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Our goal was to build an easily extensible and testable router.  To accomplish this we had 
two priorities we have when building our code.   

Firstly we wanted to ensure that we keep our methods short and to the point.  Long 
methods tend to build up excessive amounts of logic and make it difficult to extend and 
maintain down the road.  Shorter methods that accomplish one specific action make it 
easier to add more steps in the functionality down the road.  An example of this is the 
tiered hierarchy of our router’s packet flow.  Each tier could be its own method which 
asks the questions specifically on that tier, then calls further methods if they are correct.  
That way at any tier it is very easy to add further logic or processing in.   

Secondly we put as much code as possible in to our own header files, and made calls 
from the default project files in to our own source files.  In this way we made our own 
interface that we used to call and be called from within the default project files.  This 
allowed us to abstract away our logic from the underlying platform that is actually 
sending and receiving traffic, be it VNS, NETFPGA, or something else. 

I believe we were very successful in these goals.  We were easily able to test different 
sections of the code, and easily able to change/update functionality due to our modularity.  
Further we were able to seamlessly switch back and forth between VNS and the 
NETFPGA platform when necessary. 

To facilitate modularity we created a core router_state structure (stored as the 
‘subsystem’ in the sr variable).  This structure was passed around to virtually all our 
methods so we were able to keep state in one structure, and keep things clean by not 
using global variables.  This structure kept handles on all locks, threads, and global state 
variables.  We further kept all structure definitions and defines in a single header file, so 
anytime modifications were needed we knew exactly where to go to. 

Nearly all lists of structures in our system are stored as linked lists.  This allows software 
to run completely independent of any limitations imposed by hardware.  Thus software 
has no limitation on the number of routing table entries, arp cache entries, etc.  
Limitations are only imposed when writing these out to hardware, but have no effect on 
the operation of software itself.   

We chose to heavily thread our architecture (~17 threads), which provided some clean 
abstractions of functionality into their own workspace, but also forced us to use a very 
disciplined locking system.  This we did, and have had great success with this 
architecture.  A few of the functionalities of the various threads in our system include: 
PWOSPF hello packet broadcasting, PWOSPF link state broadcasting, PWOSPF link 



state timeout enforcement, arp queue timeout enforcement, Dijkstra calculations, NAT 
entry maintenance, port stats tracking, and webserver threads. 

Basic routing functionality was cleanly implemented in layers of abstraction.  We 
followed the discipline of naming all our source files as the category of work they 
performed, and sticking to it.  For example ip processing is performed in “or_ip.h/c”, arp 
processing in “or_arp.h/.c”, etc.  As packets came in we would get more and more 
specific on what they are and what we need to do with them.  For example once a packet 
arrives, if it is arp it heads to processing in the or_arp files, if its ip it heads to or_ip.  
Further if its ICMP it goes to or_icmp, etc.  This method of laying things out allowed us 
to easily interpose further logic (like NAT) without drastically modifying the way 
processing is performed. 

We spent a fair bit of time working on our CLI.  We wanted to make it as easy as 
possible for us to add/remove commands, and make the code as clean as possible.  To 
facilitate this we created an interface method “register_cli_command”, which takes the 
command, and a function pointer that will be called when that command is executed.  
Then when the client issues a command to the cli, we simply do a longest prefix match of 
the client’s command against all the registered cli commands, and then call the function 
pointer associated with the command.  It has greatly simplified our code, and we feel it is 
a very elegant solution.   

Initially we were required to implement our CLI over telnet, which we did.  After awhile 
however we got very tired of having to telnet in and type commands so we moved on to 
create a fully operational web-based interface.  To make this happen we created a mini 
webserver that runs entirely inside the router.  It is a thread pooling webserver, so we 
spawn 5 threads to begin with, and as http requests arrive they are put into a queue, and 
the 5 threads pull requests off the queue and service them.  We have the ability to serve 
virtually any type of file residing in our www subdirectory.  The webserver appears to be 
very performant (assuming the LWIP/LWTCP options are set properly), and stood up to a 
very long torture test without leaking any memory. 

While creating the web interface we did not want to break backwards compatibility with 
the telnet interface, and we also wanted to be able to add a command and have that 
command immediately available via both the web and telnet.  To make this possible we 
created a url that takes as a parameter the command you want to enter, runs it through the 
same processing pipeline a telnet command runs through, and then returns the results to 
the web.  We use AJAX (Javascript and XML) to drive the web interface.  That is, when 
you click on any of the links, or enter a command, the result is fetched in the background 
via Javascript, and as soon as the response is received it replaces the existing result with 
the new result.  This allowed us to create automatically refreshing links on the left side 
that could execute commands at a set periodic delay (IE if you want to watch the HW as 
it updates), and have the screen seamlessly update so it appears you are running the 
application locally.  This is in comparison to having to click the refresh button and 
watching the entire contents blank out and refresh.  We further harnessed Javascript to 
create a nice stats overlay if you click on the “Our Router” logo, it will pop up a small 



overlay window showing aggregate in/out traffic on each hardware queue by number of 
packets and throughput. 

