

The Logicians on our cover are:

 Euclid (? - ?)

 Augustus De Morgan (1806 – 1871) Charles Babbage (1791 – 1871)

George Boole (1815 – 1864) Aristotle (384 BCE – 322 BCE) George Cantor (1845 –
1918)

 Gottlob Frege (1848 – 1925) John Venn (1834 – 1923)

 Bertand Russell (1872 – 1970)

Reasoning

An Introduction to
Logic, Sets, and Functions

Chapter 9
Sets

Elaine Rich
Alan Kaylor Cline

The University of Texas at Austin

Image credits:

Party invitations: © Lynda Trader, 2014.

Sandwiches: © Lynda Trader, 2014.

Short order cooks: © Lynda Trader, 2014.

Planets: http://nineplanets.org/

Fortune cookies: http://www.theboredninja.com/featured/the-powerball-fortune-cookie/

Hindu gods: http://www.dollsofindia.com/product/hindu-posters/brahma-vishnu-shiva-

reprint-on-paper-AE99.html

Beatles:

REASONING—AN INTRODUCTION TO LOGIC, SETS AND FUNCTIONS Copyright © 2014 by Elaine
Rich and Alan Kaylor Cline. All rights reserved. Printed in the United States of America. No part
of this book may be used or reproduced in any manner whatsoever without written permission
except in the case of brief quotations embodied in critical articles or reviews. For information,
address Elaine Rich, ear@cs.utexas.edu.

http://www.cs.utexas.edu/learnlogic
Library of Congress Cataloging-in-Publication Data

Rich, Elaine, 1950 -
 Reasoning—An Introduction to Logic Sets and Functions / Elaine Rich.— 1st ed. p. cm.
 ISBN x-xxx-xxxxx-x 1

http://nineplanets.org/
http://www.theboredninja.com/featured/the-powerball-fortune-cookie/
http://www.dollsofindia.com/product/hindu-posters/brahma-vishnu-shiva-reprint-on-paper-AE99.html
http://www.dollsofindia.com/product/hindu-posters/brahma-vishnu-shiva-reprint-on-paper-AE99.html
http://www.cs.utexas.edu/learnlogic

The Key Ideas ... 1

Subsets, Supersets, Powersets and Partitions .. 17

Operations on Sets .. 28

The Natural Analogy between Sets and Logic ... 49

Proving Claims about Sets I .. 57

Proving Claims about Sets II ... 72

Computer Representation of Sets.. 86

Multisets .. 91

Appendices .. 97

Table of Contents

Sets 1

Chapter: Sets

The Key Ideas

What Is a Set?

A set is an unordered collection of unique objects (which we’ll

call elements). The easiest way to specify a set is simply to list

its elements. By convention, they are enclosed in braces.

 https://www.youtube.com/watch?v=nmNuHwhq6LA

When it is obvious that we are using a particular, previously defined sequence, we will allow

ourselves to use the … notation.

All of the following are sets:

S1 = {1, 3, 789}

S2 =

 , ,

S3 = , ,

Let S4 = {a, b, c, … z}. This means that S4 contains the 26 lower case letters of the Latin

alphabet.

https://www.youtube.com/watch?v=nmNuHwhq6LA
https://www.youtube.com/watch?v=nmNuHwhq6LA

2 Sets

We’ll use this notation when we need it, but we must be careful that we do it only when no

confusion can result.

Next, we define two symbols that we can use to talk about the elements of a set:

x is an element of set S: x  S

x is not an element of set S: x  S

Notice that a claim, such as x  S or x  S is either true or false. So it’s a logical statement and

we can use it to build larger logical statements using the logical operators.

We’ll say that two sets S and T are equal if and only if they contain the same elements. In this

case, we’ll write S = T. Note that, given this definition, the order in which we list the elements

plays no role in determining what the set actually is.

Given the definition of S3 above:

  S3  S3  S3

So we have that:

 , = ,

And:

 {cat, dog, hedgehog, bird } = {hedgehog, cat, dog, bird} = {cat, dog, bird, hedgehog}

For example, let S1 = {1, 3, 789}. Then these logical statements are all true:

[1] (3  S1)  (5  S1)

[2] (25  S1)  (3  S1)

[3] (25  S1)  (3  S1)

Sets 3

Also note that duplicating an element does not change the value of the set.

Problems

1. Let S = {Dasher, Prancer, Blitzen}.

For each of the following, indicate whether or not it is equal to S.
a) {Dasher, Blitzen, Prancer} .
b) {Dasher, Blitzen, Donder}

2. Let Greeks = {Aristotle, Socrates, Plato}. For each of the following indicate T/F:

a) Aristotle  Greeks

b) Plato  Greeks

c) Diosthenes  Greeks

d) (Aristotle  Greeks)  (Sophocles  Greeks)

3. Let Babies = {cub, cygnet, fawn, gosling, kitten, piglet, puppy}. For each of the following sets
S, mark True if S = Babies and False otherwise.

a) S = {kitten, puppy, piglet, fawn, gosling, cub, cygnet}
b) S = {fawn, piglet, kitten, fawn, gosling, cub, piglet, cygnet, puppy}
c) S = {kitten, puppy, piglet, tadpole, gosling, cub, cygnet}

So we have that:

 {cat, dog, cat, bird, cat} = {cat, dog, cat, bird, cat, bird} = {cat, dog, bird}

And:

 {2, 2, 2, 2, 2} = {2}

4 Sets

Some Important Sets

The smallest set is the set that contains no elements. We’ll call that set the empty set. There
are two common ways to write the empty set:

• {}

• 

Formally, we can define  by saying:

 x (x  )

Let’s now define some important sets that actually contain elements. (Note that the names we
are giving to these particular sets are very standard.)

Z = the integers.
Z+ = the positive integers.
N = the natural numbers. We’ll define N to contain the integers that are greater than or

equal to 0, but be careful here. Some books do not include 0 as a natural number.
Q = the rational numbers (i.e., those numbers that can be represented as the ratio of two

integers).
R = the real numbers.

Note that we could have defined R to be the Rationals. It’s just convention to define it to be the
reals instead. Then it was necessary to pick something else as a name for the rationals.

Problems

1. Which of these statements is/are true:

7  

7  N

7  Z

7  Q

7  R

2. Which of these statements is/are true:

4

2
  N

4

2
  Z

4

2
  Q

4

2
  R

Sets 5

3. Which of these statements is/are true:

3

2
  N

3

2
  Z

3

2
  Q

3

2
  R

4. Which of these statements is/are true:

-3  N

-3  Z

-3  Q

-3  R

5. Let S = {2, 3, 5}. For each of the following sets, mark True if it is equal to S and False
otherwise. (Note here that we are considering sets of numbers, not the symbols that we use to
denote them.)

{2,
4

2
, 3,

−8

−4
, 5}

{5, 5, √25
+

, 3, 2}

{5, 3, 3, 2}

6 Sets

Sets, Multisets and Lists

Recall that a set is an unordered collection of unique objects. Why have we defined it in this

way? Is this always what we want?

We’ve defined it this way because this notion plays an important role in mathematics. We need

to understand it so that we can exploit it.

But is it always what we want, particularly if we want to write programs to solve real problems?

Now the answer is no:

• Sometimes we want duplicates to matter.

• Sometimes we want order to matter.

Suppose that you and a group of friends are planning

a party. You’ve agreed that each of you can add

whomever you like to the invitation list. If you want to

write a program to manage the invitations, the data

structure that you want here is a set. If two people

add Dana to the list, she still gets just a single

invitation.

But now suppose that one of you has offered to run to

the deli for sandwiches. Everyone is asked to submit

an order. Now, if two people ask for tuna, it’s

important that tuna get entered twice.

Finally, suppose that you’re the manager of the deli.

You want to keep track of the orders that have come

in. Now you not only want to consider duplicates.

You’d better also keep track of which orders came in

ahead of which other ones. If you don’t, you’ll have

some very unhappy customers.

Sets 7

Because all three of these situations happen a lot, programming environments typically support

these three important data structures:

Set Corresponds to the mathematical definition of set that we’ve presented. We’ll be able

to use the theory that we develop here if we want to prove things about programs that

use sets.

Multiset (sometimes called bag) Like a set except that duplicates are allowed. We’ll come

back to this idea later and build on our theory of sets to construct a corresponding one

for multisets.

List An ordered set or ordered multiset. It’s possible also to build a theory that lets us

reason about programs that exploit lists.

At this point, you may be thinking, “But you said that the integers are a set (not a list). Yet they

clearly have order. There’s a very useful sense in which 1 ‘comes before’ 2.” True. But what

we’re going to do is to start by treating the integers (and the natural numbers and the rationals

and the reals) as sets. Then we’ll see ways to impose order on them when we need to do that.

Nifty Aside

We’ve described here a simple list, for example (roast beef, ham and swiss, roast beef,

peanut butter and jelly}. In real programs, there are actually many other structures that

capture the notion of order. Many of them are more efficient to implement, for some

problems, than the simple list.

8 Sets

Problems

1. For each of the following problems, choose the best data structure:

(Part 1) Eligible voters in our voting precinct.

a) Set: We don’t want duplicates and order doesn’t matter.
b) Multiset: We do want duplicates but order doesn’t matter.
c) List: Order matters.

(Part 2) People standing outside the concert venue, hoping to be able to buy tickets.

a) Set: We don’t want duplicates and order doesn’t matter.
b) Multiset: We do want duplicates but order doesn’t matter.
c) List: Order matters.

(Part 3) Names on the raffle tickets that we’ve sold for our fundraiser.

a) Set: We don’t want duplicates and order doesn’t matter.
b) Multiset: We do want duplicates but order doesn’t matter.
c) List: Order matters.

Sets 9

Defining a Set

We’ve already seen a simple technique for defining a set: We simply write down the elements.

Sometimes it’s impossible or impractical to list all the elements of a set. An alternative is to

write a logical description of the set. To do this, we write a predicate that is true of all and only

the elements of the set that we wish to define. Then we can use any of these notations:

S = {x : P(x)} or S = {x | P(x)} or S = {x  P(x)}

Read all of them as, “S is the set of all objects such that P is true of x}. We’ll use the first of

these notations, but the second one is also common; the third is less so.

It is also sometimes useful to start by restricting the values we consider to ones that belong to

some other set that has already been defined. In that case, we can write:

S = {x  R : P(x)}

Read this as, “S is the set of all objects in R such that P is true of x}.

For example, S1 is a set of symbols that correspond, in various alphabets (Latin, Greek,

Russian, Arabic, Hindi, Thai, Tibetan), to the initial sound of the word “lemon”.

S1 = {L, , Л, ل, ल, ล, ལ}

For example, suppose that we want to define S2 to be the set of all even integers greater

than 10. Assume that we have already defined, on the integers:

Div(x, y)  ((y  0)  z (x = yz)) (x is divisible by y)

Then we can write:

S2 = {x  Z : (x > 10)  (Div(x, 2))}

Read this as, “S2 is the set of all objects x in Z (the integers) such that x > 10 and Div(x, 2) is

true.

Suppose that we want to define S3 to be the set of all people who are mothers of at least

two children. Then we can write:

S3 = {x  People : y,z (MotherOf(x, y)  MotherOf(x, z)  (y  z))}

Read this as, “S3 is the set of all people x such that there exist a y and a z, where x is the

mother of y and x is the mother of z and y and z are different.”

http://en.wikipedia.org/wiki/El_%28Cyrillic%29
http://en.wikipedia.org/wiki/%D9%84

10 Sets

Sometimes we want to define a set by a program that we can run. In that case, we’ve got two

choices:

• We can write a generator (also called an enumerator). Its job is to output (in some

unspecified order) all and only the elements of the set.

• We can write a recognizer. Its job is to implement a predicate definition. In other words,

it must examine a candidate and return True if the candidate is in the set and False

otherwise.

If we do either of these things, we can say that our program defines the corresponding set.

Recognizers are particularly useful in real applications.

Suppose that we have a database that contains the personnel records of all the employees

of our company. The online-games division needs to work with the set of people who are

eligible for a 5-year pin at the upcoming division retreat. We’ll call this set Gets_pin. Assume

that we’ve already defined three procedures that access our database: employees returns

the set of badge numbers of all company employees. division is given a badge number and

returns the name of the division in which the employee with that badge number works.

service_years is given a badge number and returns the number of years of service of the

employee with that badge number.

Here’s a generator for Gets_pin. It takes no input. It prints a list of all the elements of the set.

def Gets_pin():

 # Walk through set of employees, checking division and service_years.

 for badge in employees:

 if division(badge)== "online-games" and service_years(badge)== 5:

 print(badge)

Here’s a recognizer for Gets_pin. It takes a single input, an employee badge number. It

returns True if that employee is an element of Gets_pin. It returns False otherwise.

def Gets_pin(badge):

 # Check a particular badge.

 if division(badge)== "online-games" and service_years(badge)== 5:

 return(True)

 else:

 return(False)

Let Java be the set of syntactically well-formed Java programs.

How shall we give a formal definition of this set?

Answer: The Java compiler is a recognizer for this set. If you give the compiler a string that is

a legal Java program, it will compile. If you give it a string that isn’t a legal Java program, it

will complain and produce error messages.

Sets 11

<nifty idea box>

</nifty idea box>

Nifty Aside

There exist sets for which it’s not possible to write a recognizer or a generator. For example:

Let JavaWithoutInfiniteLoops be the set of syntactically well-formed Java programs that

are guaranteed to halt on all inputs.

It’s easy to understand what we mean by this definition. And equally easy to see why

we’d want to be able to make sure that a program that we’ve written is in the set. But it’s

possible to prove that no generator or recognizer (in any programming language, running

on any sort of machine) will ever exist for this language. This observation is called the

undecidability of the halting problem.

