drops
the packet. If the checks pass, the node proves to downstream
nodes that it has seen the packet, as follows:
4. For each downstream node in the path:

(a) It derives the PoP key that it shares with this down-
stream node (from the downstream’s ID, in the path);

(b) It computes the PoP under this PoP key.
5. It inserts these PoPs into the header.
6. It forwards the packet to the next node.

As so far described, packet header size appears quadratic
in the length of the path. However, the header size is in fact
linear in path length. As illustrated in Figure 2, the PoC and
the PoPs that a node inspects in steps 1–3 above are XORed
together in an aggregate MAC [39]. The cost of this reduc-
tion in space is that a node cannot tell, in the case of tam-
pering, which of the PoPs or PoC is incorrect. However, the
probability of successful tampering is unaffected [39].

3 DESIGN DETAILS OF ICING

This section details ICING’s design, which aims to meet the
requirements stated in Section 2.2. Figure 3 describes the no-
tation that we use throughout our design discussion and our
pseudocode, while Figure 4 summarizes the secret crypto-
graphic material used in ICING.

ICING’s packet format is shown in Figure 5. Each packet
includes three types of information for every node in its
path other than the sender. The first is per-node informa-
tion: a node ID, Ni, and a corresponding tag, tagi (Sec-
tion 2.4). The second is the Proof of Consent (PoC) show-
ing that the tag’s owner authorized the path (Section 2.5).
The third is the Proofs of Provenance (PoP), which allow a

M {vers, counter, proto, path-len, pkt-len,
error-path-idx, payload}. A packet’s static
contents.

P 〈N0 :tag0, N1 :tag1, . . . , Nn :tagn〉. A packet’s path:
a list of node identifiers and corresponding tags.

Ni A node’s identifier: a public key.
xi A node’s private key: satisfies Ni = gxi .

tagi The tag corresponding to node Ni on path P: an
opaque 32-bit string.

mNi A node’s master tag key: used in a key-derivation
function (GET-TAG-KEY) to associate key material
(tag keys) to any tag.

mNi :t/p The p-bit-prefix key for tag t at node Ni: an
intermediate key, created by GET-TAG-KEY, that
enables calculation of tag keys at node Ni for any
tag t′ with the same p-bit prefix as t’s. Note that
mNi :t/0 equals mNi for any t.

sNi :tagi The tag key : used by a consent server for node Ni
to create a PoC for a path that includes Ni :tagi.
Amounts to mNi :tagi/32.

PoCi (PoCi.expire, PoCi.proof).
Proof of Consent to path P by node Ni.

PoCi.expire A PoC’s 16-bit expiration time indicator.
PoCi.proof vPRF(sNi :tagi , P || PoCi.expire).

Ai PRF-96(PoCi.proof,−1 || HASH(P || M)). A
packet’s path authenticator for node Ni.

ki,j(= kj,i) NIDH(xi, Ni, Nj)(= NIDH(xj, Nj, Ni)). The PoP
key: a symmetric key shared by nodes Ni and Nj,
used for PoP computations. Soft state, derivable
from nodes’ identifiers.

PoPi,j PRF-96(ki,j, i || HASH(P || M)).
Proof of Provenance designated for Nj: A MAC by
which Ni attests that it had approved a packet’s
path and handled it accordingly.

V 〈V1, . . . , Vn〉. A packet’s verifier-vector.
Vi (Vi.expire, Vi.proofs, Vi.hardener).

Vi.expire Same as PoCi.expire.
Vi.proofs Ai ⊕ PoP0,i ⊕ . . . ⊕ PoPi−1,i.

Aggregate MAC by which Ni checks out Ai (and
hence PoCi), as well as PoPj,i, for j < i.

Vi.hardener PRF-32(PoCi.proof, 0 || HASH(P || M)). Hardens
forwarder slow path against DoS.

NIDH(xi, Ni, Nj) HASH2(SORT(Ni, Nj) || Nxi
j). (Hashed)

Non-interactive DiffieHellman key exchange.
vPRF(s, d) A keyed function that maps variable-length data d

to 128-bit pseudorandom outputs. The current
implementation uses PMAC [15].

PRF(k, d) A keyed function that maps 256-bit data to 128-bit
pseudorandom outputs. The current
implementation uses an optimized
AES-CBC-MAC.

PRF-96(k, d) First 12 bytes of PRF(k, d). Suitable as a 128-bit
message authentication code for d.

PRF-32(k, d) Last 4 bytes of PRF(k, d).
HASH(d) A collision-resistant hash function that maps

variable-length data d to a 248-bit digest. Based
on CHI [35]. Future versions of ICING will use the
final SHA-3.

HASH2(d) A collision-resistant hash function that maps
variable-length data d to a 128-bit digest. Based
on SHA-1. Future versions of ICING will use the
final SHA-3.

Figure 3—Symbols and notation used in the pseudocode.

node i consent server i delegate
(i ≥ 0) (i > 0) of node i sender

xi x

ki,j o

mNi x x

mNi :t/p o o x

sNi :tagi o o o

PoCi.proof o o o x

Figure 4—Cryptographic keys in ICING (rows), and holders of
these keys (columns). The key material is relative to the i-th en-
try in a packet’s path (which is the sender, if i = 0). x denotes a key
that the entity is given; o denotes a key that the entity can derive.

verifier
vector

...

Node ID (N0)
[20 bytes]

[20 bytes]
Node ID (Nn)

[4 bytes]

[4 bytes]tagn

tag0

vers path

path

(1) len
path
idx

error
idx

pkt lenproto payload

V1.expire Vn.expire

...

[2 bytes] [2 bytes]· · ·

V1.hardener [4 bytes]

[4 bytes]Vn.hardener

[12 bytes]
V1.proofs

[12 bytes]
Vn.proofs

counter [6 bytes]

Figure 5—ICING header. The per-node overhead is 42 bytes; we
estimate the total overhead on the avg. packet to be < 25% (§6.1).

node to verify that every previous node has approved the path
and forwarded the specific packet (Sections 2.6–2.7). The
PoC—more precisely, an authenticator derived from it—and
PoPs are aggregated into a constant-length verifier (Vi.proof).
PoCs and PoPs allow ICING to meet its requirements of Path
Consent and Path Compliance. We discuss Delegation later.

Because packets carry node IDs, and because node IDs are
public keys, our design needs small public keys. Thus, we
use elliptic curve cryptography (ECC): every node ID, Ni, is
a point on NIST’s B-163 binary-field elliptic curve group [5],
which gives roughly 80-bit security, similar to 1024-bit RSA
keys [5]. The private key, xi, corresponding to Ni, is the 163-
bit number such that Ni = gxi in B-163, where g is the group
generator. To make the approach amenable to hardware im-
plementation, we reduce the representation of Ni from 163 to
160 bits.2 We do so by requiring the top three bits to equal

2Each version of ICING hard-codes particular cryptographic algorithms. As
algorithms are later broken or require longer key lengths, we expect the
choices of algorithms and key lengths to change but not the primitives
(pseudo-random functions (PRFs), collision-resistant hash functions, etc.)

