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What Is a Proof? 
 

Introduction 
 

We now have a good deal of experience at using 

Boolean logic to represent various kinds of things that 

we might know.  But the holy grail, or pot of gold at the 

end of the rainbow, or jackpot (or whatever metaphor 

you prefer) isn’t representation just for its own sake. 

 

We want to learn new things.  We want to derive new 

claims that must be true given what we already know. 

 

We do this by constructing proofs.  In this section we’ll 

learn two techniques for constructing Boolean logic 

proofs. 
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A Proof Is an Argument 
  

A proof is an argument that applies one or more: 

 

 sound reasoning methods 

 

to a collection of: 

 

 facts and definitions  

 

to produce a conclusion that must be true whenever the facts are 

true.   

 

The facts and definitions that we’ll use are usually domain-

specific.  They capture what we know about the particular 

problem that we are trying to solve. 

 

The reasoning methods, on the other hand, are general.  We’ll be 

able to describe them once and then exploit them to discover new 

things about everyday events, computer circuits, and 

mathematics.  The goal of this course is for you to learn about 

these reasoning methods so that you can apply them to whatever 

problems you later encounter. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Wet Sidewalks 

 
Let’s do a simple example.  We’ll give names to the following statements: 

  

R: It’s raining.  

W: The sidewalks are wet. 

S:  The sidewalks are slippery.  

C: It is important to be careful. 

 

Suppose that we have the following facts: 

  

[1]   R  W  If it’s raining then the sidewalks will be wet.  

[2]   W  S  If the sidewalks are wet, they will be slippery. 

[3]   S  C  If the sidewalks are slippery then it is important to be careful. 

 

At this point, we have no idea whether or not it’s important to be careful.  But suppose we add 

one more fact: 

 

[4]   R  It’s raining. 
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We will soon give a name to the inference rule that we just used (three times).  It’s called modus 

ponens.  It tells us that if we know p  q and we know p, then we can conclude q. 

 

We’ll be successful at producing proofs when we start out with enough information to enable us 

to derive useful conclusions.  Interestingly, however, our ideas about proofs may help us to solve 

problems even when we can’t actually produce a proof.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

By now you’re probably thinking something like, “Okay, I get the proof idea.  I’ve been doing it 

for years.  So what comes next in this course?”  The answer is that we are going to formalize the 

notion of proof so that we’ll be sure that we use it correctly.  In other words, when we say we 

have a proof, we’ll be sure that the conclusions that we’ve derived really must follow from the 

facts that we have assumed. 

 

  

Now, using the kind of reasoning that we do every day, 

we can say: 

 If it’s raining then the sidewalks will be wet.  But it is 

raining.  So the sidewalks will be wet. 

 If the sidewalks are wet, they will be slippery.  But 

they are wet.  So they are slippery. 

 If the sidewalks are slippery then it is important to be 

careful.  But they are slippery.  So it is important to 

be careful. 

 

We’ve just constructed a proof that, given what we 

already knew, it’s important to be careful. 

Eradicate Ucklufery  

 
Let’s give names to the following statements: 

  

V Ucklufery (a very nasty tropical disease) is caused by a virus. 

E: We might be able to eradicate ucklufery by developing a vaccine against it. 

 

Suppose that we have the following fact: 

  

[1] V  E If ucklufery is caused by a virus, we might be able to eradicate it by 

developing a vaccine against it. 

 

We know one useful thing about ucklufery.  But we’re stuck if we try to use it.  We don’t know 

enough to reason to any conclusion about whether we should work on a vaccine.  But the 

one thing we do know is a starting point: If we could show that a virus is the culprit, then we 

would know that we should work on a vaccine.  So we actually do know what we should 

perhaps do next: Attempt to prove that V is true.  If it is, then we can apply modus ponens to 

[1] and V to conclude that we should look for a vaccine. 
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Problems 
 
1. Suppose that we have the following facts: 
 
[1]  If the fruit stand sells bananas then they also sell at least one of strawberries or 

raspberries. 
[2]  The fruit stand doesn’t sell strawberries. 
 
Which of the following claims must be true: 
 
a) The fruit stand doesn’t sell bananas. 
b) The fruit stand sells raspberries. 
c) The fruit stand doesn’t sell bananas or does sell raspberries. 
d) The fruit stand sells bananas. 
 
2. Suppose that we have the following facts: 
 
[1]  If it’s Friday or Saturday, the pub will be crowded.  
[2]  If the pub is crowded, Riley won’t go. 
[3]  Riley is at the pub. 
 
For each of the following claims, indicate whether it must be true, must be false, or could be 
either true or false: 
 
a) It is Friday. 
b) It is Saturday. 
c) The pub is crowded. 
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Premises and Theorems 
 

Every proof that we’re going to construct does the same thing.  It establishes the truth (validity) 

of some statement of the following form: 

 

 (claim1  claim2   claim3  …  claimn)  conclusion 

 

In other words, it “proves” that, if all the given claims are true, the conclusion must also be true.   

 

There are at least four common names for what we’ve just called claims: 

 premises   

 postulates   

 hypotheses 

 axioms   

 

When discussing a single argument, taken on its own, without a larger context, it’s common to 

use the word premises or hypotheses.  

 

Sometimes, however, a single set of claims will be premises to a whole collection of related 

conclusions (typically called a theory).  Then, the premises are usually called the axioms or 

postulates of the theory.   

 

 

 

 

 

 

 

 

 

 

 

 
 We will use the four terms premises, postulates, hypotheses and axioms interchangeably.  

 

A theorem is something that we have proved to be true.  So, once we’ve completed its proof: 

 

 This expression is a theorem: 

 

 (claim1  claim2   claim3  …  claimn)  conclusion 

 

 If we’ve agreed on a set of axioms and we are building a theory on them, then we’ll say 

(as we just did in the case of the Pythagorean Theorem) simply that this is a theorem: 

 

conclusion  

 

 

 

For example, one axiom (postulate) for Euclidean 

geometry is that, “A straight line segment can be 

drawn joining any two points”.  Within that theory, we 

are not to debate whether this statement is true or 

false – for the purpose of the theory, we assume it is 

true.  The power of this idea is that a set of carefully 

chosen axioms may enable us to prove a large body 

of very useful things.  For example, in Euclidean 

geometry we can prove such things as the 

Pythagorean Theorem. 
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(Premise)  r  w         If it’s raining then the sidewalks will be wet. 

(Premise)  w  s         If the sidewalks are wet, they will be slippery. 

(Premise)  s  c         If the sidewalks are slippery it is important to be careful. 

(Premise)  r          It’s raining. 

 

(Theorem) ((r  w)  (w  s)  (s  c)  (r))  c     If premises true, then it is important to be careful. 

 

(Theorem)  c          It is important to be careful. 

 

 

Once we have proved a statement of the form: 

 

  (claim1  claim2   claim3  …  claimn)  conclusion  

 

we can describe what we know in any of these ways: 

 

 The conclusion follows from the set of claims (or premises or postulates or axioms).  

 

 The set of claims logically implies the conclusion. 

 

 The set of claims entails the conclusion.  

 

If you’re wondering why, in this course, there seem to be so many ways to say the same thing, all 

we can tell you is that logic has been around for a long time.  A lot of folks have had their hands 

in the pie.  A lot of terms have cropped up.  We have to live with them. 

 

 

 

 

 

 

 

 

 

The reasoning techniques that we’re about to describe don’t say anything about what premises 

we should start with.  The reasoning methods are completely agnostic in that regard.  However, 

and this is a huge “however”, that doesn’t mean that it doesn’t matter what premises we pick.  

The premises we choose will determine the conclusions that we can draw.  Once we choose a set 

of premises and attempt to produce a proof, we may find ourselves in any one of these situations: 

 

 The premises imply a conclusion that we want to draw.  We will be able to produce a 

proof.  This is what happened in the Wet Sidewalks example once we added the premise 

that it is raining. 

Big Idea 

 
What’s in common here is that a theorem is something we know to be true. 

Big Idea 

 
Change your premises, watch your 

conclusions change. 

 

https://www.youtube.com/watch?v=CWpFQBgK4I0  

  

https://www.youtube.com/watch?v=CWpFQBgK4I0
https://www.youtube.com/watch?v=CWpFQBgK4I0
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 The premises are too weak; they do not imply the conclusion that we’re trying to prove.  
This is what happened in the Wet Sidewalks example before we added the premise that it 

is raining.  It also happened in the Eradicate Ucklufery example.  When this happens, we 

typically look for additional premises that we are willing to accept and that would enable 

us to prove our conclusion. 

 

 The premises are wrong.  They enable us to prove a conclusion that we believe to be 

false.  For example, nothing in logic would have prevented us from starting with the 

premise, “If it’s raining, the sidewalks will be dry.”  Can you see how this would lead to 

a conclusion that you’d reject?  In this case, we will need to revisit our choice of 

premises. 

 

 The premises are contradictory.  When this happens, as we’ll soon see, it is possible to 

prove any conclusion.  In fact, given contradictory premises, for any statement p, it is 

possible to prove both p and p.  So, while we’ll have proofs, we won’t have much 

useful information. 
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Problems 

 
1. Suppose that we have the following premises: 
 
[1]   If it’s Tuesday, we’re eating burgers. 
[2]   If we’re eating burgers, of course we’re also eating fries. 
[3]   If we’re eating burgers and fries, we’re at Tubby’s (of course). 
 
We want to prove that we’re at Tubby’s.  Consider the following claims: 
 

I. We can complete the proof with the premises that we’ve got. 
II. We could complete the proof by adding the premise, “It’s Tuesday.” 

III. We could complete the proof by adding the premise, “We’re eating burgers.” 
IV. We could complete the proof by adding the premise, “We’re at Tubby’s.” 

 
Which of the following statements is true: 
 

a) I is true. 
b) II is the only claim that is true. 
c) III is the only claim that is true. 
d) IV is the only claim that is true. 
e) II, III, and IV are all true. 

 
2. Suppose that we have the following premises: 
 
[1]  If Skip is eating cookies, then Chris is eating popcorn. 
[2]  If Chris is eating popcorn, then popcorn is a fruit. 
[3]  If Chris is eating popcorn, then bananas are fruit. 
[4]  Skip is eating cookies. 
 
Consider the following possible conclusions: 
 

I. Chris is eating popcorn. 
II. Popcorn is a fruit. 

III. Bananas are fruit. 
 
Which of the following correctly describes the conclusions that we can reach, given our 
premises: 
 

a) The only one we can derive is [1]. 
b) The only one we can derive is [2]. 
c) The only one we can derive is [3]. 
d) We can’t derive any of them. 
e) We can derive two or more of them. 
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Setting Up a Proof 
 

Suppose that we want to show that a set of premises implies a conclusion: 

 

[1] (premise1  premise2   premise3  …  premisen)  conclusion  

 

In other words, we want to show that there is no circumstance in which the premises are true but 

the conclusion isn’t.  Recall that that’s equivalent to showing that [1] is a tautology.  

