

The Logicians on our cover are:

 Euclid (? - ?)

 Augustus De Morgan (1806 – 1871) Charles Babbage (1791 – 1871)

George Boole (1815 – 1864) Aristotle (384 BCE – 322 BCE) George Cantor (1845 – 1918)

 Gottlob Frege (1848 – 1925) John Venn (1834 – 1923)

 Bertand Russell (1872 – 1970)

Reasoning

An Introduction to
Logic, Sets, and Functions

Chapter 10

Relations

Elaine Rich
Alan Kaylor Cline

The University of Texas at Austin

Image credits:

Swan and cygnets: http://www.telegraph.co.uk/earth/earthpicturegalleries/5989838/Animal-pictures-of-the-week-7-

August-2009.html?image=1

Molecule: http://office.microsoft.com/en-

us/images/results.aspx?qu=molecule&ex=1&origin=HA010237914#ai:MC900436918

Computer network: http://office.microsoft.com/en-

us/images/results.aspx?qu=molecule&ex=1&origin=HA010237914#ai:MC900436918

City (Glasgow) road map: http://glasgowtransport.co.uk/gct_oneway_map.jpg

Web icons: http://icons.webtoolhub.com/icon-n70185f178026-detail.aspx

Cake: http://www.arthursclipart.org/foods/food/cake%203.gif

Pie: http://www.arthursclipart.org/foods/food/icecream%20coe%202.gif

Ice cream: http://4vector.com/i/free-vector-cherry-pie-clip-art_113043_Cherry_Pie_clip_art_hight.png

Clock: http://www.crateandbarrel.com/decorating-and-accessories/clocks/1

REASONING—AN INTRODUCTION TO LOGIC, SETS AND FUNCTIONS Copyright © 2014 by Elaine Rich and
Alan Kaylor Cline. All rights reserved. Printed in the United States of America. No part of this book may
be used or reproduced in any manner whatsoever without written permission except in the case of brief
quotations embodied in critical articles or reviews. For information, address Elaine Rich,
ear@cs.utexas.edu.

http://www.cs.utexas.edu/learnlogic
Library of Congress Cataloging-in-Publication Data

Rich, Elaine, 1950 -
 Reasoning—An Introduction to Logic Sets and Functions / Elaine Rich.— 1st ed. p. cm.
 ISBN x-xxx-xxxxx-x 1

http://www.telegraph.co.uk/earth/earthpicturegalleries/5989838/Animal-pictures-of-the-week-7-August-2009.html?image=1
http://www.telegraph.co.uk/earth/earthpicturegalleries/5989838/Animal-pictures-of-the-week-7-August-2009.html?image=1
http://office.microsoft.com/en-us/images/results.aspx?qu=molecule&ex=1&origin=HA010237914#ai:MC900436918
http://office.microsoft.com/en-us/images/results.aspx?qu=molecule&ex=1&origin=HA010237914#ai:MC900436918
http://office.microsoft.com/en-us/images/results.aspx?qu=molecule&ex=1&origin=HA010237914#ai:MC900436918
http://office.microsoft.com/en-us/images/results.aspx?qu=molecule&ex=1&origin=HA010237914#ai:MC900436918
http://glasgowtransport.co.uk/gct_oneway_map.jpg
http://icons.webtoolhub.com/icon-n70185f178026-detail.aspx
http://www.arthursclipart.org/foods/food/cake%203.gif
http://www.arthursclipart.org/foods/food/icecream%20coe%202.gif
http://4vector.com/i/free-vector-cherry-pie-clip-art_113043_Cherry_Pie_clip_art_hight.png
http://www.crateandbarrel.com/decorating-and-accessories/clocks/1
http://www.cs.utexas.edu/learnlogic

Ordered Tuples and Cartesian Products .. 1

Relations ... 9

Composing Binary Relations .. 20

Representing Binary Relations ... 36

Properties of Binary Relations on a Set .. 47

Equivalence Relations ... 73

Table of Contents

Relations 1

Ordered Tuples and Cartesian Products

Relating Elements of Sets

At this point, we’ve seen examples of many kinds of sets. And we’ve worked with operations on

those sets. What we’d like to do now is to define some tools for reasoning about elements and

their relationships to each other.

Consider the following pairs of elements:

(Paris, France), (Paris, Texas), (London, England), (Rome, Italy)

In each pair, the first element is drawn from the set Cities. The second is drawn from the set

Countries. And the named city is in the country indicated by the second element.

Consider the following pairs of elements, all of which are drawn from N (the natural

numbers):

 (1, 2), (2, 4), (3, 6), (100, 200)

In each pair, the second element is twice the first.

Consider the following triples of elements, all of which are drawn from Z (the integers):

 (2, 3, 5), (-5, 8, 3), (90, 16, 106), (-8, -2, -10), (9, 0, 9)

In each triple, the third element is the sum of the first two.

2 Relations

Ordered Pairs

An ordered pair is a sequence of two objects. Given any two objects, x and y, there are two

ordered pairs that can be formed. We write them as (x, y) and (y, x). As the name implies, in an

ordered pair (as opposed to in a set), order matters (unless x and y happen to be equal).

We can put any two arbitrary elements together to form an ordered pair. But we rarely do that.

Generally we’ll use ordered pairs to capture useful connections. What relationships exist

between the pairs of elements in the example above?

Two ordered pairs (a, b) and (x, y) are equal if and only a = x and b = y.

(cat, kitten)  (cat, kitty) (cat, kitten)  (kitten, cat)

Problems

1. Indicate whether each of the following statements is true or false:

a) (Paris, France) = (France, Paris)
b) (17, 2) = (17, 2)
c) (2, 2) is an ordered pair.
d) (Paris, Italy) is an ordered pair.

All of the following are ordered pairs:

(Paris, France), (Paris, Texas), (London, England),

(Rome, Italy)

(1, 2), (2, 4), (3, 6), (100, 200)

(cat, kitten), (dog, puppy), (bat, pup), (swan,

cygnet), (armadillo, pup)

Relations 3

Ordered N-Tuples

Sometimes we want to relate more than two elements. An ordered n-tuple is an ordered

sequence of n objects. When n is 3, we’ll say that we have an ordered triple.

As for ordered pairs, two ordered tuples (a1, a2, . . . , ak) and (b1, b2, . . . , bn) are equal if and

only if:

 k = n and, for every i, where 1  i  n, ai = bi

Problems

1. Indicate whether each of the following statements is true or false:

a) (Paris, Paris, France) = (Paris, France, Paris)
b) (1, 2, 2) = (1, 2)
c) (2, 2, 2) is an ordered triple.
d) (Paris, Rome, London, Athens) is an ordered 4-tuple

Consider the following set of equations:

 2x + 3y – z = 9

 x - y + z = 0

 3x - y + 2z = 4

We can say that the ordered triple (1, 3, 2) is a solution to this system of equations if we

interpret it as containing values for the variables x, y, and z, in that order.

For example, (1, 3, 2)  (1, 2, 3)  (1, 3, 2, 5)

4 Relations

Cartesian Products

The Cartesian product of two sets A and B (written A  B) is the set of all ordered pairs (a, b)

such that a  A and b  B.

As you can see from this example, the Cartesian product of two sets contains elements that

represent all the ways of pairing some element from the first set with some element from the

second. Note that A  B is not the same as B  A.

In the special case in which A and B are the same set, we can write (by analogy with x  x = x2):

 A  A = A2

If A and B are finite, then the cardinality of their Cartesian product is given by:

|A  B| = |A||B|.

This is straightforward to prove by induction. Try to do so.

For example, let A be a set of people: {Dave, Sara, Billy}, and let B be a set of desserts: {cake,

pie, ice cream}. Then:

 A  B = { (Dave, cake), (Dave, pie), (Dave, ice cream),

 (Sara, cake), (Sara, pie), (Sara, ice cream),

 (Billy, cake), (Billy, pie), (Billy, ice cream)}.

Continuing with our example:

 B  A = { (cake, Dave), (pie, Dave), (ice cream, Dave),

 (cake, Sara), (pie, Sara), (ice cream, Sara),

 (cake, Billy), (pie, Billy), (ice cream, Billy)}.

Thus A  B  B  A.

Again, let A = {Dave, Sara, Billy}, and B = {cake, pie, ice cream}. Then:

 |A  B| = |A||B| = 33 = 9

Nifty Aside

The name “Cartesian product” is derived from the name of the important French

philosopher and mathematician, René Descartes (1596 -1650). Descartes may be best

known as the author of the phrase, “I think, therefore I am.” But his other contributions

both to philosophy and to mathematics were substantial.

Relations 5

When we take a Cartesian product, it’s not necessary for the two sets to be different.

Let A = {rock, paper, scissors}. Then:

 A  A = { (rock, rock), (rock, paper), (rock, scissors),

(paper, rock), (paper, paper), (paper, scissors),

(scissors, rock), (scissors, paper), (scissors, scissors)}

In this example, A  A is the set of possible outcomes of one round if two players play the

rock, paper, scissors game.

6 Relations

Problems

1. We want to prove, by counterexample, that, for arbitrary sets A and B, it need not be true that

A  B = B  A. Let A = {2, 4, 8, 16}. Let B = {2, 4, 6, 8, 10, 12}. Consider each of the following

ordered pairs. If it proves our claim (by being an element of one of A  B or B  A, but not both),
mark true. Otherwise, mark false.

a) (2, 4)
b) (2, 6)
c) (8, 8)
d) (12, 4)
e) (12, 14)

2. Let A = {2, 4, 8, 16}. Let B = {2, 4, 6, 8, 10, 12}.

(Part 1) What is |A  B|?

(Part 2) Insert 10 into B. Now what is |A  B|?

(Part 3) Insert 10 into A. Now what is |A  B|?

3. Let Presidents be the set of U.S. Presidents. Recall that Z+ is the set of positive integers.

For each of the following ordered pairs, mark true if it is in Z+  Presidents. Mark false
otherwise.

a) (1, Washington)
b) (12, Lincoln)
c) (Garfield, 20)
d) (Taft, Wilson)
e) (35, Washington)

4. Suppose that we have three sets, A, B and C and we want to say that (peanuts, popcorn) is

an element of both A  B and A  C. At least one of the following statements makes that claim.
The rest are nonsense (meaning that they’re not either true or false; they simply aren’t
syntactically correct). For each statement, mark true if it makes the intended claim. Mark false
otherwise.

(peanuts, popcorn)  A  (B  C)

((peanuts, popcorn)  A  B)  ((peanuts, popcorn)  A  C))

(peanuts, popcorn)  (A  B)  (A  C)

(peanuts, popcorn)  (A  B)  (A  C)

5. For any set A, what is |A  A| ? You should be able to prove your answer before you write it.

a) |A|

b) 2  |A|
c) |A|2
d) |A|2 - |A|
e) |A|2 + |A|

Relations 7

8 Relations

Generalizing to More Sets

We can take the Cartesian product of any finite number of sets.

Define the Cartesian product of sets A1, A2, . . . An, written:

 A1  A2  . . .  An

to be:

 {(e1, e2, . . . en) : for all 1  k  n, ek  Ak}

If A1, A2, . . . An are finite, then the cardinality of their Cartesian product is given by:

 | A1  A2  . . .  An | = | A1|| A2| . . . | An|

Problems

1. Let: A = {apple, artichoke, almond}
 B = {bacon, boxty}
 C = {caramel, custard, coconut, carrot}
 D = {duck, donut, dumpling, date}

Indicate whether each of the following statements is true or false:

a) (apple, bacon, caramel)  A  B  C

b) (artichoke, boxty, coconut)  (A  B)  C
c) ((almond, bacon), (custard, dumpling)) = (almond, bacon, custard, dumpling)

d) ((artichoke,boxty), (carrot,donut))  (A  B)  (C  D)

2. Let: A = {apple, artichoke, almond}
 B = {bacon, boxty}
 C = {caramel, custard, coconut, carrot}
 D = {duck, donut, dumpling, date}

(Part 1) What is |A  B  C|?

(Part 2) What is the cardinality of |B  B  D|?

For example, let: Products = {screws, nails, hooks}

 Suppliers = {WidgetCorp, CoolBiz}

 PriceRanges = {Low, Middle, High}

Then Products  Suppliers  PriceRanges contains elements such as:

 (screws, CoolBiz, High) and (nails, WidgetCorp, Low)

Relations 9

Relations

Binary Relations

When we take the Cartesian product of two sets A and B, we get all ordered pairs that can be

formed by taking one element of A and one element of B.

But suppose that we want to consider only those pairs that correspond to some situation we are

trying to describe.

A binary relation over two sets A and B is a subset of A  B. In this case, we’ll say that we have

a relation from the set A to the set B.

When we have a relation R from A to B, we’ll call A the domain of R and B its codomain.

Sometimes the two sets involved are the same (call it A). In this special case, we’ll say that we

have a relation on the set A. (In other words, a relation from A to A is a relation “on A”.)

Note that we don’t require that a relation from A to B be a proper subset of A  B.

Recall the dessert choice example: Let A be a set of people: {Dave, Sara, Billy}, and let B be

a set of desserts: {cake, pie, ice cream}. Then:

 A  B = { (Dave, cake), (Dave, pie), (Dave, ice cream),

 (Sara, cake), (Sara, pie), (Sara, ice cream),

 (Billy, cake), (Billy, pie), (Billy, ice cream)}.

For example, suppose that we want to talk about desserts that people actually like. Perhaps

Billy and Sara hate pie and Dave hates cake. So we want to write:

Likes = { (Dave, pie), (Dave, ice cream),

 (Sara, cake), (Sara, ice cream),

 (Billy, cake), (Billy, ice cream)}

Likes (as described above) is a binary relation.

Likes has {Dave, Sara, Billy} as its domain and {cake, pie, ice cream} as its codomain.

MotherOf is a relation on the set People. So MotherOf  People  People. Suppose that

Chris is the mother of Kelly. Then:

 (Chris, Kelly)  MotherOf

10 Relations

In this case, we’ll say that the relation is a total relation from A to B.

