
Verifiable Auctions for Online Ad Exchanges

Sebastian Angel and Michael Walfish
The University of Texas at Austin

ABSTRACT

This paper treats a critical component of the Web ecosystem that
has so far received little attention in our community: ad exchanges.
Ad exchanges run auctions to sell publishers’ inventory—space on
Web pages—to advertisers who want to display ads in those spaces.
Unfortunately, under the status quo, the parties to an auction cannot
check that the auction was carried out correctly, which raises the
following more general question: how can we create verifiability in
low-latency, high-frequency auctions where the parties do not know
each other? We address this question with the design, prototype im-
plementation, and experimental evaluation of VEX. VEX introduces
a technique for efficient, privacy-preserving integer comparisons;
couples these with careful protocol design; and adds little latency
and tolerable overhead.

Categories and Subject Descriptors: C.2.4 [Computer-Communication Net-
works]: Security and Protection; K.4.4 [Electronic Commerce]: Security

Keywords: verifiable, auctions, ad exchanges, online advertisement

1 INTRODUCTION

Ad exchanges [5, 9, 11] are revolutionizing online advertis-
ing [48], an industry responsible for hundreds of billions of dollars
yearly [60]. For each visit by a user to a participating publisher’s
Web site, an ad exchange runs an auction in real time to sell the
publisher’s inventory (space for an ad) to advertisers. These auc-
tions benefit advertisers (who appreciate fine-grained, targeted ads)
and publishers (who can sell space for such ads at a premium).

Despite their financial importance, scale, and strong trust as-
sumptions, ad exchanges—versus online advertisement gener-
ally [23, 31, 32, 35, 47, 51, 54–56]—have received little attention
from computer scientists. Muthukrishnan [39] has articulated re-
search problems (including the one that we address), but we believe
that this paper is the first to examine a concrete solution or system.

The question that we investigate is: how can an ad exchange
prove to publishers and advertisers that an auction was conducted
correctly, without disclosing information about the bids and bid-
ders? To the extent that auctions today proceed on trust and the
reputation of the auctioneer (and hence only a few players are auc-
tioneers), verifiable auctions could lower the barriers to entry for
new auctioneers. Moreover, verifiable auctions would benefit even
established ad exchanges, by enhancing the service that they pro-
vide. Finally, our solution is relevant beyond ad exchanges (§9).

The general problem of auction verification has been widely
studied [17, 27, 30, 37, 45, 46]. However, the technical challenges

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from Permissions@acm.org.
SIGCOMM’13, August 12–16, 2013, Hong Kong, China.
Copyright 2013 ACM 978-1-4503-2056-6/13/08. . . $15.00

of ad exchanges, given below, mean that previous work is not di-
rectly applicable:

• Delay-sensitive. An auction must happen between the time when
the user visits a Web site and the time when the complete page,
including the ad, loads in the user’s browser. This window could
be very short (e.g., 100 ms), as latency is critical to the display
of Web pages.

• High volume. Ad exchanges handle billions of transactions per
day, consuming significant network and storage resources [43].

• Difficult to bootstrap trust. The only entity guaranteed to be
known a priori by any party to an auction is the ad exchange itself
(for instance, advertisers may not know each other). Moreover,
membership is dynamic: publishers and advertisers frequently
join and leave a given exchange.

We surmount these challenges with VEX, a system for verifiable
auctions. VEX’s goal in the online ad exchange context is to improve
the integrity of auctions while not making privacy and availability
worse than they are today. (It would obviously be ideal to improve
privacy and availability too, but integrity is a difficult problem on
its own.)

VEX has three salient aspects. First, VEX is separated into two
phases: it adds some in-band overhead to the auction and relies on
a more expensive (but still practical) offline auditing step. This sep-
aration keeps auction latency low while permitting cryptographic
operations as part of verifying the auction results. This separation
is acceptable because misbehavior in this context, even if detected
offline, has non-technical ramifications (loss of business, legal ac-
tion, etc.).

Second, VEX introduces a new technique for privacy-preserving
comparisons, which may be useful elsewhere. Specifically, an entity
encodes a value v in the length of a hash chain and commits to the
value by exposing the tail of the hash chain;1 later, given a query q,
the entity can prove that v ≥ q (without disclosing v), by revealing
an appropriate node in the hash chain (the technique can also be
used to prove statements of the form “v ≤ q”).

Third, VEX uses careful protocol design to compose these
privacy-preserving comparisons with the auction protocol, to
achieve verifiable auctions. The protocol provides the guarantee
that if all parties behave, audits succeed, whereas if misbehavior
occurs (auctioneer chooses the wrong winner or the wrong price,
ignores a bidder’s bid, etc.), it can be detected during the auction
phase or the audit phase.

We have implemented and evaluated VEX (§7). Our prototype
imposes additional latency in the auction phase of 50 ms (at the 95th
percentile), and moderate computation (2× overhead) and storage
cost for the auctioneer. The audit phase is higher overhead—in
computational cost, the audit-to-auction ratio is roughly 1-to-160

1With this scheme, the larger v is, the more work the entity has to do.
However, in our context, the maximum value of v will not be very
large, as discussed in Section 3.

in one of our optimized variants—but would happen less often. All
of these costs are affordable and consistent with the usual price of
cryptographic guarantees in systems.

Our work has several limitations. First, it may not be easy to
persuade today’s ad exchanges to adopt VEX; on the other hand, of-
fering this protocol may attract publishers and advertisers. Second,
although bidders’ identities and bids remain secret, VEX reveals the
total number of bids (in an auction) and the sale price (if the auction
is audited). Third, our threat model is not the strongest possible;
among other things, we do not prevent misbehavior (only detect
it). Fourth, the ad exchange invites the bidders, so it can manipu-
late auctions, by choice of bidders. However, such manipulation is
mostly limited (§5) to endowing a colluding bidder with a right of
first refusal.2 Last, a malevolent publisher can deliver the auctioned
ad to the wrong user; this issue concerns the authenticity of what is
being auctioned and is a different problem from auction integrity,
but we can limit abuse by publishers (§5).

While online advertising has received much research atten-
tion (§8), verifiability in ad exchanges [39] has not been concretely
addressed. Thus, this paper’s contributions are:

• A technique for fast, private integer comparisons (§3).

• The design of VEX, a verifiable ad exchange protocol (§4) with
concrete guarantees (§5). For the most part, this design general-
izes to other online auction platforms (§9).

• The implementation and evaluation of VEX and variants (§6–§7).

2 BACKGROUND
This section surveys online advertising (§2.1), ad exchanges (§2.2),
and various vulnerabilities (§2.3).

2.1 A brief history of online advertising
Advertising is a primary source of revenue for many Web sites
that provide free content (e.g., videos, news, blogs). These content
providers, also known as publishers, have for decades used ad net-
works [6, 8, 13] to sell advertising space on their sites. Ad networks
would buy impressions by the thousands (a priori) from publishers,
and distribute the impressions among the network’s advertisers.

Recent advances in behavioral targeting [15, 24] have increased
the effectiveness of ad networks by allowing them to better match
impressions to advertisers’ preferences. This approach inspired a
new kind of entity, the ad exchange, as a way of dealing with
impressions that publishers were unable to sell in advance to ad
networks [25]. Because of their simplicity, power, and versatility,
ad exchanges were well-received, and they quickly began serving
premium impressions. They now serve billions of transactions per
day [43] and are expected to account for 27% of the total display
ad sales in the United States by 2015 [57] (one estimate is that ads
sold via exchanges will be an $8 billion market by 2017 [48]).

2.2 Ad exchanges
On an ad exchange, a publisher auctions individual ad impressions
to advertisers and ad networks, selling the impression to the highest
bidder. The enabling technology is real-time bidding (RTB) [26],
which provides advertisers with data on users and Web pages, al-
lowing them to bid only on the impressions that they consider per-

2Right to meet (and win in preference to) an existing offer before the
end of a transaction [1].

tinent. This gives publishers greater profit margins. Moreover, pub-
lishers get flexibility: they can sell impressions when available, in-
stead of in batches, based on advance forecasts.

Figure 1 gives a high-level overview of ad exchanges. The key
parties in an ad exchange are as follows:

• Users are the page visitors who ultimately see the ad.

• Sellers are publishers who operate Web sites where ads can be
displayed. Medium and large publishers are often represented by
a third party known as a supply-side platform. Small publishers
are frequently represented by ad networks.

• Bidders are advertisers wishing to bid on a particular impression.
Medium and large advertisers often contract with a demand-side
platform, while smaller advertisers contract directly with ad net-
works.

• The ad exchange performs the auction. It processes requests
from sellers of impressions and requests bids from subscribed
bidders.

• Ad storage servers store the actual advertisement (e.g., a banner).
These servers can be maintained by content delivery networks,
ad networks, demand-side platforms, or large advertisers.

Ad exchange protocol. The ad exchange protocol is initiated
when a user visits a publisher’s page. The page contains an HTML
iframe or JavaScript snippet that causes the user’s Web browser to
send an ad tag request to the seller’s server (Figure 1, step À). This
request contains a unique identifier that allows the server to deter-
mine the properties of the ad space: the URL, the dimensions, or the
type of ad supported (e.g., video, image, text). The seller’s server
then creates an auction request (Figure 1, step Á). The auction re-
quest contains four types of information: ad space information, fi-
nancial information (e.g., reserve price), user information, and a
time stamp. The user information varies widely and is based on
a publisher’s targeting strategy. It may include demographic (e.g.,
age) and geographic information, as well as information about the
user’s browsing history.

