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Introduction   

What Is a Function? 

 

A function is a relation that maps each element of its domain to exactly one element of its 

codomain. 

 

Let  f  be a function that maps from A to B.   We 

can write a definition of f as: 

 

 f : A → B   :    <what f does> 

 

 

 

 

 

 

 

 

If f : A → B and x  A, then we can describe the operation of f on x by writing: 

 

    f(x) = y    

 

Read this as, “f of x equals y,” or “y equals f of x”.    

 

This table shows common terms for describing the roles of elements x of A and y of B when we 

evaluate f(x): 

 

 A (domain) → B (codomain) 

f : x → y 

 preimage of y  image of x 

   value of f(x) 

 argument of f  result of applying f to x 

 

 

 

 

Note that, given the definition of a function, every element of A has exactly one image (value) 

under f.  But an element of B may have zero, one or more preimages.  We’ll soon see examples 

of all of these. 

 

Define the range of f to be the subset of B (the codomain) that contains just those elements that 

are the image of some element x of A.   

 

For example:  succ: N → N :   succ(n) = n + 1 

We have that succ(1) = 2.  So 2 is the image (or the value) of the argument 1 under succ.    



2  Functions 

We will also use the notation f(x) to refer to the function f (as opposed to the value of f at a 

specific point x) whenever we need a way to refer to f’s argument.  When we do this, we can use 

any name in place of “x”, as long as we use it consistently throughout the definition.   

 

 

 

 
Problems 

 
1. Define a simple doubling function defined from the integers to some as yet unspecified set X: 
 

 double :  Z → X : double(n) = 2  n. 
 
 
 
 
 
 
What is double(4)?    
 
2. (Part 1) As we’ve defined it, the domain of double 
is which of the following: 
 
a) The integers   
b) The natural numbers 
c) The reals 
d) The positive integer 
e) X 
 
(Part 2) Now let’s consider the codomain of double. We want double to be well-defined (i.e., it 
will be a function on Z).  Mark each of the following statements as true or false: 
 

double will be well-defined if X = Z.  
    
(Part 3) double will be well-defined X = {even integers}. 
    
(Part 4) double will be well-defined if X = N (natural numbers).   
 
(Part 5) Now consider the range of double.  Recall that the range of any function f is the set that 
contains exactly those elements that are the image of some element of f’s domain.  So f’s range 
is a (possibly proper but not necessarily so) subset of its codomain.  What is the range of f? 
 
 
  

For example, we’ll write, as we did above, succ(n) = n + 1. 
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3. Recall that we said that, given some function f from domain A to codomain B, every element 
of A has exactly one image (value) under f.  But an element of B may have zero, one, or more 
preimages. Define f on the integers: 
 

Let f  :  Z → Z  : f(n) = n2. 
 
 (Part 1) Which of the following values has exactly one preimage under f (in other words, there 
is exactly one element of Z that maps to it): 
 
a) 5 
b) 0  
c) 16 
 
(Part 2) Which of the following values has exactly two preimages under f: 
 
a) 5 
b) 0   
c) 16   
 
(Part 3) Which of the following values has no preimages under f: 
 
a) 5   
b) 0   
c) 16   
 
(Part 4) How many preimages under f does -4 have: 
 
a) 0   
b) 1 
c) 2 
 
(Part 5)  All of the following values are in the codomain of f as we have defined it. For each, 
indicate whether or not it is in the range of f: 
 
a) -4   
b) 0     
c) 9     
d) 10    
 



4  Functions 

4. Recall that we have been exploiting a variety of logical predicates, including: 
 
 Student(x)      KilledBy(x, y)      Supervises(x, y)         Scheduled(c, r, t) 
 
We can now observe that logical predicates are functions (that always return Boolean values).   
 
(Part 1) Let P be an arbitrary predicate of one argument (e.g., Student(x)) that is drawn from 
some set S (e.g., People).  Which of the following defines P as a function: 
 

a) P  :    S → {True, False}     

b) P  :   {True, False} → S 

c) P  :   {True, False} →  {False, True} 

d) P  :   S → S 

e) P  :   S → S  S 
 
(Part 2) Let P be an arbitrary predicate of two arguments (e.g., Supervises(x, y)), the first of 
which is drawn from some set S and the second of which is drawn from set W.  Which of the 
following defines P as a function: 
 

a) P  :    S → {True, False}     

b) P  :   {True, False} → S  W 

c) P  :   S  W →  {False, True}   

d) P  :   S  W → {False, True}  {True, False} 

e) P  :   W  S → {False, True} 
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Not All Relations Are Functions 

 

Many relations, while useful, are not functions. 

 

 

 

 

 

 

 

But many useful relations are functions. 

 

 

 

 

 

 

 

 

 

 

Often, in a single problem domain, there are relations that are functions and others that are not. 

 

 

 

 

 

 

 

 

 

 

 

 

Functions are fundamental in mathematics. 

 

 

 

 

 

 

 

 

Recall the relation: 

 

 Speaks  People  Languages = {(a, b) : a speaks b} 

 

Speaks is not a function since some people speak multiple languages. 

Consider one of the relations from a typical corporate Human Relations database: 

 

SS#  EmployeeIDs  NineDigitNumbers = {(e, n) : n is e’s social security number} 

 

SS# is a function since every employee has exactly one social security number.  We can 

define it, using our function-definition notation as: 

 

 SS# : EmployeeIDs → NineDigitNumbers : SS#(e) = e’s social security number 

Let Cities be the set of cities in the world.  (We’ll skip over the details of how large something 

has to be to qualify as a “city”.  Also, we’ll assume, for simplicity, and counter to fact, that a 

name uniquely identifies a city.)  Let Countries be the set of countries in the world.  Define 

two relations between Countries and Cities: 

 

Capitals  Countries  Cities = {(a, b) : b is the capital of a} 

Places  Countries  Cities = {(a, b) : b is in a} 

 

Barring very unusual circumstances, we can say that Capitals is a function since every 

country has exactly one capital.  Places is not a function since most countries have many 

cities. 

Some important mathematical functions include: 

• Polynomial functions on the reals, such as:   f(x) = x3 + 7x – 12 

• Trigonometric functions on the reals, such as:   f(x) = sin(x) 

• Useful functions on the natural numbers, such as:  f(x) = n! 

f(x) = ∑ 𝑖𝑥
𝑖=1  



6  Functions 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
  

English Aside 

 

Assigning a referent (called an antecedent) to a pronoun ought to be a function in clear, 

situated (i.e., said in some particular context in the world) English.  But often it isn’t and 

confusion can result.  (Oversimplifying a complex phenomenon) define the relation: 

 

AssignReferent  Pronouns  Objects = {(p, o) : pronoun p could refer to object o} 

 

Now consider these examples: 

 

“Jon gave Mary his new book.”   