 

So, to construct a proof, we do the following: 

 

1. Choose a set of premises whose truth we are willing to accept. 

 

2. Construct the logical statement that is the conjunction of all of them.  That gives us 

something like: 

 

(premise1  premise2   premise3  …  premisen) 

 

3. Construct the logical statement that asserts that such a conjunction implies the desired 

conclusion.  That gives us something like: 

 

[1] (premise1  premise2   premise3  …  premisen)  conclusion  

 

4. Show that [1] is a tautology.  In other words, that, for any assignment of the values T and 

F to the variables in [1], the truth value of [1] is T.  You might, at this point, argue that 

we don’t actually need the whole column to be T.  We really only care about the cases 

where the premises are themselves true.  But how are we going to know which rows 

those are?  It’s not just when the variables are T since (as a trivial example), we could 

have p as a premise.  So we’ll insist on a proof that the whole column is T.  But, in the 

next section, we’ll look at an alternative to truth tables as a proof technique.  One of the 

wins of that alternative (which we’ll call, “natural deduction”), is that we won’t 

necessarily have to consider irrelevant combinations of truth values. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Who Drives Me 

 
Let’s give names to some basic statements: 

 

J:  John must drive me to the store. 

M:  Mary must drive me to the store. 

L:  John will be late for work. 

 

Using those statements, we can state our premises: 

 

[1]   J  M  John or Mary must drive me to the store. 

[2]   J  L  If John drives me to the store, he will be late 

          for work. 

[3]   L  John cannot be late for work. 
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How shall we prove that we’ve got a tautology?  In the Wet Sidewalks example, the logical 

expressions were so simple that we just derived our conclusion informally.  But now we have 

something where it’s less obvious how to reason correctly. 

 

We’re going to describe two different approaches to constructing sound proofs.  The first uses a 

technique we already know: truth tables. 

 

Then we’ll introduce an alternative that we’ll call “natural deduction”.  It corresponds more 

closely to the way we reason in everyday life.  But we’ll define it formally so that we’re sure that 

we can’t erroneously draw conclusions that don’t follow from our premises. 

  

The conclusion that we’d like to draw is: 

 

[4]  M  Mary must drive me to the store.  

 

 

We want to prove that, if all the premises are true, then the conclusion follows.  So we need 

to form the conjunction of our premises and then set up an implication with that conjunction 

on the left and the conclusion (i.e., M) on the right.  That gives us: 

 

[5]   ((J  M)  (J  L)  (L))  M  

 

And now we must show that [5] is a tautology.  If it is, our premises imply our conclusion. 
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Problems 
 
1. Let’s continue with the Wet Sidewalks example.  We’ll use the following names for 
statements: 
 
R: It’s raining. 
W: The sidewalks are wet. 
S:  The sidewalks are slippery. 
C: It is important to be careful. 
I It is important to walk rather than run. 
 
Suppose that we have the following premises: 
 

[1]   R  W  If it’s raining then the sidewalks will be wet. 

[2]   W  S  If the sidewalks are wet, they will be slippery. 

[3]   S  C  If the sidewalks are slippery then it is important to be careful. 
[4]   R  It’s raining. 
 
Consider the following facts that we could add to our list of premises: 
 

I. I        It is important to walk rather than run. 
II. C      It is important to be careful.   

III. I  C   If it is important to walk rather than run then it is important to be careful. 

IV. C  I    If it is important to be careful then it is important to walk rather than run. 
 
Which of these statements describes how we could add premises to make it possible to 
conclude that it is important to walk rather than run: 

a) I is the only premise that would make the proof possible. 
b) III is the only premise that would make the proof possible. 
c) IV is the only premise that would make the proof possible.    
d) Either II or III would make the proof possible.        
e) Either I or IV would make the proof possible.  

 

2. Another extension of the Wet Sidewalks example.  We’ll use the following names for 
statements: 
 
R: It’s raining. 
W: The sidewalks are wet. 
S:  The sidewalks are slippery. 
C: It is important to be careful. 
U I should bring an umbrella. 
 
Suppose that we have the following premises: 
 

[1]   R  W  If it’s raining then the sidewalks will be wet. 

[2]   W  S  If the sidewalks are wet, they will be slippery. 

[3]   S  C  If the sidewalks are slippery then it is important to be careful. 
[4]   R  It’s raining. 
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Consider the following facts that we could add to our list of premises: 
 

I. U     I should bring an umbrella. 

II. S  U   If the sidewalks are slippery then I should bring an umbrella. 

III. W  U  If the sidewalks are wet then I should bring an umbrella. 

IV. R  U   If it’s raining then I should bring an umbrella. 
 
Which of these statements describes how we could add premises to make it possible to 
conclude that I should bring an umbrella: 
 

a) I is the only premise that would make the proof possible. 
b) III is the only premise that would make the proof possible. 
c) IV is the only premise that would make the proof possible.    
d) Either I or IV would make the proof possible but none of the others would.        
e) Adding any one of the premises would make the proof possible.  

 

3.  Another extension of the Wet Sidewalks example: We’ll add the following name for a 
statement: 
 
Y:   It’s sunny. 
 
Suppose that we start with the following premises: 
 

[1]   R  W  If it’s raining then the sidewalks will be wet. 

[2]   W  S  If the sidewalks are wet, they will be slippery. 

[3]   S  C  If the sidewalks are slippery then it is important to be careful. 
[4]   R  It’s raining. 

[5]   W  Y  If the sidewalks are wet, it’s sunny.  (This one is new.) 
 
Consider the following statements: 
 
[6]   Y  It’s sunny. 

[7]   R  Y  It’s raining and it’s sunny. 

[8]   R  It’s not raining. 
 
Which of the following correctly describes the new conclusion(s) that we’ll now be able to prove, 
given our premises: 
 

a) Just [6]. 
b) Just [7]. 
c) Just [8]. 
d) Just [6] and [7]. 
e) All three. 
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Boolean Logic Proofs Using Truth Tables 
 

Introduction 
 

So far we have used truth tables to tell us when a logical expression is true.  It turns out that we 

can also use them to prove theorems.  

 

Recall that what we need to do in order to prove a theorem is to show that a statement of the 

following form is a tautology: 

 

(premise1  premise2   premise3  …  premisen)  conclusion    

 

This means that we must show that the conclusion is true for all possible assignments of truth 

values to its variables.  Put another way, it’s true in all possible worlds. 

 

So we need to show that every cell of the final column of its truth table contains the value T.  To 

do this, we simply build the truth table just as we’ve been doing.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Let’s return to the Who Drives Me example.  We’ve given these names to the basic 

statements: 

 

J:  John must drive me to the store 

M:  Mary must drive me to the store 

L:  John will be late for work. 

  

In terms of these names our premises are: 

 

[1]   J  M  John or Mary must drive me to the store. 

[2]   J  L  If John drives me to the store, he will be late for work. 

[3]   L  John cannot be late for work. 

 

And the conclusion we’d like to draw is: 

 

[4]   M  Mary must drive me to the store. 

 

So we must prove that this statement is a tautology: 

 

[5]   ((J  M)  (J  L)  (L))  M  
 

To do that, we build its truth table (we’ve omitted a couple of intermediate columns so that 

the table fits on a page): 
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Recall that, when we presented the truth table definition of implies, we argued that our definition 

was a reasonable one: 

 

p q p → q  

T T T 

T F F 

F T T 

F F T 

 

 

You can now see even more clearly why that is so: 

 

 It’s the tool we need for proving a theorem: As we just saw, all we have to do to prove 

that whenever some collection of premises P is true then some conclusion C must also be 

true is to use the truth table for implies to show that P  C is a tautology. 

 

 It’s the tool we need when it comes time to exploit a 

theorem to make a new claim:  If we know that p  q 

cannot be false (because we have proved it to be a 

tautology), then we can look at the truth table for implies  

and see that we cannot be in the situation described in 

line 2.  In other words: 

 

 If p is true then q must be. 

 If p is false then we don’t know anything about q.  It 

could be true or false.  In other words, this theorem 

isn’t relevant.  

 

  

 

J M L J  M J  L (J  M)  (J  L)  (L) ((J  M)  (J  L)  (L))  M 

T T T T T F T 

T T F T F F T 

T F T T T F T 

T F F T F F T 

F T T T T F T 

F T F T T T T 

F F T F T F T 

F F F F T F T 

 

Every cell of the final column contains the value T.  So [5] is a tautology.  We have proved that, if 

the premises are true, then Mary must drive me to the store. 
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Problems 
 

1. Let’s return to a famous Catch-22 situation.  We’ll give names to the following statements: 
 
C: I’m crazy. 
M: I’ve requested a mental health discharge from the Army. 
E: I’m eligible for a mental health discharge from the Army. 
 
In Joseph Heller’s book, the Army has two rules about this.  We can encode them as premises 
as follows: 
 

[1]  E → C  M The only way to be eligible is to be crazy and request the discharge. 

[2]  M → C I’m not crazy if I’ve requested the discharge. 
 
Prove that it’s not possible that I’m eligible for a discharge. (And, since we could do this same 
proof for anyone else, there can never be any of these discharges.) 
 

To do this, we must show that the conjunction of the premises implies the conclusion (E).  In 
other words, we must show that the following is a tautology: 
 

 ((E → C  M)  (M → C)) → E      
 
Use a truth table to do this. 
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Not Enough Premises 
 

Recall the key role that premises play.  The conclusions that we can draw depend entirely on the 

assumptions (premises or axioms) that we start with.  If we change assumptions we’ll get 

different (possibly fewer, possibly more) theorems.  We can now use truth tables to watch this 

happen. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Let’s return to the Who Drives Me example that we just considered.  Let’s change one 

assumption.  Suppose that John can be late for work.  Now it turns out that we can no longer 

prove that Mary must drive me to the store. Let’s see why not. We drop L as a premise. We 

now try to use our weaker set of premises to prove this new theorem: 

  

[6]  ((J  M)  (J  L))  M 

 

Its truth table is: 

 
J M L J  M J  L (J  M)  (J  L) ((J  M)  (J  L))  M 

T T T T T T T 

T T F T F F T 

T F T T T T F 

T F F T F F T 

F T T T T T T 

F T F T T T T 

F F T F T F T 

F F F F T F T 

 

The last column is not all T.  So [6] is not a tautology.  We cannot conclude Mary must drive.  

It’s not that we know that she must not.  We simply don’t know one way or the other. 

Recall the Eradicate Ucklufery problem that we suggested a while ago.  We gave names to 

the following statements: 

  

V: Ucklufery (a very nasty tropical disease) is caused by a virus. 

E: We might be able to eradicate ucklufery by developing a vaccine against it. 

 

We’ve got one premise: 

  

[1]   V  E  If ucklufery is caused by a virus, we might be able to   

   eradicate it by developing a vaccine against it. 

 

We want to prove that we might be able to eradicate ucklufery by developing a vaccine.  

So we want to show that the following is a tautology: 

 

 (V  E)  E    

 

 

(We only have one premise, so it’s alone on the left of the outer implication.) 
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Problems 
 
1. Give names to the following statements: 
 
A: It’s August. 
H:  It’s hot. 
P:  There will be a picnic. 
R:  Randy will make cookies. 
S:  It’s sunny. 
W: It’s the weekend. 
 
Assume the following premises: 
 
[1]  A    It’s August. 

[2]  W  S  P  R  If it’s the weekend and it’s sunny, there will be a picnic and 
 Randy will make cookies. 

[3]  A  S  H   If it’s August, it will be sunny and hot. 
 
We want to prove: 
 

[4]  H  P    It will be hot and there will be a picnic. 
 