When the ad exchange receives an auction request, it performs
three actions. First, it looks up the user, by the process of cookie
syncing [2, 53]. Second, it chooses a set of bidders to participate
in the auction; the specifics of this step vary among ad exchanges.
Finally, the ad exchange constructs and sends a bid request to the
selected bidders (Figure 1, step Â). The bid request includes the
original impression information provided by the seller (ad space
information, financial information, user information, time stamp)
plus additional information held by the ad exchange about the user
or the seller (e.g., relevant keywords for the seller’s site).

Bidders process each bid request by identifying the potential
value of the impression; each bidder may have different bid-
ding strategies. A bidder sends a bid message to the ad exchange
(step Ã). Each bid message contains a bid as well as an ad tag that,
should the bidder win the auction, will be delivered to the user’s
browser and will be used to fetch the bidder’s ad.

Upon receiving all of the bids or when a timeout is triggered, the
ad exchange evaluates the auction. It chooses a winner (the high-
est bidder), setting the sale price equal to the second-highest bid.
The ad exchange then notifies the winning bidder of the sale price
(step Ä) and forwards both the bidder’s ad tag and the sale price to
the publisher (step Å). At this point, the publisher can respond to

User

Publisher's
Content

Ad Space

Web Page

Publisher

Seller

1 7

Ad Exchange

9

Lg. Advertiser

8

2

6

Ad
Network

CDN

Ad Storage Servers

Lg. Advertiser

Lg. Advertiser

Lg. Advertiser

Ad
Network

Sm. Advertiser

Md. Advertiser

Lg. Advertiser

Bidders

3

4

5

...

Figure 1—Overview of ad exchanges. The steps required to deliver an ad to the user are as follows. À The user’s browser requests an ad tag from
the publisher’s server. Á The publisher’s server requests an ad tag from the ad exchange, thereby initiating an auction. Â The ad exchange asks
interested advertisers and ad networks to bid on the given impression. Ã Bidders submit their bid along with their corresponding ad tag. Ä The
winning bidder is notified of the result of the auction. Å The seller receives the ad tag as well as the impression’s sale price. Æ The seller responds
to the user’s browser request by providing the ad tag. Ç The ad tag causes the user’s browser to fetch an ad from an ad storage server. È The ad
is fetched and rendered in the user’s browser. This process often completes within a few hundred milliseconds.

the user’s ad tag request (step Æ), causing the user’s Web browser
to fetch the ad from the appropriate ad storage server (steps Ç, È).

2.3 Vulnerabilities
Commission attack. The ad exchange receives payment from the
winning bidder when an impression is sold. Instead of reporting
this payment to the seller, the ad exchange reports a lower price, to
increase its “commission”.

Bid discrimination attack. The ad exchange selects a bidder other
than the highest to win, giving that bidder access to the media at a
below-market price; the ad exchange may then receive a side pay-
ment from this bidder.

Second-price attack. The ad exchange can misreport the second-
highest bid in a way that forces the winning bidder to pay a higher
price. This attack covers spurious bids by auction participants,
sometimes known as shill bidding [52], or cases when the ad ex-
change manufactures bidders.

Are these things happening today? We do not know: these be-
haviors are easy to carry out but difficult to detect. While a mea-
surement study (e.g., submit multiple bids to auctions) would be
worthwhile, it would give only a snapshot, with no guarantees about
the future. By contrast, the system described in the sections ahead
would rule out (or significantly raise the barrier to) such behaviors.

3 PRIVATE INTEGER COMPARISONS
This section introduces a protocol for private integer comparisons.
We describe it separately for clarity and modularity, and because
the protocol may be useful in other contexts.

We want to emphasize two things before going any further.
(1) The costs of what we present are not asymptotically optimal (or
even close), nor are the theoretical properties the strongest avail-
able. (2) We developed this protocol for VEX because its costs are
practical in our context (where integers have limited size, etc.); this
low overhead contrasts with prior solutions (see Section 7.7).

The protocol is in two phases. First, a prover publishes a com-
mitment to a non-negative integer x. Second, a querier supplies a
query q. The protocol provides these guarantees:

• Completeness. If x ≥ q, then the prover can produce a proof that
convinces the querier that the committed value is greater than q.

• Soundness. If x < q, then it is computationally infeasible for the
prover to convince the querier that x ≥ q.

• Secrecy. No information about x is leaked, other than what is
implied by a proved statement.

• Binding. It is computationally infeasible for the prover to pro-
duce integers x1 6= x2 and a commitment c such that c is a valid
commitment to both x1 and x2.

Although the protocol appears to provide only greater-than proofs,
we will show below how to obtain less-than proofs.

The main idea of the protocol is to encode an integer in the length
of a hash chain, publish the tail of the chain as the commitment, and
later publish an intermediate value in the chain as the proof.

Others have used hash chains [36] for various purposes, includ-
ing to encode integers [41, 50]. There is also a rich literature on
privacy-preserving comparisons [20, 59] (we compare our tech-
nique to others [18, 21, 22, 28] in Section 7.7). However, to the
best of our knowledge, the protocol detailed below is the first to
build privacy-preserving integer comparisons from hash chains.

Details. The protocol relies on a function H, which for technical
reasons we model as a random oracle, and which we instantiate
with a cryptographic hash function, such as SHA-256.3 As notation,
we write Hi(s) to mean composing H i times: H(· · ·H(s) · · ·).

Figure 2 depicts the protocol. The commitment is Hx(s), where
s is equal to H(s′), for some randomly generated secret s′ that is
distinguishable from elements in the range of H. In response to a
query q, the prover returns Hx−q(s) as the proof, or ⊥.

This protocol provides the four guarantees above, as follows. For
completeness, if x ≥ q, then Hx−q(s) convinces the querier: the
querier applies H q times to the proof and obtains Hx(s). For sound-

3A random oracle [16] maps each input to a randomly chosen output. It
has been shown that random oracles cannot exist, but it is a common
and accepted practice to use cryptographic hash functions as heuristic
substitutes when implementing protocols.

PROVER

function SETUP(n)
s′ R←− Σn,k
return {s′, s = H(s′)}

function GENCOMMIT(x, s)
return c = Hx(s)

function GENPROOF(q, x, s)
if q ≤ x then

return p = Hx−q(s)
else

return ⊥

QUERIER

function GENQUERY()
// decide on a value to query, q
return q

function VERIFYPROOF(q, c, p)
if p6=⊥ then

// p should be Hx−q(s).
if Hq(p) == c then

return accept
return reject

Figure 2—A protocol for fast greater-than proofs. The random ora-
cle H has signature H : {0, 1}∗ → {0, 1}n. Σn,k is a set of seeds of
length n + k, for some k, whose elements are easily distinguishable
from the range of H. For example, Σn,k could be {0}k||{0, 1}n. The
prover calls Setup and GenCommit. After receiving the commitment,
the querier issues a query q to the prover, who calls GenProof. The
querier verifies the proof with VerifyProof.

ness, observe that if x < q, then the querier’s algorithm could accept
the proof only if it were a preimage of s under H (specifically, the
(q−x)th preimage), yet by the properties of H, it is computationally
infeasible for the prover to identify such a preimage. For secrecy,
notice that the querier cannot determine x from the commitment or
the proof. (In fact, even if q = x, the querier learns only that x ≥ q;
in that case, the proof is s.) For binding, if the property did not hold,
then the prover could identify values x1 6= x2 and seeds s′1, s′2 such
that Hx1 (s′1) = Hx2 (s′2), which is computationally infeasible, by the
properties of H.

Less-than proofs. Our less-than proofs require a separate com-
mitment and proof (a single commitment does not prove less-than
and greater-than). The key step is to impose a maximum integer
m, known to both parties, to which the prover can commit. Then,
the parties follow the protocol in Figure 2 for x′ = m − x, and
q′ = m− q. That is, the prover commits to x′, the querier issues q′,
etc., and the statement to be proved is x′ ≥ q′, which is equivalent
to m− x ≥ m− q, which is equivalent to x ≤ q.

Discussion. We discuss three points here. First, the cost of the con-
struction above depends on the committed value. However, we de-
scribe how to amortize and avoid some of the costs in the auction
context (§6). Moreover, as noted earlier in the section, the proto-
col is practical for our purposes, despite its unappealing asymptotic
costs, relative to prior work (see §7.7).

Second, the protocol admits actions by the prover (and querier)
that might intuitively seem like misbehavior. For instance, the
prover can do the following without violating the guarantees: return
⊥ even if x ≥ q; commit to a very large number, thereby ensuring
that it always “passes”; or in cases when both greater-than and less-
than proofs are needed (which requires two separate commitments),
the prover could issue commitments to different numbers. However,
whether such actions are actually problematic depends on the layers
above the protocol. For instance, in the ad context, we have found,
to our surprise, that (a) the prover does not have much ability to
cheat; and (b) we need only less-than proofs (§5.1).

Finally, the protocol presented here is not meant to be the last
word: if more suitable realizations of the primitive emerge, VEX
can use those too.

Ad Exchange

Auditor

Proof
Validation

Auction Phase

Audit Request

Proofs

Audit Phase

Commitment Round

Decommitment Round

Proof
Generation

Figure 3—VEX is divided into two phases: an auction phase, in which
the auction takes place, and an audit phase, in which an auditor veri-
fies the correctness of the auction.