12 Sets

Problems

1. Assume that we are working just with elements of N (the natural numbers). Mark each of the
following statements True or False.

a) 7  {n : y > 5 (n = y + 2)}

b) 2  {n : x, y (n = x/y)}

c) 34  {n : x (prime(x)  n = 2x)}

d) 2  {n : y ((1 < y < n) → prime(y))}

e) 5  {n : y ((1 < y < n) → prime(y))}

f) 81  {n : x (x is a perfect square  n = x2)}

g) {2, 3}  {n : prime(n) }

2. We want to define the set S = {1, 4, 9, 16, 25, 36, …} using the logical predicate form. In
other words, we want to write:

S = {x  ___ : P(x)}, for some value filled in the blank and some predicate P.

For each of the following expressions, choose True if it correctly describes S. Choose False
otherwise:

a) S = {x  Z : y (y  N  y2 = x)}

b) S = {x  N : y (y  N  x2 = y)}

c) S = {x  N : y (y  Z  y  0  y2 = x)}

d) S = {x  N : y (y  Z  y  0  x2 = y)}

3. Let Elements be the set of elements in the Periodic Table. Consider the set:

 S = {x  Elements : molecular-weight(x) < 50  valence(x) = 1}

True or false?

a) Fe  S

b) Mg  S

c) Na  S

4. Let S = {x  N : (x > 10) → Div(x, 2)}. For each of the following, indicate True if it correctly
describes all and only the elements of S; write False otherwise.

a) {0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, …}
b) {1, 3, 5, 7, 9, 0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, …}
c) {12, 14, 16, 18, 20, 22, 24, 26, …}
d) {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 14, 16, 18, 20, 22, …}
e) {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 14, 16, 18, 20, 22, …}

Sets 13

Using Sets in Logical Expressions

Now that we’ve got an explicit definition of what we mean by a set, we can use it to describe the

universe with respect to which we want to make a logical claim. In particular, we can write

expressions of the form:

xS (P(x))

Read this as, “For all x in S, P is true of x.” Or, more concisely, “For all x in S, P of x.”

A huge win of formal notations like this is that they are substantially less ambiguous than

English is.

The use of set notation as a way to write an explicit description of a universe is particularly

useful if we want to write multiple quantifiers whose domains are different.

In this last example, notice the natural correspondence between being a member of a set and

being an object of which some predicate is true.

Suppose that we want to define the set of perfect squares. We can write:

PerfectSquares = {x  N : y  N (y2 = x)}

Read this as: PerfectSquares is the set of all values x in N such that there exists a y in N where

y2 = x. Or we can say that PerfectSquares is the set of all natural numbers x such that exists a

natural number y such that y2 = x.

Returning to the perfect squares example: Someone reading the English definition might

wonder whether 0 is included. The formal definition we’ve given, however, is clear. 0 is in.

Suppose that we want to assert that any real number that has an integer square root must

also be an integer. We can write:

xR ((yZ (y2 = x)) → x  Z)

Suppose that we want to say that every student got a recommendation from a teacher. We

could define the universe to be the set of all people. Then we could write:

 x (Student(x) → y (Teacher(y)  WroteRecommendationFor(y, x)))

We could also specify more restricted domains for each quantified expression. Then we

could write a simpler expression:

 xStudents (yTeachers (WroteRecommendationFor(y, x)))

14 Sets

This should not be surprising given that one natural way to define a set (in this case Students) is

as a collection of objects about which some predicate (in this case Student) is true.

We’ll have more to say about this later after we’ve introduced operations on sets. We’ll see that

there’s a natural correspondence between them and the operations  and  that can be performed

on logical expressions.

Problems

1. Consider the following partially written formula:

 x_____ ((x + 1)  Z)

Assume we want to make this statement as strong as we can (i.e., want to make a claim about
all the elements of which it must be true). What value should we fill in the blank?

a) Z (the integers)
b) Z+ (the positive integers)
c) N (the natural numbers)
d) Q (the rationals)
e) R (the reals)

2. Consider the following partially written formula:

 x,y_____ ((y  0) → zQ (z =
𝑥

𝑦
))

Assume we want to make this statement as strong as we can (i.e., want to make a claim about
all the elements of which it must be true).

What value should we fill in the blank?

a) Z (the integers)
b) Z+ (the positive integers)
c) N (the natural numbers)
d) Q (the rationals)
e) R (the reals)

Given the appropriate definitions, we would have that:

xStudents if and only if Student(x)

Sets 15

How Large is a Set?

A set S is finite if it has exactly n distinct elements where n is some natural number.

In this case, we’ll say that the cardinality of S is n. We’ll write it as:

 |S| = n or Card(S) = n

 If a set is not finite, we’ll say that it is infinite.

The empty set contains no elements. So we have:

|| = |{}| = 0

Remember that duplicates don’t change the value of a set.

The set S = {22, 28, 32, 33, 39, 40} is finite.

|S| = 6.

The set Z (the integers) is not finite.

Let Planets = {Mercury, Venus, Earth, Mars,

Jupiter, Saturn, Uranus, Neptune}. (Notice

that we’ve accepted that Pluto got

demoted and is no longer in the set.)

 |Planets| = 8

|{2, 4, 8, 16}| = |{2, 2, 2, 4, 4, 4, 8, 16}| = 4

16 Sets

Problems

1. Let:

• P1 be the set of prime numbers between 0 and 10.

• P2 be the set of prime numbers between 10 and 20.

Prove that |P1| = | P2|.

When you’ve finished your proof, look at these claims. Indicate which of these claims are true
and which are false:

a) There are 4 elements in P1.
b) |P2| = 5.
c) P1 finite.
d) P2 is not finite.

2. Alan Turing is a hero to computer scientists. He played a major role in breaking the German
U-boat code during World War II. He proved a fundamental result that shows that there are
limits to what we’ll ever be able to compute. He wrote a famous paper that attempted to
describe a technique by which we’d know whether a computer was “thinking”.

Let CT be the set of Alan Turing’s children. What is |CT|? (Hint: Use Google.)

3. Cardinalities are numbers. So we can, of course, do arithmetic with them. For each of the
following statements, indicate whether it is True or False:

a) |{1, 2, 3, 3}| - |{1, 2, 3}| = 1

b) |{3, 9, 27}|  || = 1
c) |{4, 9, 25}| = |{2, 3, 5}|

Sets 17

Subsets, Supersets, Powersets and Partitions

Subsets and Supersets

We’ll say that A is a subset of B if every element of A is also in B. In this case, we’ll write:

 A  B

More formally:

 A  B if and only if x ((x  A) → (x  B))

The subset relationship holds between some pairs of very important sets.

The subset relationship often also holds between sets that are significant for particular problems.

A very simple claim about  follows directly from its definition:

Every set is a subset of itself. In other words:

 S (S  S)

This must be so since every element of S is also in S.

Sometimes we want a slightly different notion. We’d like to say that A is a subset of B and it

isn’t exactly B. In other words, every element of A is in B and there’s at least one element of B

that is left out – it isn’t also in A.

In this case, we’ll say that A is a proper subset of B and we’ll write:

 A  B

For example, every natural number is also an integer. So we have:

N  Z

Every freshman is a student. So we have:

 Freshmen  Students

So we have, for example:

Z  Z

18 Sets

More formally:

 A  B if and only if x (((x  A) → (x  B))  (A  B))

Notice the analogy between  /  and  / <.

Just as we have both  / < and  / >, we can write the subset relation in the other direction. We’ll

say that A is a superset of B if every element of B is also in A. In this case, we’ll write:

 A  B

Similarly, if A is a superset of B, but not equal to B, we’ll say that A is a proper superset of B and

we’ll write:

 A  B

Just as we have that, if a  b, then b  a, we have the following theorem about subsets and

supersets:

For any sets S and T: (S  T)  (T  S)

 (S  T)  (T  S)

Every natural number is also an integer. And there are integers (for example, -3) that are not

natural numbers. So we have:

N  Z

But this claim is false:

Z  Z

So we have:

Z  N (The integers are a superset of the natural numbers.)

 Students  Freshmen

Sets 19

Problems

1. For each of the following claims, indicate whether it is true or false:

a) {5, 9, 4, 3}  {3, 4, 5, 9}

b) {U.S. state capitals}  {U.S. cities with population < 1 million}

c) {prime numbers}  Z.

d) {dogs}  {poodles}

2. For each of the following claims, indicate whether it is true or false:

a)   

b)   

c)   

3. For each of the following claims, indicate whether it is true or false:

a)   {}

b)   {}

c)  = {}

4. Consider the claim:

  A

This claim is true for:

a) All sets A.
b) Some but not all sets A.
c) No set A.

5. Consider the claim:

  A

This claim is true for:

a) All sets A.
b) Some but not all sets A.
c) No set A.

20 Sets

Sets of Sets

So far, almost all of the set elements that we’ve considered have been individual values, like 3,

Austin, and Mars. The one exception has been {}, the set whose single element is a set that

has no elements.

But we can also define sets whose elements are other more interesting sets.

It’s very important to be careful about the distinction between a

set and an element of a set.

 https://www.youtube.com/watch?v=oXRRu45xYgo

Every freshman is a student. So we have:

 Freshmen  Students

Suppose that we want to describe the choices that will confront

the diners at our new restaurant. Define:

Menu = {Appetizers, Entrees, Sides, Desserts}

= {{ceviche, nachos}, {fajitas, carnitas, enchiladas},

 {beans, rice}, {sopapillas, flan}}

Let S1 = {{a}}. Then a  S1. S1 has a single element, {a}, which is a set that, in turn, contains the

single element a.

Let S2 = {{a}, a}. Then a  S2. S2 has two elements, one of which is the set {a}, and the other

of which is a.

Let S3 = {}. |S3| = 1 because it contains exactly one element. That element, in turn, is the

empty set. The empty set has cardinality 0, but that’s not what we’re talking about.

https://www.youtube.com/watch?v=oXRRu45xYgo
https://www.youtube.com/watch?v=oXRRu45xYgo

Sets 21

Problems

1. Let S = {{azul, cyan, navy}, {pink, fuscia, rose, magenta}, {chartreuse, lime}}. What is |S|?

2. Let S = {{}, , {}}. What is |S|?

3. Let S = {a, {a}, S, b}. For each of the following elements, mark True if it is in S and False
otherwise:

{a}
{{a}}
{b}
{S}
S

Nifty Aside

Let R be the set that contains all sets that are not elements of themselves. Stated more

formally, R = {S : S  S}. So, for example {1, 2, 3}  R. Clearly {1, 2, 3} is not an element of

itself since it contains no sets at all.

But now for the hard one: Is R an element of R? The answer to this question must be either

yes or no:

• Suppose that R is an element of R. Show that this leads to a contradiction (just

using the definition of R).

• Okay, then suppose that R is not an element of R. Show that this also leads to a

contradiction.

We said that one of these had to be the answer. Yet neither of them can be. This problem

is called Russell’s Paradox (named for the logician Bertrand Russell). We can back

ourselves out of this corner by disallowing set definitions of this sort. But that’s beyond the

scope of this course.

22 Sets

The Powerset of S

There’s one set of sets that is particularly useful.

If S is a set, define the powerset of S to be the set of all subsets of S. We’ll denote the powerset

of S as:

℘(S)

For any sets A and S:

 A  ℘(S) if and only if A  S

Suppose that S = {cake, brownies, cookies, candy,

fondue, fudge, tarts, cupcakes}. We’re planning a

chocolate party. ℘(S) is the set of all of our menu

options. Some of the elements of ℘(S) are:

{cake, candy, tarts, brownies}

{cupcakes, fondue}

{candy}

{}

{cake, brownies, cookies, candy, fondue,

fudge, tarts, cupcakes}

Sets 23

Problems

1. Let HinduGods = {Brahma, Vishnu, Shiva}.

List the elements of ℘(HinduGods). How many are
there?

2. Again let HinduGods = {Brahma, Vishnu, Shiva}.

Mark each of the following as True if it is an element of
℘(HinduGods). Mark it False otherwise.

a) {Vishnu, Brahma, Shiva}
b) {Brahma}

c) 
d) {Ganesha}

3. Let B = {Paul, Ringo, John, George}.

List the elements of ℘(B). How many are there?

4. Again let B = {Paul, Ringo, John, George}.

Mark each of the following as True if it is an element of ℘(B).
Mark it False otherwise.

a) {Paul, Ringo}

b) 

c) {}
d) {George, John, Paul}
e) Ringo

5. Let’s see if we can formulate a general claim about the size of a power set.

(Part 1) Let S = . How many elements are there in its powerset?

(Part 2) Let S = {a}. How many elements are there in its powerset?

(Part 3) Let S = {a, b}. How many elements are there in its powerset?

(Part 4) Let S = {a, b, c}. How many elements are there in its powerset?

(Part 5) Let S = {a, b, c, d}. How many elements are there in its powerset?

24 Sets

6. Assume any set S of n elements. Which of the following formulas for the size of the powerset
of S is consistent with our observations above:

a) 2n
b) n2
c) 2n+1
d) 2n
e) 2n+1

7. Now that we think we know the size of the powerset of any set of n elements, we should
prove our claim. Prove by induction that, if |S| = n, for some integer n, then S has 2n subsets.
(Alternatively, |℘(S)| = 2n.)

To simplify writing this proof, let’s define the following notation:

Let S:n mean “any set S of n elements”.

We know that the first step of this proof is to write an explicit statement of the claim we are
trying to prove. We do that by stating the claim in terms of a predicate, P(n). Notice that P(n)
needs to make a claim not just about the value n. It needs to make a claim about all sets of size
n.

Write out P(n).

Next, we must prove the base case. What value of n do we need to use as the base case?

8. Now we must complete our proof that, if |S| = n, for some integer n, then S has 2n subsets.
(Alternatively, |℘(S)| = 2n.)