There aren’t enough premises to do this.  Which of the following premises, would, if added, 
enable us to prove the claim?  (Hint: If you are stuck, write out the truth table for the tautology 
that we wish to prove.  You’ll be able to see which row(s) are not T.) 
 
A   H  R  S  W   
 

 

  

Here’s the truth table: 

 

 

V E V  E (V  E)  E 

T T T T 

T F F T 

F T T T 

F F T F 

 

Oops.  We don’t have a tautology.  We don’t have enough information to be able to 

conclude that we should work on a vaccine.  This example is so simple that it’s easy to see 

what information we lack.  If we knew one more thing, namely that ucklufery is caused by a 

virus, then we’d know that we should work on a vaccine. 
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Wrong Premises 
 

Is it possible to use the logical reasoning engine that we’ve just described to derive a conclusion 

that is obviously false?  Sure.  All we have to do is to choose premises that don’t correspond to 

the world we’re trying to reason about. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Let’s return to the Wet Sidewalks example.  We’ve given names to the following statements: 

  

R: It’s raining. 

W: The sidewalks are wet. 

S:  The sidewalks are slippery. 

C: It is important to be careful. 

 

Here are the premises that we’ve been using: 

  

[1]  R  W  If it’s raining then the sidewalks will be wet. 

[2]  W  S  If the sidewalks are wet, they will be slippery. 

[3]  S  C  If the sidewalks are slippery then it is important to be  careful. 

[4]  R  It’s raining. 

 

We can easily use a truth table to prove any of the conclusions that we derived earlier using 

everyday logic (actually we used the logical rule modus ponens that we’ll soon define 

formally).  Let’s prove that the sidewalks will be wet: 

 
R W R  W (R  (R  W) (R  (R  W))  W  

T T T T T 

T F F F T 

F T T F T 

F F T F T 

 

Success.  The final column is all T’s. 

 

But now let’s change our premises.  In particular, let’s change the first one so that it asserts 

that, if it’s raining, the sidewalks will be dry.  Let D stand for the assertion that the sidewalks 

are dry.  Now we can easily prove that, if it’s raining the sidewalks will be dry: 
 

R D R  D R  (R  D) (R  (R  W))  D 

T T T T T 

T F F F T 

F T T F T 

F F T F T 

 

Oops.  We’ve just proved something that’s clearly nonsense.  This is typically what happens if 

we don’t choose our premises wisely. 

Big Idea 

 
We must separate the validity of an argument from the reasonableness of its premises. 
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Problems 
 
1. Give names to the following statements: 
 
B:  Bananas grow here. 
H:  It is hot here. 
M:  Monkeys live here. 
R:  Reindeer live here. 
S:  There is snow here. 
 
Assume the following premises: 
 
[1]  H   It is hot here. 

[2]  (R  B)  There can’t be both reindeer and bananas. 

[3]  H  R   If it’s hot, there will be reindeer. 

[4]  B  M   If there are bananas, there will be monkeys. 

[5]  R  S   If there are reindeer, there will be snow. 
 
Using these premises, it is straightforward to prove (try it yourself) that: 
 

[6]  H  S   It is hot and there is snow. 
 
But [6] is nonsense.  Assume that we are certain that it is hot.   
 
(Part 1)  Which of the other premises is far from being true in the real world and has the 
property that, if we simply removed it, we’d no longer be able to generate nonsense such as [6]?    
 
(Part 2) Which of the following premises would be a good replacement for the wrong one 
above?  (In other words, which would do a good job of describing the world in which we live?) 
 

a) (R  S) 

b) S  H 

c) H  S 

d) S  B 

e) B  M 
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Contradictory Premises 
 

What happens if we choose premises that aren’t just wrong (i.e., they don’t correctly describe the 

world)?  What happens if they actually contradict each other?  It turns out that, if we do that, in 

even one case, we’ll be able to prove any conclusion we can come up with. 

 

To see why this is so, let’s abstract away from any particular premises that we might choose.  

Let’s consider: 

 

 an arbitrary premise we’ll simply call p, and  

 some arbitrary conclusion we’ll call q. 

 

Now suppose that we add the premise p.  We know that it’s not possible for both p and p to 

be true.  (Recall Aristotle’s Principle of Non-Contradiction.)  But suppose that we claim that they 

are.  What happens?  Let’s now try to prove q from our two (contradictory) premises.  To do this 

we must show that this is a tautology: 

 

 (p  p)  q 

 

Here’s the truth table: 

 

p q p p  p (p  p)  q 

T T F F T 

T F F F T 

F T T F T 

F F T F T 

 

We’ve proved q.  And we’ve done it without any appeal to what p and q actually are and without 

any premises that connect p and q in any way.  Whatever p is, p  p is false.  F  q is always 

true (from the definition of implies). So q is true. 

 

 

 

 

 

 

 

 

 

 

Notice why this is.  Look at the next to the last column of the truth table.  It’s all F’s.  Recall the 

definition of the expression p  q.  It’s true whenever p is false (as well as whenever q is true).  

So if the first operand (the part before the ) is false, the entire expression will always be true. 

 

For example if we assert both of the following claims:  

 The moon is made of green cheese. 

 The moon is not made of green cheese. 

 

Then we can prove any of the following: 

 Elephants can fly. 

 Elephants cannot fly. 

 The king of France is a unicorn. 
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Of course, in toy examples like this one, it’s easy to see that we’ve added contradictory premises 

and so our logic engine is of no use in attempting to determine truth.  There’s a much more 

serious problem, however, if we have thousands, hundreds of thousands, or even millions of 

premises.  This can happen when Boolean logic is used to solve real, practical problems like the 

design of computer circuits.  In those cases, engineers must be very careful and they must exploit 

powerful design tools to guarantee the premises are not contradictory. 

  

Big Idea 

 
With contradictory premises we can prove anything.  Beware. 
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Problems 
 
1. Let’s give names to the following statements: 
 
S:  I should study Spanish today. 
G:  I should study Government today. 
H:  I will stay at home today. 
 
Assert the following premises: 
 

[1]  H  (S  G)  If I stay home today I should study Spanish or Government. 

[2]  G   I am not going to study Government today. 
[3]  H   I will stay at home today. 
 
We wish to prove that I should study Spanish today.   
 
(Part 1) We need to show that the claim that the premises imply the conclusion is a tautology.  
Which of the following statements is that claim: 
 

a) (H  (S  G))  G  H  S    

b) ((H  (S  G))  G  H)  S  

c) ((H  (S  G))  G  H)  S  

d) ((H  (S  G))  G)  S 
 
(Part 2) We will use a truth table to prove this claim. As one builds a truth table, there are 
sometimes choices about what intermediate expressions to make explicit columns for.  But 
some expressions would be useless.  Which of these would get us nowhere in building the truth 
table that we need?  
  

a. H  (S  G)     

b. G  H    

c. S  G    

d. G  H  S  
 

(Part 3) Use the Truth Table app to build the table that proves the claim. 
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2. Let’s give names to the following statements: 
 
C:  I will serve cake at my party. 
P:  I will serve pie at my party. 
B:  I will buy a cake. 
I:  I will buy a pie. 
M: I have money. 
 
Assert the following premises: 
 

[1]  C  P  I will serve cake or pie at my party. 

[2]  C  B  If I serve cake, I will buy a cake. 

[3]  B  M  If I buy a cake, I have money. 

[4]  M  I have no money. 
 
We wish to prove that I will serve pie at my party.   
 
(Part 1) We need to show that the claim that the premises imply the conclusion is a tautology.  
Which of the following statements is that claim: 
 

a) ((C  P)  BP  M) P    

b) ((C  P)  (C  B)  (B  M)  M  B)   P  

c) P  C 

d) ((C  P)  (C  B)  (B  M)  M)  P  
 
(Part 2) We will use a truth table to prove this claim. We know that the number of rows in our 
truth table grows as the number of propositional variables grows.  We’ve defined five variables 
in this problem.  But we don’t have to enter into the truth table any that aren’t involved in the 
proof.  How many of the variables that we’ve defined do we actually need to use to do this 
proof? 
 

a) 2 
b) 3 
c) 4 
d) 5 

 
(Part 3) How many rows will the truth table have? 
 

a) 4 
b) 8 
c) 12 
d) 16 
e) 20 

 
(Part 4) Show the truth table that proves our claim. 
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3. Let’s give names to the following statements: 
 
N:  It’s raining. 
C:  It’s clear. 
U: Unicorns are purple. 
 
Assert the following premises: 
 
[1]  N  It’s raining. 

[2]  C  N If it’s clear, it’s not raining.  
[3]  C  It’s clear. 
 
(Part 1) Using these premises, we wish to prove that unicorns are purple.  Which of the 
following statements, if it’s a tautology, proves the claim: 
 

a) (N  (C  N)  C)  U  

b) (N  C)  U 

c) (N  (C  N)  C)  (U  U)  

d) (C  N)  N)  U 
 
(Part 2) Write out the truth table.  Can you prove the claim that unicorns are purple? 
 
 

(Part 3) Now, on the other hand, we wish to prove that unicorns are 
not purple.  Which of the following statements, if it’s a tautology, 
proves the claim:  
 

a) (N  C)  U 

b) (N  (C  N)  C)  (U  U) 

c) (N  (C  N)  C)  U 

d) ( (C  N)  N)  U 
 
(Part 4) Write out the truth table.  Can you prove the claim that unicorns are not purple? 
 
 
(Part 5) Suppose that we want to delete premises until it’s no longer possible to prove that 
unicorns are purple.  (After all, we don’t actually have any premises that say anything about 
unicorns.)  Which of the following deletions will do the job: 
 
a) Deleting N is the only thing that will accomplish the task. 
b) Deleting C is the only thing that will accomplish the task. 

c) Deleting C  N is the only thing that will accomplish the task. 
d) Deleting any one of the premises will accomplish the task. 
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Proving Other Kinds of Claims 
 

So far, we’ve used truth tables to prove claims of the form: 

 

(Premise1  Premise2  … Premisen)  Conclusion 

 

We do that by showing that such a claim is a tautology. 

 

But we can also use truth tables to prove the correctness of other kinds of claims (again by 

showing that they are tautologies).  For example, we might want to prove that two logical 

expressions are equivalent. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Problems 

 
1. Prove that ((p  q)  r)  (p  (q  r)).  Use the truth table app.  

  

Prove that these two logical expressions are equivalent (i.e., for any assignment of truth 

values to the propositions, either both expressions are true or both are false): 

 

 P  Q   (P  Q) 

 

To do this, we will prove that the following claim is a tautology: 

 

 (P  Q)    ((P  Q))      
 

P Q Q P  Q P  Q (P  Q) (P  Q)  ((P  Q)) 

T T F F T F T 

T F T T F T T 

F T F F T F T 

F F T F T F T 
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Theorem upon Theorem 
 

Suppose that we want to prove something even a little bit less trivial than the examples that 

we’ve done so far.  For example, what if we need 10 variables.  Then we know that the truth 

table that we’d have to build would have 210 or 1024 rows.  Ouch.  And things get much worse 

very quickly.  If we needed 50 variables, we’d need 250 or 1,125,899,906,842,624 rows.  Clearly 

we need some new techniques. 