4 DESIGN OF VEX

At a high level, the purpose of VEX is to create verifiable records of
low-latency, high-frequency auctions. The records are constructed
so that any party to the auction, including the seller, can verify that
it was conducted correctly, without learning the bids (only the sale
price). This section describes our model and VEX’s design, Sec-
tion 5 analyzes VEX and considers limitations, and Section 6 de-
scribes optimizations.

4.1 Requirements and model
We adopt the following requirements for VEX:

• Preserve existing relationships and protocols. To the extent pos-
sible, we want our solution to “fit” in today’s ad exchange
ecosystem and protocols (Figure 1).

• Preserve current privacy regime. As stated in Section 1, our goal
is to protect the integrity of auctions, but we should not make
privacy worse. Today, bidders’ privacy is discretionary (the auc-
tioneer can leak bids; the bidder can in turn plausibly deny that it
issued a given bid). Thus, for us, an audit should not require that
the ad exchange disclose bidders’ bids or their identities.

• Do not undermine availability. As with privacy, VEX should not
make availability worse than in the status quo. Thus, availabil-
ity can depend on the auctioneer and seller, but not on bidders;
bidders should be expected to fail.

• Avoid introducing trusted third parties. A new trusted third party
would hinder adoptability and create an additional vulnerability.
We are willing to trust services that the Web depends on, such as
DNS.

• Permit bilateral verification. An auditor should not have to deal
with any party to the auction besides the auctioneer.

• Do not burden the auction phase. The auction phase must have
low overhead (in resources and latency). However, the audit
phase can be more expensive, as long as it is practical.

• Make auditing, and its costs, optional. To facilitate auditing, we
are willing to tolerate a small cost to all participants, but no party
should bear a heavy cost unless it wishes to perform an audit.

Threat model. We model bidders, the seller, and the ad exchange
as covert adversaries [14], which are assumed malicious and can
deviate arbitrarily from protocols, or collude with each other. How-
ever, they can cheat only covertly (for example, their reputation is
valuable, or the legal ramifications of being detected are intolera-
ble, etc.). Under this model, we consider a defense sufficient if it

Ad Exchange BidderSeller
Function GenVO(id, bid, adtag)
 s, s' = Setup() // see §3, §4.5.
 c = GenCommit(m - bid, s)
 htag = H(id || adtag)
 vo = {c, htag} // VEX object
 vd = {s', bid, adtag} // Decommitment

σ = Sign(impression)id
seller

Function GenID(impression)
 // see §2.2 for defn of impression
 id = H(impression)

Function CheckVO(id, vo_list, vd_list)
 for vo ��vo_list and vd ��vd_list
 res = ConsistencyCheck(id, vo, vd)
 if res ≠ consistent
 status = non_auditable

Function Auction(vd_list)
 w = max_bid(vd_list) // returns an index
 price = second_max(vd_list) // returns a value

Function Outcome(w, price, vo_list, vd_list, status)
 adtag = vd_list[w].adtag
 htag = vo_list[w].htag
 sp = price
 outcome = {sp, htag, status}

id, vo_list

Rσ = Sign(id || outcome)seller

id, vd

id, impression, σ idseller

id, vo

id,σ vo
seller

id, vo_list, σ vo
seller

id, outcome, adtag id, outcome

id, σ Rseller

id, impression, σ idseller

Bundle voσvo
seller = Sign(id || vo_list)

Decommitment Round

Commitment Round
1 2

3

4

5

6

7

Figure 4—VEX’s auction phase. In the first round, bidders commit to their bids; in the second round, the ad exchange computes the auction. The
most relevant computations are shown; minor checks and actions are omitted. The arrows are labeled by the contents of protocol messages.

makes misbehavior detectable under an audit. This is obviously not
the strongest possible threat model, but we believe that it matches
today’s ad exchange ecosystem.

Assumptions. We make standard cryptographic hardness assump-
tions. We also assume that each publisher has a well-known public
key. This does not require a PKI, only that the publisher’s public
key is available in a canonical Web location, say D/key.pub, where
D is the publisher’s domain name. Note that relying on DNS to
associate public keys and publishers does not introduce vulnerabil-
ities in this context, as the parties already rely on DNS to associate
D to the publisher itself: in deciding to respond to a bid request for
D, a bidder assumes that the ad will appear in a Web page from D.

4.2 Overview
Besides the ad exchange, the system participants include sellers (or
their representatives; see Section 2.2) and bidders (or their repre-
sentatives). Also any party to the auction (the seller, a bidder, or a
delegate of them) can decide to be an auditor of the auction.

Figure 3 depicts VEX. It is divided into two phases: the auction
phase (§4.3) and the audit phase (§4.4). The auction phase has two
rounds, and at a high level this structure ensures that (1) the auc-
tioneer and seller acknowledge a bid before the bidder reveals it to
the auctioneer; (2) the bidder is bound to its bid; and (3) there is
an auditable record of the auction. The purpose of the audit phase
is to validate an auction’s correctness. We say that an auction is
conducted correctly if the following condition is met:

• Auction correctness. The seller receives the highest bidder’s ad
tag, and a sale price equal to the second-highest bid (§2.2).

4.3 Auction phase
Figure 4 depicts the auction phase. As stated above, it proceeds
in two rounds. In the commitment round, the seller initiates an auc-
tion by marshaling the relevant information (ad space, user, etc.; see
Section 2.2) and generating a unique identifier (Figure 4, step À).
The seller transmits these contents, signed, to the auctioneer, who
forwards them to the chosen bidders. Interested bidders respond
with a VEX object, which contains a hash of the bidder’s ad tag

prepended with the auction’s id and a commitment to the bid, in-
tended for less-than proofs (§3) and equal-to proofs (§4.5) during
the audit phase (step Á). The auctioneer bundles these VEX objects,
for signing by the seller (step Â).

This operation freezes the VEX objects, creating a unique auction
whose input is the bundle itself. The commitment round finishes
when the auctioneer receives the signed bundle (step Ã).

In the decommitment round, each bidder receives the signed bun-
dle of VEX objects. After ensuring that its own VEX object is in-
cluded in the bundle, a bidder decommits: it provides to the auc-
tioneer the information needed to decode and verify its VEX object
(see “vd” in GenVO, step Á).

Before continuing, the auctioneer checks that each VEX object
has been constructed properly; the procedure is depicted in Fig-
ure 5. If a VEX object fails this check, then the auctioneer will be
unable to pass the audit (§4.4). In this event, the auction proceeds—
it is too late for the parties to revoke their VEX objects—but the
auctioneer labels the auction non-auditable (step Ä). We discuss
non-auditability in Section 5.2.

The rest of the round proceeds similarly to the status quo.
The auctioneer uses the decommitted bids to compute the auction,
choosing a winner and the appropriate sale price (step Å). The auc-
tioneer then informs the parties of the outcome. The outcome in-
cludes the sale price, the index of the winning bidder’s VEX object
in the VEX object bundle (indexing within the bundle is arbitrary),

1: function CONSISTENCYCHECK(id, vo, vd)
2: if vd.s′ 6∈ Σn,k then
3: return inconsistent
4: c = GenCommit(m− vd.bid, vd.s′)
5: htag = H(id || vd.adtag)
6: if c 6= vo.c or htag 6= vo.htag then
7: return inconsistent
8: return consistent

Figure 5—Pseudocode for the consistency check. id is the auction’s
identifier, vo is a bidder’s VEX object, vd is the corresponding decom-
mitment, and m is the maximum bid (§7.1). This check ensures that
the VEX object and the decommitment match.

1: function GENERATEAUDITPROOFS(sp, B, w, S′)
2: let P← ∅
3: constructed eq← false
4: for i = 1 to |B| do
5: if Bi ≥ sp and i == w then
6: Pi.label = greater-than
7: Pi.proof = ⊥
8: else if Bi == sp and constructed eq == false then
9: Pi.label = equal-to

10: Pi.proof = S′i
11: constructed eq = true
12: else // Bi ≤ sp
13: Pi.label = less-than
14: Pi.proof = GenProof(m− sp, m− Bi, H(S′i))
15: return P

Figure 6—Pseudocode for proof generation. sp is the auction’s sale
price, B is the set of bids, w is the index of the winning bidder’s bid
in B, S′ is the set of secret seeds, and m is the maximum allowed
bid. This procedure uses the integer comparison protocol described
in Section 3 and an extension (Section 4.5).

a hash of the winning bidder’s ad tag, and a bit indicating whether
the auction can be audited.

The auction phase of the protocol completes when the seller ac-
knowledges the outcome (step Æ). To do so, the seller computes the
hash of the winning bidder’s ad tag and checks that the value in-
cluded in the auction’s outcome is consistent. If so, the seller sends
a signature of the auction’s outcome to the auctioneer, who stores it
as proof of completion.

The next section describes how the auctioneer uses the received
decommitments to generate proofs of correctness, and how auditors
use VEX objects to validate these proofs.

4.4 Audit phase
An auditor begins an audit by submitting the unique identifier of
the auction to the auctioneer. The auctioneer then returns the VEX
object list and outcome record (which contains sp, the sale price,
and hw

tag, the ad tag hash of the winning bidder); both objects should
have been signed by the seller. The auctioneer must also return a
list of proofs in which it labels each bid in the VEX object list with
greater-than, equal-to, or less-than; the comparison is to sp.