1: function INITIALIZE(pkt, PoC1, . . . , PoCn)
2: P, M, V = pkt.P, pkt.M, pkt.V
3: H = HASH(P || M)
4: for 1 ≤ j ≤ n do
5: Set Vj.expire = PoCj.expire
6: Aj = PRF-96(PoCj.proof,−1 || H)
7: Set Vj.proofs = Aj

8: Set Vj.hardener = PRF-32(PoCj.proof, 0 || H)
9: Nj = j-th node in P

10: k0,j = DHCache[Nj] or NIDH(x0, N0, Nj)
11: PoP0,j = PRF-96(k0,j, 0 || H)
12: Set Vj.proofs = Vj.proofs ⊕ PoP0,j

Figure 6—Pseudocode for packet initialization. The sender initial-
izes the verifiers before sending the packet to the first node.

a cryptographic hash of the lower 160 bits; this does not di-
minish the strength of the keys, though it increases expected
key generation time by a factor of 8.

3.1 Creating a packet

Once a sender assembles a path P (a process largely orthog-
onal to ICING, as discussed in Section 2.1), it must obtain
PoCs for each Ni :tagi in P. To do so, it contacts Ni’s consent
server. The PoC consists of a 16-bit expiration time indica-
tor, PoCi.expire, and a cryptographic token, PoCi.proof =
vPRF(sNi :tagi

, P || PoCi.expire). sNi :tagi
is a tag-specific se-

cret key shared between node Ni and its consent server. Be-
cause managing keys separately for their 232 tags would be
cumbersome for a node and its consent server, they instead
share one master tag key, mNi , that pseudorandomly gener-
ates many tag keys. This process is encapsulated by GET-
TAG-KEY(mNi , tagi), and we unpack it below, in Section 3.3.
The master tag key mNi is changed periodically to prevent
cryptanalytic attacks; a PoC’s expire indicator is relative to
the time when mNi was last re-keyed. The granularity of each
expire time-unit is a per-node parameter; we envision typical
choices between a few seconds and several minutes.

Given these PoCs, the sender calls INITIALIZE (Figure 6),
which creates a verifier Vj for each other node j on the path.
The sender initializes Vj with Aj (which binds the PoCj to the
packet contents) and PoP0,j; given this Vj, a downstream node
can verify that the packet’s path is approved by its consent
server and that the packet has been created by the packet’s
purported sender.

3.2 Forwarding and receiving a packet

On receiving a packet, a node Ni with index i in the packet’s
path processes it according to the pseudocode in Figure 7.
The node must ensure that Path Consent and Path Compli-
ance (Section 2.2) are met for each packet that it passes.
(Delegation will be discussed in Section 3.3.)

First, for Path Consent, Ni must verify that the PoC im-
plicit in the packet, PoCi, is correct. Second, for Path Com-

and hence not ICING’s design. To smooth the changeover, hardware would
support old and new versions (as with IPv4 to IPv6).

1: function RECEIVE(pkt)
2: P, M, V = pkt.P, pkt.M, pkt.V
3: i = pkt.path-idx
4: Ni :tagi = i-th entry in P
5: T = current time
6: PoC′

i .expire = Vi.expire
7: if PoC′

i .expire < T or Ni 6= my node ID then
8: Drop pkt
9: sNi :tagi = GET-TAG-KEY(mNi , tagi)

10: PoC′
i .proof = vPRF(sNi :tagi , P || PoC′

i .expire)
11: H = HASH(P || M)
12: A′i = PRF-96(PoC′

i .proof,−1 || H)
13: V ′

i .proofs = A′i
14: V ′

i .hardener = PRF-32(PoC′
i .proof, 0 || H)

15: if V ′
i .hardener 6= Vi.hardener then

16: Drop pkt
17: // verify upstream PoPs (check Path Compliance)
18: for 0 ≤ j < i do
19: Nj = j-th node in P
20: kj,i = DHCache[Nj] or NIDH(xi, Nj, Ni)
21: PoPj,i = PRF-96(kj,i, j || H)
22: V ′

i .proofs = V ′
i .proofs ⊕ PoPj,i

23: if V ′
i .proofs 6= Vi.proofs then

24: Drop pkt
25: // verify downstream PoPs (prove Path Compliance)
26: for i ≤ j ≤ n do
27: Nj = j-th node in P
28: ki,j = DHCache[Nj] or NIDH(xi, Ni, Nj)
29: PoPi,j = PRF-96(ki,j, i || H)
30: Set Vj.proofs = Vj.proofs ⊕ PoPi,j

31: Set pkt.path-idx = i + 1
32: Add all calculated kx,y to DHCache
33: Perform any special handling prescribed by tagi
34: Transmit pkt to next node (or accept if destination)

Figure 7—Pseudocode for packet forwarding. The node validates
the packet and transforms verifier entries before honoring the tag
specified in the packet’s header and sending the packet to the next
node. Note that P is 0-indexed and V is 1-indexed. For brevity, gen-
erating and handling error packets (§3.4) is not depicted.

pliance, the node must verify the PoPs created by upstream
nodes N0, . . . , Ni−1 (that is, it must verify PoPj,i for j < i).
The node executes both checks by validating the verifier Vi.
To do so, it derives an expected verifier V ′

i , which requires
deriving the expected PoC′

i (based on the path and the rele-
vant tag key, cf. Figure 7, lines 9–10), the expected A′

i , and
the expected PoPs. If V ′

i does not match the verifier in the
packet (Vi), the packet is dropped (Figure 7, lines 11–24). To
perform its required duty with respect to Path Compliance,
the node modifies the verifiers for downstream nodes (Vj for
j ≥ i) by XORing Vj with PoPi,j (Figure 7, lines 26–30).

Computing PoPs may require deriving PoP keys ki,j (=
kj,i). Being resource-intensive (it takes about 4 msec in our
implementation), this calculation happens on a node’s slow
path (meaning on a general-purpose processor). An attacker
may try to attack a node’s slow path by sending many pack-

ets with invented node IDs. To defend against such an at-
tack, the node requires a valid hardener (Vi.hardener) in the
packet, which it checks on the fast path (Figure 7, lines 14–
16). Vi.hardener is only 32 bits, so it does not fully rule out
such attacks, but it decreases their effectiveness by a factor
of 232, which is sufficient to avoid denial-of-service.

3.3 Deriving tag keys and controlled delegation

We now detail GET-TAG-KEY(mNi , tagi). Let t/p denote the
p-bit prefix of tag t, and define mNi :t/p to be the corre-
sponding p-bit prefix key. We take mNi :t/0 = mNi for any
tag t. Then, GET-TAG-KEY(mNi , tagi) iteratively computes
mNi :tagi/p = PRF(mNi :tagi/(p−1), tagi/p) to get mNi :tagi/32 =
sNi :tagi

, the tag key associated to Ni :tagi. This approach is
inspired by a technique in [57].