 

(“his”, Jon”)  AssignReferent, which is behaving like a function.  No other objects are 

related to “his”.   The pronoun “his” refers to Jon. 

 

“Megan gave Mary her new book.”   

 

Now (“her”, Megan) and (“her”, Mary) are both in AssignReferent, which is now obviously 

not a function.  We don’t know whether the new book belongs to Megan or Mary. 
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Problems 
 
1. Mark each of the following genealogy relations as a function or not a function: 
 

a) HasAsBiologicalfather  People  People =  {(a, b) : a has b as a biological father} 

b) HasAsBiologicalancestor  People  People =  {(a, b) : a has b as a biological ancestor} 

c) HasAsBiologicalsister   People  People =  {(a, b) : a has b as a biological sister} 
 
2. Mark each of the following relations as a function or not a function.  (Hint: Be careful.  Check 
the boundary cases.  A couple of these are subtle.)  Recall that N is the set of natural numbers 
(starting with 0).  Z is the set of integers.  Z+ is the set of positive integers. 
 

a) Previous  Z  Z = {(j, k) : k = j - 1}      

b) Previous  N  N = {(j, k) : k = j - 1}      

c) GreatestCommonDivisor  (Z+  Z+)  Z+ = {((n, m), k) : k is the greatest common divisor 
of n and m}  

d) CommonDivisor  (Z+  Z+)  Z+ = {((n, m), k) : k is a common divisor of n and m}   
 
 
3. Consider the following two paragraphs: 

 
[1] Chris was invited to Tracy’s birthday party.  She1 wondered whether she2 would like a 

new kite. 
 

[2] Chris was invited to Tracy’s birthday party.  She1 wondered whether she2 could afford a 
new kite. 

 
In answering the following questions, you can consider either paragraph [1] or paragraph [2].  
You’ll get the same answer either way.  We’ve written both just to help you see how the 
assignReferent process could work. 
 
(Part 1) Without using any knowledge about gift-giving conventions at birthday parties, how 
many ordered pairs with the first element “she1” are in AssignReferent?  (In other words, to how 
many different values could “she1” refer?)    
 
(Part 2) Without using any knowledge about gift-giving conventions at birthday parties, how 
many ordered pairs with the first element “she2” are in AssignReferent?  (In other words, to how 
many different values could “she2” refer?)   
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Unary Functions, Binary Functions  

 

Every function maps from individual elements of its domain to individual elements of its 

codomain.  But when we think about the work that we want functions to perform, it may be 

useful to think of them as applying to individual objects, to pairs of objects, to triples of objects, 

or to even larger structures.  When we want more than one input in this sense, we can define a 

function’s domain to be the Cartesian product of two or more sets. 

 

Some functions take a single argument.  We call such functions unary functions. In this case, we 

don’t need Cartesian products. 

 

 

 

 

 

Some functions take two arguments.  We call such functions binary functions.  The domain of a 

binary function must be a set of ordered pairs.  However we almost always write  f(x, y) instead 

of the more explicit f( (x, y) ). 

 

 

 

 

 

The function notation that we’ve defined so far is called prefix notation.  The name of the 

function comes first, followed by the arguments.  To call or invoke a function defined in this 

way, we write the name of the function followed by a parenthesized list of its arguments. 

 

 

 

 

But, in the case of binary functions, it may be easier to use an alternative, infix notation, in 

which a function symbol, called an infix operator, is placed between the two arguments.  

 

 

 

 

 

Often we use common infix operators to define more special-purpose prefix ones. 

 

 

 

 

By the way, there is nothing magic about one and two.  It is possible (although not as common) 

to define functions with three or more arguments.  

 

  

Two simple examples of unary functions:  

• Defined on the natural numbers:  succ: N → N :   succ(n) = n + 1 

• Defined on (B) Boolean expressions:  not:  B  → B   :     not(x) = B   

Two simple examples of binary functions: 

• Defined on pairs of integers:       plus        :            Z  Z           → Z 

• Defined on pairs of people:   #ofcommonfacebookfriends  : People  People → N   

So we could write succ(97)  or   #ofcommonfacebookfriends(Casey, Frankie).  

So, instead of writing:  plus(x, y) 

 

We may write:   x + y 

Define   howmucholder    :   (Ages  Ages) → Ages    :    howmucholder(a1, a2) = a1 – a2 
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Problems 
 
1. When we introduced the Boolean operators, we called them “operators”, rather than 
“functions”, because we hadn’t yet given a formal definition of a function.  But we now see that 
the Boolean operators are, in fact, functions.  All but one of the ones we’ve discussed are binary 
functions.  One is unary.  Which one? 
 

a)  

b)  

c) → 

d)    

e)    
 
2. Let’s make sure that we’re clear about what we have to write to define a function.  A person’s 
Body Mass Index (BMI) is a function of his or her height and weight. BMI is a positive rational 
number (i.e., it can be a fraction).  It is generally in the range 12 – 50.  It is a measure of 
whether one has a healthy weight, is underweight, or is overweight.    We’ll assume that we’re 
working with height in inches and weight in pounds (both whole numbers).   Then the BMI 
formula is: 
 

 (weight / height2)  703 
 
Let values be the set of rational numbers between 12 and 50.  Consider each of the following 
attempts to use our notation to define the function bmi: 
 

I. bmi    :   (Z+  Z+) → values     :    bmi(i, j) = (i / j2)  703 

II. bmi    :   (Z+  Z+) → values     :    bmi(height, weight) = (weight / height2)  703 

III. bmi    :   (Z+  Z+) → values     :    bmi = (weight / height2)  703 

IV. bmi    :   height  weight → values    :     bmi = (weight / height2)  703 
 
Which one (or more) of them is/are correct? 
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The Function Distinction Matters for Programmers 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Whenever I call someone’s code, I need to know whether that 

code implements a function on the domain I’m dealing with.   If 

it doesn’t, then I need to worry about what happens if it doesn’t 

return a single value. 

 

 

 
                 https://www.youtube.com/watch?v=6_LsROvbiuE 

  

A program P might compute a relation R that isn’t a function for one or both of the following 

reasons: 

 

• There are elements of the domain with which R associates no value (the divide by 0 case). 

• There are elements of the domain with which R associates multiple values. 

 

We can deal with both of these cases by turning R into a function that returns a unique set of 

individual values.  The set may be empty.  It may contain a unique element.  Or it may contain 

multiple elements. 

 

There are many common cases where we want to describe a function that returns a set of values. 

 

 

 

 

Suppose that I want to write code to compute the average of a set of numbers.  I might write 

(in Python): 

 
def average(numbers):   #numbers will be a list of numbers. 

 

    sum = 0               # This loop will add the numbers one at 

    for n in numbers:   #       a time into sum. 

        sum = sum + n 

 

    if len(numbers) == 0: # --- check how many there are. 

        return (0) 

    else: 

        return(sum/len(numbers))  # Divide unless none. 