Figures 6 and 7 depict the procedures for a correct auctioneer and
an auditor, respectively, to generate proofs and validate proofs. The
high-level idea is that the protocol requires the actioneer to label
the |P| bids (see above); meanwhile for the labeling to appear valid,
|P|−2 of the bids must be labeled with less-than (with correspond-
ing proofs), and one bid must be labeled with equal-to (again with a
correct proof). Although no greater-than proof appears, the require-
ment for |P| − 1 correctly labeled bids gives the auctioneer little
leeway in its claim about which proof corresponds to the winning
bid. We make this reasoning rigorous in Section 5.1.

4.5 Extending the integer comparisons protocol
We extend the protocol described in Section 3, to allow a prover
to generate proofs of strict equality. We use this extension, instead
of a more natural proof-of-equality (e.g., providing the hash of a
value and then later revealing the value), because the correctness
argument for audits depends on there being a single commitment
object for each bid (§5.1).

Figure 8 depicts the extension. With this extension, greater-than-
or-equal proofs remain the same. The difference is that the prover
could choose to reveal s′ to prove strict equality. The querier can

1: function VERIFYAUDITPROOFS(sp, VO, hw
tag, P)

2: for i = 1 to |P| do
3: if Pi.label == greater-than then
4: if VOi.htag 6= hw

tag then
5: return reject
6: else if Pi.label == equal-to then
7: if VerifyEqProof(m− sp, VOi.c, Pi.proof) 6= accept then
8: return reject
9: else // Pi.label == less-than

10: if VerifyProof(m− sp, VOi.c, Pi.proof) 6= accept then
11: return reject
12: if exactly one greater-than label and exactly one equal-to label then
13: return accept
14: return reject

Figure 7—Pseudocode for proof verification. sp is the auction’s sale
price, VO is the set of VEX objects, hw

tag is the hash of the winning
bidder’s ad tag, and P is the set of labeled proofs provided by the auc-
tioneer. This procedure relies on the protocol described in Section 3
and an extension (Section 4.5).

function VERIFYEQPROOF(q, c, p)
// p should be s′
if VerifyProof(q + 1, c, p) == accept and p ∈ Σn,k then

return accept
return reject

Figure 8—Extension of the protocol depicted in Figure 2, to enable
equality proofs. The extension overloads a greater-than or less-than
commitment, to let the prover also prove equality, should it choose.
The prover calls Setup and GenCommit as before, and reveals s′ when
it wishes to prove strict equality.

then verify the proof with VerifyEqProof. This extension does not
subvert the guarantees provided by the base protocol, though of
course the Secrecy guarantee is vacuous under equality proofs.

5 ANALYSIS, REVISITING REQUIREMENTS,
AND ISSUES

We consider the auction correctness condition from Section 4.2, the
design requirements from Section 4.1, and other issues.

5.1 Auction correctness
For now, we assume that each impression is auctioned at most once
and that at most one bidder is told that it won the given auction;
we revisit these assumptions in Section 5.3. Our focus here will
be on the Auction correctness condition, stated in Section 4.2. We
show that, assuming a successful audit, if there is no auctioneer-
bidder collusion, then the correctness condition holds. If there is
such collusion, a colluding bidder receives a right of first refusal.
(Auctioneer-seller collusion is considered in Section 5.3.)

As described in Section 4.4, two inputs to an audit are (1) the
VEX object list for that auction (which the auditor fetches from
the auctioneer and which is signed by the seller) and (2) a set of
proofs, which the auctioneer generates in response to an audit re-
quest. To pass verification (Figure 7), the auctioneer must label one
proof with greater-than, one with equal-to, and the rest with less-
than. For ease of exposition, we will refer to the auctioneer as la-
beling bids; this phrasing is justified because the proof entries and
committed bids are in one-to-one correspondence. For notation, let
e be the index of the bid labeled equal-to, g be the index of the
bid labeled greater-than, and L be the set of indices of bids la-

beled less-than. Notice that the algorithm in Figure 7 passes only
if L ∪ {e, g} = {1, 2, . . . , |B|}.

Now, consider the following four conditions:

• Be = sp, where sp is the sale price reported to the seller.

• The bidder of Bg was designated the winner.

• Be ≥ max{B` | ` ∈ L}.
• Bg ≥ Be.

These conditions together imply Auction correctness (§4.2), as fol-
lows. The first condition implies that the sale price sp equals one
of the bids; the second condition implies that the winner’s ad tag
was provided to the seller. The latter two conditions imply that the
auction obeyed the second-price computation (§2.2) and its gener-
alization to the case of ties among bids. Indeed, in the case that all
of the bids are different, the latter two conditions express that Bg

was the highest bid and Be the second-highest.

Claim 5.1. If the audit verification algorithm (Figure 7) passes,
then the first three conditions above hold.

Proof. If the first condition does not hold, then the auctioneer la-
beled Be incorrectly, and VerifyEqProof fails (Figure 7, line 7).

Recall that Bg is defined to be the bid labeled with greater-than.
If the bidder who issued Bg was not the one whose ad tag hash was
signed by the seller (the designated winner), then the audit algo-
rithm rejects in line 4 (Figure 7). Thus, the second condition holds.

If the third condition does not hold, then there exists i ∈ L such
that Be < Bi. But Pi (the proof corresponding to Bi) is labeled less-
than, so the verification algorithm (Figure 7, line 10) expects a proof
that Bi ≤ sp = Be. Yet Bi > Be, so the soundness of the integer
comparison protocol (Section 3) implies that it is computationally
intractable for the auctioneer to formulate such a proof. Thus, the
audit does not pass.

What about the last condition? The auctioneer can violate this
condition but only under limited circumstances:4

Claim 5.2. If the audit passes but Be > Bg, then the auctioneer set
sp equal to the highest bid and designated a winner who bid less
than this amount.

Proof. If the audit passes, then by Claim 5.1, sp = Be and Be ≥
max{B` | ` ∈ L}. And by the given condition, Be > Bg. Thus, all
of the bids are ≤ Be = sp, so this bid is the highest (and is perhaps
tied for that place). Since the second condition holds, the designated
winner bid Bg, yet the sale price is sp = Be > Bg.

Thus, if the fourth condition is violated without triggering de-
tection, then the designated winner must have colluded, possibly
tacitly, as this bidder is now obligated to pay more than its bid!—
an incorrect outcome. In effect, such a colluding bidder is given a
right of first refusal: it has the option to win the auction and the
impression but only by paying the highest offered bid.

The guarantees, then, that the auction and audit protocols pro-
vide are: assuming a successful audit, (1) if there is no collusion,
then all four conditions above hold, and hence so does Auction cor-
rectness (§4.2); and (2) if there is collusion, a colluding (possibly
low) bidder can exercise a right of first refusal. Giving this right to a

4This vulnerability is a consequence of our integer comparison proto-
col (§3); the issue would not exist under one of the more powerful (but
more expensive) alternatives in Section 7.7.

colluder is not ideal, but we consider this a (partial) victory because
this right is well-understood in other contexts (law, real estate, etc.),
and this is the limit of explicit manipulation.

5.2 Revisiting the design requirements
We now consider the requirements from Section 4.1 in turn, and ask
to what degree the protocol follows them.

Existing relationships are preserved, though slightly more infor-
mation leaks out of VEX versus in the status quo: in VEX’s auction
phase, bidders learn how many other bidders there are, and in VEX’s
audit phase, the auditor learns the sale price of the auction. We do
not believe that these revelations significantly alter the ecosystem
beyond the changes introduced by verifiability, but we admit that
this is speculation.

Bidder privacy. A bidder who creates a VEX object has plausi-
ble deniability about having done so: nothing in the protocol links
a given VEX object to its bidder, the indexing of bids in the VEX
object list is arbitrary, and the ad tag appears in the VEX object list
only in hashed form.

Availability. As in the status quo, the availability of the auction
phase depends on the seller and the auctioneer but not bidders. Bid-
ders affect the availability of the audit phase: a bidder renders an
auction non-auditable if it commits to a VEX object without decom-
mitting (because then the auctioneer cannot generate proofs for the
corresponding VEX object, which stymies the audit protocol). The
protocol requires the auctioneer to declare a non-auditable auction
online (though we explore the performance benefits of relaxing this
requirement in Section 6). Such publicity would ideally disincen-
tivize auctioneers from abusing the non-auditability designation.
The auctioneer, in turn, could dissuade bidders from inducing this
behavior, perhaps by levying penalties and eventually dropping a
bidder who persistently fails to decommit. Note that although we
are relying on publicity and soft defenses here, we still need VEX:
without it, there is no protocol deviation to publicize.

No new third parties are introduced by the protocol.
Bilateral verification is a feature of the protocol.
The requirements that concern costs—low burden on auction

phase and optional auditing—are evaluated in Section 7.

5.3 Other issues
Manipulation by the auctioneer. Because the auctioneer can invite
parties, it has a fundamental ability to manipulate the auction. Nev-
ertheless, this ability is limited. First, although the auctioneer can
choose the bidders, perhaps excluding known high bidders to give
other bidders favored treatment, doing so is detectable: persistently
excluded bidders would notice the dearth of invitations. In the sta-
tus quo, by contrast, the auctioneer can mask such malfeasance, by
inviting bidders but not recognizing them as having won.