Common binary relations include:

• = (equality, defined on many domains),

• < (defined on numbers and some other domains), and

•  (also defined on numbers and some other domains).

Let R be any binary relation and let (a, b) be some element of R. Four common ways to indicate

this are:

(a, b)  R

Rab Common in books, but only useful when R, a, and b can all be written

as single characters. We won’t use this one.

R(a, b) Note the similarity to predicate notation. Think of R(a, b) as being

true if and only if (a, b)  R.

a R b Often used for common relations to which we assign special symbols.

This is called infix notation (because the relation symbol occurs in

between the two arguments).

Notice a couple of important properties of relations as we have defined them. First, a relation

may be equal to the empty set (in which case, we can call it an empty relation).

Maybe Dave, Sara and Billy simply love food. Then we could have:

LovesItAll = A  B = { (Dave, cake), (Dave, pie), (Dave, ice cream),

 (Sara, cake), (Sara, pie), (Sara, ice cream),

 (Billy, cake), (Billy, pie), (Billy, ice cream)}

The relation < on the integers contains an infinite number of elements drawn from the

Cartesian product of the set of integers with itself. For instance, 2 < 7.

Let R be < (less than) defined on the integers. Then we can write all of the following:

• (1, 6)  <

• < (3, 327)

• 4 < 82

Let R be the Likes relation defined above. Then we can write:

• (Dave, pie)  Likes

• Likes(Billy, cake)

• Sara Likes pie

Relations 11

Second, there are no constraints on how many times a particular element may occur in a relation.

Problems

1. Assume the standard definition of the relation  defined on the natural numbers. In other

words, (i, j)   if and only if i  j. Mark each of the following statements as true or false:

a) 6  8

b) 12  12

c)  (-9, 6)

d) (7, 5)  

2. Let Cities be the set of cities in the world. (We’ll skip over the details of how large something
has to be to qualify as a “city”. Also, we’ll assume, for simplicity, and counter to fact, that a
name uniquely identifies a city.) Let Countries be the set of countries in the world. Define:

Places  Countries  Cities = {(a, b) : b is in a}

Mark each of the following statements as true or false:

a) France is in the domain of Places
b) France is in the codomain of Places

c) (France, Paris)  Places

d) (France, Rouen)  Places

e) (Rome, Italy)  Places

f) Places(Spain, Madrid)

3. Let Cities be the set of cities in the world. (We’ll skip over the details of how large something
has to be to qualify as a “city”. Also, we’ll assume, for simplicity, and counter to fact, that a
name uniquely identifies a city.) Let Countries be the set of countries in the world. Define:

Capitals  Countries  Cities = {(a, b) : b is the capital of a}

Mark each of the following statements as true or false:

a) Capitals(France, Paris)

b) (France, Rouen)  Capitals

c) Capitals(Turkey, Istanbul)
d) Capitals(Turkey, Ankara)

If Dave, Sue, and Billy all hate dessert, then the Likes relation would be {} or .

In the Likes example, pie occurs once, cake occurs twice, and ice cream occurs three times.

12 Relations

4. Let Presidents be the set of U.S. Presidents. Recall that Z+ is the set of positive integers.

We’ve already seen that Z+  Presidents includes, among other things, (1, Washington), (12,
Lincoln) and (35, Washington). But now let’s define the relation:

 NthPresident  Z+  Presidents = {(n, p) : p was the nth president of the USA}

For each of the following ordered pairs, mark true if it is in NthPresident. Mark false otherwise.

a) (1, Washington)
b) (12, Lincoln)
c) (Garfield, 20)
d) (Taft, Wilson)
e) (35, Washington)

Relations 13

n-ary Relations

Not all relations are binary. We define an n-ary relation over sets A1, A2, … An to be a subset of

A1  A2  …  An. The n sets may be different, or they may be the same.

In the special case in which n = 3, we’ll say that we have a ternary relation.

Recall the parts and suppliers example:

Products = {screws, nails, hooks}

 Suppliers = {WidgetCorp, CoolBiz}

 PriceRanges = {Low, Middle, High}

Products  Suppliers  PriceRanges contains all ordered triples of the form:

 (product, supplier, price range)

But now consider just those triples that correspond to our business reality. We can define a

ternary relation CanBuy, which contains only those triples that describe suppliers and what

they sell. So, for example, perhaps it’s the case that:

(screws, CoolBiz, Low)  CanBuy, but:

(hooks, WidgetCorp, Low)  CanBuy

Nifty Aside

Many of the databases that run our modern world are implemented as relational

databases: the facts that they contain are represented as relations like CanBuy.

14 Relations

Problems

1. Define the ternary relation Plus on Z (the integers) as:

{(i, j, k) : k = i + j}

Mark each of the following statements as true or false:

a) (4, 5, 20)  Plus

b) (7, 8, 15)  Plus

2. Assume the existence of the following sets:

firsts: First names
lasts: Last names
eids: strings of up to 8 characters, corresponding to electronic student ids
gpas: numbers between 0 and 4

Assume that each student has exactly one eid and no two students share an eid.

Suppose that we want to define a relation StudentData that will associate, with each eid, a first
name, a last name, and a gpa. Indicate which of the following is/are true of StudentData:

a) StudentData is a 4-ary relation.
b) StudentData is a relation on the set eids.

c) |StudentData|  |eids|.

d) (hhht000, Casey, Studentman, 3.78) could be an element of StudentData
e) (hhht000, 4.00, 2.65, 3.78) could be an element of StudentData.

Relations 15

The Inverse of a Binary Relation

The inverse of a binary relation R, written R-1, is simply the set of ordered pairs in R with the

elements of each pair reversed. Formally, if R  A  B, then:

R-1  B  A = {(b, a): (a, b)  R}.

If a relation is a way of associating with each element of A with a corresponding element of B,

then think of its inverse as a way of associating with elements of B their corresponding elements

in A. Note that the domain of R-1 is the codomain of R, and vice versa.

Every binary relation has an inverse.

It is important to keep in mind the definition of an inverse. It is not either complement or

negation.

Recall the relation:

Likes = { (Dave, pie), (Dave, ice cream),

 (Sara, cake), (Sara, ice cream),

 (Billy, cake), (Billy, ice cream)}

Likes associates, with each person, their preferred desserts.

Likes-1 = Fans-Of = { (pie, Dave),

 (cake, Sara), (cake, Billy),

 (ice cream, Dave), (ice cream, Sara), (ice cream, Billy)}

Likes-1 (perhaps more helpfully called Fans-Of), associates, with each dessert, the people

who like it.

We’ve just seen that Fans-Of is the inverse of Likes.

The inverse of < (in the usual sense, defined on numbers) is >.

Our company’s supplier/customer database contains the relation:

BuysFrom  Companies  Companies = {(c1, c2): c1 buys from c2}.

Suppose that BuysFrom contains, among other elements:

 (MegaCorp, SuperBuy), (MegaCorp, BuyCheap), (SuperBuy, MegaCorp)

Then BuysFrom-1 (which we might want to call SellsTo) contains, among other elements:

(SuperBuy, MegaCorp), (BuyCheap, MegaCorp), (MegaCorp, SuperBuy)

Notice that (SuperBuy, MegaCorp) is an element of both BuysFrom and BuysFrom-1. This

means that the companies both buy and sell from/to each other.

16 Relations

The inverse of R-1 is R. Said another way, (R-1)-1 = R. This follows immediately from the

definition of R-1. By the way, notice that this isn’t the first time you’ve seen this phenomenon.

Let n be a number. Then -(-n) = n. For example, - -3 = 3.

Let n be a non-zero number. Then
1
1

𝑛

 = n.

Relations 17

Problems

1. Consider the relation  on Z (the integers). Mark each of the following true if it is in , false

otherwise:

(4, 8) (7, 2) (5, 5)

2. Mark each of the following true if it is in the inverse of  (on Z), false otherwise:

(4, 8) (7, 2) (5, 5)

3. Which of the following symbols is commonly used to denote the inverse of  (on Z):

< >   =

4. Mark each of the following true if it is in both  and the inverse of  (on Z), false otherwise:

(2, 9) (9, 2) (8, 8) (8, -8)

5. Consider the relation Speaks, a relation from People to Languages, defined as:

 Speaks = {(a, b) : a speaks b}

So we might have, for example, the following pairs in Speaks:

 (Pierre, French), (Ramon, Spanish), (Megumi, Japanese), (Lola, French),

(Ramon, English), (Ava, Farsi)

Then Speaks-1 (which we might want to call Speakers) is a relation from Languages to People,
defined as:
 Speaks-1 = Speakers = {(b, a) : b is spoken by a}

For each of the following ordered pairs, mark true if it must be in Speakers (given what we
know) and false otherwise:

(Pierre, French) (French, Lola) (Spanish, Arturo) (Japanese, Megumi)

18 Relations

6. The Human Relations department of our company maintains a database that might contain
(among other things) this relation:

Works-in  EmployeeIDs  Departments =
{(e, d) : employee with id number e works in department d}

Suppose that it contains the following ordered pairs (among others):

 (32415, TechSupport), (45672, Finance), (56421, Purchasing), (65532, Design)

(71005, Marketing), (87821, TechSupport), (88100, Finance), (89991, Finance)

Then Works-in-1 (which we might want to call EmployeesOf) is a relation from Departments to
EmployeeIDs, defined as:

 Works-in-1 = EmployeesOf = {(d, e) : employee with id number e works in department d }

Write out the elements that we know are in EmployeesOf. Compare this set to the one that
contains elements of Works-in. Notice something interesting.

(Part 1) First consider Works-in. Suppose that I give you half of an ordered pair:

 (id, ___________)

For some given value of id, what’s the maximum number of values that might be able to fill in
the blank (given the data that you’ve seen)?

(Part 2) Now consider EmployeesOf. Suppose that I give you half of an ordered pair:

 (department, __________)

Now for some given value of department, what’s the maximum number of values that might be
able to fill in the blank (again, given the data that you’ve seen)?

Relations 19

7. Recall that Works-in contains (among other things):

 (32415, TechSupport), (45672, Finance), (56421, Purchasing), (65532, Design)

(71005, Marketing), (87821, TechSupport), (88100, Finance), (89991, Finance)

We have just seen that, for every employee, there is a unique department. But it’s not true that
for every department there’s a unique employee. (That would be a very small company indeed.)

We call a relation like Works-in  A  B, which associates with every element of A a unique
element of B, a function. We’ll say a lot more about functions soon. For now, we just observe
that if we start out with a function (such as Works-in) and take its inverse, we don’t necessarily
get a function.

Just to experiment with this idea, suppose that we want Works-in-1 to be a function. And we’re
willing to fire people to make that happen. For each of the following sets of ordered pairs, mark
true if removing all of its elements from Works-in would result in Works-in-1 = EmployeesOf
being a function. Mark false otherwise:

a) {(32415, TechSupport), (87821, TechSupport)}
b) {(45672, Finance), (56421, Purchasing), (88100, Finance), (89991, Finance)}
c) {(32415, TechSupport), (45672, Finance), (88100, Finance), (89991, Finance)}
d) {(56421, Purchasing), (32415, TechSupport), (45672, Finance), (65532, Design), (71005,

Marketing), (87821, TechSupport), (89991, Finance)}

20 Relations

Composing Binary Relations

If we have two or more binary relations, we may be able combine them in a particularly useful

way.

Our company maintains a database of parts we buy and suppliers from whom we can buy

them. This database contains (among other things) the following two relations:

Sources  Parts  Suppliers = {(p, s) : p can be bought from s)}

Contacts  Suppliers  PhoneNumbers = {(s, n)} : the phone number of s is n}

Now suppose that we want to order a part. We need to find the phone number of some

supplier who sells it.

We can visualize the two relations that we’ve got as:

What we need to do is to connect them by linking the two ovals that correspond to suppliers:

Finally, we need to connect parts with phone numbers by reasoning that if parti is related to

supplierj and supplierj is related to phonenumberk, then parti is related to phonenumberk. In

other words, we need an operation that does this:

Relations 21

You might ask, at this point, why don’t we just start with a single, ternary relation:

HowToOrderParts  Parts  Suppliers  PhoneNumbers.

Such a relation would contain elements such as (Nails, ZCorp, 555-333-4444). Then we’d be

done.

But this would be a bad idea for a couple of reasons, both of which are tied to our desire to

represent each piece of information exactly once. To see this, consider the following tables

that contain fragments of our two original relations Sources and Contacts. (Read each row

of one of these tables as corresponding to an ordered pair that is in the corresponding

relation.)

SourcesContacts

Part Supplier

Brushes PaintLand

Buckets ToolLand

Drill Bits ToolLand

Drill Bits ZCorp

Filler ZCorp

Knobs ZCorp

Nails ZCorp

Scrapers PaintLand

Screws ZCorp

Contacts

Supplier Phone Number

PaintLand 777-888-9999

ToolLand 666-111-2222

ZCorp 555-333-4444

If we just combined these two relations and stored HowToOrderParts, we’d represent many

times the fact that ZCorp’s contact phone number is 555-333-4444.

22 Relations

Definition of Composition

Define the composition of two relations R1  A  B and R2  B  C, written R2  R1, as:

R2  R1 = {(a, c) : b ((a, b)  R1  ((b, c)  R2)}.

In other words, (a, c) is in R2  R1 if and only if there’s some b that connects them as described

above.

Note that this definition tells us that, if we want to apply R1 (for example Sources) first, and then

R2 (for example Contacts), as shown in the pictures above, we must write R2  R1.

In other words, we read a composition expression right to left. (Imagine that you were

reading Hebrew or Arabic.) It might seem a bit more natural to write it the other way. But for

consistency reasons that will become clear later, once we’ve introduced functions and their

composition, this is the way it is done.

Not all expressions of the form R2  R1 are well-defined. R2  R1 makes sense only when the

codomain of R1 is a subset of the domain of R2.

By composing relations as we need them, we can solve the multiple representation problem that

we noticed above. And this is important. Representing the same fact more than once is bad for

at least two reasons:

• We’d waste a lot of space. Perhaps you’re thinking that space doesn’t matter much in

modern computing systems. Think about the size of an everyday flash drive. But it turns

out that it still matters if you are working on the scales that routinely confront Facebook

and Google and Twitter and many others.