 

In this code, I’ve counted on the fact that + is a function on the integers.  It is guaranteed to 

return exactly one value, which I can continue to compute with. 

 

On the other hand, / (the division operator) is not a function on the integers.  It returns no 

value for j/k if k = 0.  So, in my code, I had to treat that as a special case.  That’s why I tested 

(in the line marked ---) to see whether I’d been given a list of zero numbers to average. 

 

employeesof  : Divisions → Sets of Employees 

 

suppliersfor : Products → Sets of Suppliers 

https://www.youtube.com/watch?v=6_LsROvbiuE
https://www.youtube.com/watch?v=6_LsROvbiuE
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Alternatively, if the only issue is that R returns no value, we can just test for that as a special case 

(as we did in the average program above). 

 

 

 

Problems 
 
1. Assume that we are running a summer camp for kids.  We have a database into which we 
enter information about each child, based on the (possibly badly filled out) forms that the 
parents have submitted, plus the comments of our counsellors.    
 
(Part 1)  Let Grades = {K, 1, 2, … , 12}.  Consider the relation: 
 

 SchoolGrade  Kids  Grades 
 

We want to implement the function getgrade : Kids → ________ that returns a given child’s 
upcoming grade in traditional school.  Which of the following statements is true: 
 
a) We can almost certainly get away with implementing getgrade as a function getgrade : Kids 

→ Grades that returns a unique grade  level for each child. 

b) We can almost certainly implement getgrade as a function getgrade : Kids → Grades that 
returns a unique traditional grade level for each child, but only if we check for the special 
case of someone who doesn’t have a traditional grade assignment.  Correct 

c) Even if we check for the case of a student with no grade assignment, we’ve very likely to get 

in trouble unless we implement getgrade as a function getgrade: Kids → Set of Grades that 
returns a set of grade assignments.     

  
(Part 2) It’s common for families to send all their children to our camp.  Consider the relation: 
 

 Siblings  Kids  Kids = {(x, y) : x and y are brothers or sisters} 
 

We want to implement the function getsibs : Kids → ________ that returns a given child’s 
sibling(s).  Which of the following statements is true:  
 

a) We can implement getsibs as a function getsibs : Kids → Kids that returns a unique sibling 
for each child. 

b) We can implement getsibs as a function getsibs : Kids → Kids that returns a unique sibling 
for each child but only if we check for the special case of someone who has no siblings. 

c) We must implement getsibs as a function getsibs : Kids → Set of Kids that returns a 
(possibly empty) set of siblings.    
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Properties of Functions  
 

Introduction 
 

Recall that a function is a relation that delivers exactly one value for every element of its domain.   

 

Because a function is a relation, we might want to consider whether it possesses one or more of 

the properties that we’ve found it useful to associate with relations.  In particular, we might ask, 

of some function f, whether it is: 

 

• reflexive, 

• symmetric, and/or 

• transitive. 

 

These properties are only defined for relations on a single set (i.e., not for relations that map 

from one set to another).  And we’ll clearly want some functions that do map from one set to a 

different one.  But there are also many useful functions on a single set (for example the reals or 

the integers).  So, in the next few problems, we’ll look at whether these three properties will be 

useful to us as we study functions. 

 

Then we’ll define two new properties that some functions possess: 

 

• A function may be one-to-one. 

• A function may be onto. 
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Problems 
 
1. Let’s explore what it would mean if a function were reflexive (in other words, under f, every 
element is related to itself).  Let f be an arbitrary function on some set A. 
 

Recall that, since f is a function, for every a in A, there is exactly one (a, b)  f.  Suppose that f  
is reflexive.  Consider the following claims: 
 
I. f must be the empty relation. 
II. f must equal the identity relation I. 

III.  f must equal A  A. 
 
Which of them is/are true? 
 
 
2. Let’s explore what it would mean if a function were transitive.  Let f be an arbitrary function on 
some set A.  
 
Assume that f  is transitive and contains some element (a, b).  Consider the following claims: 
 
I.  It must be the case that a = b. 
II.  There is no c such that f contains (b, c).  
III.  There is at most one c such that f contains (b, c).  
 
Which of them is/are true?  
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One-to-One and Many-to-One Functions 

 

We’ve just seen that the properties that were useful in talking about arbitrary relations are much 

less useful in talking about functions.  There are, however, two new properties that are very 

useful as we analyze functions. 

 

Some functions preserve distinctness. 

 

A function f from A to B is one-to-one if no two distinct elements of A map to the same element 

of B.  Put another way: 

 

f  : A → B is one-to-one if and only if, whenever a  b, f(a)  f(b). 

 

If f  is one-to-one, we may write: 

 

  

 

A function f  from A to B is many-to-one if, on the other hand,  there exist any two distinct 

elements of A that map to the same element of B.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

An example of a one-to-one function: 

 

Let succ(n) : N → N be the successor function for the natural numbers.  It is one-to-

one.  Any natural number k can be the successor of at most one number.  (We say 

“at most” rather than “exactly” because 0 isn’t the successor of anything.) 

 

An example of a many-to-one function: 

 

parity : N → {0, 1} :         parity(n)  =  0 if n is even 

     =  1 if n is odd 

 

The function parity is many-to-one because, for example, parity(2) = parity(258) = 0. 
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Problems 

 

1. Define the function:   parity : N → {0, 1} :         parity(n)  =  0 if n is even 
         =  1 if n is odd 
 

Now define the relation: equalparity  N  N = {(j, k) : parity(j) = parity(k)}.  
 
True or false: 
 
a) equalparity is a function.    
b) equalparity is an equivalence relation.  
c) parity is an equivalence relation.   
 
 
2. Mark each of the following functions true if it is 1-1 and false otherwise: 
 

fingerprintpattern :    People  →  Fingerprints    

numsiblings  :    People  →  N     

managerof  :    Employees  →    Employees   : managerof(e) = e’s direct supervisor  

birthday  :    People  →  {1 – 365}    : birthday(p) = p’s birthday given as a day of 
the year  
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Onto Functions 

 

Some functions map the domain to the entire codomain.   

 

A function f from A to B is onto if every element of B is the value of the function applied to some 

element of A.  Put another way: 

 

f  : A → B is onto if and only if, for all b  B, there exists some a  A such that f(a) = b. 

 

Another way to say this is that f is onto if and only if its codomain equals its range. 

 

In this case, we’ll say that f maps A onto B and we may write: 

 

 

 

  

 

 

 

 

 

 

 

 

 

By the way, it may be possible to transform a non-onto function f into an onto function f simply 

by cutting down the codomain of f so that it includes only those elements that can be returned by 

f  (i.e., f’s range). 

 

 

 

 

 

 

 

Sometimes it’s easy to do this and we may want to, depending on what problem we’re trying to 

solve.  Sometimes there is no straightforward way to do it. 