Prove the base case.

Now write a proof of the induction step.

8. Prove or disprove the following claim:

[1] S (℘(S) = {})

Once you have your proof and you know whether the claim is true or false, indicate which of
these statements is true:

a) [1] is true and there’s exactly one set S that has the given property.
b) [1] is true and there are multiple sets that have the given property.
c) [1] is false. There are no sets with the given property.

Sets 25

Partitions

Sometimes it’s useful to divide a set S into a collection of subsets with the property that every

element of S occurs in exactly one of the subsets.

We’ll call a collection of subsets that has this property a partition. More formally:

A partition P of a set S is a set of subsets of S such that every element of S occurs in exactly one

element of P and no element of P is empty.

Problems

1. In each of the following problems, you’ll see one set (call it the universe, U), then a set of
sets. Mark True if the set of sets is a partition of U. Mark False otherwise.

a) N (the natural numbers) {Primes, Composites}
b) Z (the integers) {Evens, Odds}
c) Z (the integers) {DivisibleBy3, DivisibleBy5}
d) Cars {Gasoline-Cars, Electric-Cars}
e) Pets {Cats, Dogs, Birds, Rabbits}
f) Employees {Fulltimes, Parttimes}

Let S be the set of students at our school. Then every student is an element of exactly one of

these subsets:

• {Freshmen, Sophomores, Juniors, Seniors, Graduate students}

• {Negative integers, {0}, Positive integers} is a partition of Z (the integers).

• {Freshmen, Sophomores, Juniors, Seniors, Graduate students} is a partition of Students.

• {MathMajors, CSMajors, EnglishMajors} is not a partition of Students. Some students

(ones who are double majoring) are in two of its elements, and some students (e.g.,

Business majors) are in none of its elements.

• {Freshmen, Sophomores, Juniors, Seniors, Graduate students, Martians} is not a

partition of Students. One of its elements is the empty set.

26 Sets

Partitions and Proof by Case Enumeration

The technique of proof by Case Enumeration depends on one of the two key properties of a

partition: every element of the base set occurs in some element of the partition.

Recall our proof of this claim: n (Even(n2 + n))

Case 1: n is even. Then n = 2i for some integer i. Then n2 + n = (2i)2 + 2i

 = 4i2 + 2i

 = 2(2i2 + i) which is

 even.

Case 2: n is odd. Then n = 2i+1 for some integer i. Then n2 + n = (2i+1)2 + 2i +1

 = 4i2 + 4i + 1 + 2i +1

 = 4i2 + 6i + 2

 = 2(2i2 + 3i + 1) which is

 even

This proof is correct because {Evens, Odds} is a partition of Z (the integers). Every integer

belongs to exactly one of those sets. Thus every integer is covered by one of the cases

we’ve shown.

Sets 27

Partitions and Code for Solving Problems

When we design programs to solve many kinds of interesting problems, we partition the input

into cases. Most programming languages provide explicit support for this. Sometimes the

construct is called case; sometimes it has another name.

Problems

1. Suppose that we are designing a direct mail campaign that needs to be tailored for
geographic areas. We decide to do this by partitioning the set of U.S. customers based on
zipcode. Let C be the set of U. S. customers. Let P be a partition of C such that two elements x
and y of C are in the same element of P if and only if they have the same five-digit zipcode.

(Part 1) Is the following claim true or false? (Note, we are not asking about who the customers
are. Just consider the types of the objects involved.)

It is possible that Sal Q. Customer is an element of P.

(Part 2) Make the strongest statement you can about |P|?

a) It cannot be more than about 50.
b) It cannot be more than about 23,000.
c) It cannot be more than about 45,000.
d) It cannot be more than about 125,000.
e) It could be as much as 2,000,000.

Suppose that we’re running the alumni affairs office of our university. We are planning to

send out a mailing to encourage our alums to come back to campus for homecoming. We

might define the following partition on the set Alumni:

{Recentgrads, Five-to-TwentyFiveYearsOut, Oldergrads}

Then we might write this program that uses three cases to generate a tailored letter for an

individual alum w. (Read elif as “else if”.)

if w in Recentgrads:

 include appealing sections (e.g., concerts)

elif w in Five_to_TwentyFiveYearsOut:

 include appealing sections (e.g., child care)

else:

 include appropriate sections (e.g., back in the day)

28 Sets

Finite State Machines Partition Inputs

The finite state machine (or FSM) is a formal model of

computation. The set of states in such a machine represents a

partition of the set of machine histories. What happens next

depends only on the current state and the next input. This

means that, if two different histories have driven the machine

to the same state, their differences will have no effect on

future behavior.
 https://www.youtube.com/watch?v=lh2onWfBrxk

A vending machine is a great

example of an FSM. An

unbounded number of different

machine histories can be

partitioned just based on the

amount of money (regardless of

the specific coins or their order)

that has been inserted since the

last sale. The machine accepts

nickels (N), dimes (D), and

quarters (Q). Suppose that it

costs 25¢ to buy something.

But our machine will be “friendly” and allow you to deposit more than that if you happen not

to have the correct change. You can push the $ (Buy) button whenever there’s at least 25¢

in the machine. Whenever you do that, the machine resets to 0¢. All of this machine’s past

“experiences” can be partitioned into: {0¢, 5¢, 10¢, 15¢, 20¢, 25¢}.

Nifty Aside

JFLAP is a tool that makes it easy to design and test finite state machines.

 https://www.youtube.com/watch?v=irewHV3S0_M https://www.youtube.com/watch?v=cEvWgEHd0pE

https://www.youtube.com/watch?v=lh2onWfBrxk
https://www.youtube.com/watch?v=lh2onWfBrxk
https://www.youtube.com/watch?v=irewHV3S0_M
https://www.youtube.com/watch?v=cEvWgEHd0pE
https://www.youtube.com/watch?v=irewHV3S0_M
https://www.youtube.com/watch?v=cEvWgEHd0pE

Sets 29

Operations on Sets

Venn Diagrams

We’re about to define some useful operators that can be applied to sets. But, before we do that,

let’s introduce a graphical way to describe relationships among sets.

A Venn diagram illustrates the logical relationships among a collection of sets. An outer

boundary outlines the universe of discourse. Enclosed regions (often circles or ellipses)

correspond to the sets we’re considering. Overlaps between and among those regions contain

elements that are in more than one of the sets.

Problems

1. Which of the following Venn diagrams illustrates the fact that A is a subset of B:

 (a) (b) (c)

Consider this Venn diagram that illustrates kinds of pizza.

The box corresponds to the universe, in this case, the set of

all pizzas. The circle that is labelled with the wedge of

cheese will correspond to pizzas with cheese. Similarly for

the circles labelled with pepperoni and sausage.

The smallest region, in the middle, corresponds to pizzas

with cheese and pepperoni and sausage.

The region that is outside all the circles corresponds to

pizzas that have no cheese or pepperoni or sausage. It

should make all our vegan friends happy.

30 Sets

Union

Sets are useful because we can do things with them. That means that we need to define

operations on them.

We write the union of two sets A and B as:

 A  B

We define the union of two sets A and B as:

 x  A  B if and only if (x  A)  (x  B)

Read this as:

 x is in A union B if and only if: x is an element of A or x is an element of B.

We can use a Venn diagram to illustrate union:

The shaded area corresponds to the union of A and B.

Recall these definitions: Z = the integers

 N = the natural numbers

 Z- = the negative integers

Then: Z = N  Z-

The shaded area of this Venn diagram corresponds to pizza for carnivores:

 Sausage  Pepperoni

Sets 31

We can describe the insertion of a new element into a set using the union operator:

Assume that x  S. Then S  {x} is the set that results if we insert x into S.

Whenever we add new elements to a set, its cardinality changes. In particular:

If x  S, then |S  {x}| = |S| + 1.

Problems

1. Let: Band = {snare drum, tympani, marimba, castanets}.
 Orchestra = {piano, tympani}.

What is |Band  Orch|?

2. Let: TexasSeasons = {spring, summer, fall}.

What is |TexasSeasons  |?

3. It is possible that there exist sets A and B and an element x such that:

 (x  A  B)  (x  A)

4. It is possible that there exist sets A and B and an element x such that:

 (x  A)  (x  (A  B))

32 Sets

Intersection

We write the intersection of two sets A and B as:

 A  B

We define the intersection of two sets A and B as:

 x  A  B if and only if (x  A)  (x  B)

Read this as:

 x is in A intersect B if and only if: x is an element of A and x is an element of B.

We can use a Venn diagram to illustrate intersection:

The shaded area corresponds to the intersection of A and B. But we should note that, while we

draw it this way in the general case, we are not saying that there are necessarily any elements in

the set A  B. It is possible that the intersection is empty.

Let HugeCities be the set of cities with population over 1 million.

TexasCities  HugeCities = {Houston, Dallas, San Antonio}

Define: N = the natural numbers

 Z- = the negative integers

Then: N  Z- =  The intersection of the natural numbers and the negative

 Integers is empy.

Sets 33

In fact, we’ll say that two sets are disjoint just in case their intersection is empty. If A and B are

known to be disjoint, we can draw this Venn diagram of them:

Let Evens = {n: n is an integer that is divisible by 2}. Let Odds = {n: n is an integer that is not

divisible by 2}. Then Evens and Odds are disjoint since:

 Evens  Odds = 

The shaded area of this Venn diagram corresponds to “monster protein” pizza:

 Cheese  Sausage  Pepperoni

34 Sets

Problems

1. Let: Band = {snare drum, tympani, marimba, castanets}.
 Orchestra = {piano, tympani}.

What is |Band  Orch|?

2. Let: TexasSeasons = {spring, summer, fall}.

What is |TexasSeasons  |?

3. Define two sets:

• Primes = {n: n is a positive integer greater than 1 that is not evenly divisible by any
integer except itself and 1}.

• Evens = {n: n is an integer that is divisible by 2}.

What is Primes  Evens?

{}
{1, 2}
{0, 2}
{-2, 0, 2}
{2}

4. Recall that n factorial (written n!) is:

 n  (n-1)  (n-2)  …  1 , for any positive integer n.

For example, 5! = 5  4  3  2  1 = 120.

Let F = {k : n (k = n!)}. In other words, F is the set that contains exactly the values of n! (for
some positive integer n).

Let P = {k : nN (k = 2n)}. In other words, P is the set that contains exactly the values of
2n, where n is some natural number.

What is |F  P|? (Hint: See if you can enumerate the elements of F  P.)

5. It is possible that there exist sets A and B and an element x such that:

 (x  A)  (x  (A  B))

Sets 35

Subtraction (Set Difference)

The difference between two sets A and B is the set of elements that are in A but not in B.

There are two standard ways to write the difference between two sets A and B:

 A – B A \ B

We’ll use the first one. With that notation, we have that:

 x  A - B if and only if (x  A)  (x  B)

Read this as:

 x is in A minus B if and only if: x is an element of A and x is not an element of B.

An alternative definition that is sometimes more useful is:

 A - B = A  B

We can use a Venn diagram to illustrate set difference:

The shaded area corresponds to the difference between A and B.

The shaded area of this Venn diagram corresponds to pizza for the pepperoni purist (no

sausage allowed):

 Pepperoni - Sausage

36 Sets

Notice that the set that we subtract out may contain elements that are not present in the set that

we are subtracting from.

Problems

1. Define: Students = {Angel, Bobby, Chris, Dell, Frankie, Jean, Skyler}

DuesUnpaid = {Chris, Jean}
FailedAClass = {Chris, Skyler}

Now suppose we have: FieldTripOK = (Students - DuesUnpaid) - FailedAClass

List the elements of FieldTripOK.

2. Consider these two sets:

• P (the powers of 2): P = {n : n = 2k for some natural number k}.

So P = {1, 2, 4, 8, 16, 32, 64, …}.

• F (the elements of the Fibonnaci series). Recall that the series is defined:

 f1 = 1, (The first element is 1.)
 f2 = 1, (So is the next one.)

 for all k  2, fk+1 = fk + fk-1 (Computed from the two previous ones.)

So F = {1, 2, 3, 5, 8, 13, 21, 34, …}.

For each of the following elements v, mark True if v  F - P. Mark False otherwise.

6 1 0 5 4

3. Let: A = {x  Z : y  Z (x = 2y)}

B = {x  Z : x < 0}

(Part 1) Which of the following sets is an element of ℘(A)  ℘(B)?

{-1, 0, 1} {2, 4, 8} {1, 2, 3} {-2, -4, -6} {2, 4, 6} {-1, -2, -3}

(Part 2) Which of the following sets is an element of ℘(A) - ℘(B)?

{-2, -4, -6} {2, -2} {-1, -2, -3} {1, 2, 3} {-2, -4, -8}

Let: Class = {Angel, Bobby, Dell, Frankie} be the set of students in our class.

OnTime = {Angel, Dell, Cody, Jean, Skyler} be the set of students in the whole

 school who showed up on time today.

Then: Class - OnTime = {Bobby, Frankie} is the set of students in our class who were late.

Sets 37

Complement

Suppose that we are willing to fix a set U that we’ll call the universe. Then we can talk about

the complement of a set A, which we’ll define to be the set of elements that are elements of U

but not of A.

There are four fairly common notations:

 A A A A

We will use the second of these. With that notation, we have that:

 x  A if and only if (x  U)  (x  A)

Read this as:

x is in the complement of A if and only if:

x is an element of the universe U and x is not an element of A.

We can use a Venn diagram to illustrate complement. As we’ve been doing all along, the outer

rectangle corresponds to the universe:

The shaded area corresponds to A.

Let the universe be the set of all pizzas. The shaded area of this Venn diagram corresponds

to pizza for the lactose intolerant.

 Cheese

38 Sets

In order to use complement in a useful way, we must start by carefully choosing U.