• We’d have to do a lot of work to keep our data up to date. For example, if ZCorp moves

or if we get assigned a different sales rep, we’d have to change the phone number. If we

must do that in many places, we increase the chance that we’ll make mistakes.

And the situation would be even worse if we needed to use one relation in several different ways.

So the operation of relation composition is of significant practical significance.

For example Contacts  Sources makes sense. (The codomain of Sources is Suppliers. The

domain of Contacts is also Suppliers.) But Sources  Contacts doesn’t make sense. If we

apply Contacts first, we get phone numbers. We can’t apply Sources to phone numbers.

For example, we might need to know our suppliers’ phone numbers for other reasons than

just ordering specific parts. Let’s say we also needed to associate phone numbers with billing

questions. We wouldn’t want to store them in yet another place.

Relations 23

Problems

1. Recall our definitions of the relations Sources and Contacts:

Sources

Part Supplier

Brushes PaintLand

Buckets ToolLand

Drill Bits ToolLand

Drill Bits ZCorp

Filler ZCorp

Knobs ZCorp

Nails ZCorp

Scrapers PaintLand

Screws ZCorp

Contacts

Supplier Phone Number

PaintLand 777-888-9999

ToolLand 666-111-2222

ZCorp 555-333-4444

Mark each of the following claims true or false:

a) (Brushes, Paintland)  Contacts  Sources.

b) (Brushes, 777-888-9999)  Contacts  Sources.

c) (Scrapers, 777-888-9999)  Sources  Contacts.

d) (Filler, 777-888-9999)  Contacts  Sources.

e) (Screws, 555-333-4444)  Sources  Contacts.

Nifty Aside

Much of the world’s structured data (in contrast to raw text of the sort we typically read on

the Web) is stored in commercial relational data bases. One of the fundamental

operations in such databases is join, which is a generalization, to multiple fields that can be

connected at once, of composition as we’ve just defined it.

24 Relations

2. Suppose that we are a catering company. Every event we produce has a menu, consisting of
a set of dishes. And every dish is defined by a recipe that contains a set of ingredients. So we
have three sets (Events, Dishes, Ingredients) and two relations (Menus, RequiredIngredients),
parts of which are shown in these tables:

Menus

Events Dishes

Wedding23 Quesadillas

Wedding23 Guacamole

Wedding23 Fajitas

Birthday57 Quesadillas

Birthday57 Fried Chicken

Birthday57 Cole Slaw

RequiredIngredients

Dishes Ingredients

Quesadillas Tortillas

Quesadillas Cheese

Quesadillas Onions

Guacamole Avocados

Guacamole Tomatoes

Guacamole Onions

Fried Chicken Chicken

Fried Chicken Corn Flakes

Cole Slaw Cabbage

Cole Slaw Mayonnaise

We are getting ready to prepare for an event and we need to gather all of its required

ingredients. So we want to generate pairs drawn from Events  Ingredients. Which of the
following expressions produces what we need:

a) RequiredIngredients  Menus

b) Menus  RequiredIngredients

c) Menus-1  RequiredIngredients

d) Events  Ingredients

e) Events  Ingredients

Composition Describes a Path

One way to think about a binary relation is that it describes

single-step paths that connect elements of its domain to

elements of its codomain.

Extending that idea: One way to think about composing binary

relations is that we can build longer paths.

 https://www.youtube.com/watch?v=sBo9M9gkhl4

***Video - Composition Describes a Path

Imagine a standard part of the database of every college:

Define: EnrolledIn  Students  Classes = {(s, c) : student s is in class c}

 OfferedBy  Classes  Departments = {(c, d) : class c is offered by department d}

Suppose that we want to relate students to the departments in which they are taking classes.

Step 1: Students → Classes EnrolledIn takes this step

Step 2: Classes → Departments OfferedBy takes this step

Summarizing: Students → Classes → Departments

So we apply EnrolledIn (Step 1) first. Then OfferedBy (Step 2). But remember that the

standard notation for writing this composition applies the relations right to left. So we write:

 OfferedBy  EnrolledIn

https://www.youtube.com/watch?v=sBo9M9gkhl4
https://www.youtube.com/watch?v=sBo9M9gkhl4

26

Composing a Binary Relation with Itself

Composition combines a relation S with a relation R. What happens if S and R are the same

relation? Then we’ll say that we have composed a relation with itself. So we have:

 R  R = {(a, c) : b ((a, b)  R  ((b, c)  R)}

By analogy with: x  x = x2, x  x  x = x3, and so forth, we’ll write:

 R  R = R2, R  R  R = R3, and so forth.

(Just as an aside: This notation could be confusing. A relation is a set and we’ve already defined

what A2 means when A is a set. It means A  A. If A happened to be a binary relation (thus its

elements looked like (a, b)) and we used that definition, we’d get elements that look like ((a, b),

(c, d)). In the definition that we’ve just given here (where A2 = A  A), on the other hand, we get

elements that look like (a, d). Sadly we’re stuck with this problem since the notation really is

used to mean both things. But, in our discussions, we will avoid confusion by, whenever R is a

relation, taking R2 to be R  R.)

Sometimes something interesting happens when we compose a relation with itself.

ParentOf is a relation on the set People. So:

ParentOf  People  People = {(p, r): p is the parent of r}

What is ParentOf 2?

Problems

1. There’s a famous hypothesis that all pairs of people on the planet are no more than six steps
removed from each other, where one step corresponds to a link between one person and
someone that person actually knows. Think, “friend of a friend”.

Let’s describe this claim in terms of the composition of a relation with itself (several times).
Assume the domain People.

(Part 1) First we need a relation that describes the primitive connection that can exist between
a pair of people. Fill in the blank in this definition:

Knows = {(x, y): __________________________________}

(Part 2) Now we need to form a relation that contains all pairs (a, b) such that a and b are
connected by no more than six steps of the Knows relation.

We already know how to say that two people are connected by exactly one step of the Knows
relation: That’s exactly what Knows does.

Next we need to define a relation that contains all pairs (a, b) such that a and b are connected
by exactly two steps of the Knows relation. Write down a concise way of describing this set.

(Part 3) Now we need to combine Knows and Knows2 to get all pairs that are connected by
either one or two steps. The obvious way to do that is to exploit the fact that relations are sets.
So we can operate on them using all the standard set operations. The one we need here is
union. So this relation does what we need:

 Knows  Knows2

Suppose that Knows contains the following elements (among many, many others):

(Morgan, Chip), (Chip, Morgan), (Taylor, Brett), (Brett, Taylor), (Jan, Chris), (Chris, Jan), (Davis,
Jan), (Jan, Davis), (Kelly, Sasha), (Sasha, Kelly), (Brett, Kelly), (Kelly, Brett),
(Kelly, Davis), (Davis, Kelly), (Jean, Collette), (Collette, Jean)

For each of the following ordered pairs, mark true if it is in Knows  Knows2. Mark false
otherwise.

a) (Sasha, Brett)
b) (Sasha, Collette)
c) (Sasha, Kelly)
d) (Taylor, Davis)

2. We can now finish our discussion of the six degrees of separation claim. Write out a concise
description, in terms of Knows, for the set of ordered pairs of people who are no more than six
steps away from each other.

28

Composing a Binary Relation with its Inverse

Sometimes interesting things happen when we start with some

relation R and then we compute:

 R-1  R
https://www.youtube.com/watch?v=tdo12pjrnww

In other words, we apply R’s inverse to R itself.

Sometimes, both R-1  R and R  R-1 can be useful.

Let Speaks  People  Languages = {(p, g): p speaks g}. So Speaks might contain elements

such as:

(Kim, English), (Jean, French), (Lu, Chinese), (Terry, English), (Morgan, English)

And Speaks-1 would then contain elements such as:

 (English, Kim), (French, Jean), (Lu, Chinese), (English, Terry), (English, Morgan)

So, since Kim is related to English via Speaks and English is related to Kim, Terry, and Morgan

via Speaks-1, we have that Speaks-1  Speaks contains, among other things:

 (Kim, Kim), (Kim, Terry), (Kim, Morgan)

So we see that Speaks-1  Speaks relates people to other people who speak the same

language.

Recall this example from a standard college database:

Define: EnrolledIn  Students  Classes = {(s, c) : student s is in class c}

Suppose that we want to relate pairs of students who share a common class. We want to

go:

 Students → Classes → Students

So (since we evaluate right to left) the composed relation that we need is:

 EnrolledIn-1  EnrolledIn

Now suppose that we want to relate pairs of classes with at least one student in common.

We want to go:

 Classes → Students → Classes

Now the composed relation is:

 EnrolledIn  EnrolledIn-1

https://www.youtube.com/watch?v=tdo12pjrnww
https://www.youtube.com/watch?v=tdo12pjrnww

Problems

1. Recall the example: Speaks  People  Languages = {(p, g): p speaks g}.

Which of the following composed relations relates people to other people with whom they can
communicate via a single interpreter (i.e., no chain of interpretations is required):

a) Speaks-1  Speaks

b) Speaks-1  Speaks-1

c) Speaks2

d) (Speaks-1  Speaks)2

e) (Speaks  Speaks-1)2

2. Define: RequiredIngredients  Dishes  Ingredients =

{(d, i) : ingredient i is required for dish d}

Suppose that we know that, when we make a dish, there are likely to be some ingredients left
over. So we want to find other dishes that could use those ingredients. Which of the following
composed relations relates dishes to other dishes that call for the same ingredients:
a) RequiredIngredients2

b) RequiredIngredients-1  RequiredIngredients

c) RequiredIngredients  RequiredIngredients-1

d) (RequiredIngredients-1  RequiredIngredients)2

e) (RequiredIngredients  RequiredIngredients-1)2

30

Summarizing the Basics of Relations

Before we go on, we’ll do a set of problems to review the basics of relations as we’ve defined

them.

Problems

1. Let A = {1, 2, 3, 4, 5} and B = {4, 6, 7, 8, 9}.

Let R be a relation between A and B defined by:

 R = {(1, 7), (4, 6), (5, 6), (2, 8)}.

Compute the relation R-1. Which of the following elements is not in R-1?

a) (6, 5)
b) (5, 6)
c) (7, 1)
d) (8, 2)
e) (6, 4)

2. Let A = {1, 2, 3, 4, 5, 6}, B = {4, 6, 7, 8, 9}, and C = {2, 4, 6, 8, 10}.

Let R be a relation between A and B defined by:

 R = {(1, 7), (4, 6), (5, 6), (2, 8), (6, 7)}.

Let S be a relation between B and C defined by:

 S = {(4, 2), (6, 2), (6, 4), (7, 10), (8, 2), (9, 6)}

(Part 1) Compute the relation S-1. Which of the following elements is not in S-1?

a) (2, 4)
b) (6, 9)
c) (6, 2)
d) (4, 6)
e) (10, 7)

(Part 2) Compute the relation S  R. Which of the following pairs of elements are not both in S 
R?

a) (1, 10), (4, 2)
b) (5, 4), (6, 10)
c) (8, 8), (6, 6)
d) (2, 2), (4, 4)
e) (4, 4), (5, 2)

3. Let B = {4, 6, 7, 8, 9} and C = {2, 4, 6, 8, 10}.

Let S be a relation between B and C defined by:

 S = {(4, 2), (6, 2), (6, 4), (7, 10), (8, 2), (9, 6)}

Recall that, therefore, S-1= {(2, 4), (2, 6), (4, 6), (10, 7), (2, 8), (6, 9)}.

(Part 1) Compute the relation S  S-1. Which of the following elements does it contain?

a) (4, 4)
b) (6, 8)
c) (8, 4)
d) (9, 9)
e) (6, 10)

(Part 2) Compute the relation S-1  S. Which of the following elements does it contain?

a) (4, 8)
b) (10, 10)
c) (2, 4)
d) (10, 2)
e) (4, 2)

32

4. Let A = {1, 2, 3, 4, 5}, B = {6, 7, 8, 9}, C = {10, 11, 12, 13}, and D = {, , , }.

Let R be a relation between A and B defined by:

 R = {(1, 7), (4, 6), (5, 6), (2, 8)}.

Let S be a relation between B and C defined by:

 S = {6, 10), (6, 11), (7, 10), (8, 13)}

Let U be a relation between C and D defined by:

 U = {(11, ), (10, ), (13, ), (12, ), (13, )}

(Part 1) Compute the relation U  S. Which of the following elements does it contain?

a) (6, )

b) (5, )

c) (, 6)

d) (, 8)

e) (, 8)

(Part 2) Compute the relation (U  S)  R. Which of the following elements does it not contain?

a) (2, )

b) (5, )

c) (1, )

d) (4, )

e) (2, )

(Part 3) Compute the relation U  (S  R). Assume that you’ve already computed:

S  R = {(1, 10), (4, 10), (4, 11), (5, 10), (5, 11), (2, 13)}.

Which of the following elements is not in U  (S  R)?

a) (2, )

b) (5, )

c) (1, )

d) (4, )

e) (2, )

Notice that (U  S)  R = U  (S  R). It is possible to prove the more general claim that relation

composition is associative. In other words, for all A, B, and C, (A  B)  C = A  (B  C).

Soundex

The Soundex system is an interesting example of the use of

relations. It is a phonetic algorithm: it indexes names by their

sounds. It is designed so that similar sounding names will be

assigned the same index, thus making it possible to match names

despite spelling variations. It is used to search genealogy

databases since spellings of names have often been changed over

the years (and the miles). It is now built into many commercial

database products.
 https://www.youtube.com/watch?v=V6cFEJsqQ40

Soundex takes a name and converts it to a four-symbol code that is designed so that similar

sounding names will map to the same code. Once one has the code for one’s name, one can run

the system backwards to retrieve other names that map to the same code.

Here’s the algorithm that converts a name to a code:

1. If two or more adjacent letters (including the first) would map to the same number, remove

all but the first. Include as “adjacent” letters that are separated just by H’s and W’s.