 

Here are two ideas.  We’re going to see that both of them are powerful and, in fact, we’ll want to 

combine them: 

 

 Prove smaller theorems using smaller collections of variables.  Then treat those theorems 

like premises. (This is okay because we know that they must be true.)  Build on them 

until we prove the final theorem that we care about. 

 

 Come up with a new technique that lets us focus on the specific ways in which the 

premises connect to each other.  In most cases, this effectively lets us ignore many (most) 

of the possible truth value combinations for the variables. 

 

We’ll consider the first of these techniques here.  Then, in the next section, we’ll take the second 

approach and develop a whole new way to construct proofs. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Let’s return to the Who Drives Me example. 

 

We’ll use these propositional variable names for the basic statements: 

 

J:  John must drive me to the store. 

M:  Mary must drive me to the store. 

L:  John will be late for work. 

G: Mary must buy gas.   (new) 

D:  Mary must have money.  (new) 

  

Assume these premises: 

 

[1]   J  M  John or Mary must drive me to the store. 

[2]   J  L  If John drives me to the store, he will be late for work. 

[3]   L  John cannot be late for work. 

[4]   M  G  If Mary must drive me to the store, she must buy gas.   (new) 

[5]   G  D  If Mary must buy gas, she must have money.    (new) 

 

And we’ve already proven: 

 

[6]   M  Mary must drive me to the store. 
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Suppose that we want to prove: 

 

[7]   D  Mary must have money. 

 

We could start from scratch and prove: 

 

[8]   ((J  M)  (J  L)  (L)  (M  G)  (G  D))  D 

 

Notice that there are now five premises [1] – [5] anded together on the left of the top level 

implies.  More importantly, there are now five propositional variables. So, if we build a truth 

table, from scratch, to prove our claim, we’ll need 32 rows.  We can do it, but it’s extremely 

tedious.   

 

But suppose that, instead of premises [1] – [3], we just use [6], which we’ve already derived 

from them.  Then we can ignore the variables J and L too.  We can build a truth table proof 

that corresponds to the everyday reasoning chain: 

 

 Mary must drive me to the store.  So she must buy gas.  So she must have money. 

 

So now the truth table that we have to build is the one that shows that this claim is a 

tautology: 

 

[9]   (M  (M  G)  (G  D))  D 

 

Since only three variables are involved, we’ll just need to build an eight-row truth table. 

Big Idea 

 
Divide and conquer: Break complex proofs into smaller, more manageable pieces. 



28  3. Boolean Logic Proofs 

Boolean Identities 
 

Introduction 
 

The truth table is a universal tool for working with Boolean logic expressions.  In principle, it’s 

all we need.  In practice, however, it gets cumbersome quickly.  We’ve already seen how that 

can happen even we’re still dealing with trivial ideas.  So we’re going to want something else.   

 

In particular, we’re going to want a set of techniques for manipulating logical expressions to 

make them more useful.  But we’ll need to guarantee that the manipulations that we do cannot 

affect truth value.   

 

Recall that there’s a natural analogy between algebraic (arithmetic) expressions and logical ones.  

We can continue that analogy here.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In algebra, we sometimes use these identities to transform an expression into another one that 

happens to be more useful for some particular purpose.  We also use them to simplify 

expressions.   

 

 

 

 

 

 

 

 

  

So, for example, in algebra we have that these two expressions are equivalent: 

 

 2x3 + 17 + 5x2    2x3 + 5x2 + 17   

 

We can transform the first into the second, without changing its value, by exploiting the fact 

that addition is commutative (i.e., it doesn’t matter what order we do the additions in). 

 

Similarly, in algebra, we have that these two expressions are equivalent: 

 

(a + b) (c + d)   ac + ad + bc  + bd 

 

This time, we know that we can transform the first into the second, without changing its value, 

by exploiting a distributivity property: multiplication distributes over addition. 

For example, these two expressions are equivalent: 

 

 (a + b) (c + d) - bc  ac + ad + bd 

 

We get the second one by first applying the distributive property and then cancelling out the 

bc and –bc terms. 
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Problems 

 
1. Indicate, for each of the following pairs of arithmetic expressions, whether or not they are 
equivalent: 
 
a) (a + b) * c   ac + bc     
b) x * (y * z)    (z * x) * y    
c) -(b + c)   -b + c     
d) x + y – z   x – z + y    
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A List of Identities 
 

In Boolean logic, we also have a set of identities that enable us to transform expressions without 

changing their values (in this case, their truth values).  Some of them are analogs of the 

arithmetic identities.  For example, both or and and are commutative.  Some will be new. 

 

Here’s a list of identities that we’ll find most useful. The way to prove them is to use truth tables 

to show that the truth values of both sides are the same.  We’ll prove the first one.  We suggest 

that you prove at least a few more of them.  It will give you practice using truth tables and you’ll 

find yourself proving your first useful theorems. 

 

Notice that each of these identities has the form: 

 

  expression1  expression2  

 

Recall that the symbol  means is equivalent to.  What we’re claiming, in our statement of each 

of these identities, is that the two sides of the equivalence statement have the same truth values.  

And we’re claiming that this holds for all propositions (p, q, r, or even ones that themselves 

contain Boolean operators).  
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Double Negation 
 

Double Negation:    p  (p). 

 

In other words, in logic, two negatives cancel each other out. 

 

To prove this claim, we build a truth table that has one column for the left hand 

side of the equivalence and one column for the right hand side.  Then we build 

a final column that corresponds to the claim that those two are the same.  We 

have a proof if that final column contains all T’s.  (Notice that there may be 

additional working columns as well. We don’t care what their values are as 

long as they lead to the two critical columns being the same.)  We’ve already 

seen the first three columns of the truth table that we need.  We showed them 

when we pointed out that applying not twice gets us back where we started. 

Here’s the whole table that we need to build to prove the double negation 

identity: 

 

p p (p) p  (p). 
T F T T 

F T F T 

 

We’ve highlighted the two columns that correspond to the two sides of the 

equivalence.  Notice that they are identical.  So the final column contains all 

T’s. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

English Aside 

 
Double negation shows up much more often in English than you might imagine.  

One reason it happens is that many words other than “not” actually mean not. 

 

Let P be the statement: “I will go to the game.”   

 

Then:     “No way will I miss that game,” is P,  

 

Since:     “miss” means P.  

 

So you know P:  “I will go to the game.” 

 

We should remind you though that, in some dialects, double negation means the 

same thing as single negation.  For example:  

 

 “Don’t nobody love me.” 
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Problems 
 
1. Suppose that we take as a premise:  
 
 It’s not impossible that Riley will win. 
 
   Is it possible that Riley will win?     
 

 

 

 

 

  

Nifty Aside 

                                               
The Fork in the Road  
 

A weary traveler approaches a fork in the road.  Not knowing which way to go, he 

decides he should ask the one native he sees.  But he knows that there’s a problem.  This is 

the land of the liars and the truth-tellers.  Everyone is either a liar (who lies absolutely all the 

time) or a truth-teller (who tells the truth absolutely all the time.  Unfortunately, these folks 

don’t wear affinity tee shirts.  There’s no way to tell, when you’re talking to someone, which 

camp he’s in. And there’s one more thing: It’s well known that strangers are allowed to ask 

only a single question before they must move on. 

 

Fortunately, our traveler is a logician.  He asks a single question and, without knowing 

whether he’s talking to a liar or a truth-teller, gets the answer that he needs.  What 

question does he ask?   

 

This puzzle is fun.  See if you can work it out.   
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More Identities 
 

We present the rest of the identities without proof.  You should try a few of the proofs yourself.   

 

 

Equivalence:     (p  q)    (p  q)  (q  p) 

 

In other words, two statements are equivalent just in case each implies the 

other.   

 

This rule suggests a way to go about proving that two statements are 

equivalent.  Construct two proofs, one for each direction of the implication. 

 

 

Idempotence:    (p  p)  p 

     (p  p)  p 

 

“Idempotence” is a big word that just means, “has the same power as itself”.  

Despite the word, these laws probably seem completely obvious.  If we or (or 

and) something with itself, we just get back what we started with.  These laws, 

while seemingly trivial, can be very useful when we need to simplify logical 

expressions. 

 

 

De Morgan’s Laws:    (p  q)  p  q. 

(p  q)  p  q. 

 

These two laws are named for the important 19th century 

logician Augustus De Morgan. They are useful in 

simplifying expressions because they attach nots to 

smaller units, thus making them easier to work with.  

When we use De Morgan’s laws, we sometimes describe 

what we’re doing as, “pushing not through and” or, 

“pushing not through or.”   

 

Read De Morgan’s laws carefully:  When we apply them, ors become ands and 

ands become ors. 
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English aside 

 
Consider the English sentence, “I won’t touch beets or okra.”  Do you agree that this 

means both no beets and no okra for me? 

 

Let’s give names to these sentences: 

 

B: I will touch beets. 

O: I will touch okra. 

 

We can write our sentence in logic as: 

 

 (B  O) 

 

Using the second of De Morgan’s laws, we can rewrite that as: 

 

 B  O 

 

A straightforward translation of this into English gives us: 

 

 I won’t touch beets and I won’t touch okra. 

English aside 

 
Here’s another one, this time going from and to or:  Consider the sentence, “You can’t 

have both cake and pie.”  Do you agree that this means that you’re not getting pie or 

you’re not getting cake? 

 

Let’s give names to these sentences: 

 

C:  You can have cake. 

P:  You can have pie. 

 

We can write our sentence in logic as: 

 

 (C  P) 

 

Using the first of De Morgan’s laws, we can rewrite that as: 

 

 C  P 

 

In other words, either you’re not getting cake or you’re not getting pie. 

 

But, the Cooperative Principle may come into play: 

 

This sentence doesn’t actually say that you’re even going to get one of them.  You might 

be both cake and pie deprived.  But most of us agree that if that were the case, it would 

be uncooperative to say this.  The mean person should have said, “You’re not getting cake 

or pie.” 
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Commutativity of or and and:  (p  q)  (q  p). 

(p  q)  (q  p). 

 

Like addition and multiplication, both or and and are commutative.   

 

Notice that implies isn’t on this list; it isn’t commutative. 

 

Associativity of or and and:   (p  (q  r))  ((p  q)  r). 

     (p  (q  r))  ((p  q)  r). 

 

Again, like addition and multiplication, both or and and are associative.   

 

Notice again that implies isn’t on this list.  That’s because it isn’t associative. 

 

Distributivity of and and or:  (p  (q  r))  ((p  q)  (p  r)). 

(p  (q  r))  ((p  q)  (p  r)). 

 

Just as addition distributes over multiplication, and distributes over or and vice 

versa. 

 

Conditional Disjunction:   (p → q)  (p  q). 

 

Sometimes it’s useful to think of this as an alternative way of writing (p  q).  

It avoids the use of implies, which may seem confusing.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

English aside 

                                                                    

 
We sometimes use this alternative in English.   

An equivalent fortune would have been, “If 

you display your treasures, people will 

become envious.” 

 

Lots of people think that the word “implies” 

connotes a causal relationship (in addition to 

the purely logical one that we’re working 

with).  If you, or your audience, is inclined to 

make this mistake, it reduces confusion if you 

use Conditional Disjunction to avoid using the 

word, “implies”. 
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Contrapositive:    (p → q)  (q → p). 

 

The intuition here is that, if p implies q but we observe not q, then we know 

that p must be false.  For example, if rain implies wet sidewalks and we 

observe dry sidewalks, we can conclude that there isn’t rain. 