Notice that there’s an obvious relationship between complement (with respect to some

previously declared universe U) and set difference (where we specify both sets explicitly). For

any set A:

 A = U – A

When we’re working with a single universe (for example, the integers), it is often clearer simply

to specify U and then use complement when we need it. If we are working with multiple sets

from which we wish to subtract, it is clearer to use set difference than to attempt to restate U and

keep it correct.

Using complement is risky unless we have been crystal clear in defining the universe with

respect to which we are taking the complement. Failure to do that can lead to serious ambiguity.

Let TexasSeasons = {spring, summer, fall}. We probably want to define the universe so that

we get:

 winter  TexasSeasons

But it’s hard to imagine a real problem in which we’d want to have:

 artichoke  TexasSeasons

So, let Seasons = {winter, spring, summer, fall}. Let our universe be Seasons. Then we have:

 TexasSeasons = {winter}

So winter is the only element of TexasSeasons. artichoke  TexasSeasons. True, it’s not in

TexasSeasons. But to be in the complement of TexasSeasons, it would have to be in the

universe Seasons. But it isn’t.

Recall the factorial set F = {k : n (k = n!)}. In other words, F is the set that contains exactly the

values of n! (for some positive integer n). So F = {1, 2, 6, 24, 120, …}.

Let U = N (the natural numbers). Then:

F = {0, 3, 4, 5, 7, 8, 9, 10, 11, …}

Now let U = Z (the integers). Then (recall that Z- is the set of negative integers):

F = Z-  {0, 3, 4, 5, 7, 8, 9, …}

The complement of F now contains all the negative integers and all the natural numbers that

aren’t values of the factorial function.

Sets 39

English Aside

The meaning of the word “only” includes a negation (complement), even though the

word “not” doesn’t show up. Take a look at the sign shown above the door in this picture. It says, “SERVICE ANIMALS

ONLY”.

Who (or what) is actually allowed to use the door to get into the barbeque restaurant? Are

customers allowed? Surely very few customers are service animals. Even the customers with

service animals are not themselves service animals. Surely they’re not banned.

Expressions that exploit complements (negations) are often ambiguous if they fail to make

clear exactly what the universe is.

We can read this sign as defining a set of

banned values:

Banned = ServiceAnimals

But what set should we use as the universe

with respect to which we compute

ServiceAnimals?

Suppose we have:

U = absolutely everything

Then we also have:

  Banned and  Banned

Suppose, on the other hand, that we have:

U = NonhumanAnimals

Then we get:

This is probably what the sign writers intended.

40 Sets

Problems

1. Define: Evens = {n : kZ (n = 2k)}.

 Odds = {n : kZ (n = 2k + 1)}.

Suppose that we want to be able to say that Evens = Odds. What universe U must we take
complement with respect to in order for this to be true:

a) U = N.
b) U = Z.
c) U = R.
d) U = Odds.
e) U = Evens.

2. Let P = {1, 2, 4, 8, 16, 32, 64, …}. In other words, P = {n : n = 2k for some natural number k}.
Now consider some larger set that is the universe with respect to which we can define the

complement of P (P). Call this universe U.

Suppose that we are told:

 6  P 3  P 10  P -2  P

Which of the following definitions of U is consistent with what we’ve been told:

a) Z (integers)
b) N (natural numbers)
c) Evens

d) Evens  N

e) Evens  N

Sets 41

Another Way to Define Set Difference

So far, we’ve defined set difference in terms of a typical element:

 x  A - B if and only if (x  A)  (x  B)

Now that we’ve defined set complement, we can offer an alternative (and easier to use in some

situations) definition of set difference. If x  U (Universe), then:

 x  A - B if and only if (x  A)  (x  B)

So, using the definition of intersection:

 A - B = A  B

Problems

1. Which of the following sets must, for all A, B and C, be equal to C – (B – A):

a) C  (B – A)

b) C  (A – B)

c) C  (B – A) Correct

d) C  (B   A)

e) C  (B   A)

42 Sets

Insertion and Deletion

When we work with sets, particularly in programs, we often insert and remove (delete) elements

one at a time.

Because insertion and deletion are so useful, we’ll define them explicitly. Notice, in these

definitions, that Insert and Delete actually change the value of the set that they are given.

Insert(a, S) assigns the new value S  {a} to S.

Recall that, if a  S, then |S  {a}| = |S| + 1.

Remove(a, S) assigns the new value S - {a} to S. While this set expression is well defined

regardless of whether a was initially in S, some implementations of this operation in real

programs raise an error if a was not present in S.

Problems

1. Suppose that we start with an empty set S. We insert these elements (in this order):

 5, 8, 1, 9, 5, 6

Mark each of the following as true if it describes the value of S after the six insertions:

I. {8, 1, 9, 5, 6}
II. {5, 8, 1, 9, 5, 6}
III. {5, 6, 8, 1, 9}

Suppose that Friends is the set of Riley’s Facebook friends. Riley accepts a friend request

from Sage. Facebook needs to add Sage to Friends.

Suppose that Professors = {Albus Dumbledore, Severus Snape, Pomona Sprout}.

Then Dolores Umbridge arrives, so the Hogwarts personnel office does this:

 Insert(Dolores Umbridge, Professors)

At this point, Professors = {Albus Dumbledore, Severus Snape, Pomona Sprout, Dolores

Umbridge}.

Then Pomona Sprout retires. So they do:

Remove(Pomona Sprout, Professors)

At this point, Professors = {Albus Dumbledore, Severus Snape, Dolores Umbridge }.

Sets 43

Summary of Set Operations

We’ve now defined  as an operation on a single set, and , , and - as operations on pairs of

sets. But we often want to work with more than two sets. No problem. We just combine them.

Notice how similar these examples feel to some of the ones we looked at when we were

discussing logical expressions.

What we notice is that:

• Set complement corresponds to logical not.

• Set union corresponds to logical or.

• Set intersection corresponds to logical and.

• Set difference corresponds to logical and not.

We’ll come back to this point soon. As we’ll see, this correspondence is deep and it is the basis

for many of our most useful ways of reasoning about sets.

Suppose that our Human Relations department needs to send out somewhat nasty reminder

messages to everyone who is late submitting their time sheets. They might describe the set of

people who will get the message as:

(FullTimeEmployees  PartTimeEmployees  Interns) - PromptTimeSheetSubmitters

I have a meeting in the morning with the sales rep for Peacock Corp. I need to pull together

my order for them. Here it is:

((ThingsWe’reOutOf  ThingsWe’reAlmostOutOf)  ThingsWeBuyFromPeacock)  NewStuff

Returning to the time sheet example: We could have described the letter receivers as:

 x ((FullTimeEmployee(x)  PartTimeEmployee(x)  Intern(x))  PromptTimeSheet(x))

  NastyLetter(x))

44 Sets

Venn Diagrams for Larger Expressions

Venn diagrams can be useful tools for working with expressions of three sets. Unfortunately, it

becomes quite tricky to use them for more than three sets.

Suppose that we want to visualize A  (B  C). We can first build these two Venn diagrams

(using two different colors):

 A (B  C)

As a final step, we combine them. The best way to do that is to imagine laying one on top of

the other. When we do that, we get:

The region that has been colored both red and blue (purple) corresponds to A  (B  C).

Sets 45

Problems

1. Consider the set S = A  (B  C). Which of the following Venn diagrams corresponds to S:
(If there are two colors, view the answer as the part that contains both of them. In particular,
view purple as the combination of red and blue.)

 (a) (b) (c)

 (d) (e)

46 Sets

2. Consider the set S = B  (C - A). Which of the following Venn diagrams corresponds to S: (If
there are two colors, view the answer as the part that contains both of them. In particular, view
purple as the combination of red and blue.)

 (a) (b) (c)

 (d) (e)

Sets 47

3. Consider this Venn diagram:

Which of the following set expressions corresponds to the blue region:

a) C  (A  B)

b) A  (B  C)

c) B  (A  C)

d) A  (B  C)

e) C  (B  A)

4. Consider this Venn diagram:

Which of the following set expressions corresponds to the blue region:

a) (A  B)  C

b) (C - A)  B

c) A  B

d) (C  B) - A

e) A  B

48 Sets

Operator Precedence

Recall that operator precedence defines the order in which operations within an expression will

be performed when there are not parentheses. Higher precedence operators are done before

lower precedence ones.

There’s no general consensus on the use of different precedence levels for intersection, union

and difference, so we’ll assign equal precedence to the three of them.

We’ve seen the first three columns in this table before. What we’ve done now is to add a fourth

column that specifies the precedence of the set operators that we’ve just defined.

Highest:

Lowest:

Arithmetic

unary minus

exponentiation

* and /

+ and -

Logic

not

and

or

implies

is equivalent to

Sets



, , -

, , , , , 

If there are multiple operators with the same precedence level, then we associate left to right.

Problems

1. Consider the expression:

 A  B  C  D  S

Which of the following parenthesizations corresponds to the interpretation defined above:

a) ((A)  (B  C))  (D  S)

b) ((A)  B)  ((C  D)  S)

c) (A  B)  ((C  D)  S)

d) ((A)  B)  (C  (D  S))

e) (A  B)  (C  (D  S))

So we interpret:

 A  B  C as (A  B)  C

Big Idea

Use parentheses to be sure.

Sets 49

The Natural Analogy between Sets and Logic

The Big Idea

Whenever we write a logical expression, like P(x), we’ve actually defined a set: those objects

that satisfy the predicate P.

Coming from the other direction, whenever we define a set S = { ….}, we have effectively also

defined a predicate SP that is true of all and only the elements in S.

Thus it should come as no surprise that there is a natural analogy between the ways that we

reason in logic and the ways that we reason with sets.

Specifically, we’ll see (by looking at the definitions of the logical operators) that:

• Set complement corresponds to logical not.  / 

• Set union corresponds to logical or.  / 

• Set intersection corresponds to logical and.  / 

• Set difference corresponds to logical and not. - / 

• Set subset corresponds to logical implies.  / →

Recall our problem of sending nasty letters to time sheet scofflaws. We wrote this set

expression to describe the people who will get letters:

(FullTimeEmployees  PartTimeEmployees  Interns) - PromptTimeSheetSubmitters

We also described the same situation as a logical expression:

 x ((FullTimeEmployee(x)  PartTimeEmployee(x)  Intern(x))  PromptTimeSheet(x))

  NastyLetter(x))

Big Idea

The natural correspondence between logical and set operations gives us a powerful tool

for reasoning about sets.

50 Sets

Problems

1. Let Fluffies = {kitten, puppy, bunny, chick}. Define Fluffy(x) to be true just in case x  Fluffies.
True or false:

a) Fluffy(bunny) is true.
b) Fluffy(duckling) is true.

c) Fluffy(kitten) is true.

d) Fluffy(chick)  Fluffy(piglet) is true.

e) Fluffy(bunny)  Fluffy(duckling) is true.

2. Let DemocraticPresidents = {x : USPresident(x)  Democrat(x)}. True or false:

a) Andrew Jackson  DemocraticPresidents

b) Ulysses Grant  DemocraticPresidents

c) Alexander Hamilton  DemocraticPresidents

d) Dwight Eisenhower  DemocraticPresidents

e) Woodrow Wilson  DemocraticPresidents

Sets 51

Set Operations / Logical Operations

Assume some fixed universe U. Let:

• SP be the set of values of which some predicate P is true.

• SQ be the set of values of which some predicate Q is true.

Union / Or

The definition of union: x  {SP  SQ} if and only if x  {SP}  x { SQ}

So: SP  SQ = {x : P(x)  Q(x)}

Intersection / And

The definition of intersection: x  {SP  SQ} if and only if x  {SP}  x { SQ}

So: SP  SQ = {x : P(x)  Q(x)}

We need to be careful when we’re moving back and forth between the set operations

union/intersection and the logical operations or/and, particularly if we’re starting with English

expressions.

We could define the set of healthy foods as:

 Healthy = Fruits  Vegetables = {x : Fruit(x)  Vegetable(x)}

Our friend, a top chef, thinks that food must be fantastic to eat and stunning to look at. So

she describes the foods she’ll serve at her restaurant as:

 MyFoods = Yummies  Beautifuls = {x : Yummy(x)  Beautiful(x)}

In English, we might paraphrase this

bus sign as, “Seniors and disabled

people are welcome to sit here.”

Using set notation, we can describe the set of welcome sitters as:

 Seniors  Disabled

It appears that the set operation union corresponds to English “and”.

52 Sets

In English, when we’re thinking about sets, we use “and” to mean union. Of course, when we’re

thinking about logical predicates, we use “or” to mean or. But we’ve just seen that set union and

logical or correspond. So, sadly, in English, it may be possible to use both “and” and “or” to

mean the same thing. Now, at least, you know why.

Complement / Complement

Notice that this one must consider the universe U.

The definition of complement: x  SP if and only if (x  U)  (x  SP)

So: SP = {x  U : P(x)}

Subtraction (Set Difference) / And Complement

Now the explicitly stated set SP plays the role that the universe U did when we defined

complement.

The definition of set difference: x  SP - SQ if and only if (x  SP)  (x  SQ)

So: SP - SQ = {x : P(x)  Q(x)}

But we write the same claim in logic using or:

x ((Senior(x)  Disabled(x)) → CanSitHere(x))

This corresponds to the other way we could have described the situation in English: “If you

are a senior or you are disabled, you are welcome to sit here.”

Timmy, in the throes of the terrible twos, know exactly what food is. Let Moms be the set of

things his Mom wants him to eat and let MomApproves(x) be true just of elements of Moms.