2. Set the first letter of the code to the first letter of the name.

3. For all other letters of the name do:

1. Convert the letters B, P, F, V, C, S, G, J, K, Q, X, Z, D, T, L, M, N, and R to numbers

and tack the resulting number onto code (on the right):

B, P, F, V = 1

C, S, G, J, K, Q, X, Z = 2

D, T = 3

L = 4

M, N = 5

R = 6

2. Delete all instances of the letters A, E, I, O, U, Y, H, and W.

4. If the code string contains more than three numbers, delete all but the leftmost three.

5. If the code string contains fewer than three numbers, pad with 0’s on the right to get three.

https://www.youtube.com/watch?v=V6cFEJsqQ40
https://www.youtube.com/watch?v=V6cFEJsqQ40

34

Problems

1. Which of the following names doesn’t have the same Soundex code as the name Fairley?
You probably want to use the Soundex converter:

http://resources.rootsweb.ancestry.com/cgi-bin/soundexconverter

a) Farrell
b) Farwell
c) Friel
d) Fried
e) Frailey

2. Let Names be the set of last names. Let Codes be the set of strings that the Soundex
conversion algorithm can produce. We can use the notations that we’ve developed to describe
Soundex as a pair of relations. We need to define:

• SoundexCode, which relates a name to its code, and

• SoundexEQ, which relates two names if and only if they have the same Soundex code.

Read these statements carefully. Pay particular attention to whether each one “makes sense”,
by which we mean that set operators are applied only to sets and Boolean operators are applied
only to Boolean values.

Which one or more of the following pairs of definitions correctly defines SoundexCode and
SoundexEQ:

I. SoundexCode  Names  Codes = {(name, c) : c is the code produced by Soundex for name}

 SoundexEQ  Names  Names =

{(name1, name2) : c  Codes ((name1, c)  SoundexCode  (name2, c)  SoundexCode)}

II. SoundexCode  Names  Codes = {(name, c) : c is the code produced by Soundex for name}

 SoundexEQ  Names  Names =

{(name1, name2) : c  Codes ((name1, c)  (name2, c)  SoundexCode)}

III. SoundexCode  Names  Codes = {(name, c) : c is the code produced by Soundex for name}

 SoundexEQ  Names  Names =

{(name1, name2) : c1, c2  Codes ((name1, c1)  SoundexCode  (name2, c2)  SoundexCode)}

IV. SoundexCode  Names  Codes = {(name, c) : c is the code produced by Soundex for name}

 SoundexEQ  Names  Names = SoundexCode-1  SoundexCode

http://resources.rootsweb.ancestry.com/cgi-bin/soundexconverter

Making Sure that We Don’t Write Nonsense

At this point, we will often find ourselves working with several different types of things,

including:

• Primitive objects like numbers, people and courses.

• Sets of objects.

• Logical statements.

• Cross products and relations

It’s important, if we don’t want to spout nonsense, that we

use all of these things only in ways that are defined for their

types. We talked about this back in our discussion of sets,

but it’s worth looking at it again.

https://www.youtube.com/watch?v=uyBk03YYx_g

Problems

1. Mark each of the following claims as true if it is well-defined and false if it is nonsense. (Note
that we’re not actually asking whether or not the claim is true. Just whether it is syntactically
well-formed and whether the types of the objects match the roles that they play in the
expression.) Assume that a and b are primitive objects, A and B are sets, P and Q are logical
predicates, and R and S are binary relations. (Remember the three notations that we are using
for relations.)

a) (A  B)  (A  B)

b) P((a, b))  Q(a)

c) a  R  S

d) x (P(x)  Q(x))

e) (R  S)  (A  B)

Assume that a is a primitive object, A and B are sets, and P is a logical predicate. Consider

the statement:

 a  P(A  B)

This expression is nonsense. P is a predicate. It’s fine to have a predicate that evaluates a

property of a set (such as A  B). But P itself has a value (True or False). It does not have

elements (such as a).

https://www.youtube.com/watch?v=uyBk03YYx_g
https://www.youtube.com/watch?v=uyBk03YYx_g

36

Representing Binary Relations

Approaches to Representation

Commercial relational databases encode n-ary relations (for arbitrary values of n) in a variety of

efficient ways. We won’t go into those here.

But binary relations are so important in many kinds of applications that it does seem worth it to

look at ways to represent them (on paper for ourselves as we study them and, more importantly,

within programs that exploit them).

Let’s consider four techniques for representing an arbitrary binary relation R:

1) We can simply list the elements of R.

2) We can encode R as a computational procedure.

3) We can encode R using a structure we’ll call a directed graph.

4) We can encode R using a structure we’ll call an adjacency matrix.

Let’s consider option 1 first. It seems the simplest. We’ll just write down all the elements of R.

There are three reasons that we want to consider alternatives to this:

• It only works for finite relations.

• It isn’t very computationally efficient in terms either of time or of space.

• It isn’t easy to visualize.

Next let’s try option 2. We’ll encode R as a computational procedure. As with any set, there are

at least two ways in which a computational procedure can define R. It may:

• enumerate the elements of R, or

• recognize the elements of R by implementing R's characteristic function. It must

return True when given a pair that is in R and False when given anything else.

Nifty Aside

One estimate put the size of the relational database market at about $24 billion in 2011.

And it’s growing.

Likes = { (Dave, pie), (Dave, ice cream),

 (Sara, cake), (Sara, ice cream),

 (Billy, cake), (Billy, ice cream)}

Try doing this for a relation like < on the integers.

As we’ll soon see, this computational approach is the only thing that works when we’re dealing

with infinite relations.

Problems

1. Recall the relation BiggerPrime that we defined with the following Python code:

def bigger_prime(i, j):

 if i == j or i > j:

 return (False)

 if prime(j): # We know that j is bigger.

 return (True)

 else:

 return (

Mark each of the following ordered pairs true if it is an element of BiggerPrime and false
otherwise:

(5, 11) (11, 5) (13, 13) (7, 12)

2. Mark each of the following relations true if it would be possible to represent it by writing down
all its elements. Mark it false otherwise.

a) Equality defined on the integers.
b) Equality defined on the natural numbers less than 10.

c) SocialSecurityNumber  USResidents  9-digit numbers =

 {(x, n) : n is the social security number of x}

Define the relation BiggerPrime on the natural numbers as follows:

BiggerPrime  N  N = {(i, j) : j is prime and j > i}

For example (8, 11)  BiggerPrime because 11 is a prime number that is greater than 8.

Here’s a simple Python program that, when given an ordered pair, returns True if the pair is in

BiggerPrime and False otherwise. Assume that the function Prime(n) has already been

defined; it returns True if n is prime and False otherwise.

def bigger_prime(i, j):

 if i == j or i > j:

 return (False)

 # Now we know that j is bigger. Now check prime.

 if prime(j):

 return (True)

 else:

 return (False)

38

Undirected Graphs

Our third idea is to represent a relation as a graph. Before we can talk about how to do that, we

need a brief digression: We need to learn about graphs.

The simplest kind of graph is an undirected graph. Formally, an undirected graph is an ordered

pair of sets:

 G = (V, E)

where:

• V is a set of vertices (also often called nodes), and

• E is a set of edges, each of which is an unordered pair (v1, v2) of vertices. Note that, since

an edge is an unordered pair, if (v1, v2)  E, (v2, v1) is also in E.

Given a graph G = (V, E), a sequence p = (𝑣𝑖1
, 𝑣𝑖2

, … , 𝑣𝑖𝑛
) is a path from 𝑣𝑖1

 to 𝑣𝑖𝑛
 if, for all k =

1, 2, …, n-1, (𝑣𝑖𝑘
, 𝑣𝑖𝑘+1

)  E. The length of such a path is n – 1.

Graphs are easy to visualize.

An airline’s route map can be represented as a graph where:

• The vertices represent cities, and

• The edges represent flights.

Let: v1 represent Austin,

 v2 represent Dallas,

v3 represent Houston,

 v4 represent New York,

 v5 represent Boston,

 v6 represent Seattle, and

 v7 represent Fredericksburg.

An edge between two cities means that there is a direct flight between them.

Then this graph tells us, for example, that there are paths (v1, v2), (v1, v3), and (v1, v2, v6). But

there is no path (v1, v6). So you can fly directly from Austin to Dallas and to Houston, but if

you want to go to Seattle, you’ll have to go to Dallas first. The shortest path between Austin

and Seattle has length 2.

Problems

1. Recall the airline route map graph that we just
considered:

Let: v1 represent Austin,
 v2 represent Dallas,

v3 represent Houston,
 v4 represent New York,
 v5 represent Boston,
 v6 represent Seattle, and
 v7 represent Fredericksburg.

Let an edge between two cities mean that there is a direct flight between them.

(Part 1) What is the maximum number of legs that a passenger might have to fly to get one from
city to another?

(Part 2) What is the length of the shortest path between Houston and Seattle?

(Part 3) Suppose that the airline were willing to add one new city pair to its flight list. The goal is
to decrease the worst case (i.e., the maximum number of legs that a passenger would have to
fly to get from one city to another.) What two cities should be connected by this new leg?
Describe a city by its vertex number. Enter your answer as two numbers, separated by a single
space. Enter the smaller number first.

A molecule can be represented as a graph where:

• The vertices are atoms, and

• The edges are bonds.

A computer network can be represented as a graph where:

• The vertices are computers and routers, and

• The edges are cables.

The Internet is an example of a VERY large network. Represented as

a graph, it has more than 30 billion vertices.

40

Directed Graphs

While undirected graphs are useful in many problem contexts (as we’ve just seen), they’re not

exactly what we need for representing relations. The issue is that an element of a relation is an

ordered pair. Given two objects o1 and o2, it is possible that a relation R contains:

• both (o1, o2) and (o2, o1),

• just (o1, o2),

• just (o2, o1), or

• neither (o1, o2) nor (o2, o1).

So we need a new structure that captures order.

A directed graph (sometimes called a digraph) is an ordered pair:

 G = (V, E)

where:

• V is a finite set of vertices (or nodes), and

• E is a finite set of edges, each of which is an ordered pair (v1, v2) of vertices.

Define path and path length as for an undirected graph (except, of course, that it is now possible

that E contains the edge (v1, v2) but not the edge (v2, v1)).

The road map of a city can be represented as a

graph where:

• The vertices are the intersections and end points,

and

• The edges are the roads. The edge (v1, v2) exists

whenever there is a road such that one can drive

directly from v1 to v2.

We use a directed graph because one-way streets

exist. If a street is two-way, then there will be two

edges that connect its intersections: one going one

way and one going the other.

We’ll often use a notational shorthand whenever both the edge (v1, v2) and the edge (v2, v1) exist

in a graph. Instead of drawing them separately, we’ll draw a single edge with an arrow at both

ends.

The World Wide Web can be represented as a graph where:

• The vertices are the web pages, and

• The edges are the links from one page to another. The edge

(p1, p2) exists whenever page1 contains a link to page2.

We use a directed graph because page1 can link to page2

without page2 linking back to page1. For example, I can, on

my web page, put a link to J. K. Rowling’s page. But I probably

can’t convince her to link to me. On the other hand, I can link

to my best friend’s page and she can link to mine.

Using this convention, the small web fragment that we showed

above would be drawn as:

42

Using a Directed Graph to Represent a Relation

We can now see how to represent a relation as a graph. In fact, it should be clear that a directed

graph corresponds exactly to a relation: It is a set V and a set of ordered pairs whose elements are

drawn from V.

The simplest case arises when R is a relation on a single set A. Then, in a graph representation of

R:

• The vertices are the elements of A, and

• The edges are the elements of R. Specifically, there is an edge from vi to vj if and only if

(vi, vj)  R.

We can also represent relations from one set to another. In that case, we must create vertices for

the elements of both sets.

Problems

1. Define the relation
Predator/Prey on the set
of animals. Let (a1, a2)
be an element of
Predator/Prey if and only if, in nature, a1 is a
predator of a2. Consider this proposed graph
representation of a subset of the relation:

Recall the relation Likes from a set A of people to a set B of desserts:

Likes = { (Dave, pie), (Dave, ice cream),

 (Sara, cake), (Sara, ice cream),

 (Billy, cake), (Billy, ice cream)}

We can represent Likes as a directed graph:

People:

Desserts:

For example, the Supervises relation in our

corporate database might contain

elements such as:

(Top Dog, Honcho), (Honcho, Lazy Guy),

and (Bean Counter, Peon).

It might look like this when represented as

a directed graph:

Which edge is incorrect?

2. WordNet® is a large lexical database of English. It contains entries for nouns, verbs,
adjectives, and adverbs. It encodes several important relations:

• Synonym: (word1, word2)  Synonym if they share a meaning.

• Hypernym: (word1, word2)  Hypernym if a meaning of word2 is a generalization of
word1.

• Hyponym: (word1, word2)  Hyponym if a meaning of word2 is a specialization of word1.

Notice that Hyponym = Hypernym-1. For example:

 (textbook, book)  Hypernym

 (book, textbook)  Hyponym

You can play with WordNet online (or download it if you want to use it in a program). You’ll find
it here: http://wordnet.princeton.edu/ . To see hypernyms and hyponyms of a word, click on
the S at the left of an entry.

It helps to visualize the Wordnet relations by drawing (part of) them as graphs, just as we’ve
been doing.

Now consider the relation composition: Hyponym  Hypernym.

Look up the word “telephone”. Find its hypernyms. Now find the hyponyms of those. You’ll get
a set of words whose meanings are, in some sense, siblings of “telephone”. They are other
similar things.

In Wordnet, which of the following elements is not in Hyponym  Hypernym:

a) (telephone, lens)

b) (telephone, CD player)

c) (telephone, laptop)

d) (telephone, monitor)

e) (telephone, amplifier)

http://wordnet.princeton.edu/

44

Using an Adjacency Matrix

Now consider another way to represent a directed graph (and thus a relation).