 
Problems 

 
1. Consider the following sentence: 
 

Either Alabama or Florida State will not play in the national title game. 
 

Give names to the following statements: 
A:  Alabama will play in the national title game. 
F:  Florida State will play in the national title game. 

 
Consider the following formulas: 

I.  A  F 

II.  (A  F) 

III.  (A  F) 
 
Which of them represent(s) the intended meaning of our sentence: 
a) Just I. 
b) Just II. 
c) Just III. 
d) Just I and III. 
e) All three. 
 
2. Consider the following sentence:     If you come home early, you’ll be disappointed. 
 
Give names to the following statements:   
E:  Come home early. 
D:  Disappointed. 
 
Consider the following formulas: 

I.  E  D 

II.  D  E 

III.  D  E 
 
Which of them represent(s) the intended meaning of our sentence: 
a) Just I. 
b) Just II. 
c) Just III. 
d) Just I and III. 
e) All three. 
 

3. Suppose that we know that (R  S)  (P  R)  (Q  R) is true. For each of the variables, 
mark True if it MUST be true, False if it must be false, or Either if it could be either true or false. 
a) P   
b) Q   
c) R   
d) S    
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A Nonidentity – Converse 
 

Notice that our last identity, the contrapositive, tells us that if 

we know that p implies q, then there is also a way to reason 

from something about q to something about p.  But it’s very 

specific.  If we know not q, then we also know not p.  But what 

if we know q?  Can we conclude p?  In other words, can we 

reverse (p  q) and derive (q  p)?  The answer to this 

question is an emphatic no.   
                https://www.youtube.com/watch?v=tSu0Pg0nWJY 

 

 

 

 

 

 

 

 

 

 

 

 

 

Define the converse of the expression (p  q) to be the expression (q  p).  Then we have: 

 

 

Converse does not follow:  ((p  q)  (q  p)) is not a tautology.  

 

We prove this with a truth table as well: 

 

p q p  q q  p (p  q)  (q  p) 
T T T T T 

T F F T F 

F T T F F 

F F T T T 

 

 

Notice that the final column is not all T’s.  What we see is that there are some 

cases where the two expressions have the same truth value.  But that’s not 

guaranteed.  There are other cases where they are different. 

 

We’re making sort of a big deal about this one because inferring the converse 

is one of the most common logical errors that people make. 

 

  

A simple real world example shows us why we’d be upset if our logic let us do that.  Suppose 

that we have: 

 

[1] Rain implies wet sidewalks. 

 

Should we be certain that: 

 

[2] Wet sidewalks imply rain. 

 

Of course not. Maybe there’s rain.  But maybe not. Someone could just have washed the 

sidewalks.  Or someone’s sprinkler system could be on.  Or the water main could have 

broken. 

https://www.youtube.com/watch?v=tSu0Pg0nWJY
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Problems 

 

1. In each of the following problems, assume [1] as a premise.  Then consider [2].  Suppose that 
we accepted Converse as an identity (in addition to the actual identities listed above).  Mark 
Follows if [2] would then be derivable from [1].  Mark Does Not Follow if [2] would still not follow 
from [1], even if Converse were an identity. 
 

a) [1]  Speeding  Ticket 

 [2]  Ticket  Speeding 
 

b) [1]  Hungry  LunchTime  Eat 

 [2]  Eat   Hungry  
 

c)  [1]  HighMountain  Snow  Trees 

 [2]  Snow  HighMountain  
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Necessary and Sufficient Conditions 

 

Recall the truth table for  (implies): 

 

 

    

     

 

 
   https://www.youtube.com/watch?v=QtMFyTV8jfg  

 

Suppose that I say, “p implies q”.  Then I’ve said that p is a sufficient condition for q.  In other 

words, I’m claiming that, if you wanted to back up the claim that q must be true, it would be 

sufficient to show that p is true.  Said another way, p cannot be true without q also being true.  

 

Notice also that, using the Contrapositive identity, we have:   (p → q)  (q → p)  

 

So, if p → q (i.e., p is a sufficient condition for q), then q → p (i.e., q is a sufficient 

condition for p).   

 

But now suppose that I want to claim that p is a necessary condition for q.  In other words, q 

cannot be true unless p also is.  (Note that, even if p is true, q might not be.  I just know that, for 

sure, if p isn’t true then q isn’t.)  I could state this claim as, “q only if p”. 

 

Here’s a truth table for q only if p, which is true except in the case in which q is true but p isn’t: 

 

p q q only if p 

T T T 

T F T 

F T F 

F F T 

 

There’s an important relationship between implies and only if, which we can see from the 

following truth table.  Column 3 repeats the values for “p  q”.  In column 4, we’ve repeated 

the truth table for only if except that we’ve swapped p and q, so it shows the values for “p only if 

q” (which is false only in case p is true but q is false): 

 

p q p → q p only if q 

T T T T 

T F F F 

F T T T 

F F T T 

 

Notice that columns 3 and 4 of this table are the same.  Putting all this together, we see that, if 

we know: 

 

p  q 

 

p q p → q 

T T T 

T F F 

F T T 

F F T 

https://www.youtube.com/watch?v=QtMFyTV8jfg
https://www.youtube.com/watch?v=QtMFyTV8jfg
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then we have:  

 p is a sufficient condition for q,   

 q is a sufficient condition for p (using Contrapositive), 

 q is a necessary condition for p (note again that q and p are reversed here), and 

 p is a necessary condition for q (from the truth table for p  q.  The only row where p 

 q is true and q is false is row 4, in which p is also false). 

 

 

 

 

 

 

 

 

 

 

We’ll soon see, when we look at techniques for constructing Boolean logic proofs, that the two 

ways to think of what implies tells us about sufficient conditions turn out to enable us to use the 

statement “p  q” both as a way to prove q (if we happen to know p) and as a way to prove p 

(if we happen to know q).  

 

Notice one last thing.  Given p  q (and thus that p is a sufficient condition for q), there is one 

thing that we cannot conclude: 

 

 q is a sufficient condition for p.  This would have to be true if the converse of p  q (i.e., 

q  p) were guaranteed to be true.  But it isn’t. It might turn out that q is a sufficient 

condition for p, but we would have establish the truth of that claim separately. 

 

Now suppose that I want to claim that p is a necessary and sufficient condition for q.  In other 

words the truth of p guarantees the truth of q and the truth of q guarantees the truth of p.  Let’s 

make the truth table for that:  

 

p q p → q p only if q (p → q)  (q only if p) 

T T T T T 

T F F T F 

F T T F F 

F F T T T 

 

The title of the last column of this table is (p  q)  (q only if p).  But this relationship, namely 

that p is a necessary and sufficient condition for q, is important enough that it needs its own 

pronounceable name.  When this relationship holds, we’ll say: 
 

 p if and only if q, which can be shortened to:  p iff q. 

 

One of the most important uses of iff is in definitions.  It’s common, in English, to write 

definitions using just implies.  But what is in fact meant is iff.  We’ll need to be careful about 

this. 

 

Suppose we claim, “If it rains, the sidewalks will be wet”.  Then we could also say: 

 “Rain is a sufficient condition for wet sidewalks.”  (In other words, to argue wet 

sidewalks, it is enough to argue that it is raining. 

 “Dry (non-wet) sidewalks are a sufficient condition for not rain.” 

 “Wet sidewalks are a necessary condition for rain.”  (In other words, there can’t be 

rain without there being wet sidewalks. 

 “No rain is a necessary condition for dry sidewalks.” 

Consider these examples: 

 

1. “A triangle is a right triangle if one of its angles is 90.”  

2. “A logical operator is a binary operator if it takes two operands.” 

3. “A color is ‘warm’ if it is in the red through yellow part of the spectrum.” 
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Look again at the last column of what we are now calling the iff truth table.  Notice that it’s 

identical to the last column of the truth table for is equivalent to: 

 

 

p q p  q 

T T T 

T F F 

F T F 

F F T 

 

 

So now we see that saying, “p is equivalent to q”, is the same as saying, “p is a necessary and 

sufficient condition for q” (or that, “q is a necessary and sufficient condition for p”) or that, “p if 

and only if q” (or “q if and only if p”).  
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Problems 
 
In all of these problems, assume the real world in which we live. 
 
1. Let G stand for the claim, “The grass is wet.”  Now consider the following additional claims: 
 

I. It’s raining. 
II. The sprinkler is on. 

III. It’s sunny. 
 
(Part 1) Which one or more of the numbered claims is a sufficient condition for G? 
 
(Part 2) Which one or more of the numbered claims is a necessary condition for G? 
 
2. Let G stand for the claim, “I can graduate from the University of Texas.”  Now consider the 
following additional claims: 
 

I. I’ve been admitted to UT. 
II. I’ve made some tuition payments to UT. 

III. I’ve completed all of UT’s graduation requirements.   
 

(Part 1) Which one or more of the numbered claims is a sufficient condition for G? 
 
(Part 2) Which one or more of the numbered claims is a necessary condition for G? 
 
3. Consider the question, “The lamp is plugged in, so it will work, right?” Which of the following 
is a correct answer to the question: 
 

a) Yes.  Being plugged in is a sufficient condition for a lamp to work (although I should point 
out that it isn’t necessary). 

b) Yes.  Being plugged in is a sufficient (and also, as it turns out, a necessary) condition for 
getting a lamp to work. 

c) No.  Being plugged in, while it is necessary, it is not a sufficient condition for a lamp to 
work.     

 
4. Consider the following statements: 
  

I. A number is even if it is evenly divisible by 2. 
II. A costume is cool if it involves a superhero. 

III. A song is a hit if it has sold more than 1,000,000 copies. 
 
In which one or more of them did we actually mean “iff”, even though we just said “if”? 
 
5. Consider the following statements: 
 

I. A novel is Victorian if it was written in English between 1837 and 1901.    
II. A joke is bad if everyone groans loudly when they hear it. 

III. Food smells bad if it’s moldy. 
 
In which one or more of them did we actually mean “iff”, even though we wrote “if”: 
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Computation 
 

Once we’ve proved all of these identities, we can use them to transform and simplify logical 

expressions.  If necessary, we can apply several of them, one step at a time.   

 

As we do that, we may find that we want to compute logical values.  Appealing to our analogy 

with algebra, we have that: 

 

 x + 5 – 5  can be simplified to:    x 

 5 + 7   can be simplified to:  12 

 

In logic, we compute with the truth values T and F.  It is straightforward to prove all of these 

equivalences with truth tables: 

 

 p  p   T    p  p   T 

 p  p    F    p  p    F 

 p  T   T    T  p    T 

 p  F   p    F  p   p 

 p  T   p    T  p   p 

 p  F   F    F  p   F 

 

When we use one of these facts, we’ll label that step with the justification Computation.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Suppose that we are presented with the following logical expression (maybe as the solution 

to some circuit design problem): 

 

p  (s  p) 

 

We want to try to simplify it before we use it for something else.  We’ll show here a set of steps 

that do that.  On each line (except the first), we’ll indicate the identity that we used in 

moving to it from the equivalent logical expression above it.  We’ll also underline the part of 

the input expression to which the identity applied.     