Let Small be the set of things small enough to fit into his mouth. Then Timmy’s notion of food

can be described as follows with respect to the universe Small:

 Food = Moms = {x  Small: Mom(x)}

Consider the food options available to a poverty-stricken student who is trying, nevertheless,

to eat healthy food. Let Wholes be the set of foods available at the local organic foods store

and let Whole(x) be true just in case that store sells x. Let Crazies be the set of outrageously

priced foods and let CrazyPrice(x) be true just in case the price of x is outrageous. Then our

hapless student’s options correspond to this (sadly, very small) set:

 StudentOptions = Wholes - Crazies = {x : Whole(x)  CrazyPrice(x)}

Sets 53

Subset / Implies

Recall the subset relationship, which we can illustrate with

a Venn diagram:

The definition of subset: SP  SQ if and only if x ((x  SP) → (x  SQ))

So: SP  SQ  x (P(x) → (Q(x))

Notice that, in this case, both expressions are logical ones (i.e., they have truth value), so we’ll

say that they are equivalent.

Suppose that SP  SQ (i.e., SP is a proper subset of SQ). Then we make a stronger claim when

we say that x  SP than we make when we say that x  SQ. You can think of it as smaller circles

make stronger claims (because fewer elements qualify).

Recall that Z is the set of integers and R is the set of Reals. So:

Since Z  R, we have that x (Integer(x) → (Real(x))

54 Sets

Problems

1. Let S = (Fruits  Vegetables) - RedThings. Then we can say:

 x  S if and only if ___.

Which of the following logical expressions goes into the blank:

a) Fruit(x)  Vegetable(x) Red(x)

b) (Fruit(x)  Vegetable(x))  Red(x)

c) (Fruit(x)  Vegetable(x))  Red(x)

d) (Fruit(x)  Vegetable(x))  Red(x)

e) Fruit(x)  Vegetable(x)  Red(x)

2. Consider the classic (chivalrous) idea:

Circle all of the following expressions (some logical,
some sets) that are consistent with the intent of our
sign:

I. Firsts = Women  Children

II. Firsts = Women  Children

III. x ((Child(x)  Woman(x)) → First(x))

IV. x ((Child(x)  Woman(x)) → First(x))

V. x ((Child(x)  Woman(x)) → First(x))

3. Assume a universe of people in our club. Suppose that you’re told:

[1] MyFriends  (EmeryFriends  LandryFriends) - SawyerFriends

 (Part 1) Consider the logical expression:

[2] x (EmeryFriend(x) → MyFriend(x))

Which of the following is true:

a) [2] is equivalent to [1].
b) [2] must be true if [1] is.
c) [2] is consistent with [1] although not guaranteed by it.
d) [2] is inconsistent with [1]

Sets 55

(Part 2) Consider the logical expression:

[3] x (SawyerFriend(x) → MyFriend(x))

Which of the following is true:

a) [3] is equivalent to [1].
b) [3] must be true if [1] is.
c) [3] is consistent with [1] although not guaranteed by it.
d) [3] is inconsistent with [1]

(Part 3) Consider the logical expression:

[4] x (MyFriend(x)  EmeryFriend(x)  SawyerFriend(x))

Which of the following is true:

a) [4] is equivalent to [1].
b) [4] must be true if [1] is.
c) [4] is consistent with [1] although not guaranteed by it.
d) [4] is inconsistent with [1]

(Part 4) Consider the logical expression:

[5] x (EmeryFriend(x) → MyFriend(x))

Which of the following is true:

a) [5] is equivalent to [1].
b) [5] must be true if [1] is.
c) [5] is consistent with [1] although not guaranteed by it.
d) [5] is inconsistent with [1]

56 Sets

Making Sure that We Don’t Write Nonsense

At this point, we will often find ourselves working with

several different types of things, including:

• Primitive objects like numbers, people and courses.

• Sets of objects.

• Logical statements.

 https://www.youtube.com/watch?v=hrzMkiBuNgU

It’s important, if we don’t want to spout nonsense, that we use all of these things only in ways

that are defined for their types.

Problems

1. Mark each of the following claims as Sense if it is well-defined and Nonsense if it is not well-
defined. (Note that we’re not actually asking whether or not the claim is True. Just whether it is
syntactically well-formed.) Assume that a and b are primitive objects, A and B are sets and P
and Q are logical predicates.

a) (A  B)  (A  B)

b) x (P(x) → (x  A))

c) (a  A) → P(a  b)

d) (A  B) → x (P(x))

e) a  (A  B)

f) (a  A) (a  B)

Nifty Aside

Modern programming languages also make extensive use of the notion of type.

Operations are defined for one or more specific types and don’t make any sense when

applied to objects of other types. For example, this is nonsense Python code:

"abc" - "ab"

The problem is that subtraction isn’t defined for objects of type string.

Consider the expression: x  A  B

It’s nonsense. If A and B are logical expressions, then so is A  B. So far so good. But logical

expressions don’t have elements. If, on the other hand, A and B are sets, then and () can’t

be applied to them. It is defined only for logical expressions.

If someone wrote this, they might perhaps have been trying to say that x is in both A and B.

In that case, they could correctly have written either of these expressions:

 x  A  x  B

 x  A  B

https://www.youtube.com/watch?v=hrzMkiBuNgU
https://www.youtube.com/watch?v=hrzMkiBuNgU

Sets 57

Proving Claims about Sets I

Checking Proofs about Sets

StepWise (the proof checking tool that we used for Boolean and predicate logic) also works for

proofs about sets.

You will notice that, as we introduce the identities and inference rules that we’ll use for

reasoning about sets, those things will show up as allowable justifications in StepWise.

Convert the Set Problem to a Logic Problem

Recall that we have defined all the set operations in terms of logical ones.

The structure of these definitions suggests a powerful way to reason about sets:

1. Convert the set problem to a logical one by exploiting the definitions of the set operators.

2. Reason in logic.

3. Convert the result back to a set expression, again using the definitions of the set

operators.

The details of how we do this depend on what we are trying to prove.

Suppose that we want to prove that two sets A and B are equal. One approach is to prove that the

claim that some element x is in A is logically equivalent to the claim that it is in B.

We will proceed as follows:

1. We’ll take as a conditional premise the claim that x is in A.

2. Using the convert-to-logic technique that we’ve just described, we’ll then prove that, if x

is in A, then it must also be in B. We will be careful to use only logical identities and

computation as we do this. (In other words, we use only reversible rules.)

3. We observe that, since the proof we just did is reversible, we have also proved the other

direction, namely that, if x  B, then x  A.

4. Having proved both directions, we have that x  A  x  B.

5. Now we use Universal Generalization to generalize from a claim about an arbitrary x to a

claim about any x. We then have: x (x  A  x  B).

6. Finally, we appeal to the definition of set equality to assert that, since A and B contain the

same elements, A = B.

For example: The definition of intersection: x  A  B if and only if (x  A)  (x  B)

58 Sets

As we write our proofs, when there is no confusion, we will focus on the logic of each individual

proof. So we may omit explicit mention of the steps that are numbered [6] – [10] above. In

particular, when we do proofs using our proof checker, we will skip those steps since they are the

same in every proof.

Prove that, for all sets S, S   = .

For any set S and any arbitrary element x of S:

 https://www.youtube.com/watch?v=QR6akpA-FYA

[1] x  (S  ) (Conditional)premise

[2] (x  S)  (x  ) Def. of  [1]

[3] (x  S)  False Def. of  [2]

[4] False Logical Computation [3]

[5] x   Definition of  [4]

[6] x  (S  ) → x   Conditional Discharge [1], [5]

[7] x   → x  (S  ) The proof is reversible. [6]

[8] x  (S  )  x   Definition of  [6], [7]

[9] x (x  (S  )  x  ) Universal Generalization [8]

[10] S   =  Definition of set equality [9]

In this very simple proof, we only needed one purely logical step (the one that derived [4]).

Then we were ready use set definitions to go back the other way. We were able to go from

[4] to [5] by observing that the claim that x   is a contradiction (since no elements are in

). Thus it is equivalent to False.

http://youtu.be/-Tidng330E4
https://www.youtube.com/watch?v=QR6akpA-FYA
https://www.youtube.com/watch?v=QR6akpA-FYA

Sets 59

Problems

1. Prove that, for all sets S, S -  = S

Write a proof that holds for any set S and any arbitrary element x of S.

Hint: You should be able to simplify and use Boolean computation to get the desired result.

60 Sets

Set Identities

While we can always reason about sets by converting set claims to logical ones and then

reasoning in logic, it can be useful to be able to reason more directly about sets themselves.

Fortunately the natural analogy between set expressions and logical ones suggests a collection of

set identities analogous to the logical ones that we have already described and proved. Recall the

analogies that we’ve presented:

• Set complement corresponds to logical not.  / 

• Set union corresponds to logical or.  / 

• Set intersection corresponds to logical and.  / 

• Set difference corresponds to logical and not. - / 

• Set subset corresponds to logical implies.  / →

We present the set identities here. Then we’ll show how they can be proved. Most of the proofs

will be left as exercises.

Let A, B, and C be arbitrary sets. Let U be the universe.

As we write expressions involving sets, we’ll see that sometimes we write expressions whose

values are sets.

But sometimes we write logical expressions about sets. In this case, the value of the expression

is not a set; it is True or False.

As we have been doing, we’ll use = to indicate that two sets are equal (i.e., that they contain the

same elements). We’ll use  to indicate that two logical expressions are equivalent (i.e., that

they have the same truth values).

For each of these identities, we’ll show the logical version on the left, then the set version, in red,

on the right.

Double Negation

 p  (p) A =  (A)

Equivalence

 (p  q)  (p → q)  (q → p) (A = B)  (A  B)  (B  A)

(A  B) and A  (B  C) are expressions whose value is a set.

 (A = B) and (A  B) are logical expressions. They are either true or false.

Sets 61

Idempotence

 (p  p)  p (A  A) = A

 (p  p)  p (A  A) = A

De Morgan1

((p  q))  (p  q)  (A  B) =  A   B

De Morgan2

(p  q)  (p  q)  (A  B) =  A   B

Commutativity of or Commutativity of Union

(p  q)  (q  p) (A  B) = (B  A)

Commutativity of and: Commutativity of Intersection

(p  q)  (q  p) (A  B) = (B  A)

Associativity of or: Associativity of Union

(p  (q  r))  ((p  q)  r) A  (B  C) = (A  B)  C

Associativity of and: Associativity of Intersection

(p  (q  r))  ((p  q)  r) A  (B  C) = (A  B)  C

Distributivity of and over or: Distributivity of Intersection over Union

(p  (q  r))  ((p  q)  (p  r)) A  (B  C) = (A  B)  (A  C)

Distributivity of or over and: Distributivity of Union over Intersection

(p  (q  r))  ((p  q)  (p  r)) A  (B  C) = (A  B)  (A  C)

Conditional Disjunction:

(p → q)  (p  q) (A  B)  ((A  B) = U)

Contrapositive:

(p → q)  (q → p) (A  B)  (B  A)

Of these, the one that is perhaps not obvious is Conditional Disjunction. Recall that if we say p

→ q, we have equivalently said that at least one of p or q must, in all cases, be true. So, if

being in A implies being in B, we have an equivalent claim that every element must be in at least

one of A or B. Thus the two of them (A and B) together account for all of the universe U.

62 Sets

Problems

1. Consider the set S = A  (B  C). Which of the following Venn diagrams corresponds to S:
Hint: Use the set identities to transform the description of S into something that more obviously
matches one of these diagrams.

 (a) (b) (c)

 (d) (e)

2. Let S = A  (B  C). For each of the following sets R, mark True if it is must be equal to S for
all sets A, B, and C, and false otherwise. To answer True, you should be able to transform S
into R using the set identities. To answer False, you should be able to provide a
counterexample (i.e., example sets A, B, and C such that there is some element that is in S but
not in R, or vice versa.)

a) R = A  (C  B)

b) R = A  (C  B)

c) R = (A  C)  (A  B)

Sets 63

3. Let S = A  (B  C). For each of the following sets R, mark True if it is must be equal to S
for all sets A, B, and C, and false otherwise. To answer True, you should be able to transform S
into R using the set identities. To answer False, you should be able to provide a
counterexample (i.e., example sets A, B, and C such that there is some element that is in S but
not in R, or vice versa.)

a) R = (A  B)  C

b) R = (A  C)  B

c) R = (A  B)  (A  C)

64 Sets

Generalized Union and Intersection

Union and intersection are both associative and commutative.

So it makes sense to generalize both operations to an arbitrary number of sets. All we care about

is what sets are involved. The order of the operations doesn’t matter. It’s useful to introduce a

notation for doing this. We already have such a notation for sum and product (of numbers):

∑ 𝑎𝑖

𝑛

𝑖=1

 ∏ 𝑎𝑖

𝑛

𝑖=1

Analogously for sets, we will write:

⋃ 𝑆𝑖

𝑛

𝑖=1

 ⋂ 𝑆𝑖

𝑛

𝑖=1

Problems
1. Let

S1 = {cherry, apple, pear, grape}
S2 = {mango, pineapple, orange, apple, raspberry}
S3 = {apple, peach, grape, orange}
S4 = {apple, pear, pineapple}

What is the value of:

⋂ 𝑆𝑖

4

𝑖=1

2. For any positive integer i, let:

 Si = {i}

What is the value of:

⋃ 𝑆𝑖

10

𝑖=1

So we have, for example:

(A  B)  C = A  (B  C) = (C  B)  A

And similarly for .

Sets 65

Law of the Excluded Middle

Recall that, when we began reasoning in logic, we took as an axiom the Law of the Excluded

Middle.

It too has an analog as we reason about sets:

Law of the Excluded Middle:

 p  p A  A = U

An alternative way to state this is in terms of an arbitrary element of A:

 (x  A)  (x  A)

We can use this axiom to prove useful properties about sets and operations on them.