Second, the auctioneer can collude with a bidder (including a
fake one). As explained in Section 5.1, such a colluding bidder can
receive a right of first refusal. Third, the auctioneer can use histori-
cal knowledge of bids (but not the current auction’s bids: those are
hidden during the commitment round) to bid between the highest
and second-highest bids. The effect is to bid up the price paid by
the winner, which is similar to the right of first refusal in that, to be
competitive, a bidder’s price must now be higher than it otherwise
would have needed to be.

Impression delivery. VEX does not ensure that the auctioned im-
pression is actually delivered to the claimed user: the seller can
send the ad to a different user, or even a bot. However, based on

the HTTP request that fetches the ad, the winning bidder can check
that the fetching user matches the original user information (§2.2),
in terms of browser, IP prefix, cookies, etc.—and from the adver-
tiser’s perspective, matches on these axes are likely “good enough”.
A seller could certainly spoof these fields (by imitating a legitimate
user’s browser, commandeering bots, etc.), but with the bidder’s
checks in place, a successful spoof now requires decidedly wrong
(borderline criminal) behavior.

Auction uniqueness. VEX does not prevent the auctioneer or
seller from auctioning the same impression multiple times to dis-
joint sets of bidders. However, that would also be an attack—a more
obvious one than above—on impression delivery, and the defrauded
bidder would notice that its ad was not fetched.

Auctioneer-seller collusion. VEX does not prevent the seller
and auctioneer from colluding to produce two conflicting outcome
records for the same auction, thereby convincing more than one bid-
der that they won that auction. But here again, only one bidder can
actually receive the impression, allowing the other to suspect mis-
behavior. While we cannot prove that conflicting outcome records
are the limit of auctioneer-seller collusion, we have been unable to
identify another attack enabled by such collusion.

6 VEX VARIANTS: VEX-NOCC AND VEX-CP

We now briefly describe two variants of VEX. In the first variant,
VEX-NOCC, the auctioneer performs the consistency check (Fig-
ure 5) the first time that an auction is audited instead of during the
auction phase. VEX-NOCC dramatically reduces the auction’s de-
lay, while adding very little overhead to the audit phase. The reason
is that, in generating audit proofs, the auctioneer does much of the
work of the consistency check (specifically, line 14 in Figure 6 does
most of the work of line 4 in Figure 5). The disadvantage of this ap-
proach is that auctions can no longer be labeled as auditable (or not)
during the online auction phase. This in turn means that auctioneers
might have more leeway to render auctions non-auditable.

The second variant, VEX-CP, retains the online consistency
check but accelerates it, by paying additional storage costs. In
VEX-CP, the auctioneer pre-computes hash chains of maximum
length, storing some of the intermediate nodes as checkpoints; we
find that having roughly 20 checkpoints leads to satisfactory perfor-
mance while introducing minor storage overhead (§7.5). The auc-
tioneer retains the seeds used to generate these chains and supplies
them to bidders, as part of the first message (with the id, impression
information, etc.; see Figure 4). To issue a commitment, a bidder
now generates a precommitment from the seed, appends a random
bit string as a salt (which hides the committed value even from the
auctioneer), and hashes these to produce the commitment. Bidders
decommit by revealing the salt rather than the seed.

At that point, the auctioneer can perform the consistency check
quickly, by traversing the chain from the closest checkpoint, rather
than from the root. Note that these checkpoints also accelerate proof
generation, leading to performance benefits during the audit phase.

VEX-CP requires minor changes to VerifyProof (Figure 2), Veri-
fyEqProof (Figure 8), and VerifyAuditProofs (Figure 7). The mod-
ified VerifyProof is depicted in Figure 9; it handles salted commit-
ments. The modified VerifyEqProof and VerifyAuditProofs handle
an extra parameter, salt. In addition, auditors must obtain from the
auctioneer the list of all of the salts used in a particular auction.

With VEX-CP, the auctioneer can sometimes re-use chains and
checkpoints across multiple auctions. We elide the details for the
sake of brevity. Here is a brief summary. We assume a fixed window

function VERIFYPROOF(q, c, p, salt)
if p 6= ⊥ then

// p should be Hx−q(s).
if H(Hq(p) || salt) == c then

return accept
return reject

Figure 9—Refinement of secrecy-preserving integer comparisons
(Figure 2) to use a salt.

of time during which an auction could be audited (say 1 month). If
this interval expires, the auction is guaranteed not to be audited.
At that point, it is safe to reuse the chain, provided it has not been
used in an audited auction. Replenishing checkpoints happens in
the audit phase. In particular, after an audit, the auctioneer gener-
ates a new set of chains and checkpoints, and marks all of the ones
associated with the current audit non-reusable.

7 EXPERIMENTAL EVALUATION
This section investigates the price of the guarantees that VEX pro-
vides, by asking the following questions: (1) What is VEX’s effect
on throughput? (2) What is VEX’s effect on latency in the online
phase? (3) What are VEX’s storage and bandwidth costs? (4) What
is the auditing cost in absolute terms, and what is the audit/auction
cost ratio? (5) What are the costs of the protocol introduced in Sec-
tion 3, and of alternative schemes that could be used to implement
private comparisons in VEX? We answer these questions in the con-
text of a prototype implementation, described below.

7.1 Prototype implementation
We implement model applications in C++, for an ad exchange (auc-
tioneer), a seller, and a bidder. We do not implement interactions
with the user (Figure 1, steps À, Æ, Ç, and È). The auctioneer ap-
plication is 1215 lines of C++ (measured by SLOC [12]). We also
implement the two variants described in Section 6, requiring an ad-
ditional 165 lines of C++. The seller model application is 659 lines
of C++; the bidder, 939 lines. We also implement a model auditor
in 471 lines of C++ (and 30 more for VEX-CP).

For H, we use an optimized implementation of SHA-256; it uses
Intel’s AVX instructions. The implementation is based on a release
from Intel [7] and is adapted to work with our application (requiring
400 lines of assembly and C).

We perform all public key operations using the ESIGN signa-
ture scheme [42], with 2048-bit keys, and parameter e = 8. The
seeds (§3) are 512-bit strings, where the first 256 bits form a well-
known pattern (see Figure 2), and the remaining 256 bits are ran-
domly generated. In the case of VEX-CP, the salts are 256 bits.
We use integers to represent bids from $0.01 to $100 in $0.01
increments (which is typically the smallest billable unit in ad ex-
changes [4]); thus, for the purposes of the integer comparison pro-
tocol (§3), the maximum (m) is 10,000. Also, VEX-CP computes a
total of 20 checkpoints (§6). All of the protocol messages are based
on DoubleClick’s RTB protocol [3], and are extended to contain the
required fields for VEX and its variants.

7.2 Experimental setup and method
We compare our implementation’s resource use to that of a base-
line protocol; we implemented the baseline in 1635 lines of C++,
following the protocol depicted in Figure 1.

We consider CPU utilization (measured using the PAPI li-
brary [10]), auction latency (measured at application-level from the

 0

 250

 500

 750

 1000

au
ct

io
n
 d

el
ay

 (
m

s)

offered load (auctions per second)
 10 20 50 100 200

network delay
processing time

b
as

e

b
as

e

b
as

e

b
as

e

b
as

e

v
ex

-n
o
cc

v
ex

-n
o
cc

v
ex

-n
o
cc

v
ex

-n
o
cc

v
ex

-n
o
cc

v
ex

-c
p

v
ex

-c
p

v
ex

-c
p

v
ex

-c
p

v
ex

-c
p

v
ex

v
ex

>1000

v
ex

>1000

v
ex

>1000

v
ex

>1000

Figure 11—Effect of load variation on auction latency with 20 bidders. Bar heights depict median per-auction latency over 100 trials (each trial
represents an end-to-end run of the entire system for 30 seconds); error bars depict 5th and 95th percentiles. Network latency is 10 ms (introducing
a delay of∼40 ms for the baseline and∼80 ms for all of VEX’s variants); see Section 6. The horizontal dashed line at 120 ms represents a standard
ad exchange timeout; this is the maximum time that the ad exchange waits for bidders to respond.

auctions/sec (closed loop)

bidders baseline VEX-CP VEX-NOCC

10 25,000 1,100 10,000
20 12,000 550 6,000
50 4,700 220 2,800

100 2,200 110 1,500

Figure 10—Maximum achievable auctions/sec measured at the auc-
tioneer on a single core and reported as means over 100 trials to two
significant digits. The standard deviations in all experiments are less
than 10% of the means. The baseline does no cryptographic opera-
tions, so its auction computation is considerably lighter.

seller’s point of view, specifically from steps Á to Å in Figure 1),5

network utilization (reported in terms of bytes sent and received at
application-level), and storage (computed as bytes stored on disk).

We run all of our experiments on Utah’s Emulab [58], configur-
ing VEX, VEX-CP, VEX-NOCC, and the baseline identically. Each
party (bidder, seller, auctioneer) runs on a single core. Our experi-
ments have four physical nodes; one is dedicated to the auctioneer,
two are shared by all bidders and the seller, and the remaining one
is an Emulab delay node. All simulated links have fixed 10 ms la-
tency, 1 Gbps throughput, and zero packet loss. Each node is a Dell
r820 2U server, with four 2.2 Ghz 64-bit 8-core E5-4620 “Sandy
Bridge” processors, 128 GB of 1333 MHz DDR3 RAM, running a
standard 64-bit Ubuntu 12.04 Linux operating system.