We’ve already seen that we can represent a finite set S as a bit vector. If the universe U from

which S is drawn has n elements, so will the bit vector, which we can call V. Then, to represent

S, we’ll fill V with Boolean values as follows:

• If Uk  S: V[k] = True

• If Uk  S: V[k] = False

Such bit vectors are one-dimensional. To represent the edges of a directed graph (or the

elements of a relation), we’ll use a two-dimensional structure.

Assume two sets, A and B. (They can be different sets or the same set.) Now consider either:

• R, a relation from A to B (i.e., R  A  B), or

• G, a directed graph all of whose edges start in some element of A and end in some

element of B.

Then, to represent R or G, we construct an adjacency matrix M with:

• one row for every element of A, and

• one column for every element of B.

Let M(i, j) refer to the ith row, jth column of M.

(We’ll label the rows and columns of our matrices.

Don’t count those labels as a row or a column.)

Then, to represent R (or G):

• If (Ai, Bj)  R (or there is an edge from Ai to Bj in G): M(i, j) = True

• If (Ai, Bj)  R (or there is not an edge from Ai to Bj in G): M(i, j) = False

Let U be {11, 22, 33, 44, 55, 66, 77, 88, 99}. Let S = {99, 55}. Then we can represent S with the

following bit vector (where, for ease of reading, we let blank stand for False and • stand for

True):

11 22 33 44 55 66 77 88 99

 • •

The name “adjacency matrix” is natural if you think of M(i, j) as being True whenever, in a

directed graph, Ai is adjacent to Bj in the sense that it is possible to get from Ai to Bj in a single

step.

Let Likes be a relation from a set A = {Billy, Dave, Sara,} of people to a set B = {cake, okra,

pie, ice cream} of foods:

Likes = { (Dave, pie), (Dave, ice cream),

 (Sara, cake), (Sara, ice cream),

 (Billy, cake), (Billy, ice cream)}

We can represent Likes as the following adjacency matrix M (where, for ease of reading, we

again let blank stand for False and • stand for True):

46

Problems

1. Consider the following tiny fragment of a possible MotherOf relation on the set of people:

{(Doreen, Ann), (Ann, Mark), (Ann, Cathy), (Doreen, Marie), (Marie, Christy)}

Suppose that we propose the following matrix M to represent this piece of MotherOf. We have
numbered the cells that contain the value True.

One cell is True but it shouldn’t be. Enter the number of the incorrect cell.

2. Consider the following tiny fragment of a possible SiblingOf relation, also defined on the set of
people:

{(Ann, Marie), (Beth, Ann), (Rich, Marie), (Steve, Trish), (Mike, Beth)}

Suppose that we propose the following matrix M to represent this piece of SiblingOf.

We’ve left out one True value that should be there. Into which of the following cells of M does it
need to go:

a) (2, 4)
b) (4, 2)
c) (3, 5)
d) (3, 1)
e) (7, 6)

Properties of Binary Relations on a Set

The Special Nature of Binary Relations on a Set

Relations need not be binary. And they may map from elements of one set to elements of some

different set.

But the special case of binary relations on a single set is so important that it’s worth additional

study.

Consider the set P of people. Here are some useful binary relations on P:

• MotherOf

• SiblingOf

• BossOf

• FriendOf

Consider the set Z (the integers). Here are some useful binary relations on Z:

• Succ(i, j)  (Z  Z) = {(i, j) : j = i + 1}. For example, 5 is the successor of 4.

• GreaterThan(i, j)  (Z  Z) = {(i, j) : i > j}. We often write GreaterThan using infix

notation. So we can write, for example, 10 > -2.

• DivisibleBy(i, j)  (Z  Z) = {(i, j) : i is evenly divisible by nonzero j}. For example:

DivisibleBy(12, 3) and DivisibleBy(12, 4).

48

Problems

1. (Part 1) Suppose that you wanted to encode some of your real world knowledge as relations.
Which of the following things would not naturally be able to be described using a binary relation
on a single set:

a) CousinOf
b) SocialSecurityNumberOf
c) IngredientOf
d) BorderingCountries
e) SubsetOf

(Part 2) Suppose that you wanted to encode, as relations, some of your mathematical
knowledge about the integers (the set Z). Which of the following things would not naturally be
able to be described using a binary relation on Z:

a) HasMorePrimeFactorsThan
b) GreaterThanOrEqualTo
c) SquareOf
d) IsHalfOf
e) IsRemainderAfterDividingBy10

Modular Arithmetic

Modular arithmetic, defined on the natural numbers N, is based on the notion of remainder after

division.

Define n modulo (or just “mod”) k as the remainder after n is divided evenly by k.

Notice that, if n mod k is j then: iN (n = (i  k) + j)

In other words, k goes into n i times, with a remainder of j left over.

Modular arithmetic is the basis for a very useful set of relations on the set N. In particular,

define an entire family of relations (one for each positive integer value of k) on the natural

numbers as follows:

k = {(i, j) : (i mod k) = (j mod k)}

If (i, j)  k, then we’ll write i k j. Read this as, “i is equivalent to j, mod k.”

Problems

1. Mark each of the following statements true or false:

16 10 2 8 3 35 50 5 0 17 4 2

For example, 7 mod 3 is 1 because, if we divide 7 by 3, we get a remainder of 1.

For example: 15 mod 5 = 0 because 15 = (3  5) + 0 (i = 3)

 32 mod 5 = 2 because 32 = (6  5) + 2 (i = 6)

Nifty Aside

Traditional clocks display hours modulo 12 (except that they write 0 as 12).

Clocks don’t tell us how many times the hour hand has gone all the way

around. For example, if it’s midnight now, then 28 hours from now, a clock

will display the hour as 4 since 28 mod 12 = 4.

Modular arithmetic also plays a crucial role (as do prime numbers) in the

modern cryptography systems that make secure communication on the

Internet possible.

For example:

7 3 31 3 1 (7, 31, and 1 all have the same remainder, 1, when divided by 3)

6 2 32 2 0 (6, 32, and 0 all have the same remainder, 0, when divided by 2)

50

Properties of Binary Relations on a Set

In this section, we’ll explore three important properties that some binary relations on a set

possess:

• A binary relation is reflexive if every element is related to itself.

• A binary relation is symmetric if, whenever a is related to b, b is also related to a.

• A binary relation is transitive if, whenever a is related to b and b is related to c, a is also

related to c.

These terms help us to describe relations that we wish to deal with. They are important in

mathematics.

And, in many practical applications, checking for these properties can be important as part of the

process of checking, say, for data errors in databases.

Reflexivity

A binary relation is reflexive if and only if every element is related to itself. In other words, if R

is a binary relation on a set A, it is reflexive if and only if:

 aA ((a, a)  R)

A binary relation is antireflexive (sometimes also called irreflexive) if and only if no element is

related to itself. In other words, if R is a binary relation on a set A, it is antireflexive if and only

if:

 aA ((a, a)  R)

The Identity relation is the special reflexive relation in which every element is related to itself

and to nothing else. In other words, given a set A, the relation I on A is defined as:

 I = {(a, a) : a  A}

You may be wondering why I is worth bothering to define. Answer:

• Sometimes when we compose relations we discover that we’re back where we started. We

can then say that the composition is equal to I (and that may be a useful observation).

Consider the relation GreaterThanOrEqualTo defined on the integers (or the rationals or the

reals). It is reflexive since:

 aZ (a  a)

Consider the corporate database relation WorksInSameDepartmentAs, defined on the set of

Employees. It is reflexive since everyone works in the same department as him/herself.

Consider the relation GreaterThan defined on the integers (or the rationals or the reals). It is

antireflexive since no element is greater than itself:

 aZ ((a > a))

Consider the relation SupervisorOf, defined on the set of Employees. It could play an

important role in a large corporate Human Relations database. SupervisorOf is antireflexive

since no one can be his/her own supervisor.

52

• If we want to develop an algebra of relations (in the same sense in which you already know

about an algebra on the integers), then I is the identity for composition (in the same sense in

which 1 is the identity for multiplication).

Notice that a relation is reflexive if and only if I is a subset of it.

Define the successor relation (as we have been doing):

 Succ(i, j)  (Z  Z) = {(i, j) : j = i + 1}.

And define the predecessor relation:

 Pred(i, j)  (Z  Z) = {(i, j) : j = i - 1}.

Then observe:

 Pred  Succ = I = Succ  Pred

For example, the successor of 2 is 3. Then the predecessor of 3 is 2.

Problems

1. Consider the relation MotherOf (in the real world). Which of the following describes it:

a) It is reflexive.
b) It is antireflexive.
c) It is neither reflexive nor antireflexive. In other words, in some, but not all cases, an

element is related to itself.

2. Consider the following relation on the even integers:

 R = {(i, j) : i  j is even}

For example, (4, 10)  R because 4  10 = 40, which is even.

Which of the following describes R:

a) It is reflexive.
b) It is antireflexive.
c) It is neither reflexive nor antireflexive. In other words, in some, but not all cases, an

element is related to itself.

3. Consider the following relation on the odd integers:

 R = {(i, j) : i  j is even}

For example, (3, 7)  R because 3  7 = 21, which is not even.

Which of the following describes R:

a) It is reflexive.
b) It is antireflexive.
c) It is neither reflexive nor antireflexive. In other words, in some, but not all cases, an

element is related to itself.

4. Consider the following relation on the integers (all of them):

 R = {(i, j) : i  j is even}

For example, (3, 8)  R because 3  8 = 24, which is even.

Which of the following describes R:

a) It is reflexive.
b) It is antireflexive.
c) It is neither reflexive nor antireflexive. In other words, in some, but not all cases, an

element is related to itself.

54

Graphs and Adjacency Matrices of Reflexive Relations

Suppose that R is a relation on some finite set A. Then we know that we can represent R as both

a graph and as an adjacency matrix.

Problems

1. (Part 1) Let R be a reflexive relation on some finite set A. Which of the following must be true
of any graph that represents R:

a) For no vertex v is there an edge from v to v.
b) For every vertex v, there is an edge from v to v.
c) For every vertex v, there is an edge to no more than one other vertex.
d) Every pair of vertices v1 and v2 is connected by an edge.
e) None of these.

(Part 2) Let R be a reflexive relation on some finite set A. Consider the following claims that we
could make about any adjacency matrix M that represents R. Which one or more of these is/are
true?

I. If |A| = n, at least n cells of M contain the value True.
II. Every cell on the diagonal from upper left to lower right contains the value True.
III. Every cell on the diagonal from upper right to lower left contains the value True.

More on Graphs and Adjacency Matrices of Reflexive Relations

The last two problems suggest that it is easy, using either a graph or an adjacency matrix, to

determine whether a relation is reflexive.

Using a graph: If a relation is reflexive and represented as a graph G, there will be, for every

vertex in G, an edge going back to itself. We often call such edges loops.

Using an adjacency matrix: If a relation is reflexive and represented as a matrix M, the value

True will appear in every element of the major diagonal (upper left to lower right) of M.

Notice that, using either of these structures, we can check a relation to see whether or not it is

reflexive in time proportional to the number of elements in the set on which it is based. We just

need to examine each vertex (in a graph) or each element of the major diagonal in an adjacency

matrix.

Problems

1. Consider the following graph G:

Let G correspond to a relation R on the set {1, 2, 3, 4}. Is R reflexive?

So we know that this graph corresponds to a reflexive relation:

So we know that this matrix corresponds to a reflexive relation (a superset

of the one we just saw the graph of):

56

Symmetry

A binary relation is symmetric if and only if, whenever a is related to b, b is also related to a. In

other words, if R is a binary relation on a set A, it is symmetric if and only if:

 a,bA (((a, b)  R)) → ((b, a)  R))

Problems

1. Define the parity of an integer as either:

• Even (in the case of an even integer), or

• Odd (in the case of an odd integer).

Now consider the relation EqualParity:

EqualParity = {(i, j)  Z  Z: i and j have the same parity}

True or false: EqualParity is symmetric.

2. Assume an arbitrary set A and two symmetric relations R and S on A. Prove or disprove with

a simple counter-example the claim: R  S must be symmetric.

Which of the following is true:

a) The claim can be proved true.
b) The claim can be proved false with a counterexample.

Define the relation CommonFactor as:

CommonFactor = {(i, j)  Z  Z: i and j share a common integer factor}

For example, (10, 12)  CommonFactor, since 10 and 12 share the factor 2.

CommonFactor is symmetric. If 10 and 12 share a common factor, so do 12 and 10.

Antisymmetry

A binary relation is antisymmetric if and only if, whenever a and b are different and a is related

to b, b is not related to a. In other words, if R is a binary relation on a set A, it is antisymmetric if

and only if:

 a,bA ((a  b)  ((a, b)  R)) → ((b, a)  R))

Or, here’s an equivalent definition that may be more convenient in some cases:

 a,bA ((a, b)  R)  ((b, a)  R)) → a = b)

It follows from the fact that GreaterThan is antisymmetric that any relation R that is defined by a

greater-than relationship on some numeric quantity must also be antisymmetric.

There are also interesting antisymmetric relations that don’t involve numbers.

Again, consider the relation GreaterThan defined on the integers (or the rationals or the

reals). It is antisymmetric since, if a > b, it cannot be true that b > a:

 a,bZ ((a > b) → (b > a))

Define the relation BetterGPAThan on the set S of students as:

BetterGPAThan = {(r, s)  S  S : r has a higher GPA than s}

BetterGPAThan is antisymmetric.

58

Notice that, somewhat counterintuitively, it is possible for a relation R to be both symmetric and

antisymmetric. Suppose that R contains no elements (a, b) where a and b are different. Then,

trivially, it is symmetric. Also (and this is most clear from the first definition of antisymmetry

given above), R is also antisymmetric.

Define the antisymmetric relation ComesBefore  Strings  Strings =

 {(s, w) : s comes before w in alphabetical order}

For example:

(“goblin”, “gremlin”)  ComesBefore, but (“gremlin”, “goblin”)  ComesBefore

Define the relation Implies on the set P of Boolean formulas as:

 Implies = {(p, q)  P  P : p → q}

Recall the truth table definition of Implies:

 p q p → q

1 T T T

2 T F F

3 F T T

4 F F T

To determine whether a relation is antisymmetric, we ignore elements of the form (a, a). In

the case of Booleans, that means that we ignore (T, T) and (F, F). So we ignore rows 1 and 4.