As so far described, this technique derives sNi :tagi
from

mNi :tagi/0 = mNi using 32 serial rounds of PRF, which is too
many for high speed packet processing. Three modifications
that significantly reduce costs are described in [52, §2.3.1].

Controlled delegation. Given the above approach to tag
key derivation, tag prefix delegation is easy to implement.
To delegate the tag block with prefix t/p (i.e., 232−p tags), the
node’s provider shares mNi :t/p. The delegate can further sub-
delegate tags by sharing mNi :t/k, where k ≥ p. Delegation
lets a provider give customers control over particular tags on
the provider’s nodes. A customer with such control can, with
no provider intervention, act as a consent server on behalf of
the provider (creating PoCs for its own traffic if it is an end-
host or for its customers if it is itself a provider) or give its
customers their own tag keys (to disintermediate itself).

Expiration and revocation. The PoC.expire timestamp
allows consent servers to mint time-limited PoCs. This re-
quires that a consent server and its nodes be loosely time
synchronized (e.g., via NTP), within a tolerance commensu-
rate to the expire -granularity adopted at the node .

The master tag key mNi and other prefix keys mNi :t/p are
changed periodically to guard against chosen-message crypt-
analytic attacks and to prevent an old timestamp that has
wrapped from appearing valid.

To revoke PoCs before the expiration interval, a provider
can (1) change mNi at the node and consent server; or (2)
change only a prefix key (or tag key), no longer deriving it
from mNi . The latter option requires a small, longest-prefix-
match override table mapping prefixes to prefix keys; the de-
tails are described in [52, §2.3.1].

3.4 Signaling errors and failures

Because ICING packets are source-routed, a network using
ICING needs to report errors and other failures back to the
sender so that the sender can use a different path if necessary.
Note that a sender can hold pre-approved backup paths, so
failures need not require the sender to obtain new paths.

On encountering an error, an ICING node generates an
ICING error packet that travels backward along a given path
toward the sender. A slight complication is Path Consent: for
some nodes, consenting to a path’s forward direction may

not imply consent to carry error packets in reverse. In that
case, the sender has to rely on end-to-end failure detection.

For nodes that do consent to carry error packets, ICING
handles errors as follows. To create an error packet, a node
sets the error index field in the header to the current index
and replaces the payload with the original packet’s hash, fol-
lowed by optional error-specific information (analogous to
ICMP error code and data). A node recognizes packets with
non-zero error index fields as error packets and handles them
differently: most importantly, the node forwards such pack-
ets to the previous node (rather than the next) and decrements
(rather than increments) the path index field.

The Vi in an error packet contain all the forward-direction
PoPs from the original packet, in addition to PoPs for the
error packet itself. Because the error payload begins with
the original packet’s hash, nodes can verify these forward-
direction PoPs despite not having the original packet. In par-
ticular, node i drops an error packet unless Vi.proofs includes
a PoP under ki,i. This ensures that a node will not forward an
error packet if it did not previously forward the original.

3.5 Attacks

Attacks against the verification algorithm. The algorithm
guards against the following attacks.
• Using incorrect or expired PoCs: This attack fails because

each node checks the expiry and recalculates its expected
PoC (Figure 7, lines 7–10).

• Skipping an honest node i: When the packet is received
at honest node j downstream of node i, Vj will lack PoPi,j
and will be flagged (Figure 7, lines 11–24).

• Flooding a node’s slow path: The attack is mitigated be-
cause the node checks Vi.hardener before calculating any
PoP keys (Figure 7, lines 14–16).

Attacks that compromise secrets. How should a node
handle the inevitable compromises of its cryptographic ma-
terial (Figure 4)? We have discussed PoC revocation (Sec-
tion 3.3): a node changes prefix or tag keys (mNi :t/p). If an
mNi :t/p itself is compromised, a node can simply change it.
A more serious concern is the compromise of a private key,
xi, or any derived PoP key, ki,j. In that case, the node must
generate a fresh public/private key pair so must also change
its node ID. This requirement is inconvenient but not disas-
trous; other entities that express policy in terms of the re-
named node must be notified about the change.3

Attacks that attempt packet replay. An attacker who has
observed a valid packet may inject a duplicate copy along a
suffix of a path. At low rates, such attacks are not problem-
atic: the layer using ICING presumably handles duplicates
anyway. Meanwhile, an attack that aggressively floods using
a few packets can be defeated by a modestly sized replay
cache at each node; this cache would store 〈PoC, counter〉
pairs (the counter, from the packet header field, is chosen by
the sender to be unique over the flow). A difficult case is if

3This inconvenience could be mitigated by modifying ICING to add a level
of indirection in naming.

the attacker can amass packets from many flows within a sin-
gle PoC validity window and then replay each packet a small
number of times. Defending against this case is future work;
it may require both reducing the PoC validity window and
compressing the information in the replay cache.

Attacks on availability. What if an attacker overwhelms
a consent server [9, 69]? One option is to locate the con-
sent server at a high-bandwidth denial-of-service mitigator
(e.g., [56]). Another option, if the receiver already knows
who should be allowed to reach it (for example, employees or
customers), is to give these senders their own tag keys sNi :tagi

so that they can mint their own PoCs without the consent
server. Third, if PoC requests travel in ICING packets, then
ICING’s mechanisms themselves provide a foundation for
defense. These mechanisms apply not just to an overloaded
consent server but also to any receiver wishing not to hear
from a sender. For instance, if senders can be identified at
a useful granularity (e.g., “employees”, “paying customers”,
“unknown senders who solved a CAPTCHA”), then the victim
can assign each category to a different tag. When overloaded,
the victim deprioritizes categories by not renewing expired
PoCs for their tags; downgrading service to them; or, in an
emergency, changing tag keys. If senders cannot be assigned
to categories, we can follow TVA [69], ensuring roughly fair
bandwidth consumption among senders by applying Hierar-
chical Fair Queueing [14] to a packet’s path. While attackers
can weaken this defense under TVA by faking path identi-
fiers, ICING does not have this vulnerability.

Other attacks. Section 2.2 mentioned attacks that ICING
does not defend against.

4 APPLICATIONS OF ICING

We first describe three applications of ICING and then say a
few words about the interface to ICING.

First, ICING receivers can request services for incoming
packets (e.g., outsourced intrusion detection service (IDS)
or denial-of-service mitigation [56]) and then verify that re-
ceived packets actually traversed the services. ICING also
enables these services themselves to specify other interme-
diate services (e.g., the IDS can specify an accounting ser-
vice that drops traffic for non-customers). Unlike previous
work [62, 63], ICING provides integrity and authentication
in the forwarding mechanism, even for intermediaries.