 

An example of an onto function: 

 

Let succ(n) : Z → Z be the successor function for the integers.  Every integer is the 

successor of some other integer. 

 

An example of a function that isn’t onto: 

 

Let succ(n) : N → N be the successor function for the natural numbers.   0 isn’t the 

successor of any natural number. 

For example, here’s an onto version of successor for the natural numbers: 

 

succ(n) : N → Z+ 

 

We just remove 0 from the codomain. 



Functions  17 
 

 

 

 

 

 

 

 

 

 

If a function f  : A → B is both one-to-one and onto, we will say that it is a bijection.  And we 

may write: 

 

 

  

Recall the function: 

 

 SS# : EmployeeIDs → NineDigitNumbers : SS#(e) = e’s social security number 

 

To make SS# onto, we’d have to remove, from the set of nine digit numbers, all the ones that 

don’t happen to correspond to someone’s social security number.  We can do that.  

Formally, it’s easy.  We have a finite set and we can just list the elements.  But any benefit we 

might get from this is outweighed by the trouble.  
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Problems 
 

1. Define double  :  N →  N :   double(n) = 2n 
 
Which of the following statements is true: 
 
a) The double function that we’ve just described is onto. 
b) The double function that we’ve just described is not onto but there is a simple description of 

a different codomain such that it would become onto.  
c) The double function that we’ve just described is not onto and there’s no simple way to shave 

its codomain that makes it so. 
 
2.  Define EIDs to be the set of legal electronic identification codes issued by our school.  
 

Define lookupeid   :    People →  EIDs :  lookupeid(p) = p’s assigned eid 
 
Which of the following statements is true: 
 
a) The lookupeid function that we’ve just described is onto. 
b) The lookupeid function that we’ve just described is not onto but there is a simple description 

of a different codomain such that it would become onto.  
c) The lookupeid function that we’ve just described is not onto and there’s no simple way to 

shave its codomain that makes it so.    
 
3. Indicate whether each of the following functions is onto or not onto: 
 

fingerprintpattern :    People  →  Fingerprints   

numsiblings  :    People  →  N    

managerof  :    Employees  →    Employees   : 
    managerof(e) = e’s direct supervisor  

birthday  :    People  →  {1 – 365}    : 
    birthday(p) = p’s birthday given as a day of the year   
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One-to-One and Onto Functions 

 

Relations may or may not be functions.  Functions may be one-to-one, they may be onto, they 

may be both, or they may be neither. 

 

Consider the following six examples.  Imagine that each describes a relation whose domain is the 

first column and whose codomain is the second column: 

What can we say about each of these relations?  Is it a function or not?  If it is a function, what 

properties does it possess? 

 

1. Not a function.  C is an element of the domain that is not related to any element of the 

codomain. 

2. Not a function because there are three values associated with A.   

3. Function.  For each object in the first column, there is a single value in the second column.  

But this function is neither one-to-one (because X is derived from both A and B) nor onto 

(because Z is not the image of anything).   

4. Function that is one-to-one (because no element of the second column is related to more than 

one element of the first column).  But it still isn’t onto because Z has been skipped: nothing 

in the first column derives it.   

5. Function that is onto (since every element of column two has an arrow coming into it), but it 

isn’t one-to-one, since Z is derived from both C and D.   

6. Function that is both one-to-one and onto.   
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Problems 
 
1. Let’s look again at: 

 
(Part 1) Consider relation 4.  We said that it is a function that is one-to-one but not onto.  
Suppose that we want to make it onto (while keeping it a one-to-one function).  Which of the 
following claims is correct: 
 
a) We can do so by adding one arrow. 
b) We can do so by subtracting one arrow. 
c) We can do so by changing one of the existing arrows. 
d) We can’t do so without changing at least one of the columns.  
 
(Part 2) Now consider relation 5.  We said that it is a function that is onto but not one-to-one.  
Suppose that we want to make it one-to-one (while keeping it an onto function).  Which of the 
following claims is correct: 
 
a) We can do so by adding one arrow. 
b) We can do so by subtracting one arrow. 
c) We can do so by changing one of the existing arrows. 
d) We can’t do so without changing at least one of the columns.  
 

  



Functions  21 
 

When Are These Properties Important? 

 

For some applications, a relation that isn’t a function does exactly what we need.  In other cases, 

we must have a function.  When we need a function, it may or may not be important that the 

function we define be one-to-one, onto, or both.   

 
Problems 

 
1. We are designing a program that will encrypt the passwords of our users so that, even if we 
get hacked, passwords cannot be stolen.  The idea is that we won’t store “plaintext” passwords.  
We’ll just store the encrypted versions.   But we must design the encryption program so that, 
when a user types in a password, we can encrypt it and then compare the result to the stored 
(encrypted) password to determine whether the entered password is correct.   
 
Let Passwords be the set of strings that satisfy our site’s rules for choosing legal passwords. 
 

We want to design encrypt   :   Passwords →  Strings 
 
Mark each of the following statements true or false: 
a) encrypt must be a function.     
b) It is okay if encrypt is not a function.  It does not have to return a unique value for every 

password.    
c) encrypt must not only be a function, it must be 1-1.  
d) encrypt must not only be a function, it must be onto.  
e) encrypt must be a function and it must not be 1-1.  
 
2. Imagine that we are a video streaming service.  We want to recommend videos to our 
customers based on their preferences.  We want to design: 
 

 recommend   :    Users →  Movies 
 
Mark each of the following statements true or false: 
a) recommend must be a function.     
b) It is okay if recommend is not a function.  It does not have to return a unique value for every 

user.    
c) recommend must not only be a function, it must be 1-1.  
d) recommend must not only be a function, it must be onto.  
e) recommend must be a function and it must not be 1-1.  
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Pigeonhole Principle 

Counting Arguments and the Pigeonhole Principle 

 

The pigeonhole principle: 

 

more pigeons   

       and   pigeon roommates 

fewer holes 

 

      https://www.youtube.com/watch?v=IeTLZPNIPJQ 

 

Or it could be stated in terms of college freshmen and dorm rooms. 

 

Somewhat more formally: 

 

If k > n, you can’t stuff k pigeons into n holes without having at least two pigeons in the 

same hole. 

 

We can also state the principle more generally and even more formally.  To do so, we’ll use the 

notion of a one-to-one function: 

 

A function f from A to B is one-to-one if no two distinct elements of A map to the same 

element of B. 

 

Now we can restate the pigeonhole principle: 

 

               For any sets A and B: 

 

• |A| > |B|     →     there exists no one-to-one function from A to B. 

• there exists a one-to-one function from A to B     →     |A|  |B|. 

 

Notice that the second line is just the contrapositive of the first.   We’ll most often use it in the 

first direction, in which we know the sizes of the two sets and we want to conclude that no one-

to-one mapping exists from one to the other.  But sometimes the other direction is also useful.  