Now observe that row 3 tells us that (F, T)  Implies. But we know, from row 2, that (T, F)

 Implies. So Implies is antisymmetric.

For example, let R be the relation encoded as the following adjacency matrix:

R is both symmetric (trivially) and antisymmetric (trivially).

Problems

1. Define the parity of an integer as either:

• Even (in the case of an even integer), or

• Odd (in the case of an odd integer).

Now consider the relation EqualParity:

EqualParity = {(i, j)  Z  Z: i and j have the same parity}

Indicate, for each of the following claims, whether it is true or false:

a) EqualParity is symmetric.
b) EqualParity is antisymmetric.
c) EqualParity is neither symmetric nor antisymmetric. In other words, in some, but not all

cases, (i, j)  EqualParity implies that (j, i)  EqualParity.

2. Assume an arbitrary set A and two symmetric relations R and S on A. Prove or disprove with

a simple counter-example the claim: R  S must be symmetric.

Which of the following is true:

c) The claim can be proved true.
d) The claim can be proved false with a counterexample.

3. Assume that some arbitrary relation R on some set A is both symmetric and antisymmetric.
Recall that the identity relation, I, on a set A is defined as:

 I = {(a, a) : a  A}

Indicate, for each of the following claims, whether it is true or false:

a) R must be equal to I.
b) R must be a subset of I.
c) R can be any superset of I.

d) It must be the case that R  I = 

60

Graphs and Adjacency Matrices of Symmetric Relations

Suppose that R is a relation on some finite set A. Then we know that we can represent R as both

a graph and as an adjacency matrix.

Problems

1. Let R be a symmetric relation on some finite set A. Which of the following must be true of
any graph that represents R:

a) For no vertex v is there an edge from v to v.
b) For every vertex v, there is an edge from v to v.
c) For every edge (v1, v2) there is also the edge that goes in the other direction.
d) Every pair of vertices v1 and v2 is connected by an edge.
e) None of these.

2. Let R be a symmetric relation on some finite set A. Consider the following claims that we
could make about any adjacency matrix M that represents R. Which one or more of these
claims must be true?

I. If |A| = n, at least n cells of M contain the value True.
II. Fold M along its major diagonal (the one from the upper left to the lower right). Cells that

line up on top of each other must contain the same value.
III. Fold M along its other diagonal (the one from the upper right to the lower left). Cells that

line up on top of each other must contain the same value.

More on Graphs and Adjacency Matrices of Symmetric Relations

The last two problems suggest that it is easy, using either a graph or an adjacency matrix, to

determine whether a relation is symmetric.

Using a graph: If a relation is symmetric and represented as a graph G, every edge in G will go in

both directions. (Recall that we may draw such a pair of edges as a single edge with arrows at

both ends.)

The only exception to this is that we won’t always bother to draw reflexive edges in both

directions (we don’t need to since there is no difference between (a, a) and (a, a)).

Using an adjacency matrix: If a relation is symmetric and represented as a matrix M, then if we

fold M along its major diagonal, cells that land on top of each other must have the same value.

So we can easily see that the first of these graphs corresponds to a symmetric relation, but

the second one does not (since the edge (v1, v3) goes in only one direction).

So this graph corresponds to a symmetric relation:

So we know that this matrix corresponds to a symmetric

relation. If you can’t visualize this, print it, fold it, and see what

happens.

62

Problems

1. Consider the following graph G:

 Let G correspond to a relation R on the set {1, 2, 3, 4}. Is R symmetric?

Transitivity

A binary relation is transitive if, whenever a is related to b and b is related to c, a is also related

to c. In other words, if R is a binary relation on a set A, it is transitive if and only if:

 a,b,cA (((a, b)  R)  ((b, c)  R)) → ((a, c)  R))

One way to think of a transitive relation R is this: If, for two elements a and c, it is possible to get

(somehow, via some number of intermediate steps) from a to c, then (a, c) must be in R.

It follows from the fact that GreaterThan is transitive that any relation R that is defined by a

greater-than relationship on some numeric quantity must also be transitive.

If we represent a relation as either a graph or an adjacency matrix, there exist algorithms for

deciding whether the relation is transitive. Unfortunately, they’re not as straightforward as the

ones for deciding whether a relation is reflexive or symmetric.

Consider the relation GreaterThan defined on the integers (or the rationals or the reals). It is

transitive since, if a > b, and b > c, it must be true that a > c:

 a,b,cZ (((a > b)  (b > c)) → (a > c))

Recall the relation BetterGPAThan on the set S of students as:

BetterGPAThan = {(r, s)  S  S : r has a higher GPA than s}

BetterGPAThan is transitive.

64

Reviewing the Properties

The three properties that we’ve just presented play important roles in mathematics, as well as in

many kinds of applications.

For example, if we assert that a relation R possesses one or more of the properties we’ve

discussed, then we can check for errors in entering R into a database by checking to see whether

the property(s) hold.

Big Idea:

We bother to define these properties (as well as others to come) for at least two important

reasons:

• By giving names to the properties, we can talk about them both concisely and

precisely.

• Names help us focus on properties that are often very important.

Suppose that we have a database of sales data. We use it for various things, including giving

commissions and awards to the sales staff. Consider the relation:

Outsells  SalesStaff  SalesStaff = {(a, b) : a has outsold b in the current period}

Outsells is:

• Antireflexive: No one can outsell him/herself.

• Antisymmetric: If a outsells b, then b does not outsell a.

• Transitive: If a outsells b and b outsells c, then a outsells c.

Notice, by the way, that Outsells is really GreaterThan in disguise (the quantity being

measured is sales volume). So it has the same properties that GreaterThan does.

If we check our database and find that our records don’t show Outsells as having those

properties, then we know that a mistake has been made in entering or computing the data.

Problems

1. Let R be the relation described by the following adjacency matrix:

Mark each of the following claims as true or false:

a) R is reflexive.
b) R is antireflexive.
c) R is symmetric.
d) R is antisymmetric.
e) R is transitive.

2. Define the relation SubsetOf on the set S of sets (of anything):

 SubsetOf = {(A, B)  S  S : A  B}

Notice that saying that (A, B)  SubsetOf is the same as saying that A  B. This is such an

important relation that we’ve defined an infix notation for it. In fact, when we first defined , we
were defining a relation. We just hadn’t formalized that notion in the way that we now have.

Mark each of the following claims as true or false:

a) SubsetOf is reflexive.

b) SubsetOf is antireflexive.

c) SubsetOf is symmetric.

d) SubsetOf is antisymmetric.

e) SubsetOf is transitive.

3. Consider the relation 10, defined on the natural numbers and based on the notion of modular
arithmetic that we described several slides ago. Mark each of the following claims as true or
false:

a) 10 is reflexive.

b) 10 is antireflexive.

c) 10 is symmetric.

d) 10 is antisymmetric.

e) 10 is transitive.

66

4. Consider the relation TakesAUniversityClassWith defined on the set of University students.

Mark each of the following claims as true or false:

a) TakesAUniversityClassWith is reflexive.

b) TakesAUniversityClassWith is antireflexive.

c) TakesAUniversityClassWith is symmetric.

d) TakesAUniversityClassWith is antisymmetric.

e) TakesAUniversityClassWith is transitive.

5. Consider the playoff games of your favorite sport. Let A be the set of teams who are
competing. Assume that each pair of teams plays against each other exactly once and that
there are no ties. Define the relation:

PlayedAndBeat = {(a, b)  A  A: Team a played team b and beat them}

 (Part 1) Which of the following statements is correct:

a) PlayedAndBeat must be reflexive.
b) PlayedAndBeat must be antireflexive.
c) PlayedAndBeat must be neither reflexive nor antireflexive.
d) We can’t make any claim about the reflexivity of PlayedAndBeat.

(Part 2) Which of the following statements is correct:

a) PlayedAndBeat must be symmetric but not antisymmetric.
b) PlayedAndBeat must be antisymmetric but not symmetric.
c) PlayedAndBeat must be both symmetric and antisymmetric.
d) PlayedAndBeat must be neither symmetric nor antisymmetric.
e) We can’t make any claim about the symmetry of PlayedAndBeat.

(Part 3) Which of the following statements is correct:

a) PlayedAndBeat must be transitive.
b) We can’t make any claim about the transitiviy of PlayedAndBeat.

6. Let G be any directed graph. Define a path from vertex a to vertex b as a sequence of
edges:

 (a, v2), (v2, v3), (v3, v4),… (vn-1, b)

such that, for every edge ek after the first, the first element of ek is the second element of ek-1.

Define the relation:

ReachableG = {(a, b) : a = b or there exists a path from a to b in G}

In other words, b is reachable from a if and only if it is possible to get from a to b in 0 or more
steps.

(Part 1) Which of the following statements is correct:

a) ReachableG must be reflexive.
b) ReachableG must be antireflexive.
c) ReachableG must be neither reflexive nor antireflexive.
d) We can’t make any claim about the reflexivity of ReachableG.

(Part 2) Which of the following statements is correct:

a) ReachableG must be symmetric but not antisymmetric.
b) ReachableG must be antisymmetric but not symmetric.
c) ReachableG must be both symmetric and antisymmetric.
d) ReachableG must be neither symmetric nor antisymmetric.
e) We can’t make any claim about the symmetry of ReachableG.

(Part 3) Which of the following statements is correct:

a) ReachableG must be transitive.
b) We can’t make any claim about the transitivity of ReachableG.

68

7. Imagine this sensible definition of what other people can see your Facebook posts:

 Only your friends.

Of course, we also assume that you can view your own posts. Let F be the set of Facebook
users. Define the relation:

VisibleTo  F  F = {(a, b): User a’s posts are visible to user b}

(Part 1) Which of the following statements is correct?

a) VisibleTo must be reflexive.
b) VisibleTo must be antireflexive.
c) VisibleTo must be neither reflexive nor antireflexive.
d) We can’t make any claim about the reflexivity of VisibleTo.

(Part 2) Which of the following statements is correct?

a) VisibleTo must be symmetric but not antisymmetric.
b) VisibleTo must be antisymmetric but not symmetric.
c) VisibleTo must be both symmetric and antisymmetric.
d) VisibleTo must be neither symmetric nor antisymmetric.
e) We can’t make any claim about the symmetry of VisibleTo.

(Part 3) Which of the following statements is correct?

a) VisibleTo must be transitive.
b) VisibleTo cannot be transitive.
c) We can’t make any claim about the transitivity of VisibleTo.

8. Consider the classic children’s two-person game, Rock Paper Scissors. At each play, the two
players simultaneously choose one of rock, paper, or scissors.

If the two players choose the same move, the play is a tie and doesn’t count. If they choose
different moves, the rule for determining who wins is given by:

• Rock smashes scissors.

• Scissors cut paper.

• Paper covers rock.

So the following relation Beats contains one element for each way that player1 can beat player2:

 Beats  {rock, paper, scissors}  {rock, paper, scissors} =

 {(rock, scissors), (scissors, paper), (paper, rock)}

Read (rock, scissors)  Beats as saying that rock beats scissors.

Mark each of the following claims as true or false:

a) Beats is reflexive.
b) Beats is antireflexive.
c) Beats is symmetric.
d) Beats is antisymmetric.
e) Beats is transitive.

Note one interesting thing about Beats: Beats3 = I. (In other words, apply it three times and
you’ll be back where you started.)

70

Patterns of Property Combinations

The three properties of reflexivity, symmetry, and transitivity are almost logically independent of

each other. We can find simple, potentially useful relations that possess seven of the eight

possible combinations of these properties:

Properties Domain Example

None People Mother-of

Just reflexive People who can see WouldRecognizePictureOf

Just symmetric People FacebookFriendOf

Just transitive People Ancestor-of

Just reflexive and

symmetric

People Facebook posts visible to

Just reflexive and

transitive

Numbers 

Just symmetric and

transitive

Anything 

All three Almost anything =

To see why we can’t find a nontrivial (i.e., different from ) example of a relation that is

symmetric and transitive but not reflexive, consider a simple relation R on {1, 2, 3, 4}. As soon

as R contains a single element that relates two unequal objects (e.g., (1, 2)), it must, for

symmetry, contain the matching element (2, 1). So now we have R = {(1, 2), (2, 1)}. To make

R transitive, we must add (1, 1) and (2, 2). Call the resulting relation R. But then R would

also be reflexive, except that neither 3 nor 4 is related to itself. In fact, they are related to

nothing. We cannot find an example of a relation R that is symmetric and transitive but not

reflexive if we insist that all elements of the domain be related under R to something.

Proving Claims About Properties of Relations

How can we prove that some relation possesses some property that we care about?

Answer: A relation is a set (of tuples). So we prove properties of relations in the same way we

prove properties of other kinds of sets:

To prove that relation R has some property:

1. Let e be an arbitrary element of R.

2. Write down what we know about e.

3. Use whatever else we’re given and derive other facts about e until we’ve proved some

relevant claim about e.

4. Generalize from e to any element of R.

Along the way, we can use other proof techniques as appropriate. For example, to prove that

some claim P is true if and only if some other claim Q is true, we do two proofs:

P: Prove that P → Q.

Q: Prove that Q → P.

And recall that the usual way to prove that two sets A and B are equal is to do two proofs:

A: Every element of A must be in B.

B: Every element of B must be in A.

Let’s put all of these general ideas together to prove a (possibly obvious) claim about symmetric

relation s.

Prove: R is symmetric if and only if R = R-1.

We must do two proofs (since we must prove both directions of this claim).

P: Prove that, if R is symmetric, then R = R-1.

To prove that R = R-1, we must prove that every element of R is in R-1 and that every

element of R-1 is in R:

A: Every element of R is in R-1:

Let (a, b) be an arbitrary element of R.

(b, a) is also in R, since R is symmetric.

(a, b) is in R-1, by the definition of inverse.

Every element (x, y) in R is also in R-1.