A second application is enforcing routing policy. Today,
Internet providers run a policy routing protocol (BGP). Yet,
forwarding in the current Internet can undermine policy rout-
ing: packets can (and do [48]) deviate from the paths deter-
mined by BGP [16, 26]. Under ICING, if a consent server
agrees only to BGP-compliant paths, then its nodes will carry
only packets that follow such paths.

Finally, ICING lets an enterprise protect itself against a
flooding attack, by allowing it to control traffic toward it in
a remote provider’s network. The enterprise purchases dele-
gated tags from a provider and mints PoCs for those tags on
behalf of the provider only for authenticated senders.

Interface to ICING. We have implemented ICING both in
an overlay network (called ICING-ON [50], [52, §3]) and at
layer-3 (see [52, §4]) and have deployed ICING-ON on vir-
tual machines in Amazon’s EC2. We have no space for de-
tails so here just say a few words. These implementations
demonstrate how bootstrapping, path retrieval, and topology
discovery work. For ICING-ON, bootstrapping is easier since
senders can always use the underlying network to reach con-
sent servers. At layer 3, there are some details regarding how
senders can use the default-off network itself to get consent
to request consent [9, 46, 69]. For path building, how can the
sender build a path that has the approval of all nodes? In the
overlay scenario, one can iteratively build a path by querying
consent servers that return patterns of allowed paths. At layer
3, allowed patterns are distributed in a routing protocol.

5 IMPLEMENTATION

This section describes our implementation of the ICING
node’s hardware and software. Our prototype node accepts
ICING packets carried in Ethernet frames and implements
the algorithm in Figure 7. The implementation has a fast
path that runs in hardware, and a slow path that is executed
in software if a PoP key (ki,j) is not cached in hardware or
if an exception occurs. The fast path is implemented on the
NetFPGA programmable hardware platform [2], which is a
PCI card with 4 GigE ports, a field programmable gate array
(FPGA), SRAM, and DRAM. The slow path, implemented
in Click [42], calculates the needed keys and installs them in
the hardware’s key cache. The Diffie-Hellman key exchange
is implemented with the MIRACL cryptographic library [60].
All of the node’s software runs on Linux 2.6.25.

We have not yet implemented PoC expiry or the handling
of error packets. However, we do not expect these features to
change our evaluation, as reported in the next section.

The hardware image uses support modules from the
NetFPGA project. We implemented the ICING-specific logic,
including cryptographic modules. The forwarder uses 89%
of the total FPGA logic area and has a total equivalent gate
count (EGC) of 13.4M. (EGC estimates how many gates a
design would use on an ASIC, as reported by the Xilinx ISE
synthesis tool, v10.1.) The area breakdown is: 38% to the
AES, CHI, and PMAC modules, 28% to all other ICING-
specific logic, and 34% to the NetFPGA support modules.

By comparison, NetFPGA’s reference IP router has an
EGC of 8.7M and uses 50% of the total FPGA logic area.

6 EVALUATION

ICING introduces space and time overhead from per-packet
cryptographic objects and operations. Our principal question
in this section is whether these overheads are practical at the
speeds of Internet backbone links. In this section, we assume
that ICING is deployed at the network layer. We begin by
estimating ICING’s total space overhead (Section 6.1). Sec-
tions 6.2 and 6.3 present microbenchmarks of our prototype
node and supporting software. In Section 6.4, we extrapolate

Average increase in packet overhead: 23.3% §6.1
Throughput: 80-100% of IP on NetFPGA §6.2
Normalized hardware cost: 193% of IP on NetGPA §6.4

Figure 8—Summary of main evaluation results.

Machine type CPU RAM OS

slow Intel Core 2 Duo 1.86 GHz 2 GB Linux 2.6.25
medium Intel Core 2 Quad 2.40 GHz 4 GB Linux 2.6.25
fast Intel quad Xeon 3.0 GHz 2 GB Linux 2.6.18

Figure 9—Machines for measuring ICING overhead.

from our results to assess ICING’s future feasibility at Inter-
net backbone scale. Our results are summarized in Figure 8.

Setup and parameters. Figure 9 lists the 3 machine
classes that we use for evaluation. The NetFPGA is in the
slow machine. Our experiments often vary packets’ path
lengths, path indices, and sizes; Figure 10 gives the fixed and
variable parameters for these experiments.

6.1 Packet overhead

Relative to IP, ICING requires larger packet headers so would
consume more bandwidth. We now roughly quantify this
overhead. An ICING header includes 13 bytes that do not
depend on the packet’s path length (see Figure 5). 42 bytes
are needed for each node in the path other than the sender:
24 bytes for the node ID and tag, Nj :tagj, and 18 bytes for
the verifier, Vj. For a packet whose path length is 5—a pes-
simistic estimate of the average provider-level path length
from [40] and [7]—the header is 205 bytes. To translate this
overhead to a total increase in bandwidth, we look at a sam-
ple trace from CAIDA [3]. The total number of packets ob-
served for about 15 minutes was 37,571,701 with a total size
of 28,475 MB. For each packet, ICING adds relative to an
IP header (of 20 bytes) 205 − 20 = 185 bytes (assuming
path lengths have the same distribution across packet sizes).
So the total increase in bandwidth for this dataset would be
37, 571, 701 × 185/(28, 475 × 220) = 23.3% relative to IP.

6.2 ICING hardware

We now measure the performance of the (fast path) hardware
in our prototype ICING node, described in Section 5.

From Figure 7, one might expect the cost of processing
a packet to depend on the path length because the work
of verifying Path Compliance and proving it seems propor-
tional to the path length. However, the results of the various
PRF-96 operations are XORed, so they can be parallelized in
a pipeline and thus removed from the critical path. The only
other heavily serialized function in the design is the hash
function (HASH), so we expect it to be the bottleneck; i.e.,
throughput should depend on the number of bits that must be
hashed. Since the only fields that are not hashed are the path
index and the verifiers Vj, we expect throughput to be lower
when the Vj’s represent a smaller fraction of the total packet
bits. In other words, for a constant path length, we expect
throughput to decrease as packet size increases.

Varied
parameter Range

Fixed parameters

Pkt size Path len Path idx

Packet size {311, 567, 823, 1335, 1514} — 7 3
Path length {3, 7, 10, 20, 30, 35} 1514 — 1
Path index {1, 5, 10, 15, 18} 831 20 —

Figure 10—Parameters used throughout experiments. Packet size
includes header.

0 500 1000 1500
3

3.5

4

Packet Size (bytes)

T
hr

ou
gh

pu
t

(G
bi

t/s
)

5 10 15 20 25 30 35
3

3.5

4

Path Length (realms)

T
hr

ou
gh

pu
t

(G
bi

t/s
)

5 10 15
3

3.5

4

Path Index

T
hr

ou
gh

pu
t

(G
bi

t/s
)

T
hr

ou
gh

pu
t

(%
 o

f
lin

e
ra

te
)

75

87.5

100

T
hr

ou
gh

pu
t

(%
 o

f
lin

e
ra

te
)

75

87.5

100

T
hr

ou
gh

pu
t

(%
 o

f
lin

e
ra

te
)

75

87.5

100

Figure 11—Avg. throughput as a function of packet size (Fig. 10,
row 1), path length (Fig. 10, row 2), and path index (Fig. 10,
row 3). Percentages are relative to maximum possible throughput
on the NetFPGA. Standard deviations are less than 0.02% of the
means. The forwarder’s throughput is lowest for packets with large
payloads and small path lengths: such packets send the most bits
through the hash function, which is the bottleneck.