Here’s a useful new set identity: A  B  (A  B)

Proof:

[1] x  (A  B)

[2] (x  A)  (x  B) Definition of  [1]

[3]  ( (x  A))  (x  B) Double negation [2]

[4]  ( (x  A))   ( (x  B)) Double negation [3]

[5]  (x  A)   ( (x  B)) Excluded Middle (x not in A  [4]

 x in A).

[6]  (x  A)   (x  B) Excluded Middle (same for B) [5]

[7] ((x  A)  (x  B)) De Morgan (backwards from the way [6]

 we more commonly use it)

[8] (x  (A  B)) Definition of  [7]

[9] x  (A  B) Excluded Middle [8]

So, again, we have proved that two sets must be equal by showing that any element of one must

necessarily be an element of the other.

One other comment about this proof: We did both Double Negation and Excluded Middle in two

steps each. A more natural proof would collapse each pair of steps into one. We’ve done it this

way here to match the way it must be done in the automatic proof checker that we are using.

66 Sets

Computing Set Values

We also, as we were working with logical expressions, saw that it may be possible to simplify

expressions by doing some simple computations with the fundamental values T and F. There’s

a natural analogy with sets here too.

To imagine how these rules work, think of U (the universe) as corresponding to T. It is true that

every element is in U. Think of  as corresponding to F. For any element, it is false that it is in

.

On the left here you’ll see the logical rules. On the right, in red, the corresponding set rules. The

commutative version of all of these rules (i.e., p  p vs. p  p) also holds.

• p  p  T S  S  U

• p  p  F S  S  

• p  T  T S  U  U

• p  F  p S    S

• p  T  p S  U  S

• p  F  F S    

The first of these rules follows from the Law of the Excluded Middle. The others all have

straightforward proofs. We’ve already seen the proof of the last rule.

Problems

1. Prove that, for any set S, S  S = .

Write a proof that holds for any set S and any arbitrary element x of S.

Sets 67

Inference Rules

Identities are transformations that can be applied in either direction because they link expressions

that are equivalent.

Inference rules, on the other hand, are one way streets. They allow us to derive new logical

statements from ones we already know to be true.

The Boolean inference rules that we’ve been using to reason with arbitrary logical expressions

suggest another set of inference rules. These are tailored to reasoning with logical claims about

sets.

We’ll list these rules here. As before, let A, B, and C be arbitrary sets and let U be the universe.

Modus Ponens:

From p and p → q, infer q From (x  A)  (A  B), infer x  B

Modus Tollens:

From p → q and q, infer p From (A  B)  (x  B), infer x  A

Disjunctive Syllogism:

From p  q and q, infer p From (x  A  B)  (x  B), infer x  A

Simplification:

From p  q, infer p From x  A  B, infer x  A

Addition:

From p, infer p  q From x  A, infer x  A  B

Conjunction:

From p and q, infer p  q From (x  A)  (x  B), infer x  A  B

Hypothetical Syllogism:

From p → q and q → r, infer p → r From (A  B)  (B  C), infer A  C

Contradictory Premises:

From p and p, infer q From (x  A)  (x  A), infer anything

68 Sets

Resolution:

From p  q and p  r, infer q  r From (x  A  B)  (x  A  C), infer x  B  C

Big Idea

In the Appendix, you will find a one-page cheat sheet that lists all our set identities and

rules of inference. You can print it or refer to it online.

Sets 69

Problems

1. Let A, B and C be any sets. Suppose that we know that x  A, x  B, and x  C. Consider
each of the following claims. Mark a claim true if it must be true. Mark it false if there are any
sets A, B and C for which it is false.

(Part 1) x  (A  B)  C

(Part 2) x  (A  B)  C

(Part 3) x  C  A

(Part 4) x  B  C

(Part 5) x  B  A

2. Two of the inference rules that we just presented are:

Addition: From x  A, infer x  A  B

Conjunction: From x  A  x  B, infer x  A  B

Let’s consider whether we get additional sound inference rules if we reverse the two we’ve got.
(Recall that an inference rule is sound just in case, whenever it is applied to a set P of premises,
any conclusion that it produces is entailed by P, i.e., it must be true whenever P is.) In other
words, can we run these rules backwards? Consider:

AdditionFLIPPED: From x  A  B, infer x  A

ConjunctionFLIPPED: From x  A  B, infer (x  A)  (x  B)

Which of the following statements is true? You should be able to prove your answer. In other
words, if you argue that a flipped rule is sound, you should be able to prove it so. If you argue
that it isn’t, you should be able to show that with an example of its use that isn’t correct.

a) Both of the flipped forms are sound.
b) AdditionFLIPPED is sound but ConjunctionFLIPPED is not.
c) ConjunctionFLIPPED is sound but AdditionFLIPPED is not.
d) Neither of the flipped forms is sound.

70 Sets

Proving that Two Sets are Equal

As we work with sets, one of the things that we most often want to do is to prove that two sets

are equal. For example, that’s what we’ll need to do if we want to prove the correctness of the

set identities that we’ve just listed.

How can we prove that two sets are equal? There are two approaches we can take:

• Write a chain of equivalent expressions. We can do this with set expressions using the

set identities or we can do it with logical expressions and use the logical identities. In

either case, suppose we have a chain such as:

E1  E2  E3 . . . Ek

Then we have that E1  Ek. Note that, to do this, we can use only identities. Inference

rules are one-way streets, so they have no place here.

This is the approach that we have been taking so far.

• Use inference rules. But, if we do this, we must do two proofs: To prove that two sets A

and B are equal, we must prove both that every element of A is in B and that every

element of B is in A. In other words, we must prove both A  B and B  A.

In the sections that follow, we’ll see examples of both of these approaches.

Sets 71

Proving the Correctness of the Identities and the Inference Rules

We’d like to be able to use the identities and the inference rules that we’ve just presented.

Before we can do that, we have to prove that they’re correct. Of course, in doing that, we can’t

actually use them. We have to do these proofs using the definitions of the set operators, coupled

with the logical rules that we’ve already proven correct.

As we do these proofs, the close connection between logical expressions and set expressions will

become even more obvious to us.

To prove that an identity is correct, we must prove that two sets are equal. Usually the easiest

way to do this is to use a chain of logical identities.

Problems

1. Prove that for all sets A: A   = A

2. Prove that set union is commutative. In other words, prove that, for all sets A and B: A  B

= B  A.

Prove De Morgan1: (A  B) = A  B

For any sets A and B and any element x:

[1] x  (A  B)

[2] (x  (A  B)) Excluded Middle [1]

[3] ((x  A)  (x  B)) Def. of  [2]

[4] (x  A)  (x  B) (Logical) De Morgan [3]

[5] (x  A)  (x  B) Excluded Middle (twice) [4]

[6] x  (A  B) Def. of  [5]

We’ve now shown that for any arbitrary x, the claim that it is in (A  B) is equivalent to the

claim that it is in A  B. Since two sets are equal exactly in case they have the same

elements, we have that:

 (A  B) = A  B

Notice that we didn’t cheat. We used logical De Morgan (whose correctness we have

already proved), not set De Morgan (the identity that we were trying to prove here.)

72 Sets

Proving Claims about Sets II

Proving Claims about Sets by Converting to Logical Claims

We now have a powerful enough set of tools to be able to prove many kinds of useful things

about sets. Our most generally useful strategy will be to work with arbitrary set elements and

convert our set problems to logic problems.

Prove that, for any sets A, B, and C,

A – (B  C) = (A – B)  (A – C).

We’ll convert the set problem to a logic problem (and

then back again). For any sets A, B, and C and any

element x:

 https://www.youtube.com/watch?v=Y3st4Kmm-VI

[1] x  A – (B  C)

[2] (x  A)  (x  (B  C)) Def. of set difference [1]

[3] (x  A)  ((x  B)  (x  C)) Def. of  [2]

[4] (x  A)  ((x  B)  (x  C)) (Logical) De Morgan [3]

[5] ((x  A)  (x  A))  ((x  B)  (x  C)) Idempotence [4]

[6] (x  A)  ((x  A)  (x  B))  (x  C) Associativity [5]

[7] (x  A)  ((x  B)  x  A))  (x  C) Commutativity [6]

[8] ((x  A)  (x  B))  ((x  A)  (x  C)) Associativity [7]

[9] x  (A – B)  ((x  A)  (x  C)) Def. of set difference [8]

[10] x  (A – B)  x  (A – C) Def. of set difference [9]

[11] x  (A – B)  (A – C) Def. of  [10]

We’ve written out every associativity and commutativity step. We’ve done that here just to

be very careful and to show what an easily automatically checkable proof would look like.

Usually when we write nontrivial proofs, we omit them.

Step [5] is perhaps the least obvious one. Why did we replace (x  A) with the redundant

expression (x  A)  (x  A)? Because we were looking at our goal ([11]) and we noticed

that it mentions A twice.

Notice that we have been careful to use only definitions and identities. We’ve used no

inference (one-way only) rules. So we do not need to do a second proof to show that:

x  (A – B)  (A – C) → x  A – (B  C).

So we’ve shown that for any arbitrary x, it is in A – (B  C) if and only if it is in (A – B)  (A – C).

Since two sets are equal exactly in case they have the same elements, we have that:

 A – (B  C) = (A – B)  (A – C)

https://www.youtube.com/watch?v=Y3st4Kmm-VI
https://www.youtube.com/watch?v=Y3st4Kmm-VI

Sets 73

Problems

1. Prove or disprove the claim that for any sets A, B, and C, A – (B  C) = (A – B) – C.

2. Let the universe U be the set of companies. Consider the claim that, for any values of the
sets Customers, Suppliers, and Competitors:

Customers – (Suppliers – Competitors) = (Customers – Suppliers)  (Customers 
Competitors)

 Let C = Customers, S = Suppliers, and X = Competitors. Prove this claim:

 C – (S – X) = (C - S)  (C  X)

74 Sets

Working Directly with Set Expressions

Sometimes we want to show that two set expressions define the same set.

Sometimes we just want to simplify a long and messy expression that we’ve somehow derived.

In both cases, we know that we can (as we have just been doing) use the powerful general

technique of reasoning about an arbitrary element of a set.

But sometimes it’s easier to manipulate set expressions directly, using some combination of:

• the set identities that we’ve just described (plus any others that you want badly enough to

prove the correctness of), and

• computation.

Prove that: ((A  B)  B) = B  A

 http://youtu.be/Tlf2k_oPVps
[1] ((A  B)  B)

[2] (A  B)  (B) Set De Morgan [1]

[3] (A  B)  B Set Double Negation [2]

[4] (A  B)  B Set De Morgan [3]

[5] B  (A  B) Set Commutativity [4]

[6] (B  A)  (B  B) Set Distributivity [5]

[7] (B  A)   Set Computation [6]

[8] B  A Set Computation [7]

http://youtu.be/Tlf2k_oPVps
http://youtu.be/Tlf2k_oPVps

Sets 75

Problems

1. Let S = (A  B)  B. For each of the following sets R, mark True if R must equal S,
regardless of the values of A and B. Mark False otherwise. You should be able to prove each
of your answers. If you mark True, you should be able to show a proof that exploits the set
identities and the computational rules that we’ve just presented. If you mark False, you should
be able to present a counterexample.

a) R = B  A

b) R = (B  A)  B
c) R = A - B

2. Prove that (A  B)  B = ((B  A)  C)  ((B  A)  C)

3. Prove that: (A  B)  (C  B) = 

76 Sets

Proving Claims about Subsets

It’s often useful to be able to reason about subset relationships.

Recall the definition of :

 A  B  x ((x  A) → (x  B))

This definition makes clear the relationship between the set operator subset () and the logical

operator implies (→).

Also recall that one natural way to define a set A is to define a predicate PA that is true of all and

only the elements of A. In that case, we have:

x  A  PA(x)

Putting these two together, we have:

 A  B  x (PA(x) → PB(x))

So we see that one way to reason about subsets is just to bail out to logic. Sometimes, however,

if we’re in the middle of reasoning about sets, it’s useful to be able to reason about subsets

directly. So we may want to prove some general claims about them. Of course, the way we do

that is much the same as the way we prove other set claims: we convert them to logic, exploit

whatever tools of logical reasoning are necessary, and then convert it back to a subset claim.

For example, suppose that we have:

[1] WeekendGuards  HourlyEmployees

[2] All hourly employees get paid weekly.

We’d like to be able to conclude:

[3] All weekend guards get paid weekly.

To see this clearly, let’s return to the weekend guards example, which we’ll now restate using

just logical expressions:

[1] x ((WeekendGuard(x)) → HourlyEmployee(x))

[2] x ((HourlyEmployee(x)) → PaidWeekly(x))

It’s now obvious that we can conclude:

[3] x ((WeekendGuard(x)) → PaidWeekly(x))

Sets 77

Often, however, we aren’t able to rely exclusively on identity operations. In particular, to prove

claims of the form p → q, we often have to exploit at least some (one-way) inference rules.

Problems

1. Prove that, for all sets A, B, and C: ((A  B)  (B  C)) → (A  C).

2. Prove that, for all sets A and B: (A – B)  (B – A)  (A  B) .

Prove that, for any sets A, B, and C:

 (A  (C  B)) → ((A – C)  B)

Because we want to prove a claim of the form P → Q, we’ll use the Conditionalization rule.

Our conditional premise is (A  (C  B)). We’ll convert that to a logical expression, reason

with it, and derive ((A – C)  B). We can then conclude that (A  (C  B)) → ((A – C)  B).