72

Once people get facile with these kinds of proofs, they don’t write them out in this much detail.

But it will be good for us to practice doing it this way for a while.

B: Every element of R-1 is in R:

Let (a, b) be an arbitrary element of R-1.

(b, a) is in (R-1)-1 = R, by the definition of inverse.

(a, b) is also in R, since R is symmetric.

Every element (x, y) in R-1 is also in R.

Q: Prove that, if R = R-1, then R is symmetric.

Let (a, b) be an arbitrary element of R.

(a, b) is in R-1 since R = R-1.

(b, a) is in (R-1)-1 = R, by the definition of inverse.

If any element (x, y) is in R, then (y, x) is also in R.

R is symmetric (by definition).

Equivalence Relations

What Is an Equivalence Relation?

An equivalence relation on a set A is a relation that is:

• reflexive,

• symmetric, and

• transitive.

The most fundamental equivalence relation (on almost any set) is equality (=).

While we can, of course, define = on some set A to mean whatever we want it to mean, in most

common cases, = is exactly the Identity relation, I. An element a  A is equal to itself and

nothing else.

Recall that we can represent I as either a graph or an adjacency matrix. When we do that, we get

structures that look like this:

There are also many other useful equivalence relations. They are all, of course (because they are

reflexive), supersets of I.

 7 = 7 7  8

 True = True True  False

 {1, 2} = {2, 1} {1, 2}  {1}

 “abc” = “abc” “abc”  “cba”

 1 mod 4 = 5 mod 4 3 mod 4  5 mod 4

74

Problems

1. Consider this adjacency matrix:

Which of the following statements is true of the relation that it represents:

a) It is an equivalence relation.
b) It is not an equivalence relation because, while it is reflexive and transitive, it is not

symmetric.
c) It is not an equivalence relation because, while it is symmetric and transitive, it is not

reflexive.
d) It is not an equivalence relation because, while it is reflexive and symmetric, it is not

transitive.
e) It is not an equivalence relation because it is missing at least two of the required properties.

2. Consider this adjacency matrix:

Which of the following statements is true of the relation that it represents:

a) It is an equivalence relation.
b) It is not an equivalence relation because, while it is reflexive and transitive, it is not

symmetric.
c) It is not an equivalence relation because, while it is symmetric and transitive, it is not

reflexive.
d) It is not an equivalence relation because, while it is reflexive and symmetric, it is not

transitive.
e) It is not an equivalence relation because it is missing at least two of the required properties.

Examples of Equivalence Relations

Equivalence relations show up in a wide range of problem contexts.

Recall the family of relations k (defined on the natural numbers and based on the notion of

modular arithmetic that we described several slides ago. For any integer k, k is an

equivalence relation because it is:

• reflexive: i k i, since there is a single remainder when i is divided by k.

• symmetric: if i k j, then i and j have the same remainder when divided by k, so j k i.

• transitive: if i k j, then we have that, for some t, i mod k = t and j mod k = t. Then, if j

k n, it must also be true that n mod k = t. So i mod k = t = n mod k. Thus, i k n.

Consider again our company’s personnel data base. Assume that it contains the following

relation:

Works-in  EmployeeIDs  Departments =

{(e, d) : employee with id number e works in department d}

Using that information, we could define the following relation:

WorksInSameDepartmentAs  Employee  Employee =

 {(e, f) : d ((e, d)  Works-In  (f, d)  Works-In)}

Assume that each employee works in exactly one department. Then

WorksInSameDepartmentAs is an equivalence relation because it is:

• reflexive: Everyone works in the same department as him/herself.

• symmetric: If e and f work in some department d, then both (e, f) and (f, e) are in

WorksInSameDepartmentAs. If there is no such department d, then neither (e, f) nor

(f, e) is in WorksInSameDepartmentAs.

• transitive: Suppose that e and f work in the same department. Call it d. Suppose f

and g also work in the same department. Since f only works in one department (d), g

must also work in d. So e and g work in the same department.

76

Problems

1. Consider the relation SiblingOf  People  People =

 {(a, b) : SisterOf(a, b)  BrotherOf(a, b)}

Which of the following statements is true of SiblingOf:

a) It is an equivalence relation.
b) It is not an equivalence relation because, while it is reflexive and transitive, it is not

symmetric.
c) It is not an equivalence relation because, while it is symmetric and transitive, it is not

reflexive.
d) It is not an equivalence relation because, while it is reflexive and symmetric, it is not

transitive.
e) It is not an equivalence relation because it is missing at least two of the required properties.

2. Let’s return to the relation WorksInSameDepartmentAs. But now let’s assume that it is
possible for a single employee to work in more than one department at a time. Which of the
following statements is true of WorksInSameDepartment in this case:

a) It is an equivalence relation.
b) It is not an equivalence relation because, while it is reflexive and transitive, it is not

symmetric.
c) It is not an equivalence relation because, while it is symmetric and transitive, it is not

reflexive.
d) It is not an equivalence relation because, while it is reflexive and symmetric, it is not

transitive.
e) It is not an equivalence relation because it is missing at least two of the required properties.

3. Define the relation FBFriendOf  People  People =

 {(a, b) : a is a Facebook friend of b}

Which of the following statements is true of FBFriendOf:

a) It is an equivalence relation.
b) It is not an equivalence relation because, while it is reflexive and transitive, it is not

symmetric.
c) It is not an equivalence relation because, while it is symmetric and transitive, it is not

reflexive.
d) It is not an equivalence relation because, while it is reflexive and symmetric, it is not

transitive.
e) It is not an equivalence relation because it is missing at least two of the required properties.

4. Consider the large corporate database relation SupervisorOf  People  People =

 {(a, b) : a is the supervisor of b}

Which of the following statements is true of SupervisorOf:

a) It is an equivalence relation.
b) It is not an equivalence relation because, while it is reflexive and transitive, it is not

symmetric.
c) It is not an equivalence relation because, while it is symmetric and transitive, it is not

reflexive.
d) It is not an equivalence relation because, while it is reflexive and symmetric, it is not

transitive.
e) It is not an equivalence relation because it is missing at least two of the required properties.

5. Define the relation CommonFactor as:

CommonFactor = {(i, j)  Z  Z: i and j share a common integer factor}

For example, (12, 9)  CommonFactor since both 12 and 9 have 3 as a factor.

Which of the following statements is true of CommonFactor:

a) It is an equivalence relation.
b) It is not an equivalence relation because, while it is reflexive and transitive, it is not

symmetric.
c) It is not an equivalence relation because, while it is symmetric and transitive, it is not

reflexive.
d) It is not an equivalence relation because, while it is reflexive and symmetric, it is not

transitive.
e) It is not an equivalence relation because it is missing at least two of the required properties.

6. Imagine that we are UPS. We need to pack as many boxes as possible into each truck.
Assume that we don’t worry about keeping things right side up. Also assume that all boxes are
rectangles and that we measure them to the nearest inch. We describe each box as a three
tuple:

 (length, width, height)

Recall that Z+ is the set of positive integers. Then we might define the relation that contains all
pairs of boxes of equal volume:

EQVolume  (Z+  Z+  Z+)  (Z+  Z+  Z+) = {((a, b, c), (i, j, k)) : abc = ijk}

78

Which of the following statements is true of EQVolume:

a) It is an equivalence relation.
b) It is not an equivalence relation because, while it is reflexive and transitive, it is not

symmetric.
c) It is not an equivalence relation because, while it is symmetric and transitive, it is not

reflexive.
d) It is not an equivalence relation because, while it is reflexive and symmetric, it is not

transitive.
e) It is not an equivalence relation because it is missing at least two of the required properties.

Partitions

Recall the following definition: Given a nonempty set A, a partition of A is a set of nonempty,

pairwise disjoint subsets of A whose union is A.

Another way to state this definition is to say that , a set of subsets of A, is a partition of A if and

only if:

• No element of  is empty: X   (X  ).

• No elements of  overlap: X, Y   (X  Y = ).

• No element of A is left out of :

⋃ 𝑋 = 𝐴

𝑋

We must be careful, when we assert that some set  is a partition of a set A, that all three of the

required properties hold.

Consider the set Z (the integers). Here’s one partition  of Z:

 = {{even integers}, {odd integers}}

Neither set is empty. And every integer is in exactly one element of .

Again consider the set Z (the integers). Here’s another proposed partition  of Z:

 = {{integers divisible by 2}, {integers divisible by 3}}

This time,  is not a partition of Z. It has two problems. Some elements of Z (for example, 6)

are in both elements of . And some other elements of Z (for example, 7) are in neither

element of .

80

Problems

1. Let P be the set of people. For each of the following, sets S, mark true if S is a partition of P.
Mark false otherwise.

a) {{residents of North America}, {residents of South America}, {residents of Europe},

{residents of Asia}, {residents of Africa}}
b) {{people like beets}, {people who like okra}, {people who like chocolate}, {people who like

pears}}
c) {{people born in a leap year}, {people born in an odd numbered year}, {people born in an

even numbered year}}
d) {{high school students} {high school graduates}, {high school dropouts}}
e) {{eldest girl in family}, {eldest boy in family}, {has/had older sibling}}

2. Let Z be the set of integers. For each of the following sets S, mark true if S is a partition of Z.
Mark false otherwise:

a) {{x : x 3 0}, {x : x 3 1},{x : x 3 2}}

b) {{x : x 4 0}, {x : x 4 1},{x : x 4 2}}
c) {{0}, {negative integers}, {positive integers}}

d) {, {prime numbers}, {composite numbers}}

Equivalence Classes

The word “equivalence” suggests equality. And, as we’ve seen, = (in the usual sense) is an

equivalence relation.

But, in particular problem contexts, it may be useful to group together objects that, while not

identical, share some property that is key in the current context. Notice that a partition (as just

defined) is one way to carve up a set into subsets. So let’s explore the relationship between

equivalence relations and partitions.

Let A be a nonempty set and let R be an equivalence relation on A. Now consider an arbitrary

element x of A. Define the equivalence class containing x as:

 {y  A : (x, y)  R}

In other words, the equivalence class that contains x contains all and only those elements of A

that are related to x via R. Note that, since R is an equivalence relation, it is reflexive. So x is

guaranteed to be related to itself (and thus to be in this set).

We’ll say that an equivalence class, as just defined, is induced by R.

Common notations for equivalence classes are:

 [x]R (the class that contains x, in case we need to be explicit about R), or

 [x] (the class that contains x in case R is clear from context)

 [description] (the class that contains exactly the elements that satisfy description)

Notice that, in general, there may be different ways to describe the same equivalence class.

Now consider the set of equivalence classes induced by R. Using the equivalence relation

properties of reflexivity, symmetry and transitivity, it is possible to prove that this set is a

partition. In other words, it carves up A into , a set of nonempty subsets in such a way that

every element of A is in exactly one subset. We’ll say then that R induces .

So now we have that equivalence relations do something very useful. Each equivalence relation

induces a partition on its domain. Interesting equivalence relations induce partitions that carve

sets into equivalence classes with the property that elements in the same class are “equivalent” in

some useful way.

Let A = {1, 2, 3, 4, 5}. Let R =

{(1, 1), (1, 3), (1, 5), (2, 2), (2, 4), (3, 1), (3, 3), (3, 5), (4, 2), (4, 4), (5, 1), (5, 3), (5, 5)}

Then [1] = [3] = [5] = [odd positive integers less than 6] = {1, 3, 5}.

82

Problems

1. Assume that we roll a pair of dice and care only about the total of the two dice. We’ll define
EqualDiceRoll to relate pairs of dice values with each other. So it is a subset of Rolls =

{({1, 2, 3, 4, 5, 6}  {1, 2, 3, 4, 5, 6})  ({1, 2, 3, 4, 5, 6}  {1, 2, 3, 4, 5, 6})}

EqualDiceRoll = {((i, j), (n, m)) : i + j = n + m}

EqualDiceRoll is an equivalence relation that induces a partition on Rolls. For many games, this
partition captures exactly the property of a dice roll that we care about. Indicate whether each
of the following statements is true or false:

a) (4, 5)  [(3, 6)]

b) [(2, 3)]  [(4, 1)]
c) |[pairs that total 2]| = |[pairs that total 12]|

d) [(1, 3)]  [(2, 2)]
e) [(2, 6)] = [(6, 2)]

f) (6, 6)  [(1, 1)]

Consider the equivalence relation 12. So we have, for example:

 7 12 19 12 3112 103

The equivalence classes induced by 12 correspond to the positions of the

hour hand on a traditional clock.

 Equivalence Classes and Partitions

The equivalence relation properties of reflexivity, symmetry and transitivity are what guarantee

that  is a partition. Let’s show that it must have the three required properties of a partition:

• No element of  is empty: If X  , then, for some element x of A:

 X = {y  A : (x, y)  R}

Since R is reflexive, X must contain x. So it isn’t empty.

• No elements of  overlap: Consider two arbitrary elements of :

X = {y  A : (x, y)  R} (all elements related to x)

 Z = {y  A : (z, y)  R} (all elements related to z)

We need to show that the only way for X and Z to overlap is for them to be equal:

Suppose that X and Z do overlap and there is some element a that is in both of them. In other

words, a is related to both x and z. Formally, (x, a)  R and (z, a)  R. Since R is

symmetric, we have that (a, z)  R. But now, since R is transitive, we have that (x, z)  R.

Using this fact, we’ll show that X and Z are the same. Often to do this, we do two proofs:

One shows that every element of X is in Z. The other goes the other way. In this case, we

can collapse the two proofs because every step is reversible. We’ll show equivalent

expressions.

 Let p be an arbitrary element of the domain A. Then:

 p  X assumption for conditional proof

  (x, p)  R definition of X

  (p, x)  R since R is symmetric

  (p, z)  R since (x, z)  R (see above) and R is transitive

  (z, p)  R since R is symmetric

  p  Z definition of Z

So being in X is equivalent to being in Z. The two sets are equal.

• Every element of A is in some element of : Let a be an arbitrary element of A. Then one

element of  must be the equivalence class that contains all and only the elements related to

a. Since a is related to itself, it is in that set. It is thus in some element of .