We measure our prototype’s fast path throughput by con-
necting the four ports of an ICING node to a NetFPGA packet
generator [20]. The ICING node loops ingress packets back to
the generator, which measures the average bit rate. We take
5 10-second samples, using the parameters in Figure 10.

Figure 11 plots the measured throughput. (Note that we do
not report goodput; instead we report packet header overhead
in Section 6.1.) The minimum aggregate throughput is 3.2
Gbit/s. The path index has no effect on performance because
it doesn’t affect the number of bits hashed.

6.3 ICING software

We now measure the performance of the (slow path) software
in our prototype ICING node. We also measure end-host and
consent server operations. Figure 12 summarizes.

Shared key (ki,j) derivation. A packet invokes our pro-
totype’s slow path when the hardware does not have the re-
quired shared keys cached (Figure 7). We measure the cost
of deriving ki,j by running 3,000 iterations of the calculation
function in a tight loop on the slow machine. On average, a
single calculation takes 4 ms.

End-host. An end-host must also perform cryptographic
operations: senders initialize all the verifier entries, and re-
ceivers validate and modify some of these entries. To under-
stand these costs, we seek a linear function from path length

Action Processing time Throughput (1/Proc. time)

Calculate ki,j 4 ms (σ = .043 ms) 250 keys/s
Generate PoC 0.4x + 1.3 µs 2.6 · 106/(x + 3.5) PoC/s
Create packet (w/c) 2.6x + 40.1 µs 3.9 · 105/(x + 15.4) pkt/s
Verify packet (w/c) 2.6x + 24.4 µs 3.9 · 105/(x + 9.5) pkt/s
Create packet (n/c) 33796.1x − 32758.4 µs 29.6/(x − 0.9) pkt/s
Verify packet (n/c) 34875.1x − 33647.1 µs 28.6/(x − 0.9) pkt/s

Figure 12—Processing time and throughput for software opera-
tions. x is the path length. Packet creation and verification costs are
measured both with and without the use of cached shared keys (w/c
and n/c resp.). For the last four rows, processing time is derived by
linear regression, and R2 > 0.99 in all three cases.

to processing time. To infer such a function, we vary path
length per Figure 10, take packet size to be 1,514 bytes, and
collect 1,000 samples per path length on the medium ma-
chine. We record total processing cost (of either packet gen-
eration or verification, depending on sender or receiver; in
both cases, we record the cost when the ki,j keys are and are
not cached), and then use ordinary least squares linear re-
gression. The inferred coefficients (R2 > 0.99) are in Fig-
ure 12. Each entry in the path increases packet creation and
verification times by 2.6 µs. For an average path length of 5,
packet verification can be performed at 23K pkt/s.

Packet generation takes longer than verification because
senders are so far unoptimized and compute HASH(P || M)
twice. Were the endpoints optimized, receiving would likely
be more expensive than sending: the receiver also hashes the
packet (to verify V) and has an additional cost, namely re-
computing the local PoC.

Consent server. To measure the cost of generating PoCs
in software, we run the calculation function in a tight loop,
varying path length per Figure 10. We use the fast machine.
We observe that cost is proportional to path length (Fig. 12),
as expected from the definition of PoC.proof (§3). For a path
length of 7, the consent server can generate ≈248k PoCs/s,
within the range of rates handled by a fast DNS server.

6.4 Scaling

We now give a rough assessment of whether an ICING node
could meet the demands of the Internet backbone.

Throughput and cost. In assessing whether ICING could
scale to backbone speeds, our metric is normalized cost:
it measures the hardware cost, reported as equivalent gate
count, per unit of throughput. As a baseline, we consider a
simple IP router on the NetFPGA. We obtain gate counts as
described in Section 5.

Figure 13 summarizes the comparison. Using our normal-
ized cost metric, our ICING forwarder is ∼93% more expen-
sive than the NetFPGA IP router. However, the IP router
is a pessimistic baseline because it is bare bones: it has
only a 32-entry TCAM for longest-prefix matching (com-
mercial routers have far more, and the TCAM is a big con-
sumer of logic area), and it does not have the functionality of
commercial-grade routers (packet filtering, tunneling, etc.).
On the other hand, almost all of ICING’s processing can be
parallelized, so it seems that there is no fundamental obstacle

NetFPGA ICING NetFPGA IP

Min Throughput (Gbits/s) 3.2 (from §6.2) 4
(Eq.) Gate Count (Gates) 13.4M (from §5) 8.7M (from §5)
Normalized Cost (Gates/(Gbits/s)) 4.2M 2.2M

Figure 13—Normalized costs of the NetFPGA ICING forwarder
and the NetFPGA IP reference router.

to scaling ICING to backbone speeds (around 100 Gbits/s).
A rough estimate of the die size of an ASIC running ICING

is in [52, §2.5.4]. In summary, by moving to an ASIC with
today’s technology (say 40 nm), our design would be approx-
imately 300 times smaller and three times faster (10 Gbps).
Then, we could “spend” some of the area saved replicating
processing logic to reach 100 Gbit/s.

PoP key cache. An ICING node Ni stores a table of (Nj, ki,j)
pairs. Would this cache be too expensive? There are fewer
than 40k advertised AS numbers, and the total is growing
at less than 3.2k/year [1]. If we assume that each AS owns
on average 10 nodes, the key cache would need to be ap-
proximately 400k entries. With 160-bit node IDs and 128-
bit PoP keys, fitting all of Ni’s PoP keys would require less
than 14 MB, which is within today’s SRAM capabilities [4].
Moreover, we believe that, to ease key management and pol-
icy configuration, providers would use the same node ID for
many or all of their nodes. For further analysis of a nearly
identical question, see [7, §4].

7 RELATED WORK

We divide related work into: (1) secure routing and secure
forwarding, (2) related mechanisms, and (3) policy routing.
As noted in the introduction, ICING has many debts, but no
work that we are aware of offers Path Consent and Path Com-
pliance under our three environmental constraints.

Secure routing and forwarding. Routing security [6, 16,
36, 37, 38, 40, 43, 70] ensures the authenticity and correct-
ness of topology propagation and route computation. For in-
stance, S-BGP [40] protects BGP against spurious messages.
However, these works do not ensure that the resulting routes
are actually used in packet forwarding, which is ICING’s fo-
cus and which we view as complementary.