 

[1] p  (s  p)    

[2] p  (s  p)   De Morgan 

[3] p  (s  p)   Double Negation 

[4]  p  (p  s)   Commutativity of and 

[5] (p  p)  s   Associativity of and 

[6] F  s    Computation 

[7] F    Computation 



3. Boolean Logic Proofs  45 

Problems 

 
The problems in this section are simple and give you a chance to practice working with 
individual identities. 
 
1. Given the statement: (p  q)  r 
 
Which of the following alternative statements is equivalent to the one we’ve been given: 
 

I.  (p  q)  r 

II.  (p  q)  r 

III.  (p  q)  r 
 
a) Just I. 
b) Just II. 
c) Just III. 
d) Just I and II. 
e) Just II and III. 
 
 

2. Given the statement:  p  (q  r) 
 
Which of the following alternative statements is equivalent to the one we’ve been given: 
 

I.  (p  q)  r 

II.  (q  r)  p 

III.  (p  q)  r 
 
a) Just I. 
b) Just II. 
c) Just III. 
d) Just I and II. 
e) Just I and III. 
 
 
3. Prove that implies isn’t associative.  To do this, you need to show that: 
 

 (p  q)  r    
 
is not logically equivalent to: 
 

 p  (q  r) 
 
Use a truth table to show that this claim is not a tautology: 
 

 ((p  q)  r)  (p  (q  r)) 
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The p’s and q’s are Placeholders 
 

The identities that we have just defined (and inference rules that we are about to define) are 

sound ways of deriving new claims whose truth follows from the truth of our premises. 

 

Since the job of the rules is to allow us to combine and modify well-formed formulas, we have 

needed a way to state them in terms of placeholders – slots that can be filled with whatever 

formulas we happen to be working with.   

 

We’ve used variables such as p and q to do that.  But, at proof 

time, we can substitute, for all such variables, any wffs. 

 

The only thing that we must be careful about is that we must 

substitute uniformly.  If one instance of a variable, say p, is 

replaced by some wff, say (a  b), then every instance of p must 

be replaced by (a  b). 
       https://www.youtube.com/watch?v=gzp6m9a2woI  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Problems 

 

1.  Recall that one form of De Morgan’s Laws is: 
 

 (p  q)  p  q 
 

     Consider:  [1]  ((P  Q)  (R  S))   
 

a) To apply De Morgan to [1], we should let p equal what? 
b) To apply De Morgan to [1], we should let q equal what? 
c) What is the result of applying De Morgan once to [1]? 

  

Distributivity tells us that:  (p  (q  r))  ((p  q)  (p  r)) 

 

Suppose that we have: 

 

[1]  (A  B)  (C  D) 

 

Then substituting (A  B) for p, C for q, and D for r, we can used Distributivity to prove: 

 

[2]   ((A  B)  C)  (A  B)  D) 

Big Idea 

 

When we state logical rules, variables are placeholders for arbitrary wffs. 

https://www.youtube.com/watch?v=gzp6m9a2woI
https://www.youtube.com/watch?v=gzp6m9a2woI
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Simplification 
 

As we work with logical expressions, we often end up with ones that are longer and messier than 

they need to be.  Before we go farther, it can help a lot to attempt to simplify them.  In other 

words, given an expression E, we look for an alternative expression that: 

 

 is logically equivalent to E, and  

 is simpler in some way, and thus easier to work with, than E is. 

 

We have two bags of tools that we can use to do this: 

 

 the Boolean identities that we’ve just described (plus any others that you want badly 

enough to prove the correctness of), and 

 computation. 

 

So how do we know what tools to use and how to use them?  There’s no magic answer.  Often 

what we try to do is to transform subexpressions so that we’re able to use computation.   

 

In the examples that follow, we’ll underline, in each expression, the subexpression that will be 

changed to create the next line.  That should make the process a bit easier to follow. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Sometimes, it can take just a few steps to do a really significant simplification. 

 

  

Suppose that we have:  (p  s)  ((p  p)  (p  r)) 

 

We can simplify as follows: 

 

[1]  (p  s)  ((p  p)  (p  r)) 

[2]  (p  s)  (T  (p  r))     Computation 

[3]  (p  s)  (p  r)     Computation 

 

Now we need to get p and p  together.  So: 

 

[4]  (s  p)  (p  r)     Commutativity of and 

[5] ((s  p)  p)  r     Associativity of and 

[6]  (s  (p  p))  r     Associativity of and 

[7]  (s  F)  r       Computation 

[8]  F  r       Computation 

[9]  F       Computation 
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When we simplify an expression, we’re actually doing a special kind of proof.  We’re proving 

that the expression that we started with and the one that we ended up with are, in fact, equivalent.  

We do that using the identities and computational rules that we’ve just described. 

 

In the next couple of learning modules, we’ll add to our Boolean logic proof arsenal a collection 

of inference rules.  Then we’ll see how to exploit combinations of identities, computational rules 

and inference rules to produce useful proofs. 

  

Suppose that we have:   ((p  q)  (p  q))  (p  r). 

 

The trick in this example is to use De Morgan’s laws backwards from the way we usually use 

them.  Why?  Because, in this case, doing so will create a subexpression of the form P  P 

that can be simplified to T.  (More precisely, we’ll end up with (p  q)  (p  q), but, letting P 

stand for (p  q), we have P  P.) 

 

So we can simplify as follows: 

 

[1]  ((p  q)  (p  q))  (p  r) 

[2]  ((p  q)  (p  q))  (p  r)    De Morgan 

[3] T  (p  r)      Computation 

[4]  p  r       Computation 
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A Tool for Checking Natural Deduction Proofs 
 

 

 

 

 

 

 

 
https://www.youtube.com/watch?v=afmo7LK6-bE      https://www.youtube.com/watch?v=fNJ4EQe3RQE  

We have built an interactive proof checker that you can use to check your proofs as you are 

writing them.  We can begin using it now, for simplification proofs.  Later we’ll see that it can 

also be used for proof that exploit additional inference rules.  

The checker needs to be initialized with a particular problem to solve.  There isn't a simple 

interface that lets you create problems and feed them to the checker.  But we have created a 

collection of them that you can work with. 

When it's time to do a proof, either as an example in one of our slides, or as part of a problem, 

you'll see the proof checker show up on your screen. 

You can create your proof with very little typing.  You can cut an paste from previous lines or 

from the symbol list at the bottom of the proof area. 

To create a proof step, begin by choosing one or two statements from the list of available 

ones.  Initially, there will just be premises.  But, as you create new lines in the proof, they too 

will be available. 

Then select a rule from the rule selection tool bar. 

Finally enter the line that results from applying the chosen rule to the chosen input(s).  Click the 

green check mark and the checker will test whether your step is valid. 

If you click on the funnel (at the left of the rule selection tool bar), the checker will filter the 

rules and only show you the ones that can be applied to the statement(s) you've selected. 

If you have selected a rule, you can click on the wrench (on the right of the rule selection bar) 

and you'll see what will happen if you apply that rule to the statement(s) you've selected. 

  

https://www.youtube.com/watch?v=afmo7LK6-bE
https://www.youtube.com/watch?v=fNJ4EQe3RQE
https://www.youtube.com/watch?v=afmo7LK6-bE
https://www.youtube.com/watch?v=fNJ4EQe3RQE
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Problems 
 
The problems in this section give you a chance to practice using combinations of the identities to simplify 
Boolean expressions. 
 
 

1. Prove that (p  q)  (p  q) is a tautology by using Boolean identities to prove that it is 
equivalent to T.                           
 
 

2. Simplify: (r  q)  (p  (q  s)) to T.    
 
 
3. Prove that these two expressions are equivalent:      

 p  (q  r)    

 q → (r → p) 
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Problems 
 
In these problems, we’ll explore the relationship between equivalent English sentences and the 
corresponding equivalent Boolean expressions. 
 
1. Consider the sentence:   He was not unaware that she was a student. 
 
Which of the following gives an equivalent sentence and explains the equivalence with one of 
our identities: 
 

a) He was aware that she was a student.   Contrapositive. 
b) He was aware that she was a student.   Double Negation. 
c) He was unaware that she was a student.   Double Negation. 
d) She was a student.      Idempotence. 
e) He was aware that she wasn’t a student.   Conditional Disjunction. 

 
2. Consider the sentence:   The Astros and the Phillies can’t both win. 
 
Which of the following gives an equivalent sentence and explains the equivalence with one of 
our identities: 
  

a) The Astros and the Phillies can both win.   Contrapositive. 
b) The Astros or the Phillies can win.     De Morgan. 
c) The Astros or the Phillies must lose.    De Morgan. 
d) The Astros and the Phillies must lose.   Contrapositive. 
e) The Astros and the Phillies must lose.   De Morgan. 

 
3. Consider the sentence:   The kitten stays or I’m outta here. 
 
Which of the following gives an equivalent sentence and explains the equivalence with one of 
our identities: 
 

1. The kitten and I are leaving.     De Morgan. 
2. If the kitten leaves, I go too.     Conditional Disjunction. 
3. The kitten and I are both staying.    Conditional Disjunction. 
4. If the kitten stays, so do I.     Commutativity of or. 
5. If the kitten leaves, I go too.     De Morgan. 

 
 

4. Consider the sentence:   Take your umbrella or it will rain. 
 
Which of the following gives an equivalent sentence and explains the equivalence with one of 
our identities: 
 

a) If you don’t take your umbrella, it will rain.    Conditional Disjunction. 
b) If you take your umbrella, it will rain.        Conditional Disjunction. 
c) If you take your umbrella, it won’t rain.       Conditional Disjunction. 
d) If it rains, you didn’t take your umbrella.      Conditional Disjunction. 
e) If you don’t take your umbrella, it will rain.    De Morgan. 
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Back to Boolean Expressions in Programming 
 

Recall that we’ve already seen that Boolean expressions play a key role in programming: they let 

programs respond to different circumstances, different sets of data, etc. 

 

The Boolean identities that we’ve just proved are true of all Boolean expressions, including the 

ones in programs.  So they can tell us that two Boolean expressions are equivalent and thus that 

two programs, one using one expression and the other using the other, will also be equivalent (up 

to possible efficiency issues that may arise if one expression is simpler than another). 

 

 

 

 

 

 

 

 

 

 

 

 

 

Programmers know that these two programs are equivalent because they know about De 

Morgan’s laws. 

 

Problems 
 
1. Consider the following program: 
 

if Hungry and not (Busy or Broke): 

 GetFood 

 
Consider the following alternative programs: 
 

I.   if Hungry and not Busy and not Broke: 

 GetFood 

 

II.  if (Hungry and not Busy) or Broke: 

 GetFood 

 

III. if not (not Hungry or Busy or Broke): 

 GetFood 

 

Which of them is/are equivalent to our original program? 
 
  

Both of these Python programs describe the same, very lenient, way of assigning daily credit 

to students in a class: 
 

if not Late and not Sleeping: 

 GetFullCredit 

Else: 

 Fail 

 
if not (Late or Sleeping): 

 GetFullCredit 

Else: 

 Fail 
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Normal Forms 
 

The identities that we’ve just been working with give us a way to transform a Boolean statement 

into another, equivalent one.  We’ve seen that we might want to do that, for example, to produce 

a simpler expression that we’ll have an easier time working with.  

 

 

 

 

But we can also exploit the identities if we want to assure that all the statements we’re working 

with have some sort of special form.  Depending on what we plan to do with the statements, 

guaranteeing a special form might make life easier. 