 

Here’s a straightforward proof by contradiction of the principle:  Suppose that |A| > |B| and that 

there were a one-to-one function f from A to B.  Then no element of B is the image under f of 

more than one element of A (no hole contains more than one pigeon).  Then |A| could be no 

greater than |B| (there could be no more than |B| pigeons).  But it is.   

 

  

https://www.youtube.com/watch?v=IeTLZPNIPJQ
https://www.youtube.com/watch?v=IeTLZPNIPJQ
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The pigeonhole principle is an example of a counting argument.  Such arguments generally 

support claims of the sort, “Some number of something must exist,” or “Some number of 

something must not exist”.  The argument is based on counting the elements of one or more sets 

and typically comparing them.  These proofs are often not “constructive”.   They don’t tell us 

what objects exist.  Just that some do. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Suppose that we have a drawer full of white, black, and 

striped socks.  How many socks must we pull out of the 

drawer in order to be guaranteed to have at least one 

pair? 

 

Let:  A be the set of socks in my hand 

 B be the set {white, black, stripes} 

 

Define the mapping function   f  :  A → B        (f assigns a color to each sock.) 

 

We want to know how large A must be in order that f cannot be one-to-one.  (In other words, 

in order that at least two socks must map to the same color.)   

 

The pigeonhole principle tells us that if |A| > |B|, then we’ll have achieved our goal.  |B| = 

3.   So if we pull 4 or more socks, we are guaranteed a pair. 

Nifty Aside 

 

The first formalization of the pigeonhole principle is generally attributed to the German 

mathematician Peter Gustav Lejeune Dirichlet (1805 -1859), who called it the drawer 

principle. 

 

It can be used to prove claims that would generally be regarded as obvious (such as the 

one about pigeons and holes).   

 

But it can also be used to solve problems whose solutions are substantially less obvious: 

 

Suppose that we have 15 coins.  We know that exactly 14 of 

them have the same weight. The odd one may weigh more or 

less than the other 14.  We want to find the odd one and 

discover whether it is heavy or light. We are given a balance 

scale.  At each weighing, we get one of three readings: Trays 

A and B have equal weight, A weighs more than B, or B 

weighs more than A.  We can weigh coins on this scale by 

putting any number of coins on each of the two plates.  Can 

we solve the problem in three weighings? 
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Problems 
 
1. Suppose that there are 10 floors in our building. Assume that everyone gets off somewhere.  
The pigeon hole principle tells us that, if there are at least ____________ people on the 
elevator, there must be at least one floor where multiple people get off.   Fill in the blank.     
 
2. Suppose that we have 5 coins.  We know that exactly 4 of them 
have the same weight. The odd one may weigh more or less than 
the other 4.  We want to find the odd one and discover whether it is 
heavy or light. We are given a balance scale.  At each weighing, we 
get one of three readings: Trays A and B have equal weight, A 
weighs more than B, or B weighs more than A.  We can weigh coins 
on this scale by putting any number of coins on each of the two 
plates.  How many weighings must we be prepared to do in order to 
guarantee that we know the answer?  Which of the following is correct: 
 
a) The Pigeonhole Principle tells us that a single weighing can’t be enough but it doesn’t rule 

out a 2 weighing solution. 
b) The Pigeonhole Principle tells us that 2 weighings can’t be enough but it doesn’t rule out a 3 

weighing solution.   
c) The Pigeonhole Principle tells us that 3 weighings can’t be enough. 
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Extended Pigeon Hole Principle 

 

Sometimes even more than two pigeons will have to share a home.  To see exactly how many 

roommates there must be, we first define the ceiling function from the reals to the integers: 

 

ceiling: R → N  : ceiling(x) = the smallest integer n such that x  n 

 

Although we don’t need it right now, we’ll pause and define another useful function: 

 

 floor:   R → N  : floor(x) = the largest integer n such that n  x 

 

We can write ceiling(x) as  x    and  floor(x) as  x  

 

 

 

 

 

The extended pigeonhole principle: 

 

If you try to stuff k pigeons into n holes 

there must be at least k/n pigeons in 

some hole. 

 

 

 

 

 

 

 

Notice that this claim is true even in the trivial case in which there are more holes than pigeons. 

 

 

 

 
 
 

Problems 
 
1. Suppose that there are 5 floors in our building and 12 people on the elevator.  Assume that 
everyone gets off somewhere.  Which of the following is true: 
 
a) There must be some floor on which no one gets off. 
b) There must be some floor on which at least 3 people get off.  
c) There must be some floor on which at least 5 people get off. 
d) It’s possible that no more than 2 people get off on any floor. 
e) We can’t make any statement about how many people will get off on each floor. 
  

 5.8    =    6   5.001    =    6  6    =    6  

 5.8    =    5   5.001    =    5  6    =    6 

If we try to stuff 26 pigeons into 8 holes, there must be at least 26/8 = 3.25 = 4 pigeons in 

some hole. 

If we try to stuff 5 pigeons into 8 holes, there must be at least 5/8 = 0.625 = 1 pigeon in 

some hole. 
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Hash Functions 

 

Now let’s look at a very important application of the Pigeonhole Principle. 

 

We know that one way to store a set is as a bit vector.  To store a set S drawn from some 

universe U, we need |U| bits.   

 

 

 

 

 

 

 

Now suppose that we want not just to indicate that some element x is in S.  We also want to 

associate some information with it.  

 

 

 

 

 

We could extend the bit vector representation idea and assign more storage to each element of U. 

 

 

 

 

 

It may take several words of memory to store the information for each element of S.  Yet, in real 

applications, it often happens that many (and sometimes even most) of the cells in a vector like 

this are empty.  Now we’ve wasted a lot of memory storing blanks.   

 

Let Boxes be the set of storage locations that we are going to use to store our information.  So 

far, we have assumed that there is one box for every element of U. 

 

Let mapping be a function that maps elements of S to elements of Boxes.  So far we have that: 

 

 |Boxes| = |U| 

 mapping  : U → Boxes     : mapping(x) maps x to its uniquely corresponding cell in Boxes 

 

The function mapping is one-to-one and onto.  Each element of U (and thus of any particular S 

drawn from U) has exactly one cell in Boxes where it can go. 

 

For example, in this case, |U| = 9.  S = {55, 99}. 

  

11 22 33 44 55 66 77 88 99 

    •    • 

 

Suppose that U is the set of possible account numbers for a bank.  S is the set of actual 

accounts today.  We want to look up a number and, if it is an account, extract information 

about it. 

1001 1002 1003 1004 1005 1006 1007 0008 0009 0010 0011 0012 

 info       info   info 
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But suppose that we knew that only about 10% of the cells in Boxes could be expected to contain 

a value at any one time.  We might define a vector FewerBoxes that had about 10% of the cells 

that Boxes had.  Now we need to define a mapping function that puts each element of U into 

some cell in FewerBoxes. 