Rule-Based Forwarding (RBF) [55], in which end-hosts
get some control over forwarding functionality, is also com-
plementary to ICING: the forwarder-specific rules could be
named and invoked by ICING’s tags, but by itself RBF does
not provide Path Consent or Compliance.

Like ICING, other works bind packets to their purported
paths. However, they do not target an environment that is
high-speed and adversarial and federated. For instance, [18,
54] use per-packet signatures and assume some centraliza-
tion; [10, 54] require large configuration state in the network
and a packet header quadratic in path length; Ethane [19] is
centralized; and MPLS [58] is not robust to misbehavior (two
nodes on the path can collude to skip a third; more generally
there is no proof that a packet follows its path).

Other work on forwarding security is geared toward se-
crecy or isolation. Virtual Private Networks (VPNs) (ei-

ther point-to-point IPSec tunnels or isolated “slices” of a
provider’s network) provide neither Path Consent nor Path
Compliance. Onion routing [21] provides anonymity by
onion-encrypting a source-routed packet, with one layer of
encryption removed at every hop. ICING is reminiscent of
onion routing’s per-hop cryptography, but onion routing uses
encryption and decryption at every hop to provide secrecy
and anonymity while ICING uses PRFs and MACs to enforce
Path Consent and Path Compliance.

Localizing faults [13, 53, 71] and providing availability in
a Byzantine network [10, 54] are also complementary. Other
related works include denial-of-service (DoS) protection and
allowing receivers to control which senders reach them [12,
22, 27, 34, 41, 46, 65, 66, 69]. These mechanisms can be
enhanced to securely identify packets’ senders [7, 44, 45],
enabling accountability. ICING likewise provides support for
DoS protection and verifies not only sources but also paths.

Related mechanisms. Aspects of ICING are inspired
by prior works. PoCs generalize network capabilities [57,
65, 69] and Visas [24]. For instance, under Platypus [57],
senders choose overlay paths, and providers associate pack-
ets with accountable entities. Under TVA [69], receivers con-
trol which senders reach them. However, none of these works
provides Path Consent or Path Compliance.

Other related mechanisms are as follows. Node IDs re-
semble the self-certifying [49] ADs in AIP [7] and HIP [51].
PoPs are reminiscent of constructions in [10, 13]. However
in those works, the number of PoP-like things in a packet is
quadratic in path length, whereas an ICING packet carries a
linear number of PoPs. Using Diffie-Hellman key exchanges
for creating pairwise keys between nodes (in analogy with
ICING’s PoP keys) is proposed in [11, 29], but they suggest
using a global directory or PKI, which ICING does not need
(since node IDs are public keys). Also, ICING’s hierarchical
delegation generalizes a technique in Platypus [57], ICING’s
tags are reminiscent of Pathlets’ vnodes [28] and MPLS la-
bels [58], and expressing policy in general-purpose servers
apart from forwarding hardware echoes [17, 19, 30, 31].

Policy routing. Like BGP, many works [8, 28, 32, 33, 47,
59, 62, 63, 64, 67, 68, 70] allow entities to express path pref-
erences. Under NIRA [67], for instance, senders choose the
path into the Internet core, and receivers choose the path out.
Indeed, even default-off and filtering can be regarded as pol-
icy routing, in that the receiver exercises control over the first
path component, the sender (e.g., [12, 22, 46, 65, 66, 69]).

These proposals are either orthogonal to ICING (because
they concern only path computation, not enforcement), or
else they incorporate a mechanism that enforces something
less general than Path Consent and Path Compliance. For
example, under Pathlets [28], senders choose paths, and
providers specify policies based on the previous hop and a
suffix of the path. But Pathlets does not provide verifica-
tion that a path was actually followed. As another example,
[68] gives provider-approved path diversity but does not al-
low senders or receivers to determine paths. ICING can be re-

garded as providing an enforcement mechanism that is gen-
eral enough to enforce many of the policies in the works cited
above. The next section discusses the price of this generality.

8 DISCUSSION

Does ICING restrict communication, as it empowers each
node to enforce policy unilaterally? We note, first, that re-
gardless of ICING, any carrier of a communication can ex-
ercise control over it. It is free to drop packets, deprioritize
them, or corrupt them. Second, providers in the current Inter-
net sometimes sever transit between each other to gain lever-
age in contract negotiations, effectively partitioning the In-
ternet at users’ expense (e.g., [72]). Under ICING, end-points
get multiple options about paths and providers, which could
create competition where today monopoly reigns.

The generality of ICING (§7) certainly has a price, as it
is more expensive than many of the individual mechanisms
that we have surveyed. However, we are solving a different
problem than these other mechanisms: our goal is to provide
a mechanism that can enforce a wide range of policies.

Moreover, it is possible to imagine cheaper PVMs than
ICING, if we relax our requirements. As examples, if we as-
sume a central authority (a reasonable assumption: the cur-
rent Internet has IANA) that distributes a map from short
identifiers to public keys, packets need not carry public keys,
yielding smaller packet headers; or a PVM could check a frac-
tion of the packets at a fraction of the cost; or if we allow
per-flow state in nodes, then packets need not carry the full
path, only a token that corresponds to it [19, 69].

We must also consider ICING’s use complexity. At the net-
work layer, there is some complexity from bootstrapping [52,
§4]. In an overlay, the interface to ICING is relatively sim-
ple (though obviously more involved than IP). Moreover, the
overlay scenario may provide a path to deployment.

But this is looking ahead. Looking back, our animating
question was whether it was possible to design a feasible
PVM and, if so, what it would cost. This paper has attempted
to answer that question.

Acknowledgments
Naous’s work was done at Stanford; Walfish’s was done partially
at Stanford and UCL. ICING has a long list of debts, beginning
with one to Scott Shenker, who gave many and much-needed cru-
cial expository suggestions. Dave Andersen, Tom Anderson, Russ
Cox, Brandon Heller, and Jennifer Rexford read drafts carefully
and kindly spent hours to help improve the presentation. We are
likewise grateful to the CoNEXT reviewers, who read our work
carefully. Comments and conversations that improved our presen-
tation were given by Hari Balakrishnan, Andrew Blumberg, Dan
Boneh, Mike Dahlin, Dawson Engler, Nick Feamster, Sanjam Garg,
Sharon Goldberg, Mark Handley, Steve Keckler, Ramesh Johari,
Josh Leners, Nick McKeown, Guru Parulkar, Ivo Popov, Srinath
Setty, and Emmett Witchel. Hao Wu assisted in the evaluation of
ICING. We thank our shepherd Laurent Mathy for his support and
critiques. For their support, advocacy, and generosity, we thank
Lorenzo Alvisi, Mike Dahlin, Nick McKeown, and Jonathan Smith.

This work was supported by NSF grants 1040083 (FIA),

1040784 (FIA), 1040190 (FIA), 0716806, 1052985, 0627112, and
1117679; by AFOSR grant FA9550-10-1-0073; by ONR grant
N00014-09-10757; by the Stanford Clean Slate program; and by
Intel Corporation, whose gift to Brad Karp supported Walfish and
Mazières while they visited Karp at UCL in Autumn 2008.