 

 

 

 

 

 

 

 

 

 

 

The “Atomic Nots” form has the property that every Boolean expression can be rewritten into it.   

 

 

 

 

 

 

 

We’ll say that a form constraint is a normal form for some original set of objects just in case 

every original object has an equivalent representation that does satisfy the constraint.  So: 

 

 We can call “Atomic Nots” a normal form for Boolean expressions. 

 

 We cannot call “No Nots” a normal form for Boolean expressions. 

 

By the way, normal forms are useful in applications that range from logic to parsing computer 

programs to handling data base queries.  The notion of an “equivalent” representation necessarily 

depends on what our purpose is for working with the objects we’re manipulating.  For our 

purposes, it means, “have the same truth value”.  

  

Recall that we have just shown that p  (s  p) can be simplified to F. 

But what about requiring that there be no nots at all?  Now there are things we can’t say.  

For example, there’s no way to say: 

 

 a  b  c 

For example, we might want to require that all nots be atomic, by which we mean that they 

apply to just a single variable.  So, we’d require that: 

 

 (a  b  c) 

 

be rewritten (using De Morgan’s Laws) as this equivalent statement: 

 

 a  b  c 
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Nifty Aside 

 
Conjunctive Normal Form (or CNF) is probably the most widely used normal form for logical 

expressions.  An expression is in CNF if it is the conjunction of disjuncts.  

 

The formula: 

 

(p  q)  (a  q  c)   r   

 

is in CNF.  All nots are atomic, all top level operators are ands, and inside parentheses 

there are only ors. 

 

CNF is the basis for an important computational logic technique called resolution.  It also 

plays a key role in a large collection of proofs about computational complexity. 

Nifty Aside 

 
Disjunctive Normal Form (or DNF) is a sort of opposite of CNF.  An expression is in DNF if it is 

the disjunction of conjuncts.  

 

The formula: 

 

(p  q)  (a  q  c)  r   

 

is in DNF.  All nots are atomic, all top level operators are ors, and inside parentheses there 

are only ands. 

 

DNF is the basis for a very useful way to specify database queries. 

 



3. Boolean Logic Proofs  55 

Boolean Inference Rules 
 

Introduction 
 

In the last section, we looked at identities: ways of transforming a single logical statement into 

another (presumably more useful) one. 

 

But proofs (in fact, more generally, arguments) require that we reason with multiple statements 

to see what new conclusions we can draw from an entire set of premises. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In this section, we’ll formalize the inference (reasoning) rules that will enable us to make 

arguments (generate proofs) of this sort.  We’ll start with modus ponens, the one we used 

informally in the Wet Sidewalks example. 

 

  

Recall the Wet Sidewalks example.  We gave the following names to statements: 

 

R: It’s raining. 

W: The sidewalks are wet. 

S:  The sidewalks are slippery.  

C: It is important to be careful. 

 

We supplied the following premises: 

  

[1]   R  W  If it’s raining then the sidewalks will be wet. 

[2]   W  S  If the sidewalks are wet, they will be slippery. 

[3]   S  C  If the sidewalks are slippery then it is important  

to be careful. 

[4]   R  It’s raining. 
 

And then we reasoned as follows: 

 

 If it’s raining then the sidewalks will be wet.  But it is raining.  So the sidewalks will be wet. 

 

 If the sidewalks are wet, they will be slippery.  But they are wet.  So they are slippery. 

 

 If the sidewalks are slippery then it is important to be careful.  But they are slippery.  So it is 

important to be careful. 

 

So we then have: 

 

[5]    C     It is important to be careful. 
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Inference Rules Preserve Truth 
 

As in the case of the identities in the last section, what we’re claiming, in our statement of each 

of these inference rules, is that they are true for all propositions (p, q, r, or even compound 

expressions containing Boolean operators).   

 

Also, as in the case of the identities, we prove the correctness of each of these rules using truth 

tables.  What we mean by correctness (generally called soundness in this context) is: 

 

 If a rule is applied to a set of premises P and it generates a new statement q, then q is 

guaranteed to be true whenever all the elements of P are.   

 

Recall that we have other synonyms for this:   

 

 q follows from P.  

 P logically implies q.  

 P entails q.  

 

Whatever we call it, we must preserve truth.  We can describe how to do that by using the same 

structure that we used when we first introduced the idea of proof.  We must show that, if one of 

our rules allows us to generate q from a set of premises P, then this is true: 

 

 (premise1  premise2   premise3  …  premisen)  q 

 

We already know how to prove claims of this sort.  Truth tables to the rescue.  We will prove the 

correctness of each of our new inference rules with a truth table. 

 

But first, we’ll introduce one more notation that is common when describing inference rules.  

We’ll write: 

 

           input1   

           input2 

             … 

                 inputn    

   conclusion     

 

This means that the rule we’re defining applies to one or more input statements and allows us to 

infer the conclusion. 

 

Important note:  Each of the expressions that matches a pattern above the inference line must be 

an entire statement.  While it is allowed to apply identities to subexpressions, inference rules 

can apply only to entire statements. 
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A List of Inference Rules 
 

Modus Ponens:    p  

     p  q 

           q 

 

From premises p and p q  conclude .q  

 

 

 

 

We’ll prove the soundness of this rule so that we can see how to construct such 

soundness proofs.  What we need to prove is that the following statement is a 

tautology (it is true for all values of p and q): 

 

  (p  (p  q)) → q 

 

Here’s the truth table that does that:  

 

p q p  q p  (p  q) (p  (p  q)) → q 

T T T T T 

T F F F T 

F T T F T 

F F T F T 

 

The last column contains all T’s.  So we have a tautology.  

 

We’ll omit the proofs of the rest of the rules presented here.  You should prove them yourself.  

You can use the Truth Table app to do that. 

 

 

Modus Tollens:    p  q   p  q 

     q   q 

           p               p 

 

The first version says that, from premises p  q and q, conclude p.  Since p 

guarantees q, we cannot have p true unless q is true too.  Since q is false, p 

must also be false. We don’t actually need the second version, since, in the first 

one, q can be any logical expression, including a negated one.  But the second 

version may help us avoid an extra application of the Double Negation rule. 

 

 

 

 

 

 

From R  W (rain implies wet sidewalks) and R (it’s raining), 

conclude W (wet sidewalks). 

From R  W (rain implies wet sidewalks) and W (the sidewalks 

aren’t wet), conclude R (it’s not raining). 
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Recall the identity that we called Contrapositive: (p  q)  (q  p).  If we 

start with: 

 

(p  q) and apply the Contrapositive identity, we get: 

 

(q  p).   

 

If we’re given this, plus q, we can use Modus Ponens to get: 

 

 p. 

 

Modus Tollens lets us do the same thing in a single step. 

 

Sometimes it is helpful to think of reasoning by Modus Tollens as reasoning 

backward. 

 

Disjunctive Syllogism:  p  q  p  q  p  q  p  q 

    q  p  p  q 

          p        q        q        p 

  

The first version says that, from premises p  q andp, conclude p.  If at least 

one of p and q has to be true but we know that q isn’t, then p has to be.  Again, 

we don’t need any other versions.  But they may shorten our proofs.  The 

second version is equivalent since or is commutative.  The last two, again, may 

let us do in one step something that would take extra steps involving Double 

Negation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 J  M  John or Mary has to drive me to the store. 

 J  “Not I,” says John. 

 M  Mary has to drive. 

Here’s a real example of Disjunctive Syllogism taken from a news 

story: 

 

In commenting on the consistency of Zimmerman's story 

as well as Zimmerman's apparent relief when falsely told 

there was a video of the confrontation, Serino said 

Zimmerman had to be either a pathological liar or telling 

the truth. 

 

"If we were to take pathological liar off the table…do 

you think he was telling the truth?" asked defense 

attorney Mark O'Mara. 
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Simplification:    p  q   p  q  

           p         q 

 

From the single premise p  q, conclude p.  Or conclude q.  If both p and q are 

true, then either of them alone must also be true. 

 

 

 

 

 

Addition:     p   p  

           p  q         q  p 

  

From premise p, conclude that p or q (in either order) must be true for any q.  

Notice that q can be anything and can be either true or false because, if p is 

true, q is irrelevant to the truth value of its disjunction with p: p  q and q  p 

must also be true.  

 

Conjunction:     p  

     q 

           p  q 

 

This seems to be embarrassingly trivial.  What is actually happening, however, 

is that from two separate premises p and q we are allowed to conclude the 

conjunction of the two of them.  

 

Hypothetical Syllogism:   p  q  

     q  r 

           p  r 

 

From premises p  q and q  r, conclude p  r.  This looks very similar to a 

double use of Modus Ponens.  It says, given a chain of implications (where the 

conclusion of one is the premise of the next), the leading premise must imply 

the final conclusion.   

 

Why is this useful?   If we know p then we can use p  q to derive q.  Then 

we can use q  r to derive r and we’re done.  But suppose that we don’t (yet) 

know p.  This rule lets us conclude that p (if it’s true) would imply r.  Maybe 

this tells us, if we’re looking for a way to prove r, that we should spend some 

effort trying to prove p.  

 

 

 

 

 

 

 

 

C  K  Chris and Kate are coming to the party. 

C  Chris is coming to the party. 
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Problems 
 
1. Give names to the following statements: 
 
C: Cody is late. 
M: Mary is late. 
P: Peter is late. 
 
Assume the following premises: 
 

[1]   C  M  Cody or Mary is late. 

[2]   P  C  Peter or Cody is late. 

[3]   M    Mary isn’t late. 
[4]   P  Peter is late. 
 
Using our inference rules, we can conclude: 
 
[5]   C    Cody is late. 
 
How did we derive that conclusion? 
 
a) We applied Disjunctive Syllogism to [2] and [4]. 
b) We applied Modus Tollens to [2] and [4]. 
c) We applied Modus Ponens to [1] and [4]. 
d) We applied Disjunctive Syllogism to [1] and [3]. 
e) We applied Modus Tollens to [1] and [3].  
 

Too Early 

 

Suppose that we want to prove that, if I’ve gotten up before 4:00 am, I’m 

cranky.  (Seems obvious, but proofs are what we’re doing here.)  Give 

names to the following statements: 

 

Uby4:    I got up before 4:00am. 

Cranky:    I’m cranky. 

Tired:     I’m tired. 

 

Assume the following premises: 

 

Uby4  Tired  If I got up before 4:00 am, I’m tired.   

Tired  Cranky  If I’m tired, I’m cranky.    

 

Conclude: 

 

Uby4  Cranky 

 

Now we’re ready to spring into action with a conclusion whenever it 

happens that I got up ridiculously early.  



3. Boolean Logic Proofs  61 

2. Give names to the following statements: 
 
C: Chris likes apples. 
M: Mary likes apples. 
P: Peter likes apples. 
 
Assume the following premises: 
 

[1]  C  M  If Chris likes apples, so does Mary. 

[2]  P  M  If Peter likes apples, so does Mary. 
[3]  C  Chris likes apples. 

[4]  P  Peter doesn’t like apples. 
 
Using our inference rules, we can conclude: 
 
[5]  M    Mary likes apples. 
 