 

The Pigeonhole Principle tells us that the new mapping function can no longer be one-to-one.  

There is no way around the fact that several elements of U will map to the same place.    

 

So we’ll have: 

 

 |FewerBoxes| = |U| / 10 

 mapping  : U → FewerBoxes     :  

mapping(x) maps at least 10 different values of x to the same cell in FewerBoxes 

 

 

 

 

 

 

 

 

 

 

Let’s describe the process more generally.  We begin by choosing a size for FewerBoxes 

(generally based on some knowledge about how densely packed the elements of S are likely to 

be).  We also assign every element of U a unique number, which we’ll call a key.   

 

Then we define a function called a hash function.  The job of the hash function is to map every 

key to exactly one cell in FewerBoxes.  We’ll call FewerBoxes a hash table.  The mapaccount 

function that we defined above is an example of a hash function. 

 

A well-designed hash function should be onto: We don’t want to waste any of the cells of 

FewerBoxes by making them unreachable by any element of S. 

 

But, as the Pigeonhole Principle tells us, if |FewerBoxes| < |U|, then no hash function that maps 

elements of U to elements of FewerBoxes can be one-to-one. 

 

So the signature property of hash functions is that they are not one-to-one.  This is both: 

 

• their strength (because we can use a lot less storage space), and 

• their weakness (because collisions may happen when multiple elements of U map to the 

same place). 

 

In our banking application, we might have:  

 

 mapaccount (accountnumber) = accountnumber / 10 

 

So:  1001, 1002, … , 1009 will all map to 100. 

  1010, 1011, 1012, …, 1019 will all map to 101, and so forth. 
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So what about collisions?  Two things: 

 

• We must deal with them.  Often, when they occur, what gets stored in the overcrowded 

cell in FewerBoxes is a link to a list of the inhabitants.  That takes some extra space and 

some extra time, but the extra space should be a lot less than what would have been 

required if we’d stuck with the full Boxes vector. 

 

• But we should attempt to minimize them by a wise choice of a hash function.  We try to 

design one that spreads out the elements of U as uniformly as possible onto FewerBoxes.  

Two common, general purpose hash functions are: 

 

  hash(key) = key mod |FewerBoxes| 

 

  hash(key) = choose the appropriate number of bits out of the middle of key 

 

 
Problems 

 
1. We want to store information about 10-digit US phone numbers.  There are, in principle, 1010 
possible numbers.  So we could store our information in a vector with 1010 cells.  But many 
phone numbers are not in use and we cannot afford the wasted space.  So we want to use a 
hash table.  Suppose that the following hash functions have been proposed.  All of them map 
the original 1010 numbers (which serve as keys) to a set of 107 hash values.  Which one is likely 
to minimize the number of collisions? (Hint: Think a little bit about the structure of phone 
numbers.  What we want to do is to spread numbers out as evenly as possible into the cells of 
the hash table): 
 
a) Throw away the last three digits of each number.  So, for example, 5127780123 becomes 

5127780 and 1006672345 becomes 1006672. 
b) Throw away the first three digits of each number.  So, for example, 5127780123 becomes 

7780123 and 1006672345 becomes 6672345.  
c) Throw away digits 4, 5, and 6.  So for example, 5127780123 becomes 5120123 and 

1006672345 becomes 1002345.   
 

  



Functions  29 
 

Compositions, Inverses and the Identity  

Function Composition 

 

Just as we can compose relations, we can compose functions.  Define function composition: 

 

Given:  f   :   A → B  and  g   :   B → C 

 

We have: g  f (x)   :   A → C          :        g  f (x)  =  g(f(x)) 

 

As with relations, we read composition right to left.  Apply f; then apply g.  The parenthesized 

notation that we use for functions now makes it clear that we’re doing that.  Read g(f(x)) as, “g of 

f of x.” 

 

 

 

 

 

 

When we write function compositions, we can use both prefix and infix notations (as well as any 

other notations, such as the postfix one usually used take powers) and we can combine them.  

Notice that you’ve been doing this for years.  We’ve just formalized the process. 

 

 

 

 

 

 

As was the case with relations, not all compositions are well defined.  For g  f  to exist, it must 

be the case that the range (output) of f is a subset of the domain (input) of g.    

 

 

 

 

 

 

 

  

 fatherof(fatherof(x))  = grandfatherof(x) 

 

 SS#(managerof(x))   :   Employees → NineDigitNumbers 

         (succ((2 + 3)!))2  =     (succ(5!))2 

    =     (succ(120))2 

    =     1212 

    =     14,641 

This composition isn’t defined:  

 

 managerof(SS#(x)) + 1 

 

The codomain of SS#(x) is NineDigitNumbers.  We can’t ask for the manager of 456900876. 
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Problems 
 

1.  Define: f  : N → N    :     f(k) = k2 

  g : N → N    :     g(k) = k + 2 
  

(Part 1)  What is f   f  (3)?    
 

(Part 2)  What is f   g (3)?    
 

(Part 3)  What is g  f  (3)?    
 
2. Assume reasonable definitions of the domain and codomain of each of these functions.  Mark 
each of them as well-defined or not well-defined.   
 

a) motherof   height     

b) height  motherof     

c) height  height     

d) motherof  motherof    
 

3. Are we guaranteed that, if f and g are functions,  f   g and g  f  are also functions?  Which 
one of the following statements is true: 
 

a) Yes, both  f   g and g  f  must also functions.   

b) Yes, both  f   g and g  f  must also functions.    
c) No.  While both of them must be relations, it is possible that one or both of them might not 

be a function. 
d) No.  It is possible that one or both of them doesn’t even exist.    
 
4. What about the one-to-one and onto properties of composed functions?  Assume that there 
exists some set X that is both the codomain of g and the domain of f. 
 
(Part 1) Suppose that f and g are both one-to-one and onto functions.  Which one of the 
following is true: 
 

a) f   g must also be a function that is both one-to-one and onto.   

b) f   g must also be a function that is one-to-one but not necessarily onto. 

c) f   g must also be a function that is onto but not necessarily one-to-one. 

d) We know f   g is a function but it might be neither one-to-one nor onto. 

e) We don’t even know whether  f   g is a function. 
 