One element of our interface that was required to be implemented was the sping 
command.  Our implementation is as follows: we dispatch the ping, then we put that 
thread to sleep on a conditioned timed wait.  When an ICMP echo reply comes in to the 
server, we add it to a queue of ICMP echo reply packets, then notify all the threads 
sleeping that are waiting on a reply that a packet has arrived.  The threads then wakeup 
and attempt to grab the mutex then examine the list to see if the reply is for them or not.  
The threads waiting for a reply will wake up periodically and when packets arrive, 
eventually if no reply is received they will time out and report back to the user.  There is 
a chance that an ICMP echo reply will not be handled and deleted by an sping thread, so 
they are timed out as well and there is a thread that does this cleanup work. 

PWOSPF functionality can be broken down into two sections, one section for handling 
the HELLO packet operations, and one for the LSU packet operations.  HELLO packets 
are identified in our IP processing method and passed off to our methods in our pwospf 
source file.  We augmented our existing interface structures to contain the information 
needed to be tracked by the HELLO packets.  When we receive one, we update as 
necessary, and potentially trigger LSU database updates/floods/Dijkstra.  Further, we 
have a thread running whose job it is to time out any expired entries, as well as handle 
broadcasting of HELLO packets for our interfaces on a set schedule.   

To handle LSU and Dijkstra processing we have a database of structures that is made up 
of parent router structures, each containing link structures, representing the 
advertisements in LSU packets.  This database is updated from incoming LSU packets, 
HELLO updates or timeouts (for keeping track of active pairs of links between routers), 
LSU timeouts, and interfaces coming up or going down.  We have a number of new 
threads running to handle this processing, specifically threads to handle LSU 
broadcasting, LSU timeouts, Dijkstra processing, and one that sends out queued LSU 
packets.  The last thread was required because some of our locking decisions did not 
make it possible to send packets directly out from where it needed to happen due to 
deadlock possibilities.  Many new PWOSPF related CLI commands were added as well, 
available from the “pwospf ?” command.  Note at this time we do not currently support 
adding or removing the default route from the CLI, as we were unable to test against a 
topology with two connections out to the rest of the internet, try it at your own risk. 

When we integrated with hardware we added a large number of commands to print and 
poll values from hardware so we were sure the things we are setting were correct.  As 
mentioned earlier we abstracted away anything relating to the way the underlying 
interface works.  For example we added a flag on our router_state structure “is_netfpga”, 
thus anywhere in our code we may need to do something specific to the underlying 
interface, we query this flag.  We are very confident about our interaction with the 
reference hardware. 



The advanced feature we chose to implement was Network Address Translation (NAT).  
NAT added a few new processing steps to our packet processing.  Firstly when packets 
arrive on the designated Wide Area Network (WAN) interface, after we identify the 
packet is IP, but before any further processing, we need to look in to our NAT table and 
check if we need to rewrite the destination address/port.  Similarly when packets are 
determined to be exiting on the WAN interface, and were not generated locally, we have 
to rewrite the source ip/port if an entry exists, if not we need to create a new NAT table 
entry and perform the rewriting.  We had to be careful to deal with edge cases such as 
ICMP echo requests and replies that did not have a port, as well as unwrapping ICMP 
error messages and carefully rewriting the enclosed packet headers in their payloads.  
Further when working with hardware we had a limitation on the number of entries that 
could reside in the hardware table, so we had to track how often our entries were being 
used or ‘hit’, and ensure the ‘hottest’ entries were kept in hardware and kept out of the 
slow path (software). 

Testing methodology proved to be a crucial element, as expected, during our 
development.  We were as careful as possible to test all edge cases we could imagine, 
because they always come up sooner or later.  We were also very careful to perform 
regression testing on previously implemented features to ensure we did not break 
anything.  This was very important when working with the hardware and drastic things 
were being done under the covers that software did not have control over.  Initially we 
had planned on creating test scripts to cover all cases but the time constraints of the 
project just proved too tight to be able to dedicate time to something such as this.  So we 
became very good at auditing each other’s code and testing to ensure everything worked 
properly.  We also spent a significant amount of time with valgrind ensuring we did not 
have any leaking memory (within our control), as if you even leak a little bit with each 
packet it adds up quickly when you are a router.  A bulleted list of test cases is beyond 
the scope of this document. 

In conclusion, the time we spent up front in architecting the system, and sticking to these 
disciplines throughout the rest of our time with it, proved to be a huge win for us in not 
only having the code actually work and be successful, but also truly be maintainable. 