7.3 Throughput
To understand throughput, we measure the capacity (i.e., maximum
number of auctions per second) that the auctioneer can handle for
each of our variants. In this experiment, we pre-compute and load
into memory all of the inputs that the auctioneer expects from other
parties (e.g., commitments, signatures, etc), and bombard the auc-
tioneer with auction requests issued in closed loop, for 30 seconds;
this stresses the auctioneer’s part of the protocol in Figure 4. The
experiment thus includes the cost of message serialization but not
I/O and network overhead. We perform 100 trials.

Figure 10 depicts the results. VEX’s results are elided for read-
ability, but its performance is two orders of magnitude lower than
VEX-CP’s. The baseline is roughly 20× better than VEX-CP’s im-
plementation at higher loads. Under VEX-NOCC, however, the slow-
down is only 2×. While these results might produce some sticker
shock, they are actually not surprising: the baseline performs negli-

5In the case of VEX and its variants, we stop the timer before the seller
generates σR

seller (see Figure 4).

gible work (computing the maximum of a set, etc.) while VEX and
its variants handle twice as many messages and perform crypto-
graphic operations.

We perform a similar experiment for the seller and bidder appli-
cations and find that they can sometimes be the bottlenecks in VEX’s
variants. Specifically, we observe that both applications are roughly
2 orders of magnitude slower than their baseline counterparts. The
seller reaches a capacity of 5500 auctions per second on a single
core (for 10 bidders; this number is only slightly lower for a higher
number of bidders), while the bidder application can support up to
650 auctions per second on a single core. The seller’s throughput is
limited by the three required public key operations; each takes on
average 50 µs. The limiting factor for bidders is commitment gen-
eration (§4), averaging 1.2 ms per commitment. Note that our base-
line seller application performs no computations besides sending
the request (Figure 1, Step Á) and logging the response (Figure 1,
Step Å), so we are not measuring the time needed to generate the
ad space and user information in these experiments.

Our results suggest that the computational bottleneck for now is
the bidder application (rather than the auctioneer). This is obviously
a limitation and a natural starting point for future work.

7.4 Latency

To investigate latency during the auction phase, we have the model
seller generate requests according to a Poisson process of varying
rate. We fix the number of bidders at 20.

Figure 11 depicts the results. When lightly loaded (≤50 re-
quests/sec), VEX-CP and VEX-NOCC process auctions in less than
120 ms (at the 95th percentile). The latency overhead versus the
baseline is 55 ms for VEX-CP and 51 ms for VEX-NOCC, the major-
ity (∼40 ms) coming from an additional round of communication.

VEX’s latency rises with offered load because the load is exceed-
ing VEX’s (anemic) capacity; VEX-CP experiences the same behav-
ior starting at 200 auctions per second. By contrast, VEX-NOCC and
the baseline can handle significantly higher loads, as they do not
perform cryptographic operations along the critical path (§6).

7.5 Network and storage costs

Figure 12 tabulates the network and storage overhead of VEX.
The majority of the overhead comes from transmitting and stor-
ing the VEX objects and the seller’s signatures (§4.3). In addition,
VEX-CP’s auctioneer incurs a moderate local storage cost from the
checkpoints of precomputed hash chains (§6).

 0

 400

 800

generation generation generation verification

th
ro

u
g

h
p

u
t

(a
u

d
it

s/
se

co
n

d
)

(vex) (vex-cp) (vex-nocc)

1700

10 20 50 10
0

10 20 50 10
0

10 20 50 10
0

10 20 50 10
0

(a) Audit throughput varying the number of bidders

 0

 400

 800

generation generation generation verification

th
ro

u
g

h
p

u
t

(a
u

d
it

s/
se

co
n

d
)

(vex) (vex-cp) (vex-nocc)

20
00
50

00
70

00
90

00
20

00
50

00
70

00
90

00
20

00
50

00
70

00
90

00
20

00
50

00
70

00
90

00

(b) Audit throughput varying the auction’s sale price

Figure 13—Effect of the auction’s sale price and the number of bidders on the throughput of the audit phase, under the three variants of VEX
(the auctioneer generates audit proofs, and auditors verify them). In figure (a), the number of bidders varies, and the auction’s sale price is fixed
at $50.00 (sp = 5000; see §4.3); one of the bars is truncated. In figure (b), the sale price varies, and the number of bidders is fixed at 20.

VEX/VEX-NOCC VEX-CP

network (bytes/auction)
seller↔ auctioner 804 + 64n 804 + 64n
auctioneer↔ bidder 672 + 64n 704 + 64n

storage (bytes/auction)
seller 40 + 64n 40 + 64n
auctioneer 328 + 64n 328 + 32n + cp
bidder 608 + 64n 608 + 64n

Figure 12—Network and storage costs beyond the baseline. n is the
number of bidders participating in the auction, and cp is the size (in
bytes) of the checkpoint list. The checkpoint list is composed of 20
checkpoints per seed, or a total of 640 bytes per bidder (640n). Not
depicted is an additional 64n bytes (for the VEX objects) that need to
be stored by an auctioneer under VEX-NOCC (see Section 6).

7.6 Audit cost
To quantify the cost of an audit, we run our auditor application
and the auctioneer (for each of the variants) independently, hand-
ing them auctions, in closed loop, to prove or verify, and measure
capacity. For VEX-CP, we do not depict the cost of generating new
seeds and checkpoints after an audit (§6); adding such costs would
result in performance similar to that of VEX-NOCC.

We perform two sets of experiments. First, we vary the number
of bidders that originally participated in the auction, holding sale
price constant. Figure 13(a) depicts the results. The CPU costs of
the proof generation and proof verification algorithms (Figures 6
and 7) rise linearly with the number of bidders; the reason is that
the auctioneer generates a proof for every submitted bid.

Second, we vary the auction’s sale price, holding constant the
number of bidders. Figure 13(b) depicts the results. Sale price has
little effect on the work performed by the auctioneer (proof gener-
ation) in the optimized variants of VEX but significantly impacts an
auditor’s throughput. The reason is that the principal cost for both
parties is hash operations6. Meanwhile, under VEX-NOCC, the auc-
tioneer must perform, for each bid bi, (sp−bi)+(m−sp) = (m−bi)
hash operations, which is independent of sp. Under VEX-CP, the
number of hash operations performed by the auctioneer in the audit
phase is upper-bounded by

∑n
i=1 min{ m

20 , sp− bi}, and m/20 is the
controlling component, in our experiments. By contrast, the auditor

6When modeling the verification of signatures, we do not take into ac-
count the time needed to fetch the seller’s public key from the canoni-
cal location (see Section 4.1).

commit. size network cost rounds

Boudot (2000) [18] 128 bytes 5.9 KB 3?
Camenisch et al. (2008) [21] 32 bytes 3.8 KB 3?
Chaabouni et al. (2012) [22] 32 bytes 1.7 KB 1
Fauzi et al. (2013) [28] 32 bytes 1.3 KB 1
VEX (§3) 32 bytes 32 bytes 1

?Can be made non-interactive by applying the Fiat-Shamir heuristic [29].

Figure 14—Comparison of VEX’s integer comparisons (§3) to zero-
knowledge range proofs, in terms of storage and network costs, and
number of rounds of interaction. Costs are estimated from the papers;
we report the variant with the lowest communication costs.

must perform m− sp hash operations for each less-than proof, plus
m + 1− sp hash operations for the equal-to proof.

Based on these results, the auctioneer can sustain audits at
roughly 1/18 and 1/160 the rate at which it can sustain auctions
under VEX-CP and VEX-NOCC, respectively (we ignore VEX as it
can actually perform more audits than auctions!). This means that
with 33% (say) additional resources over its auction-handling re-
sources, the auctioneer could support an audit rate of 1 in 24 and 1
in 480 auctions for VEX-CP and VEX-NOCC, respectively.

7.7 Integer comparison protocol

We now compare the protocol in Section 3 to zero-knowledge range
proofs (ZK:RP) [18, 21, 22, 28], which, like the protocol in Sec-
tion 3, provide privacy-preserving integer comparisons. However, a
ZK:RP provides stronger properties than VEX (it can answer queries
about ranges versus inequalities), but here our focus is on costs: the
size of commitment, the length of proofs, and the number of rounds
of interaction. Figure 14 depicts the comparison. VEX is relatively
lightweight in terms of commitment size and proof size, and it re-
quires only one round of communication.

Of course, another important axis for comparison is computa-
tional (CPU) cost of commitment generation, proof generation, and
proof verification. However, it is difficult to estimate the cost of the
alternatives because most of them have not been implemented, and
do not appear in the literature in a way that exposes all of their
constants. It is clear that their asymptotic performance is superior
to VEX’s, though we think VEX is likely to perform better over the
range that it deals with (numbers less than 10,000; see Section 7.1).
Indeed, commitment generation, proof generation, and proof ver-
ification all take roughly 1 ms in this range. In contrast, a recent
implementation of Boudot’s scheme [38] requires relatively large

proofs (5.3 KB), and proof generation and verification take 74 and
31 ms, respectively.

7.8 Summary and outlook
Our evaluation indicates that the additional latency imposed by VEX
and its variants is fairly low (tens of milliseconds per auction) and
comes primarily from an additional round of communication. Net-
work costs are moderate (hundreds of bytes per bid), storage costs
for the auctioneer are considerable (but still tolerable), and auction-
eer throughput is reasonable (one of the optimized variants of VEX
imposes overhead of 2×). The audit-to-auction ratio (in terms of the
expense of an audit) is 1 for every 18 auctions for VEX-CP, and 1
for every 160 auctions for VEX-NOCC. This ratio could in principle
permit a significant fraction of auctions to be audited. The principal
cost during the auction phase is the bidders’ commitment genera-
tion. This cost is comparable to proof generation and verification in
the audit phase, and accounts for about 1.2 ms of CPU time.