(Part 2)  Suppose that f and g are both functions that are one-to-one but not necessarily onto.  
Which one of the following is true: 
 

a) f   g must also be a function that is both one-to-one and onto.   

b) f   g must also be a function that one-to-one but not necessarily onto.  

c) f   g must also be a function that is onto but not necessarily one-to-one. 

d) We know f   g is a function but it might be neither one-to-one nor onto. 

e) We don’t even know whether  f   g is a function. 
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(Part 3) Suppose that f and g are both functions that are onto but not necessarily one-to-one.  
Which one of the following is true: 
 

a) f   g must also be a function that is both one-to-one and onto.   

b) f   g must also be a function that one-to-one but not necessarily onto. 

c) f   g must also be a function that is onto but not necessarily one-to-one. 

d) We know f   g is a function but it might be neither one-to-one nor onto. 

e) We don’t even know whether  f   g is a function. 
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Why Function Composition is a Big Deal for Programmers 

 

Most useful programs compute intermediate results, which they then combine to derive a final 

answer. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

When we use primitive functions, like addition and multiplication, we usually exploit the 

standard infix notations for them.  When we compose functions that we have had to define, we 

generally use explicit, prefix function notation, so it’s even more obvious that we’re composing 

them. 

 

 

 

 

 

 

 

  

Recall the formula for computing body mass index (BMI).  We can write it as a function: 

 

BMI(p) = (weight(p) / height(p)2)  703 

 

We’ve written our definition of BMI as a composition of five other functions: 

 

• weight – which returns (presumably after looking up p in some appropriate structure) 

p’s weight. 

• height – similarly 

• square 

• division 

• multiplication 

 

It’s straightforward to take this functional definition of BMI and convert it to code.  Here it is in 

Python: 
 

def BMI(p): 

          return((weight(p) / height(p) **2) * 703) 

Here’s an example of the use of function composition in Excel: 
 
  =(G3/165)*19 + (F3/196)*19 + (M3/1400)*15 +(I3/267)*35+ K3+ L3 

 

This expression composes four divisions, four multiplications, and five additions.  It computes 

final weighted scores for one of our classes. 

Suppose that we want to send a letter to the manager of the best salesperson in the 

company’s most profitable division.  To figure out who that manager is, we could write 

(assuming that our corporate database has implementations of the functions that we need): 

 

managerof(bestsellerin(mostprofitabledivisionof(entirecompany))) 
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Nifty Aside 

 

In most programming environments, we aren’t limited to function composition as a way of 

combining smaller chunks of code into larger ones.  We can also use sequences of 

commands, conditionals, loops and variables whose values we can change.  For example, 

recall the code that we wrote for the 3n+1 problem: 
 

def threen(value): 

    while value is not equal to 1 do: 

        if value is even then set value to value/2 

            else set value to 3 * value + 1 

 

But there are purely functional programming languages and they have some die hard 

fans.      
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The  Inverse of a Function 

 

The inverse of a function is defined in exactly the way we have already defined the inverse of a 

relation: 

 

Let:  f   A  B be a function that maps A → B. 

 

Then: f -1   B  A is the inverse of  f.  

 

 f -1 = {(b, a) : b = f(a)} 

 

 

 

 

 

 

If we have a formula for f, we can compute its inverse.  Let f(x) = y.  We need a function that, 

given y, returns the corresponding value of x.  So we solve for y. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Define the following function, which converts temperatures from centigrade to Fahrenheit: 

 

CtoF :   Z → Z :   CtoF(d) = 
9

5
𝑑 + 32 

The inverse of CtoF converts from Fahrenheit to centigrade.   To determine it:   

 

CtoF(d):        y  =   
9

5
𝑑 + 32  

   y – 32 =   
9

5
𝑑 

              
5

9
(𝑦 − 32)  =   d 

  

So FtoC = CtoF-1 is: 

 

 FtoC   :    Z → Z :   FtoC(y) = 
5 

9 
 (y – 32) 
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Problems 
 
1. Let predecessor and successor be defined on N.  Which of the following expressions is not 
true? 
 
a) predecessor = successor-1     
b) predecessor(x) = (x + 1) – 1    
c) successor = predecessor-1  

d) successor = successor  successor-1  successor 

e) successor = predecessor -1  successor  predecessor    
 
2. Let O = the set of odd natural numbers.  Define: 
 

 f  :  N → O    :   f(x) = 2x + 1 
 
 (Part 1)  True or false: 
 

a) f -1(7) = 3  
b) f -1(3) = 7  
c) f -1(22) = 10  

 
(Part 2)  Which of the following is a correct definition of f -1: 
 

a) f -1  :   N → N   :   f -1(x) =  
𝑥

2
 - 1 

b) f -1  :   O → N   :   f -1(x) =  
𝑥−1

2
    

c) f -1  :   N → N   :   f -1(x) =  
𝑥−1

2
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The Inverse Isn’t Always a Function 

 

Every function has an inverse.  But not every such inverse is a function.  We’ll say that a 

function f is invertible if and only if f -1 is also a function. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In general, functions that throw away information aren’t invertible.   

 

 

 

 

 

 

 

 

 

 

 

  

gpa: Students → Scores is a function. 

 

gpa-1: Scores → Students is not a function, since many students have the same gpa. 

Define   clockhands  :   N → {1, 2, 3, . . ., 12}  :  clockhands(n) =  n mod 12 

 

clockhands describes the location of the hour hand of a clock, started at 

the top, after some number of hours have elapsed (except that, for some 

reason, clocks render 0 as 12). 

 

clockhands is a function since every integer has a unique remainder 

when divided by 12.   

 

But clockhands-1 is not a function.  For example, since 1, 13, 25, and many other numbers all 

have a remainder of 1 when divided by 12, clockhands-1 contains all of the following 

elements: 

 

 (1, 1), (1, 13), (1, 25),  … 

ClockHands-1 is not a function because clockHands throws away information.  Clocks don’t 

tell us how many half days have elapsed.   So clockHands-1 cannot return a unique value. 

Nifty Aside 

 

The fact that many functions in modular arithmetic are not invertible plays an important 

role in modern cryptography. 
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Problems 
 
1. Consider the function square(x) = x2.  It makes sense to define square on the reals, on the 
rationals, on the integers, or on the natural numbers.  Now let’s consider squareroot: 
 
 squareroot =  square-1  :   {(x, y) : x = y2} 
 
We know that squareroot is a relation.  But is it a function?   In particular, can we use functional 
notation for it?  Can we write: 
 

   √𝑥  
 
(Part 1)  Define square on the integers: 
 

 square:  Z → Z  :   square(x) = x2 
 

Then squareroot is also a subset of Z  Z.   Which one of the following claims is true: 
 
a) squareroot is a function. 
b) squareroot is not a function because, while it can return at least one value for each element 

of its domain, that value may not be unique. 
c) squareroot is not a function because there are some elements of its domain for which it can 

return no value, even though, where there is a value, it is unique. 
d) squareroot is not a function because there are elements of the domain for which no value 

can be returned and there are others for which multiple values would be returned.   
 
(Part 2) Now define square on the reals: 
 

 square:  R → R  :   square(x) = x2 
 

Then squareroot is also a subset of R  R.   Which one of the following claims is true: 
 
a) squareroot is a function. 
b) squareroot is not a function because, while it can return at least one value for each element 

of its domain, that value may not be unique.   
c) squareroot is not a function because there are some elements of its domain for which it can 

return no value, even though, where there is a value, it is unique. 
d) squareroot is not a function because there are elements of the domain for which no value 

can be returned and there are others for which multiple values would be returned.     
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(Part 3) But this is crazy.  Even the simplest calculators have a √  button.  It is a function; it 
returns a unique value for every input.  What’s going on?   
 