[1] (A  (C  B)) (Conditional) Premise

[2] (x  A) → (x  (C  B)) Def. of subset [1]

[3] (x  A) → ((x  C)  (x  B)) Def. of union [2]

[4] (x  A)  ((x  C)  (x  B)) Conditional disjunction [3]

[5] ((x  A)  (x  C))  (x  B) Associativity of or [4]

[6] ((x  A)  (x  C)) → (x  B) Conditional disjunction [5]

[7] ((x  A)  (x  C)) → (x  B) De Morgan [6]

[8] ((x  A)  (x  C)) → (x  B) Double Negation [7]

[9] (x  A - C) → (x  B) Def. of set difference [8]

[10] (A - C)  B Def. of subset [9]

[11] (A  (C  B)) → ((A – C)  B) Conditional Discharge [1], [10]

We can prove the following useful claim about subsets:

For any sets S, A, and B:

 S  (A  B)  (S  A)  (S  B)

We’ll do the proof in the usual way, by reasoning about an arbitrary element of S. Note that,

for step [4], we use a Boolean identity that we haven’t used before. We can easily proof its

validity with a truth table.

[1] S  (A  B)

[2] (x  S) → (x  (A  B)) Definition of subset [1]

[3] (x  S) → ((x  A)  (x  B)) Definition of intersection [2]

[4] ((x  S) → (x  A))  ((x  S) → (x  B)) p → (r  s)  (p → r)  (p → s) [3]

[5] (S  A)  (S  B) Definition of subset (twice) [4]

78 Sets

Proving that Two Sets Are Equal Using Two Subset Relationships

Often, we can prove that two sets A and B are equal using the algebraic (symbol manipulation)

techniques that we have just been describing.

But sometimes that doesn’t work (at least in any straightforward fashion). This typically

happens when A and B are defined in different ways. In this case, we may want to appeal to a

different technique for showing that A = B. We note that if A and B are both subsets of each

other, they must be equal. Formally:

 (A  B)  (B  A) if and only if A = B

This must be so given the definition of set equality: Two sets are equal just in case they contain

the same elements. If every element of A is also in B and every element of B is also in A, then A

and B do contain the same elements.

So we can prove that A = B in two steps:

• Show that A  B, and

• Show that B  A.

As we build more interesting formalisms, we may find that we want to show that two sets that

are defined in very different ways are, in fact, the same. In these cases, showing a two-way

subset relationship is often the way to go.

Suppose that we’ve asked our team to order a plaque for every employee who is

celebrating his or her 5th or 10th anniversary with the company. The ceremony is this

afternoon. We want to prove:

EmployeesWithPlaques = AnniversaryEmployees

We do this in two steps:

• Show that EmployeesWithPlaques  AnniversaryEmployees. We do this by going

through the pile of plaques and looking up each name in the corporate database to

make sure that the employee is having an anniversary.

• Show that AnniversaryEmployees  EmployeesWithPlaques. We do this by asking the

corporate database for a list of anniversary employees. For each of them, we check

to make sure that there’s a plaque.

In this simple example, we could actually combine the steps by printing out the list of

anniversary employees. We could pick up the plaques one at a time and cross out the

matching name. If we end up with no stray plaques and no stray names, we’re done. So,

while there’s an efficient way to combine the steps, we observe that what we’re doing is to

check the two-way subset relationship.

Sets 79

Proving Claims about Powersets

We prove claims about powersets in much the same way we prove claims about other sets: we

reason about typical elements. But now we note that each such typical element is itself a set.

Recall the definition of the powerset ℘(A) of a set A:

For any sets A and S:

 S  ℘(A) if and only if S  A

We’ll first prove a very straightforward and useful claim. We won’t need much logical

reasoning to do it.

Prove that, for any sets A and B, ℘(A  B) = ℘(A)  ℘(B).

To do this, we’ll use as a Lemma a claim that we proved back in the section on subsets:

 Subset Intersection Lemma: S  (A  B)  (S  A)  (S  B)

This is a good example of the use of lemmas to build new claims on ones we’ve already

proved.

For any sets A, B and S:

[1] S  ℘(A  B)

[2] S  (A  B) Def. of power set [1]

[3] (S  A)  (S  B) Subset Intersection Lemma [2]

[4] (S  ℘(A))  (S  B) Def. of powerset [3]

[5] (S  ℘(A))  (S  ℘(B)) Def. of powerset [4]

[6] S  ℘(A)  ℘(B) Def. of  [5]

We’ve now shown that an arbitrary element S is in ℘(A  B) if and only if it is in ℘(A)  ℘(B).

So, since the two sets have the same elements, we have that ℘(A  B) = ℘(A)  ℘(B).

80 Sets

Problems

1. We’ve just proved that for any sets A and B, ℘(A  B) = ℘(A)  ℘(B). But what about
union? Consider the following claim:

 For any sets A and B, ℘(A  B) = ℘(A)  ℘(B).

It turns out that this claim is false. We can prove it false by exhibiting a counterexample.

Consider each of the following proposed counterexamples. Mark each one Counterexample if it

is, in fact, a counterexample to our claim. Mark it Not Counterexample otherwise.

a) Let A =  and B = .

b) Let A = {1} and B = {2}.

c) Let A = {1} and B = {1, 2}.

d) Let A =  and B = {1, 2}.

2. Prove that, for any sets B and C:

 (B  C) → ℘(B)  ℘(C)

We will assume that we’ve already proven the following theorem about the transitivity of subset:

 X, Y, Z (((X  Y)  (Y  Z)) → (X  Z))

We’ll use it as a premise.

Sets 81

Proof by Counterexample

When we’re working with sets, there are two common kinds of universal claims:

• x  S (P(x)) In other words, P is true of every element of the set S.

• S = T In other words, every element of S is also in T and vice versa.

The first form is obviously a universal claim. But the second one is a universal claim too.

So we can prove things about both of them using our general strategies for working with

universal claims.

In particular, we can refute any universal claim by exhibiting a single counterexample.

Problems

1. Consider the following claim:

For any sets, A, B, and C, if A  B then A – C  B – C.

We want to show that this claim is false by exhibiting a single counterexample. For each of the
following, indicate whether it is such a counterexample:

a) A = {1, 2}. B = {1, 3}. C = N.
b) A = {1, 2}. B = {2, 1}. C = N.

c) A = {1, 2}. B = {1, 3}. C = .
d) A = {1, 2}. B = {1, 3}. C = {2, 3}.

Consider the following claim:

 Let A, B, and C be any sets. If A - C = A - B then B = C.

We show that this claim is false with a counterexample: Let A = , B = {1}, and C = {2}. A - C

= A - B = . But B  C.

82 Sets

Inclusion/Exclusion Exploration

In many applications, we work with finite sets.

So it’s worth considering some interesting properties of finite sets.

Let’s look at what happens when we union two finite sets A and B. What can we say about |A 

B| (the number of elements in A  B)?

Problems

1. Let: A = {1, 3}. So: |A| = 2
 B = {2, 4, 8}. So: |B| = 3

First, determine the value of A  B. Now answer the question: What is |A  B|?

2. Let: A = {1, 2, 3} So: |A| = 3
 B = {1, 2, 4, 8} So: |B| = 4

What is |A  B|?

3. Let: A = {1, 2, 4, 8} So: |A| = 4
 B = {1, 2, 4, 8} So: |B| = 4

What is |A  B|?

4. Let A be an arbitrary set.
 B be an arbitrary set.

What is |A  B|? You should be able to figure this out from your answers to the last few
problems.

a) |A| + |B|

b) |A| + |B| - |A  B|
c) |A - B| + |B - A|
d) |A| + |B| - |A - B| - |B - A|

e) |A  B| + |A| + |B|

For example, we work with sets of students, sets of employees, sets of customers, etc.

Sets 83

The Inclusion/Exclusion Principle

In the last few problems, we saw that, for any sets A and B:

 |A  B| = |A| + |B| - |A  B|

This observation is called the Inclusion/Exclusion Principle.

But just doing a few examples, while good for intuition building, isn’t a proof. We need to prove

this claim.

This proof is a bit long. If you skip it, you can still take the Inclusion/Exclusion Principle as a

theorem.

We’ll do the proof by induction on the number of elements in B. (We chose B arbitrarily. We

could equally well have done it by induction on the number of elements in A.)

Base case: B = . So |B| = 0.

 A  B = A   = A A  B = A   = 

 |A  B| = |A| |A  B| = 0

 So we have:

 |A  B| = |A| = |A| + 0 = |A| + |B| = |A| + |B| - 0 = |A| + |B| - |A  B|

Induction step: We must prove that, for n  0:

If: |A  B| = |A| + |B| - |A  B| for all sets A and B where |B| = n,

Then: |A  B| = |A| + |B| - |A  B| for all sets A and B where |B| = n + 1.

Let B be any set such that |B| = n + 1. Since n is at least 0, n + 1 is at least 1. So B contains at

least one element. Pick any one such element. Call it x. Now consider B = B – {x}. Note that

|B| = |B| - 1 = n.

We now consider two cases:

(1) x  A: A  B = A  B (since x is in A  B regardless of whether it was in B)

|A  B| = |A  B|

Since |B| = n, we can use the induction hypothesis to rewrite the right

hand side, giving:

[1] |A  B| = |A| + |B| - |A  B|

84 Sets

Now observe: x  A. x  B. So x  A  B. But, since x  B, x  A  B.

For every other element y, y must be in both A  B and A  B or neither.

So:

A  B = (A  B)  {x}

|A  B| = |A  B| + 1 (since x was not already in A  B)

|A  B| - 1 = |A  B|

Substituting this value for |A  B| into [1], we get:

|A  B| = |A| + |B| - (|A  B| - 1)

Since |B| = |B| - 1, we have:

|A  B| = |A| + (|B| - 1) - (|A  B| - 1)

Simplifying, we have:

|A  B| = |A| + |B| - |A  B|

(2) x  A: Since x  B, x  A  B.

However, since x  B, x  A  B.

For every other element y, y must be in both A  B and A  B or neither.

So:

A  B = (A  B)  {x}

| A  B | = |A  B| + 1 (since x was not already in A  B)

Since |B| = n, we can use the induction hypothesis to rewrite the right

hand side, giving:

[2] |A  B | = |A| + |B| - |A  B| + 1

Since x  A, x is not an element of either |A  B| or |A  B|. For every

other element y, y must be in both A  B and A  B or neither. So:

A  B = A  B

|A  B| = |A  B|

Substituting this value of |A  B| into [2], we get:

[3] |A  B| = |A| + |B| - |A  B| + 1

Sets 85

The last fact we need is:

|B| = |B| - 1

Substituting this into [3], we get:

|A  B| = |A| + (|B| - 1) - |A  B| + 1

Simplifying we get:

|A  B| = |A| + |B| - |A  B|

Problems

1. If A and B are disjoint, what is |A  B|? Mark true for each expression that must be true for
any disjoint sets A and B. Mark False for all others.

a) |A  B| = |A| + |B| - |A  B|

b) |A  B| = |A| + |B| + |A  B|

c) |A  B| = |A| + |B|

d) |A  B| = |A  B|

2. How many integers in {1 . . . 1000} are divisible by 2 or 3? (Hint: Use the Inclusion/Exclusion
principle. Consider the sets DivisibleBy2 and DivisibleBy3.)

86 Sets

Computer Representation of Sets

Concrete Representations of Sets

In mathematics, we can reason about sets without concrete representations of them. But when

we want computers to do the reasoning, we must begin with computationally effective

representations.

We’ve already considered two such representational techniques:

• We can write a generator (also called an enumerator). Its job is to output (in some

unspecified order) all and only the elements of the set.

• We can write a recognizer. Its job is to examine a candidate and return True if the

candidate is in the set and False otherwise.

When we use either of these techniques, we don’t need to write out explicitly all of the elements

of the set that we’re working with. This means that both of these techniques can be used not just

to define finite sets (where we could have written out the elements if we’d wanted to) but also

sets that aren’t finite.

Generators and recognizers are particularly useful when there’s a pattern that describes the

elements of the set in question. Short programs can describe large sets.

But sometimes there’s not a pattern. There’s just a collection of elements that have occurred in

some way in a real problem.

Here’s a recognizer (written in Python) for the set of integers that are evenly divisible by 3. (To

make it simple, we’ve assumed a universe of integers, so the program assumes that its input,

n, is an integer. Also, note that the expression n%3 returns the remainder when n is divided by

3.)

def div_3(n):

 if n%3 == 0:

 return True

 else:

 return False

This program is a lot shorter than a list of even the first couple of thousand integers that are

divisible by 3.

Sets 87

In cases like this, there really isn’t any good way to represent the set except by explicit mention

of the elements that it contains.

We can do that in code.

But there’s got to be a better way. This program is not compact. And, worse, each week, we

have to go in and change the code to look for new part numbers.

There are several better ways. In general, the idea is to get set definitions out of code and into

some declarative representation that is both more flexible to use and more reliable to update.

Two common ways to do that are:

• Store the instances in an external database. If we do this, many programs can use the

same data.

• Store the instances in an internal data structure that has been specifically designed to

represent sets. We’ll look at one way to do this on the next slide.

In our factory, we might need to work with the following set that contains the numbers of the

parts that are to be fabricated this week:

 {46454, 363539, 84747, 4242, 96579, 353535, 513243}

For example, here’s a Python program to recognize the set of part numbers (again assume

that the universe is the integers. Also note that \ just means that we’re continuing a long

expression onto the next line.)

def part(n):

 if n == 46454 or n == 363539 or n == 84747 or \

 n == 4242 or n == 96579 or n == 353535 or \

 n == 513243:

 return True

 else:

 return False

88 Sets

Bit Vector Representations of Sets

Let U be a finite universe from which the elements of a set S will be taken. Imagine a one-row

table R that has one column for each element of U. We’ll refer to the elements of R as:

R[k] is the kth element of R.

It is common in the programming world to start counting from 0 when we do this. We’ll stick

with the more everyday convention in which we start counting from 1, but it really doesn’t

matter as long as we’re consistent.