8 OTHER RELATED WORK
We covered work on hash chains and zero knowledge range proofs
in Sections 3 and 7.7. Below, we discuss three categories of re-
search: online advertisement, secure auctions, and general-purpose
auditing.

Online advertising. Privad [31], Adnostic [51], and work by
Juels [35] apply to ad networks, versus our concern of ad exchanges.
Also, their focus is privacy for Web users, versus our concern of in-
tegrity in auctions. Reznichenko et al. [47] develop auction proto-
cols, but again the focus is ad networks, and the goal is user privacy.

Recent work by Dave et al. [23] and Haddadi [32] focuses on
measuring, detecting, and preventing fraudulent clicks in online
ad networks; this work could complement VEX by helping to de-
fend against attacks on impression delivery (§5.3). Stone-Gross et
al. [49] characterize the different types of fraudulent activity in ad
exchanges, such as click fraud and keyword stuffing, but unlike
VEX, their work assumes the correctness of the ad exchange itself.
Lastly, Muthukrishnan [39] describes ad exchanges generally, and
poses nine theoretical problems that range from mechanism design
to the development of a verifiable ad exchange. We address the lat-
ter problem with VEX.

Secure auctions. A large body of work in secure auctions focuses
on privacy [19, 34, 40]. This work is valuable but orthogonal to the
focus of this paper. Other work [17, 30, 37, 44–46, 50] recognizes
the importance and the challenge of designing verifiable online auc-
tions, and proposes several schemes based on novel cryptographic
techniques and distributed protocols. We provide a summary of the
most relevant work below.

The work by Rabin et al. [45] is the most recent in a line of
work [44, 46] that aims for auction integrity. This work achieves
stronger guarantees than VEX (for instance, unlike VEX, their
scheme does not require disclosing the auction’s sale price to ver-
ify that an auction was conducted properly), and reports impressive
performance results. On the other hand, as the authors acknowl-
edge, the performance results correspond to a construction with
soundness (probability of detecting an incorrect outcome) of only
25%. Amplifying this rate would require bidders to submit a large
number of commitments, leading to large computational, storage,
and communication costs.

Some work [30, 37, 50] proposes the design of secure auctions
by splitting up the role of the auctioneer into multiple parties. Note

that some of these schemes prevent misbehavior (versus detecting
it, as in VEX). The tradeoff is that they require a non-collusion as-
sumption among some of the parties. This is a reasonable assump-
tion in many instances, but the centralized nature of ad exchanges
makes this work not directly applicable to our requirements (§4.1).

Auditing. General-purpose auditing systems, such as PeerRe-
view [33], provide strong guarantees that would benefit ad ex-
changes, but they require participants (and their public keys) to
be well-known. The more specialized SPIDeR [61], though not di-
rectly applicable to auctions, has a similar ethos to VEX: SPIDeR
uses low cost, weak cryptographic primitives and couples them with
careful design to obtain security guarantees.

9 DISCUSSION AND CONCLUSION
As mentioned in the introduction and described in Section 5, VEX
has limitations. We now return to two of them. First, VEX has unde-
niable overhead. However, it is not absurd and in fact is consistent
with the price of cryptographic guarantees in systems.

Second, the auctioneer can manipulate auctions, by choice of
participants, by colluding with a bidder, or by labeling auctions
non-auditable. However, under our analysis, this is all that the auc-
tioneer can do, and given the nature of the problem—that there are
billions of latency-sensitive auctions per day, that none of the par-
ticipants know each other, that the integer comparison protocol (§3)
gives weak guarantees, that the auctioneer seems to hold all of the
cards, etc.—we were not sure that we could provide any guaran-
tees at all. So we have been pleasantly surprised that the guaran-
tees (§4.2, §5.1) appear strong enough for real use.

In fact, a natural avenue of future work is to broaden VEX’s appli-
cability: to other ads, to other auctions, and to other contexts. Con-
cerning other ads, we have assumed impression ads; we would like
to know if VEX applies to cost-per-click ads and other types. Con-
cerning other auctions, we expect that VEX’s core protocol, under
generalizations, can verify k-price auctions (winning bidder pays k-
highest bid), generalized Vickrey auctions (m items are allocated to
m bidders, who pay the m − 1-highest bid), and modified second-
price auctions (the highest bidder pays the second-highest bid plus
a fixed amount). And concerning other contexts, we have phrased
the core protocol in terms of ads (Figures 4–8), but we believe that
the design is mostly independent of this context. With minor mod-
ifications, it should apply to eBay, online funding platforms, and
other online auctions.

This is not to say that misbehavior is rampant in these contexts,
just that verifiability would be a Good Thing: it would strengthen
the service given to auction participants while lowering the barrier
to entry for new auctioneers, by reducing the trust required.

Acknowledgments
This paper was improved by comments from Allen Clement, Alan
Dunn, Lon Ingram, Arvind Krishnamurthy, Josh Leners, Srinath
Setty, Emmett Witchel, Edmund L. Wong, and the anonymous re-
viewers; and by conversations with Bobby Bhattacharjee, Amar
Goel, Saikat Guha, and Jon Howell; Maxwell Krohn brought ad
exchanges to our attention. We thank our shepherd, Dave Levin, for
his detailed attention, and abhi shelat for a particularly careful read
that identified several problems and for suggesting fixes. The re-
search was supported by AFOSR grant FA9550-10-1-0073 and by
NSF grants 1055057 and 1040083, and a Sloan Fellowship, and an
Intel Early Career Faculty Award.

REFERENCES

[1] Blacks Law Dictionary. 6th edition, 1990.
[2] Cookie Matching.

http://developers.google.com/ad-exchange/rtb/cookie-guide,
Apr. 2013.

[3] DoubleClick Ad Exchange Real-Time Bidding Protocol.
https://developers.google.com/ad-exchange/rtb/downloads.

[4] DoubleClick Bid Request Message. https://developers.google.com/
ad-exchange/rtb/downloads/realtime-bidding-proto.txt.

[5] DoubleClick Ad Exchange.
http://google.com/doubleclick/advertisers/ad_exchange.html.

[6] Google Display Network. http://google.com/ads/displaynetwork.
[7] Fast SHA-256 implementations on Intel architecture processors. http://

download.intel.com/embedded/processor/whitepaper/327457.pdf.
[8] Microsoft Media Network. http://advertising.microsoft.com/

advertise/microsoft-media-network.
[9] OpenX. http://www.openx.com.

[10] PAPI. http://icl.cs.utk.edu/papi/index.html.
[11] Rightmedia. http://www.rightmedia.com.
[12] Source lines of code counter. https://github.com/bytbox/sloc.
[13] Yahoo! Advertising Solutions. http://advertising.yahoo.com.
[14] Y. Aumann and Y. Lindell. Security against covert adversaries: Efficient

protocols for realistic adversaries. Journal of Cryptology, 23(2):281–343,
2010.

[15] H. Beales. The value of behavioral targeting.
http://www.networkadvertising.org/pdfs/Beales_NAI_Study.pdf,
2010.

[16] M. Bellare and P. Rogaway. Random oracles are practical: A paradigm for
designing efficient protocols. In ACM CCS, Nov. 1993.

[17] P. Bogetoft, D. L. Christensen, I. Damgård, M. Geisler, T. Jakobsen,
M. Krøigaard, J. D. Nielsen, J. B. Nielsen, K. Nielsen, J. Pagter,
M. Schwartzbach, and T. Toft. Secure multiparty computation goes live. In
Financial Cryptography and Data Security, Feb. 2009.

[18] F. Boudot. Efficient proofs that a committed number lies in an interval. In
EUROCRYPT, May 2000.

[19] F. Brandt. How to obtain full privacy in auctions. International Journal of
Information Security, 5(4):201–216, Oct. 2006.

[20] E. Brickell, D. Chaum, I. Damgård, and J. V. de Graaf. Gradual and
verifiable release of a secret. In CRYPTO, Aug. 1987.

[21] J. Camenisch, R. Chaabouni, and a. shelat. Efficient protocols for set
membership and range proofs. In ASIACRYPT, Dec. 2008.

[22] R. Chaabouni, H. Lipmaa, and B. Zhang. A non-interactive range proof with
constant communication. In Financial Cryptography and Data Security,
Feb. 2012.

[23] V. Dave, S. Guha, and Y. Zhang. Measuring and fingerprinting clickspam in
online ad networks. In ACM SIGCOMM, Aug. 2012.

[24] DoubleClick. Search before the purchase: Understanding buyer search
activity as it builds to online purchase.
http://google.com/doubleclick/research/index.html, Feb. 2005.

[25] DoubleClick. Profiting from non-guaranteed advertising: The value of
dynamic allocation and auction pricing for online publishers. http://www.
google.com/doubleclick/pdfs/DC_Ad_Exchange_WP_100713.pdf,
2010.

[26] DoubleClick. Google white paper: The arrival of real-time bidding and what
it means for media buyers.
http://google.com/doubleclick/research/index.html, July 2011.

[27] E. Elkind and H. Lipmaa. Interleaving cryptography and mechanism design:
The case of online auctions. In Financial Cryptography, Feb. 2004.