Source for our hardware and software is available at:
http://www.cs.utexas.edu/icing.

REFERENCES
[1] The 32-bit autonomous system number report.

http://www.potaroo.net/tools/asn32/index.html.
[2] NetFPGA: Programmable networking hardware. http://netfpga.org.
[3] Packet traces from wide backbone. http:

//mawi.wide.ad.jp/mawi/samplepoint-F/2011/201101231400.html.
[4] Sync SRAMs overview. http://www.cypress.com/?id=95.
[5] Digital signature standard (DSS). Federal Information Processing Standards

Publication, November 2008. DRAFT FIPS PUB 186-3.
[6] W. Aiello, J. Ioannidis, and P. McDaniel. Origin authentication in interdomain

routing. In ACM CCS, Oct. 2003.
[7] D. Andersen, H. Balakrishnan, N. Feamster, T. Koponen, D. Moon, and

S. Shenker. Accountable Internet protocol. In SIGCOMM, Aug. 2008.
[8] K. Argyraki and D. R. Cheriton. Loose source routing as a mechanism for traffic

policies. In SIGCOMM Wkshp. on Future Directions in Net. Arch., Sept. 2004.
[9] K. Argyraki and D. R. Cheriton. Network capabilities: The good, the bad and

the ugly. In HotNets, Nov. 2005.
[10] I. Avramopoulos, H. Kobayashi, R. Wang, and A. Krishnamurthy. Highly

secure and efficient routing. In INFOCOM, Mar. 2004.
[11] A. Aziz, M. Patterson, and G. Baehr. Simple key-management for Internet

Protocol (SKIP). In Proc of the INET Conference, June 1995.
[12] H. Ballani, Y. Chawathe, S. Ratnasamy, T. Roscoe, and S. Shenker. Off by

default! In HotNets, Nov. 2005.
[13] B. Barak, S. Goldberg, and D. Xiao. Protocols and lower bounds for failure

localization in the Internet. In Proc. EUROCRYPT, Apr. 2008.
[14] J. C. R. Bennett and H. Zhang. Hierarchical packet fair queueing algorithms.

ACM/IEEE Trans. on Networking, 5(5):675–689, Oct. 1997.
[15] J. Black and P. Rogaway. A block-cipher mode of operation for parallelizable

message authentication. In Proc. EUROCRYPT, Apr. 2002.
[16] K. Butler, T. Farley, P. McDaniel, and J. Rexford. A survey of BGP security

issues and solutions. Proceedings of the IEEE, 98(1):100–122, Jan. 2010.
[17] M. Caesar, D. Caldwell, N. Feamster, J. Rexford, A. Shaikh, and J. van der

Merwe. Design and implementation of a routing control platform. In NSDI,
May 2005.

[18] K. Calvert, J. Griffioen, and L. Poutievski. Separating routing and forwarding:
A clean-slate network layer design. In Proc. IEEE Broadnets, Sept. 2007.

[19] M. Casado, M. Freedman, J. Pettit, J. Luo, N. McKeown, and S. Shenker.
Ethane: Taking control of the enterprise. In SIGCOMM, Aug. 2007.

[20] G. A. Covington, G. Gibb, J. W. Lockwood, and N. McKeown. A packet
generator on the NetFPGA platform. IEEE Symposium on Field-Programmable
Custom Computing Machines, 2009.

[21] R. Dingledine, N. Mathewson, and P. Syverson. Tor: the second-generation
onion router. In USENIX SECURITY, 2004.

[22] C. Dixon, T. Anderson, and A. Krishnamurthy. Phalanx: Withstanding
multimillion-node botnets. In NSDI, Apr. 2008.

[23] M. Dobrescu, N. Egi, K. Argyraki, B.-G. Chun, K. Fall, G. Iannaccone,
A. Knies, M. Manesh, and S. Ratnasamy. Routebricks: exploiting parallelism to
scale software routers. In SOSP, 2009.

[24] D. Estrin, J. Mogul, and G. Tsudik. VISA protocols for controlling
inter-organizational datagram flow. IEEE JSAC, 7(4), May 1989.

[25] A. Farrel, A. Ayyangar, and J. Vasseur. Inter-domain MPLS and GMPLS traffic
engineering – resource reservation protocol-traffic engineering (RSVP-TE)
extensions. RFC 5151, Feb. 2008.

[26] N. G. Feamster. Proactive Techniques for Correct and Predictable Internet
Routing. PhD thesis, M.I.T., Sept. 2005.

[27] P. Ferguson and D. Senie. Network ingress filtering: Defeating denial of service
attacks which employ IP source address spoofing. RFC 2827, May 2000.

[28] P. B. Godfrey, I. Ganichev, S. Shenker, and I. Stoica. Pathlet routing. In
SIGCOMM, Aug. 2009.

[29] S. Goldberg, D. Xiao, E. Tromer, B. Barak, and J. Rexford. Path-quality
monitoring in the presence of adversaries. In SIGMETRICS, June 2008.

[30] A. Greenberg, G. Hjalmtysson, D. A. Maltz, A. Myers, J. Rexford, G. Xie,
H. Yan, J. Zhan, and H. Zhang. A clean slate 4D approach to network control
and management. ACM CCR, 35(5), Oct. 2005.

[31] N. Gude, T. Koponen, J. Pettit, B. Pfaff, M. Casado, N. McKeown, and
S. Shenker. NOX: Towards an Operating System for Networks. ACM CCR,
38(3):105–110, July 2008.

[32] S. Guha and P. Francis. An end-middle-end approach to connection
establishment. In SIGCOMM, Aug. 2007.

[33] K. P. Gummadi, H. V. Madhyastha, S. D. Gribble, H. M. Levy, and
D. Wetherall. Improving the reliability of Internet paths with one-hop source
routing. In OSDI, Dec. 2004.

[34] M. Handley and A. Greenhalgh. Steps towards a DoS-resistant Internet
architecture. In SIGCOMM Wkshp. on Future Directions in Net. Arch., 2004.

[35] P. Hawkes and C. McDonald. Submission to the SHA-3 competition: The CHI
family of cryptographic hash algorithms. Submission to NIST, 2008.
http://ehash.iaik.tugraz.at/uploads/2/2c/Chi submission.pdf.

[36] Y. Hu and A. Perrig. A survey of secure wireless ad hoc routing. IEEE Security
and Privacy Magazine, 2:28–39, 2004.

[37] Y.-C. Hu, A. Perrig, and D. Johnson. Efficient security mechansims for routing
protocols. In NDSS, Feb. 2003.

[38] Y.-C. Hu, A. Perrig, and M. Sirbu. SPV: Secure path vector routing for securing
BGP. In SIGCOMM, Sept. 2004.

[39] J. Katz and A. Y. Lindell. Aggregate message authentication codes. In Topics in
Cryptology – CT-RSA, volume 4964 of Lecture Notes in Computer Science,
pages 155–169, April 2008.