The answer is that squareroot becomes a function if we choose its domain and codomain 
correctly.   Define, for some set X: 
 

 square:  X → X  :   square(x) = x2 
 

Then squareroot is also a subset of X  X.   Which one of the following values for X makes  
squareroot a function? 
 
a) Q (the rational numbers) 
b) Q+ (the positive rationals) 
c) R+ (the positive reals)  
d) Z+ (the positive integers) 
e) C (the complex numbers) 
 

2. Suppose that we manage an office building.  Consider:       f : Offices → OfficeThermostats. 
 
(Part 1) Assume that each office has its own thermostat.  Mark each of the following statements 
true or false: 
 
a) f  is one-to-one.   
b) f  is onto.    
c) f -1 is a function.   
 
(Part 2) Now assume that there is one thermostat for every three offices.  Mark each of the 
following statements true or false: 
 
a) f  is one-to-one.   
b) f  is onto.    
c) f -1 is a function.   
 
3. Recall the Social Security lookup function: 
 

 SS# : EmployeeIDs → NineDigitNumbers : SS#(e) = e’s social security number 
 
Mark each of the following statements true or false: 
 
a) SS#  is one-to-one.  
b) SS#  is onto.   
c) SS#-1 is a function.  
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When Is f-1 a Function? 

 

Let f be a function that maps from A → B.  Then f is invertible (i.e., f -1 is a function) if and only 

if f is both one-to-one and onto. 

 

We can prove this claim as follows.   

 

• Assume that f -1 is a function (that maps from B → A) and show that f is both one-to-one and 

onto: 

• Prove that f is one-to-one:  We do this by contradiction. 

 

Suppose that f were not one-to-one and there were two distinct values x and y such that: 

 

f(x) = f(y) = k    (k is just the name we are giving to this value) 

 

Then:  since (x, k)  f,  (k , x) must be an element of f -1, and 

  since (y, k)  f,  (k , y) must be an element of f -1. 

 

But this contradicts the assumption that f -1 is a function (that maps each element of its 

domain to a unique element of its codomain). 

 

• Prove that f is onto:  Let b be an arbitrary element of B.  Since f -1 is a function, it maps b 

to some unique element of A.  So (b, a)  f -1.  Thus (a, b)  f-.  So f maps something to 

b.  Since b is an arbitrary element of B, we have that every element of B is the image of 

some element of A.  Thus f is onto.   

 

• Assume that f is both one-to-one and onto and show that f--1 is a function:  Let b be an 

arbitrary element of B.  Since f is both one-to-one and onto, there is exactly one element a of 

A such that (a, b)  f.  That means that there is exactly one element a of A such that (b, a)  

f--1.  Thus f--1 is a function.  

 

When f -1 is not a function but we want to compute it, we can let it return a set (possibly empty, 

possibly containing a single element, and possibly containing multiple elements).  We just need 

to know that it must do that. 

 

Sometimes the fact that a function’s inverse is not itself a function (and thus a set of values must 

be returned) is precisely what mak es the function useful. 

 

 

 

 

 

 

 

 

 

Recall the Soundex system, which takes a name and converts it to a four-symbol code that is 

designed so that similar sounding names will map to the same code.  Once one has the 

code for one’s name, one can run the system backwards to retrieve other names that map 

to the same code.  So we defined: 

 

SoundexCode  Names  Codes = {(name, c) : c is the code produced by Soundex for 

name}  
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SoundexCode is a function.  It returns a unique code for every input string.   Its inverse, 

however isn’t a function.  One code can return many names.  And that’s exactly what we 

want.  Soundex would be pretty useless if the process of computing SoundexCode-1  

SoundexCode  just got back our original name.  We want a set of similar sounding names, 

and that’s what we get. 

 

By the way, even before trying out the Soundex system, we know that SoundexCode-1 could 

not be a function.  The Pigeonhole Principle tells us that the function SoundexCode cannot 

be one-to-one since there are way more names than there are codes.  And we just proved 

that f-1 is only a function when f is one-to-one. 
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The Identity Function 

 

Let A be any nonempty set.  Define: 

 

 i : A → A :  i(x) = x 

 

We’ll call i the identity function.  It maps every element of A to itself.  Notice that i is identical 

to the identity relation that we’ve already defined: 

 

 I = {(a, a) : a  A} 

 

The identity function appears to be fairly useless since nothing changes after it’s been applied.  

But that’s important.  Sometimes we want to be able to show that, after applying one or more 

functions to an arbitrary object, we will land back where we started.   

 

One important case arises when we compose a function with its inverse: 

 

if f  is invertible,  f-1  f = i 

 

To see why this must be so, let (a, b) be some element of f.  Then (b, a)  f -1.  Since f  is a 

function, b is the only element related to a. So f(a) = b.  Since f -1 is a function, the only element 

related to b is a.  So f -1(f(a)) = a. 

 

 

 

 

 

 

 

 

 

 

 

 

  

Recall that CtoF converts temperatures from centigrade to Fahrenheit: 

 

CtoF :   Z → Z :   CtoF(d) = 
9

5
𝑑 + 32 

 

Its inverse converts from Fahrenheit to centigrade.   FtoC = CtoF-1 is: 

 

 FtoC   :    Z → Z  :   FtoC(d) = 
5 

9 
 (d – 32)   

 

So FtoC(CtoF(d))  =  
5

9
(

9

5
𝑑 + 32 − 32) = 

5

9
(

9

5
𝑑) = d. 
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Problems 
 
1. Let the universe U be N (the natural numbers).  Let’s look at what happens when we 
compose set functions.  Which of the following compositions is equal to i (the identity function)?   
 

a) f1  :   ℘(N) → ℘(N) :    f1(A) = (A  U) - U              

b) f2  :   ℘(N) → ℘(N) :    f2(A) = (A - U)  A           

c) f3  :   ℘(N) → ℘(N) :    f3(A) = (A  U) - A            

d) f4  :   ℘(N) → ℘(N) :    f4(A) = (A - U)  (U - A)            
 

2. Let A and B be some sets and let f be some function:   f   :   A → B. 
 
The function f is not necessarily invertible (in other words, while it has an inverse, its inverse 
might not be a function). 
 
Which of the following claims is true:   
 

a) f -1  f  must be equal to f   f -1.    

b) f -1  f  must not be equal to f  f -1.   
c) For all x, if f (x) = 0 then f -1 (x) must not equal 0. 

d) f -1  f  might be equal to f  f.    

e) f   f -1  f  must be equal to f -1. 
 