[28] P. Fauzi, H. Lipmaa, and B. Zhang. New non-interactive zero-knowledge
subset sum, decision knapsack and range arguments. Cryptology ePrint
Archive, Report 2012/548, Feb. 2013.

[29] A. Fiat and A. Shamir. How to prove yourself: practical solutions to
identification and signature problems. In CRYPTO, Nov. 1986.

[30] M. K. Franklin and M. K. Reiter. The design and implementation of a secure
auction service. In IEEE Symposium on Security and Privacy, May 1995.

[31] S. Guha, B. Cheng, and P. Francis. Privad: Practical privacy in online
advertising. In NSDI, Mar. 2011.

[32] H. Haddadi. Fighting online click-fraud using bluff ads. ACM SIGCOMM
CCR, 40(2):22–25, Apr. 2010.

[33] A. Haeberlen, P. Kuznetsov, and P. Druschel. PeerReview: Practical
accountability for distributed systems. In SOSP, Oct. 2007.

[34] M. Harkavy, J. D. Tygar, and H. Kikuchi. Electronic auctions with private
bids. In USENIX Workshop on Electronic Commerce, Aug. 1998.

[35] A. Juels. Targeted advertising... and privacy too. In RSA Security
Conference, The Cryptographers’ Track, Apr. 2001.

[36] L. Lamport. Password authentication with insecure communication.
Communications of the ACM, 24(11):770–772, 1981.

[37] H. Lipmaa, N. Asokan, and V. Niemi. Secure Vickrey auctions without
threshold trust. In Financial Cryptography, Mar. 2002.

[38] S. Meiklejohn, C. C. Erway, A. Küpçü, T. Hinkle, and A. Lysyanskaya.
ZKPDL: A language-based system for efficient zero-knowledge proofs and
electronic cash. In USENIX Security Symposium, Aug. 2010.

[39] S. Muthukrishnan. Ad exchanges: Research issues. In Workshop on Internet
and Network Economics. Dec. 2009.

[40] M. Naor, B. Pinkas, and R. Summer. Privacy preserving auctions and
mechanism design. In ACM Conference on Electronic Commerce, Nov.
1999.

[41] K. Q. Nguyen, Y. Mu, and V. Varadharajan. Digital coins based on hash
chain. In National Information Systems Security Conference, Oct. 1997.

[42] T. Okamoto and J. Stern. Almost uniform density of power residues and the
provable security of ESIGN. In ASIACRYPT, Nov. 2003.

[43] OpenX. Openx handles more than one trillion ad requests in 2011.
http://www.openx.com/content/

openx-handles-more-one-trillion-ad-requests-2011, 2011.
[44] D. C. Parkes, M. O. Rabin, S. M. Shieber, and C. A. Thorpe. Practical

secrecy-preserving, verifiably correct and trustworthy auctions. In
International Conference on Electronic Commerce, Aug. 2006.

[45] M. O. Rabin, Y. Mansour, S. Muthukrishnan, and M. Yung.
Strictly-black-box zero-knowledge and efficient validation of financial
transactions. In International Colloquium on Automata, Languages and
Programming, July 2012.

[46] M. O. Rabin, R. A. Servedio, and C. A. Thorpe. Highly efficient
secrecy-preserving proofs of correctness of computations and applications.
In IEEE Symposium on Logic in Computer Science, July 2007.

[47] A. Reznichenko, S. Guha, and P. Francis. Auctions in do-not-track
compliant internet advertising. In ACM CCS, Oct. 2011.

[48] N. Singer. Your online attention, bought in an instant.
http://www.nytimes.com/2012/11/18/technology/

your-online-attention-bought-in-an-instant-by-advertisers.

html, Nov. 2012. The New York Times.
[49] B. Stone-Gross, R. Stevens, R. Kemmerer, C. Kruegel, G. Vigna, and

A. Zarras. Understanding fraudulent activities in online ad exchanges. In
IMC, Nov. 2011.

[50] K. Suzuki, K. Kobayashi, and H. Morita. Efficient sealed-bid auction using
hash chain. In Information Security and Cryptology, Dec. 2000.

[51] V. Toubiana, A. Narayanan, D. Boneh, H. Nissenbaum, and S. Barocas.
Adnostic: Privacy preserving targeted advertising. In NDSS, Feb. 2010.

[52] J. Trevathan and W. Read. Undesirable and fraudulent behavior in online
auctions. In SECRYPT, Aug. 2006.

[53] V. Vaidya. Cookie synching.
http://www.admonsters.com/blog/cookie-synching, Apr. 2010.

[54] N. Vratonjic, J. Freudiger, and J.-P. Hubaux. Integrity of the web content:
The case of online advertisement. In Workshop on Collaborative Methods
for Security and Privacy, Aug. 2010.

[55] N. Vratonjic, J. Freudiger, J.-P. Hubaux, and M. Felegyhazi. Securing online
advertising. Technical Report LCA-REPORT-2008-017, Laboratory for
Computer Communications and Applications, École Polytechnique Fédérale
de Lausanne, July 2008.

[56] N. Vratonjic, J.-P. Hubaux, M. Raya, and D. C. Parkes. Security games in
online advertising: Can ads help secure the web? In Workshop on
Economics of Information Security, June 2010.

[57] K. Weide. Real-time bidding in the United States and Western Europe,
2010–2015. http://info.pubmatic.com/rs/pubmatic/images/IDC_
Real-Time%20Bidding_US_Western%20Europe_Oct2011.pdf, Oct.
2011.

[58] B. White, J. Lepreau, L. Stoller, R. Ricci, S. Guruprasad, M. Newbold,
M. Hibler, C. Barb, and A. Joglekar. An integrated experimental
environment for distributed systems and networks. In OSDI, Dec. 2002.

[59] A. C.-C. Yao. How to generate and exchange secrets. In FOCS, Oct. 1986.
[60] ZenithOptimedia. Quadrennial events to help ad market grow in 2012

despite economic troubles.
http://www.zenithoptimedia.com/about-us/press-releases/

zenithoptimedia-adspend-forecast-update-dec-2011, Dec. 2011.
[61] M. Zhao, W. Zhou, A. J. Gurney, A. Haeberlen, M. Sherr, and B. T. Loo.

Private and verifiable interdomain routing decisions. In ACM SIGCOMM,
Aug. 2012.

http://developers.google.com/ad-exchange/rtb/cookie-guide
https://developers.google.com/ad-exchange/rtb/downloads
https://developers.google.com/ad-exchange/rtb/downloads/realtime-bidding-proto.txt
https://developers.google.com/ad-exchange/rtb/downloads/realtime-bidding-proto.txt
http://google.com/doubleclick/advertisers/ad_exchange.html
http://google.com/ads/displaynetwork
http://download.intel.com/embedded/processor/whitepaper/327457.pdf
http://download.intel.com/embedded/processor/whitepaper/327457.pdf
http://advertising.microsoft.com/advertise/microsoft-media-network
http://advertising.microsoft.com/advertise/microsoft-media-network
http://www.openx.com
http://icl.cs.utk.edu/papi/index.html
http://www.rightmedia.com
https://github.com/bytbox/sloc
http://advertising.yahoo.com
http://www.networkadvertising.org/pdfs/Beales_NAI_Study.pdf
http://google.com/doubleclick/research/index.html
http://www.google.com/doubleclick/pdfs/DC_Ad_Exchange_WP_100713.pdf
http://www.google.com/doubleclick/pdfs/DC_Ad_Exchange_WP_100713.pdf
http://google.com/doubleclick/research/index.html
http://www.openx.com/content/openx-handles-more-one-trillion-ad-requests-2011
http://www.openx.com/content/openx-handles-more-one-trillion-ad-requests-2011
http://www.nytimes.com/2012/11/18/technology/your-online-attention-bought-in-an-instant-by-advertisers.html
http://www.nytimes.com/2012/11/18/technology/your-online-attention-bought-in-an-instant-by-advertisers.html
http://www.nytimes.com/2012/11/18/technology/your-online-attention-bought-in-an-instant-by-advertisers.html
http://www.admonsters.com/blog/cookie-synching
http://info.pubmatic.com/rs/pubmatic/images/IDC_Real-Time%20Bidding_US_Western%20Europe_Oct2011.pdf
http://info.pubmatic.com/rs/pubmatic/images/IDC_Real-Time%20Bidding_US_Western%20Europe_Oct2011.pdf
http://www.zenithoptimedia.com/about-us/press-releases/zenithoptimedia-adspend-forecast-update-dec-2011
http://www.zenithoptimedia.com/about-us/press-releases/zenithoptimedia-adspend-forecast-update-dec-2011

	1 Introduction
	2 Background
	2.1 A brief history of online advertising
	2.2 Ad exchanges
	2.3 Vulnerabilities

	3 Private integer comparisons
	4 Design of vex
	4.1 Requirements and model
	4.2 Overview
	4.3 Auction phase
	4.4 Audit phase
	4.5 Extending the integer comparisons protocol

	5 Analysis, revisiting requirements, and issues
	5.1 Auction correctness
	5.2 Revisiting the design requirements
	5.3 Other issues

	6 vex variants: vex-nocc and vex-cp
	7 Experimental evaluation
	7.1 Prototype implementation
	7.2 Experimental setup and method
	7.3 Throughput
	7.4 Latency
	7.5 Network and storage costs
	7.6 Audit cost
	7.7 Integer comparison protocol
	7.8 Summary and outlook

	8 Other related work
	9 Discussion and conclusion