[40] S. Kent, C. Lynn, and K. Seo. Secure border gateway protocol (S-BGP). IEEE
JSAC, 18(4), Apr. 2000.

[41] A. D. Keromytis, V. Misra, and D. Rubenstein. SOS: Secure overlay services.
In SIGCOMM, Aug. 2002.

[42] E. Kohler, R. Morris, B. Chen, J. Jannotti, and M. F. Kaashoek. The Click
modular router. ACM TOCS, 18(4):263–297, Nov. 2000.

[43] M. Lad, D. Massey, D. Pei, Y. Wu, B. Zhang, and L. Zhang. PHAS: A prefix
hijack alert system. In USENIX SECURITY, July 2006.

[44] A. Li, X. Liu, and X. Yang. Bootstrapping accountability in the Internet we
have. In NSDI, Apr. 2011.

[45] X. Liu, A. Li, X. Yang, and D. Wetherall. Passport: Secure and adoptable
source authentication. In NSDI, Apr. 2008.

[46] X. Liu, X. Yang, and Y. Lu. To filter or to authorize: Network-layer DoS
defense against multimillion-node botnets. In SIGCOMM, Aug. 2008.

[47] R. Mahajan, D. Wetherall, and T. Anderson. Mutually controlled routing with
independent ISPs. In NSDI, Apr. 2007.

[48] Z. M. Mao, J. Rexford, J. Wang, and R. H. Katz. Towards an accurate AS-level
traceroute tool. In SIGCOMM, Aug. 2003.

[49] D. Mazières, M. Kaminsky, M. F. Kaashoek, and E. Witchel. Separating key
management from file system security. In SOSP, Dec. 1999.

[50] M. Miller. PoComON: A POlicy-COMpliant Overlay Network. Technical
Report HR-11-04 (honors thesis), CS Dept, UT Austin, Oct. 2011.

[51] R. Moskowitz and P. Nikander. Host identity protocol (HIP) architecture. RFC
4423, May 2006.

[52] J. Naous. Path-policy Compliant Networking and a Platform for Heterogeneous
IAAS Management. PhD thesis, Mar. 2011.

[53] V. N. Padmanabhan and D. R. Simon. Secure traceroute to detect faulty or
malicious routing. In SIGCOMM, Aug. 2003.

[54] R. Perlman. Network layer protocols with Byzantine robustness. PhD thesis,
Massachusetts Institute of Technology, Cambridge, MA, 1988.

[55] L. Popa, N. Egi, S. Ratnasamy, and I. Stoica. Building extensible networks with
rule-based forwarding. In OSDI, Oct. 2010.

[56] Prolexic Technologies, Inc. http://www.prolexic.com.
[57] B. Raghavan and A. C. Snoeren. A system for authenticated policy-compliant

routing. In SIGCOMM, Sept. 2004.
[58] E. Rosen, A. Viswanathan, and R. Callon. Multiprotocol label switching. RFC

3031, Network Working Group, Jan. 2001.
[59] RouteScience PathControl.

http://www.networkworld.com/reviews/2002/0415rev.html.
[60] M. Scott. Miracl library.

https://www.shamus.ie/index.php?page=Downloads.
[61] A. Seehra, J. Naous, M. Walfish, D. Mazières, A. Nicolosi, and S. Shenker. A

policy framework for the future Internet. In HotNets, Oct. 2009.
[62] I. Stoica, D. Adkins, S. Zhuang, S. Shenker, and S. Surana. Internet Indirection

Infrastructure. In SIGCOMM, Aug. 2002.
[63] M. Walfish, J. Stribling, M. Krohn, H. Balakrishnan, R. Morris, and S. Shenker.

Middleboxes no longer considered harmful. In OSDI, Dec. 2004.
[64] W. Xu and J. Rexford. MIRO: Multi-path interdomain routing. In SIGCOMM,

Sept. 2006.
[65] A. Yaar, A. Perrig, and D. Song. SIFF: A stateless Internet flow filter to mitigate

DDoS flooding attacks. In IEEE Symposium on Security and Privacy, May
2004.

[66] A. Yaar, A. Perrig, and D. Song. StackPi: New packet marking and filtering
mechanisms for DDoS and IP spoofing defense. IEEE JSAC,
24(10):1853–1863, Oct. 2006.

[67] X. Yang, D. Clark, and A. W. Berger. NIRA: A new inter-domain routing
architecture. ACM/IEEE Trans. on Networking, 15(4), Aug. 2007.

[68] X. Yang and D. Wetherall. Source selectable path diversity via routing
deflections. In SIGCOMM, Sept. 2006.

[69] X. Yang, D. Wetherall, and T. Anderson. TVA: A DoS-limiting network
architecture. ACM/IEEE Trans. on Networking, 16(6):1267–1280, Dec. 2008.

[70] X. Zhang, H.-C. Hsiao, G. Hasker, H. Chan, A. Perrig, and D. G. Andersen.
SCION: Scalability, control, and isolation on next-generation networks. In
IEEE Symposium on Security and Privacy, May 2011.

[71] X. Zhang, A. Jain, and A. Perrig. Packet-dropping adversary identification for
data plane security. In CoNEXT, Dec. 2008.

[72] E. Zmijewski. You can’t get there from here. http://www.renesys.com/
blog/2008/03/you-cant-get-there-from-here-1.shtml, Mar. 2008.

http://www.cs.utexas.edu/icing
http://www.potaroo.net/tools/asn32/index.html
http://netfpga.org
http://mawi.wide.ad.jp/mawi/samplepoint-F/2011/201101231400.html
http://mawi.wide.ad.jp/mawi/samplepoint-F/2011/201101231400.html
http://www.cypress.com/?id=95
http://ehash.iaik.tugraz.at/uploads/2/2c/Chi_submission.pdf
http://www.prolexic.com
http://www.networkworld.com/reviews/2002/0415rev.html
https://www.shamus.ie/index.php?page=Downloads
http://www.renesys.com/blog/2008/03/you-cant-get-there-from-here-1.shtml
http://www.renesys.com/blog/2008/03/you-cant-get-there-from-here-1.shtml

	1 Introduction
	2 Overview of icing
	2.1 Architecture and components
	2.2 Goals and non-goals
	2.3 Threat model
	2.4 Naming
	2.5 Proofs of consent (PoCs)
	2.6 Packet creation and proofs of provenance (PoPs)
	2.7 Packet processing: Verification and forwarding

	3 Design details of icing
	3.1 Creating a packet
	3.2 Forwarding and receiving a packet
	3.3 Deriving tag keys and controlled delegation
	3.4 Signaling errors and failures
	3.5 Attacks

	4 Applications of icing
	5 Implementation
	6 Evaluation
	6.1 Packet overhead
	6.2 icing hardware
	6.3 icing software
	6.4 Scaling

	7 Related work
	8 Discussion