Suppose that U contains 10 elements. Then R will look like this (where we’ve shown the names

of the elements of U above their respective entries):

U1 U2 U3 U4 U5 U6 U7 U8 U9 U10

To represent a set S, drawn from U, we’ll fill this table with Boolean values as follows:

• If Uk  S: R[k] = True

• If Uk  S: R[k] = False

We wouldn’t have to think of the values in R as Booleans. They could be drawn from any two-

valued set. So they could be either % or #. Or they could be • or blank. Or they could be 0 and

1. The set {0, 1} is exactly the set of digits that occur when we represent numbers in binary

(base 2). When we do that, a single digit is called a bit (short for binary digit). For this reason,

the representation that we’re describing is often called a bit vector representation. In this

representation, 0 corresponds to False and 1 corresponds to True.

Let U be {11, 22, 33, 44, 55, 66, 77, 88, 99}. Let S = {99, 55}. Then we can represent S with the

following bit vector (shown in a couple of standard ways):

11 22 33 44 55 66 77 88 99

 • •

11 22 33 44 55 66 77 88 99

False False False False True False False False True

11 22 33 44 55 66 77 88 99

0 0 0 0 1 0 0 0 1

Sets 89

Problems

1. Define the following two sets:

A =

B =

Show the bit vector that describes A  B:

11 22 33 44 55 66 77 88 99

False True False False True False False False True

11 22 33 44 55 66 77 88 99

False True True False False False False False True

11 22 33 44 55 66 77 88 99

False True True False True False False False True

90 Sets

Set Operations Using Bit Vector Representations

The last problem that we did suggests one of the main advantages of bit vector representations:

To perform operations on sets, all we need to do is to perform Boolean operations on their bit

vector representations (again thinking of 0 as False and 1 as True).

Problems

1. Define the following two sets:

A =

B =

Show the bit vector that describes A  B:

2. Define the following set:

A =

Show the bit vector that describes A:

11 22 33 44 55 66 77 88 99

False True False False True False False False True

11 22 33 44 55 66 77 88 99

False True True False False False False False True

11 22 33 44 55 66 77 88 99

False True False False True False False False True

Sets 91

Multisets

The Key Idea

Sets don’t have duplicate elements. But sometimes duplicates matter.

A multiset is an unordered collection of (not necessarily distinct) elements.

If A is a multiset and x is some object, then the multiplicity of x in A is the number of

occurrences of x in A. We’ll write that as:

#x(A) = the number of occurrences of x in A.

Notice that every set S is also a multiset. It simply has the property that, for every element x in

the universe, either #x(S) = 0 (if x  S) or #x(S) = 1 (if x  S).

The standard set relationships and operations, plus one new and very useful one, can be defined

for multisets. For example:

Union: For any multisets A and B and element x:

#x(A  B) = maximum(#x(A), #x(B))

Intersection: For any multisets A and B and element x:

#x(A  B) = minimum(#x(A), #x(B))

Recall our sandwich order example. Suppose that a

group of you are together at a meeting and one of you

has offered to run to the deli for sandwiches. Everyone is

asked to submit an order. If two people ask for tuna, it’s

important that tuna get entered twice.

Suppose that we want to find the average score on last week’s test. Then we need to start

with a multiset that contains the individual scores. We might, for example, have:

 S = {90, 57, 89, 95, 68, 90, 78, 95, 87, 92, 98, 88, 69, 100, 92, 84, 86, 100}

If S is the multiset of exam scores given above, then #90(S) = 2. #45(S) = 0.

92 Sets

Difference: For any multisets A and B and element x, we want to subtract the elements of B from

the elements of A, but we must assure that the result never goes below 0, even if there are more

x’s in B than in A. So we have:

#x(A - B) = maximum(0, #x(A) - #x(B))

Subset: For any multisets A and B:

A  B if and only if x (#x(A)  #x(B))

Sum: This is a new operator, which we define as: For any multisets A and B and element x:

#x(A + B) = #x(A) + #x(B)

Multisets are important in many practical applications (not just sandwich ordering).

Define the following sets:

Chem1, the equipment that is needed for the Chemistry 1 lab:

{beaker, beaker, beaker, Bunsen, Bunsen, tube, tube, tube, tube, tube, tube}

Chem2, the equipment that is needed for the Chemistry 2 lab:

{beaker, beaker, Bunsen, tube, tube, tube, pipette, scale, pHmeter}

The equipment that we need for the two labs if we schedule them at the same time is:

Chem1 + Chem2 =

{beaker, beaker, beaker, beaker, beaker, Bunsen, Bunsen, Bunsen, tube, tube, tube,

tube, tube, tube, tube, tube, tube, pipette, scale, pHmeter}

The equipment that we need for the two labs if we don’t schedule them at the same time

(and thus they can share equipment) is:

Chem1  Chem2 =

{beaker, beaker, beaker, Bunsen, Bunsen, tube, tube, tube, tube, tube, tube, pipette,

scale, pHmeter}

Sets 93

Problems

1. Sometimes, when we analyze texts, we are interested in the words they contain but not in the
order in which the words occur. This is true when we do key word searches to find texts that
talk about specific things. It’s also true, for example, if we want to rate texts based on the
difficulty of the vocabulary that they use. In these cases, it’s useful to think of a text T as a
multiset of words.

Let T1 be a multiset that contains the words of a text we want to work with. For example, if the
text were just, “The Internet is the most powerful tool for changing the Internet.” Then T1 would
be:

 {the, the, the, Internet, Internet, is, most, powerful, tool, for, changing}

Just in this simple case we notice a couple of things about T1. Yes, “the” occurs often. So we
may want to define the universe so that we throw away very common words. But “Internet”
occurs more than “tool”. That suggests that this text is more about the Internet than it is about
tools. Of course, in this tiny example, we can’t conclude much. But with a longer text,
observations like this could be useful.

In some of the analyses that we’re about to do, we’ll want to consider the universe of possible
words. So define:

 U = the set that contains all words that might occur in any text.

(Part 1) Suppose that we want to build a model of the word use of a particular author. Then we
will want to combine word counts from many texts that she’s written. So, consider a second
text, “The Internet is changing the world every day.” Let T2 be the multiset that contains its
words:

 {the, the, Internet, is, changing, world, every, day}

We want to analyze the author’s style by working with a large corpus that contains many texts,
including these. So we want to build the following multiset, which we’ll call T3, which combines
T1 and T2:

{the, the, the, the, the, Internet, Internet, Internet, is, is, most, powerful, tool, for,
changing, changing, world, every, day}

Which of the following multiset expressions correctly describes T3:

a) T3 = T1  T2

b) T3 = T1  T2
c) T3 = T1 + T2

d) T3 = U  (T1  T2)

94 Sets

(Part 2) In order to focus our analysis on the words that really matter, we’d like to get rid of all
the words that occur only once in the text corpus. (Just as an aside: There’s a word for such
words. They’re called hapax legomena.) We’re willing to alter the other counts as long as it
isn’t by much and we preserve information about the relative frequencies of words. We’ll define
T4 to do that. Which of the following multiset expressions correctly describes T4:

a) T4 = T3  U

b) T4 = T3  U
c) T4 = T3 + U
d) T4 = T3 - U

(Part 3) We want to use textual analysis to try to figure out who the author of our large corpus
was. There are several candidates. For each candidate, we have a set that contains the words
that that author has been known to use. Our idea is to look at our text to see if it contains words
that a particular author would never have used. Let A be the set of words that our first author
ever uses. Which of the following multiset expressions correctly describes T5, the set of all
words in T3 that this author has never before been known to use:

a) T5 = T3  (U - A)

b) T5 = T3  (U - A)
c) T5 = (U - A) - T3

d) T5 = T3  (U  A)

2. Let A be the empty multiset ({}). Is it true that for all multisets B, A  B? Try to prove your
answer.

a) It is true and there’s a straightforward proof based on the definition of .
b) It is true but we need to use induction to prove it.
c) It isn’t true and I’ve found a counterexample.
d) I don’t think it’s true but there’s no simple counterexample.

Sets 95

The Fundamental Theorem of Arithmetic

Multisets are also important in mathematics. We’ll look here at one important example.

The Fundamental Theorem of Arithmetic (also called the Unique Prime Factorization

Theorem) tells us that every integer greater than 1 can be uniquely described as a multiset of

prime factors.

Define the greatest common divisor (or gcd) of two integers n and m to be the largest integer that

divides both of them.

A straightforward way to determine the greatest common divisor of two integers n and m is to

intersect their prime factorizations to create a new multiset of prime factors. Then gcd(n, m) is

the number whose prime factorization we’ve just computed.

For example:

 5 = 5 So the prime factorization of 5 is {5}.

 12 = 2  2  3. So the prime factorization of 12 is {2, 2, 3}.

 270 = 2  3  3  3  5. So the prime factorization of 270 is {2, 3, 3, 3, 5}.

For example, gcd(12, 270) = 6.

For example, suppose that we want to compute gcd(12, 270). We can use the prime

factorizations of 12 and 270:

{2, 2, 3}  {2, 3, 3, 3, 5} = {2, 3}

The integer whose prime factorization is {2, 3} is 6.

Nifty Aside

Thinking of integers (particularly very large ones) as products of prime factors is important

in modern cryptography. For example it plays a key role in the RSA encryption algorithm,

which depends on two important facts:

• No efficient technique for finding prime factorizations is known. So if the only way

for an unauthorized person to decrypt a message that I’ve sent you is to factor a

very large number, our communication is secure.

• But, interestingly, an efficient technique for finding greatest common divisors

(without finding full prime factorizations first) has been known since Euclid (in about

300 BC). This is important since agents that want to encrypt their communications

using RSA must first compute gcd.

96 Sets

Problems

1. For each of the following multisets, mark True if it corresponds to the prime factorization of
3060. Mark False otherwise.

a) {2, 2, 3, 3, 17, 5}
b) {2, 2, 3, 3, 5, 17}
c) {2, 3, 5, 17}
d) {2, 3, 5, 6, 17}
e) {1, 2, 2, 3, 3, 17, 5}

2. The prime factorization of 116,280 is {2, 2, 3, 3, 17, 5, 19, 2}. The prime factorization of
151,620 is {2, 2, 3, 7, 5, 19, 19}. What is gcd(116280, 151620)?

3. We stated the Fundamental Theorem of Arithmetic without proof. Its proof has two parts:

i. Prove that every integer greater than 1 can be described as a multiset of prime factors.
ii. Prove that that multiset is unique.

Step ii is beyond the scope of this discussion. But Step i can be done using techniques that we
have at our disposal. Let’s do it.

We’ll start by using Case Enumeration. We’ll consider two cases. What are they? (Hint:
Consider the first several integers greater than 1: 2, 3, 4, 5, 6, 7, 8, . . . How would you show
that this claim holds for each of them? Have you used exactly two techniques?)

We’ll prove the second case by strong induction.

Start by writing an explicit statement of the claim we need to prove. Write it as a predicate P(n)
where n is an integer greater than 1. (Hint: It’s fine to use straightforward English to do this.)

Next we need to prove the base case(s). What is/are they? (Hint: This is a little bit tricky.
There are more than a couple

Induction step: We must prove that P(n) holds for all composite integers greater than 1. We are
going to use strong induction. So we must prove that if P holds for all values less than n, it must
also hold for n. So we must prove:

 (k<n (P(k)) → P(n)

Since n is composite, what do we know about it? Write down a simple fact

Now use the induction hypothesis. What can we say about a prime factorization of a and b?
And can we go from there to the required claim, P(n)? Write down the rest of the proof.

Sets 97

Appendices

98 Sets

Set Identities
Double Negation

 p  (p) A =  (A)

Equivalence

 (p  q)  (p → q)  (q → p) (A = B)  (A  B)  (B  A)

Idempotence

 (p  p)  p (A  A) = A

 (p  p)  p (A  A) = A

De Morgan

((p  q))  (p  q)  (A  B) =  A   B

(p  q)  (p  q)  (A  B) =  A   B

Commutativity of or Commutativity of Union

(p  q)  (q  p) (A  B) = (B  A)

Commutativity of and: Commutativity of Intersection

(p  q)  (q  p) (A  B) = (B  A)

Associativity of or: Associativity of Union

(p  (q  r))  ((p  q)  r) A  (B  C) = (A  B)  C

Associativity of and: Associativity of Intersection

(p  (q  r))  ((p  q)  r) A  (B  C) = (A  B)  C

Distributivity of and over or: Distributivity of Intersection over Union

(p  (q  r))  ((p  q)  (p  r)) A  (B  C) = (A  B)  (A  C)

Distributivity of or over and: Distributivity of Union over Intersection

(p  (q  r))  ((p  q)  (p  r)) A  (B  C) = (A  B)  (A  C)

Conditional Disjunction:

(p → q)  (p  q) (A  B)  ((A  B) = U)

Contrapositive:

(p → q)  (q → p) (A  B)  (B  A)

Law of the Excluded Middle:

 p  p A  A = U

Set Inference Rules

Modus Ponens:

From p and p → q, infer q From (x  A)  (A  B), infer x  B

Modus Tollens:

From p → q and q, infer p From (A  B)  (x  B), infer x  A

Disjunctive Syllogism:

From p  q and q, infer p From (x  A  B)  (x  B), infer x  A

Simplification:

From p  q, infer p From (x  A  B), infer x  A

Addition:

From p, infer p  q From (x  A), infer x  A  B

Conjunction:

From p and q, infer p  q From (x  A)  (x  B), infer x  A  B

Hypothetical Syllogism:

From p → q and q → r, infer p → r From (A  B)  (B  C), infer A  C

Contradictory Premises:

From p and p, infer q A  A = 

Resolution:

From p  q and p  r, infer q  r From (x  A  B)  (x  B  C), infer x  A  C