84

Problems

1. Imagine that we are UPS. We need to pack as many boxes as possible into each truck.
Assume that we don’t worry about keeping things right side up. Also assume that all boxes are
rectangles and that we measure them to the nearest inch. We describe each box as a three
tuple:

 (length, width, height)

Recall that Z+ is the set of positive integers. We have defined a relation that contains all pairs of
boxes of equal volume:

EQVolume  (Z+  Z+  Z+)  (Z+  Z+  Z+) = {((a, b, c), (i, j, k)) : abc = ijk}

EQVolume is an equivalence relation. So it partitions boxes into equivalence classes. All boxes
in a single class have the same volume.

For each of the following pairs, mark true if both are in the same equivalence class and false
otherwise:

a) (2, 6, 7), (7, 3, 4)
b) (3, 7, 11), (11, 4, 6)
c) (2, 6, 9), (3, 3, 12)

2. WordNet® is a large lexical database of English. It contains entries for nouns, verbs,
adjectives, and adverbs. It maps each word to one or more meanings. For example, the noun
“party” could mean a social event or a political organization.

You can play with WordNet online (or download it if you want to use it in a program). You’ll find
it here: http://wordnet.princeton.edu/ .

Synonyms (words that share a meaning) are grouped into sets called synsets. Wordnet has
about 117,000 synsets. Here are a couple of them:

[cab, hack, taxi, taxicab]
 [café, coffeehouse, coffee shop, coffee bar]

Let’s consider the question, “Do WordNet’s synsets form a partition on English words and their
meanings?” Put another way, is the relation “InSameSynsetAs” an equivalence relation that
partitions words into equivalence classes such that all the elements of a single class share a
meaning?”

For the rest of this discussion, we’ll focus only on the noun meanings of the words we
consider. You will need to look words up in Wordnet in order to answer these questions.

Question 1: Do Wordnet’s synsets form a partition of the set of English words? Recall
that, if Synsets is a partition, then every English word must occur in exactly one set.

(Part 1) To how many synsets does the English word “table” belong?

(Part 2) To how many synsets does the English word “chair” belong?

http://wordnet.princeton.edu/

(Part 3) Is the claim that Wordnet’s synsets form a partition of the set of English words true or
false?

Question 2: Do Wordnet’s synsets form a partition of the set of English word meanings
(senses)? In other words, we begin by acknowledging that a given word (string of letters) may
have more than one meaning. But now consider the set Meanings, which contains word
meanings, as distinct from the word(s) we use to describe those meanings. Is Synsets a
partition of Meanings?

(Part 4) Wordnet assigns the English word “cloth” a single meaning (i.e., a single synset). How
many other words also have the meaning that corresponds to that synset?

(Part 5) Check each of the words you found in the last question. Considering only the “cloth”
meaning of each word, is it the case that the meaning is assigned to a single synset (i.e., the
one that contains the meaning of “cloth”)? Mark yes or no.

Try this same exercise with a few more words and see what you observe.

(Part 6) Now suppose that we know that there are no empty synsets (why would they have
bothered to create any?). And we know that every sense that Wordnet knows has been
assigned to at least one synset. Then, on the basis of what we have observed, does it appear
that Synsets is a partition of Meanings? (In other words, is every meaning in exactly one
synset?) Mark yes or no.

86

Proving that a Relation is an Equivalence Relation

To prove that a relation R is an equivalence relation, we must show that it has the three required

properties:

• symmetry

• reflexivity

• transitivity

Sometimes this is difficult. But in many cases our proof can piggyback on the fact that = is an

equivalence relation. Many relations are actually = in disguise.

But, of course, we don’t always get off this easily.

Make the assumption that everyone lives in exactly one place. Now consider the relation

LivesAtSameAddressAs  People  People =

 {(a, b) : a and b live at the same address}

An alternative way to say this is that a’s address equals b’s address. So we have that

LivesAtSameAddressAs is an equivalence relation:

• Reflexivity: Person a’s address equals itself since equals is reflexive.

• Symmetry: If a’s address equals b’s address, then b’s address equals a’s address since

equals is symmetric.

• Transitivity: If a’s address equals b’s address and b’s address equals c’s address, then a’s

address equals c’s address, since equals is transitive.

Define: R  Z  Z = {(x, y) : x + y is even}.

R is an equivalence relation:

• Reflexivity: For all x, x + x = 2x and thus is even. Thus (x, x)  R.

• Symmetry: For all x and y, x + y = y + x.(since addition is commutative). So if (x, y)  R, so is

(y, x).

• Transitivity: For any x, y, and z: Assume that (x, y) and (y, z) are both in R. Then x + y is

even and y + z is even. So there exist integers j and k such that:

[1] x + y = 2j

[2] y + z = 2k

[3] x + z + 2y = 2j + 2k Adding [1] and [2]

[4] x + z = 2j + 2k - 2y

[5] x + z = 2(j + k - y)

Since j + k - y is an integer, x + z is even and thus (x, z)  R if (x, y) and (y, z) are.

Soundex (Again)

So far, we’ve looked at a lot of simple examples of equivalence relations. But the power of the

idea is that equivalence relations, and the partitions that they induce, are very useful when we’re

dealing with many kinds of complex, real world problems.

Recall the Soundex system, which assigns four-symbol codes to

names in such a way that names that sound “similar” will get

the same code. Once one has the code for one’s name, one can

run the system backwards to retrieve other names that map to

the same code.

 https://www.youtube.com/watch?v=V6cFEJsqQ40

Here’s the conversion algorithm again, or you can review the video:

1. If two or more adjacent letters (including the first) would map to the same number, remove

all but the first. Include as “adjacent” letters that are separated just by H’s and W’s.

2. Set the first letter of the code to the first letter of the name.

3. For all other letters of the name do:

3. Convert the letters B, P, F, V, C, S, G, J, K, Q, X, Z, D, T, L, M, N, and R to numbers

and tack the resulting number onto code (on the right):

B, P, F, V = 1

C, S, G, J, K, Q, X, Z = 2

D, T = 3

L = 4

M, N = 5

R = 6

4. Delete all instances of the letters A, E, I, O, U, Y, H, and W.

4. If the code string contains more than three numbers, delete all but the leftmost three.

5. If the code string contains fewer than three numbers, pad with 0’s on the right to get three.

When we introduced Soundex, we saw that we could use our relation notation to describe what it

does. In particular, we could describe what it does as the composition of a relation with its

inverse. We wrote:

SoundexCode  Names  Codes = {(name, c) : c is the code produced by Soundex for name}

SoundexEQ  Names  Names = SoundexCode-1  SoundexCode

We can now observe that SoundexEQ is an equivalence relation. It induces a partition on the set

of names. Pairs of names in the same equivalence class “sound similar”. So for example, here

are some of its equivalence classes (using the Soundex code as the name for the equivalence

class that contains all the names that map to that code):

https://www.youtube.com/watch?v=V6cFEJsqQ40
https://www.youtube.com/watch?v=V6cFEJsqQ40

88

[F640] contains such elements as Fairley, Farrell, Friel, Farwell and Frailey.

[M450] contains such elements as Mellon, Malone, Milne, Maloney, and Moylan.

[K460] contains such elements as Kaylor, Keller, Kyler, Kelleher, and Keeler.

Problems

1. You can compute Soundex codes here:

 http://resources.rootsweb.ancestry.com/cgi-bin/soundexconverter

Using the Soundex code as the name for the equivalence class that contains all the names the
map to that code, to what equivalence class does the name Miller belong? (Enter a four-
character code.)

2. To show that SoundexEQ is an equivalence relation, we must show that it is:

• reflexive,

• symmetric, and

• transitive.

Consider each of these properties and argue to yourself that SoundexEQ possesses it. You can
make use of the fact that SoundexEQ is the composition of SoundexCode and its inverse.

To get started, let’s look at the more general question of when the composition of a relation with
its inverse has the required properties.

(Part 1) Reflexivity: Consider the following relations:

http://resources.rootsweb.ancestry.com/cgi-bin/soundexconverter

Mark each of the following claims as true or false. Then try to generalize: When is the
composition of a relation with its inverse reflexive?

a) R1
-1  R1 is reflexive.

b) R2
-1  R2 is reflexive.

c) R3
-1  R3 is reflexive.

d) R4
-1  R4 is reflexive.

e) R5
-1  R5 is reflexive.

f) R6
-1  R6 is reflexive.

(Part 2) Symmetry: Consider the same set of relations: Mark each of the following claims as
True or False. Then try to generalize: When is the composition of a relation with its inverse
symmetric?

a) R1
-1  R1 is symmetric.

b) R2
-1  R2 is symmetric.

c) R3
-1  R3 is symmetric.

d) R4
-1  R4 is symmetric.

e) R5
-1  R5 is symmetric.

f) R6
-1  R6 is symmetric.

(Part 3) Transitivity: Consider the same set of relations: Mark each of the following claims as
True or False. Then try to generalize: When is the composition of a relation with its inverse
transitive?

a) R1
-1  R1 is transitive.

b) R2
-1  R2 is transitive.

c) R3
-1  R3 is transitive.

d) R4
-1  R4 is transitive.

e) R5
-1  R5 is transitive.

f) R6
-1  R6 is transitive.

90

Finite State Machines (Again)

Recall that, when we first introduced the idea of a partition of a set, we mentioned finite state

machines. You may want to review the videos that were presented there:

https://www.youtube.com/watch?v=lh2onWfBrxk
https://www.youtube.com/watch?v=irewHV3S0_M
https://www.youtube.com/watch?v=cEvWgEHd0pE

A finite state machine (or FSM) is a five-tuple:

• An alphabet of symbols that can be input to the machine. These symbols can be literal

characters or they can correspond to events that could occur in the world.

• A set of states. In some applications, there is an output associated with each state.

• A set of transitions from one state to the next. Each is labeled with a symbol drawn from the

alphabet. In some applications, there may also be an output associated with each transition.

• A start state (one of the states already mentioned).

• A set of accepting (often called “final”) states. (All other states are nonaccepting/nonfinal.)

Some applications make use of this idea of “acceptance”.

An FSM begins in its start state. It consumes input symbols one at a time and follows its

transitions to move from one state to the next. For some applications, the job of the machine is

to generate outputs as this process proceeds. For other applications, the job of the machine is to

decide whether or not an input string is acceptable. In that case, it will matter whether the

machine lands in an accepting or a nonaccepting (rejecting) state.

https://www.youtube.com/watch?v=lh2onWfBrxk
https://www.youtube.com/watch?v=irewHV3S0_M
https://www.youtube.com/watch?v=cEvWgEHd0pE
https://www.youtube.com/watch?v=lh2onWfBrxk
https://www.youtube.com/watch?v=irewHV3S0_M
https://www.youtube.com/watch?v=cEvWgEHd0pE

An FSM M defines an equivalence relation on the set of possible input strings:

 string1 M string2 if and only if string1 and string2 drive M to the same state.

So the states of M correspond to the equivalence classes of M.

This equivalence relation is the key to the power of FSMs. It groups together inputs that share a

future. The only thing that matters, in determining the future behavior of M is its current state.

It doesn’t matter how it got there.

A vending machine is a great

example of an FSM. The simple

one shown here has a four

symbol alphabet:

• N (a nickel has been

inserted)

• D (a dime has been

inserted),

• Q (a quarter has been

inserted), and

• B (the Buy button has

been pushed).

The states correspond to the amount of money (regardless of the specific coins or their order)

that has been input since the last sale.

The start state corresponds to 0¢. We’ll assume that it costs 25¢ to buy something. So the 25¢

state is an accepting state. There (and nowhere else) can one push the Buy button. Notice

that the machine shown here is “friendly”; it allows you to deposit more than 25¢ if you

happen not to have the correct change. So you can push the Buy button whenever there’s

at least 25¢ in the machine. Whenever you do that, the machine resets to 0¢ (that transition

isn’t shown in the diagram).

In the vending machine example:

N D D  D N D  Q  Q Q Q  Q D D N Q

All of these inputs are in the equivalence class [25¢].

Again, in the vending machine example:

If what has happened so far is any of N D D or D N D or Q or Q Q Q or Q D D N Q:

• If Q comes next, it is possible to buy a drink.

• If N comes next, the machine is 20¢ away from it being possible to buy a drink.

• And so forth.

92

What this means is that, in a complex world, a simple finite state machine (with, of course a

finite and often small amount of memory) can remember everything that matters. All the rest of

the history information can be thrown away.

Another good example of an FSM is a traffic light. A simple American traffic light has three

states, Green, Yellow and Red. (In other countries, there may be other states, such as

Flashing Yellow.) There may also be more complex lights with more states that, for example,

respond to time of day. The inputs that cause transitions from one state to the next include

elapsed time and special signals from emergency vehicles or pedestrian walk buttons. In this

example, there is output associated with the states (i.e., the color of the light). Again notice,

that most history is thrown away. All that matters for what happens next is the current state.

Another example is a password checker. Many websites have rules for legal passwords. For

example, they may require at least 6 characters, at least one of which is a number. An FSM

can check a proposed new password to see if it satisfies the rules. Now the inputs are

characters (letters, numbers, special symbols). The machine will begin checking the

proposed password, reading the characters left to right. The states of the machine will record

how many of each kind of character have been seen so far. Now we’ll make use of the

notion of an accepting state. Only those states that correspond to strings that satisfy the

rules will be accepting. Notice that, as always, we throw away a lot of detail as we’re

processing an input. For example, the input strings “thinkso” and “maybeso” are equivalent

since they both contain 7 lower case letters, no numbers, and no special characters. Thus, if

the rule is 6 – 8 characters at least one of which is a number, then both of these will be

accepted if exactly one character comes next and it is a number. Otherwise, both of them

will end up being rejected.

Problems

1. Let M be the vending machine FSM that we have described:

Let M be the equivalence relation induced by M. Mark each of the following statements as
true or false:

a) DDD M DDNN

b) QQQQ M QQQQQQQQ

c) QDN M NDQ

d) DDN M DNN