How did we derive that conclusion? 
 
a) We applied Modus Ponens to [1] and [3]. 
b) We applied Modus Ponens to [2] and [4]. 
c) We applied Modus Tollens to [1] and [3]. 
d) We applied Modus Tollens to [1] and [4]. 
e) We applied Hypothetical Syllogism to [1] and [2]. 
 
3. Give names to the following statements: 
 
C:  Chris likes math. 
P:  Pat likes math. 
Y:  Taylor likes math. 
 
Assume the following premises: 
 

[1]  C  P  If Chris likes math, so does Pat. 

[2]  C  Y  If Chris likes math, so does Taylor. 
[3]  Y  Taylor likes math. 

[4]  P  Pat doesn’t like math.  
 
Using our inference rules, we can conclude: 
 

[5]  C  Chris doesn’t like math. 
 
How did we derive that conclusion? 
 
a) We applied Modus Ponens to [1] and [4]. 
b) We applied Modus Tollens to [1] and [4]. 
c) We applied Modus Ponens to [2] and [3]. 
d) We applied Modus Tollens to [2] and [3]. 
e) We applied Hypothetical Syllogism to [1] and [2]. 
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More Inference Rules 
 

Contradictory Premises:      p  

     p 

             q 

 

From premises p andp, conclude q for absolutely any q.  This may seem the 

strangest of the lot.  The statement q can come from thin air.  It may be 

ridiculous.  Nevertheless, for any p, the statement p  p is always false and 

the definition of implies says that a false premise always guarantees a true 

conclusion (for any conclusion).  So we have that, in the face of a contradiction 

p  p, anything may be concluded.  

 

 

 

 

 

 

 

 

 

 

 

 

Resolution:   p  q  p  q  p  q  p  q  

          p  r          r  p          q  r          r  q  

         q  r        q  r        p  r        p  r 

   

The first version says that, from premises p  q and p  r, conclude q  r.  

(The other three are equivalent since or is commutative.)  This is interesting 

since we never assert any of p, q, or r to be true.  But we do know that p must 

either be true or false.  If p is true (and thus p is false) then, to make p  r 

true, r must be true.  Alternatively, if p is false (and thus p is true) then, to 

make p  q true, q must be true.  Hence either q or r (or both) must be true.  

 

 

 

 

 

 

 

 

 

 

  

Recall that we’ve already proven this.  We saw that if we assert:  

 

 The moon is made of green cheese. 

 The moon is not made of green cheese. 

 

then we can prove any of the following: 

 

 Elephants can fly. 

 Elephants cannot fly.  

 The king of France is a unicorn. 

Nifty Aside 
 

Besides being useful in the sorts of proofs that we’re going to do, 

this rule forms the basis for another proof technique called 

resolution.   
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Conditionalization:     A, a set of premises 

(A  p) entails q 

            p  q  

 

Suppose that some set A of premises, taken together with one additional 

premise p, entails q.  In other words, q must be true whenever the premises, 

plus p, are all true.  Then, continuing to assume A as our premises, we have 

that p implies q.  

 

This rule works differently from the others that we have presented.  In 

particular, it describes a derivation process that may require many steps and 

that may require appeal to any number of other premises. 

 

Note that what we derive here is an implication.  We show that, if p is true, 

then q must also be.  We do that in the following steps: 

 

1. Assume that p is true (i.e., add it as a new premise). 

2. Reason with it (and with any other required premises or derived 

statements). 

3. Derive q.  Note that, at this point, we haven’t actually proven q.  We’ve 

just shown that it must be true if p is. 

4. Conclude that (in the context of the rest of our premises) p  q.  When we 

make explicit the fact that our conclusion rests on the assumption of the 

extra premise p, we’ll say that we’ve discharged the premise p. 

 

 

While Conditionalization doesn’t allow us to conclude q, it can be very useful.  

Once we’ve got p  q, there are two things we can do: 

 

 Wait and, if we ever do find out that p is true, we can immediately 

conclude q. 

 

 Use our new fact as a hint if we’re trying to figure out a way to prove q: 

What we know now is that we should try to prove p. 
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Note that, whenever we use the Conditionalization rule, we must do careful 

bookkeeping so that we guarantee that all conditional premises have been discharged 

before we assert a conclusion. 

 

 

 

 

 

 

 

 

 

  

Slippery 

 

Give names to the following statements: 
 

P: There’s precipitation. 

Z:  It’s freezing. 

S:  It’s slippery. 

 

Assume the following premises: 
 

 (P  Z)  S If there’s precipitation and it’s freezing, it is slippery.  

Z  It’s freezing.    
 

Given these two premises, we should be able to prove that, if there’s 

precipitation, it will be slippery. (Pretty reasonable in the winter in many 

places.) To do this, we introduce the conditional premise: 

 

 P   There’s precipitation. 
 

Now we can assert: 
 

  (P  Z) 
 

(To get this formally, we use our second premise plus the Conjunction rule.)  

Using Modus Ponens, along with our first premise, we then have: 
 

 S 
 

But we haven’t actually proved S.  We must discharge the conditional 

premise P.  When we do this, we get: 

 

 P  S  If there’s precipitation, it is slippery. 

Big Idea 

 
In the appendix, you’ll find a Boolean logic “cheat sheet”.  You may want to keep it handy 

while working proofs. 
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Problems 

 

1. Give names to the following statements: 
 

B:  We’ll watch Bambi. 
K:  Koko is coming. 
P:  We’ll go on a picnic. 
S:  We’ll watch Shrek. 

 
Assume the following premises: 
 

[1]  B  S   We’ll watch Bambi or Shrek. 

[2]  K  S  P  If Koko comes, we won’t both watch Shrek and go on a picnic. 
[3]  K     Koko is coming. 
 
Using the identities and inference rules that we’ve defined, we can conclude: 
 

[4]  B  P  We’ll watch Bambi or we won’t go on a picnic. 
 
Which of the following is one way that we could have derived that conclusion: 

 
a) We applied Modus Ponens to [2] and [3], then Hypothetical Syllogism to that result and 

[1]. 
b) We applied Resolution to [1] and [2], then Modus Ponens to that result and [3]. 
c) We applied Resolution to [1] and [2]. 
d) We applied Modus Ponens to [2] and [3], then resolution to that result and [1].    
e) We applied Modus Ponens to [2] and [3], then Disjunctive Syllogism to that result and [1]. 
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A Really Useful Problem Solving Technique – Debugging 
 

<quotation>  This is a new tag for us. 

 

 

 

 

Consider a very common problem-solving scenario: 

 

 Something doesn’t work. 

 

Your job is to fix it.  Before you can fix it, you have to figure out the cause of the problem.   

 

We do this kind of reasoning every day.  It’s also a powerful tool for programmers who have to 

debug their code. 

 

A useful strategy is: 

 

1. Make a list of possible causes. 

2. Consider the items on the list one at a time:   

a. If this item appears to be the cause, move on to fix the problem 

b. If this item doesn’t appear to be the cause, winnow the list by removing this item. 

3. Hope that you don’t winnow the list down to empty before finding the cause. 

 

Disjunctive Syllogism is what lets us do this. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

It is an old maxim of mine that when you have excluded the impossible, whatever remains, 

however improbable, must be the truth. 

 

Sherlock Holmes in The Beryl Coronet 

Problem: The lamp won’t turn on. 

 

Let’s give names to the following statements: 

 

Plugged: The lamp is plugged in. 

Power:  The power is on to the outlet. 

Bulb:  The bulb is okay. 

Broken: The lamp is broken. 

 

Then we might make this claim if we observe that our lamp isn’t working and we believe that 

there are four possible causes of the problem: 

 

 Plugged  (Power  (Bulb   Broken)) 

 

(In everyday reasoning, we would skip the parentheses.  Later, we will too.  But for now, each 

instance of or must have exactly two arguments.  So we’ll write it this way and just list the 

possible causes in the order in which we plan to check them.) 

 

We can now proceed to diagnose the problem.  We check that the power is plugged in.  It 

is.   
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So we reason: 

 

Plugged  (Power  (Bulb   Broken))    

Plugged         

 

Power  (Bulb   Broken)    Disjunctive Syllogism 

 

Next, suppose that we check that the power is on by plugging something else into the outlet.  

It works.  So we reason: 

 

 

  Power  (Bulb   Broken)   

  Power      

   

  Bulb   Broken     Disjunctive Syllogism 

 

And so forth. 
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Inference Rules Are One Way Streets 
 

Notice an important difference between the identities that we proved in the last section and the 

inference rules that we’ve proven here.  In the case of the identities, we show that:  

 

 p  q 

 

This claim is symmetric.  Substitution can go in either direction.  Since p and q have identical 

truth values, either can be substituted for the other in any logical expression without changing the 

expression’s truth value.   

 

That’s not the case for the inference rules.  For them, we’ve proved only that: 

 

 

 antededents  conclusion 

 

 

 

Generally one side is stronger (true in more circumstances) than the other.  So inference just goes 

in one direction. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Here’s a simple example of this.  Recall the Simplification rule and the tautology that proves 

its soundness: 

 

  p  q   

 

      p   

 

So we can start with: 

 

C  K   Chris and Kate are coming to the party. 

 

And conclude: 

 

C   Chris is coming to the party. 

 

But we cannot start with C and conclude C  K. 
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Problems 
 
1. Give names to the following statements:    
 
C:  There will be cake for dessert. 
P:  There will be pie for dessert. 
CH:  There will be chocolate for dessert. 
 
Assume the following premises: 
 

[1]  C  P  There will be cake or pie for dessert. 

[2]  C  CH If there’s cake it will be chocolate. 
 
We wish to prove: 
 
 CH  There will be chocolate for dessert. 
 
Here’s a proposed proof: 
 

[1]  C  P  Premise 

[2]  C  CH Premise 
[3]  C  We apply Addition to  [1]. 
[4] CH  We apply Modus Ponens to [2] and [3]. 
 
Which of the following claims is true of this proof?  If you think that the proof is wrong, indicate 
the first place where a mistake is introduced. 
 
a) It is a valid proof. 
b) It is not valid.  Line 3 is a valid conclusion but the reason given is wrong. 
c) It is not valid.  Line 3 is not a valid conclusion. 
d) It is not valid.  Line 4 is a valid conclusion but the reason given is wrong. 
e) It is not valid.  Line 4 is not a valid conclusion. 
  



70  3. Boolean Logic Proofs 

Using Inference Rules Correctly 
 

We’ll soon see how to approach writing an entire proof that exploits the identities and rules that 

we’ve just described.  But before we do that, let’s just make sure that we understand how 

individual ones can be applied correctly. 

 

We already know that identities work in both directions, while rules apply only in one. 

 

Here’s another important distinction: We can use the identities to make substitutions, both for 

entire lines in a proof as well as for subexpressions. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The reason that we can apply the identities anywhere is that they are identities.  They allow us to 

rewrite one expression as another one with equivalent truth value.  So applying them never 

changes truth values. 

 

On the other hand, the inference rules work only in one direction.  They do not rewrite 

expressions as equivalent ones.  We know only that the new one is entailed by the original one.  

Thus we must be careful to use them exactly as they are written. 

 

 

 

 

 

 

 

  

Suppose that we are given: 

 

[1]  ((P  Q))  R 

 

We can apply De Morgan to the subexpression (P  Q) and thus rewrite [1] as the 

equivalent sentence: 

 

[2]  (P  Q)  R 

 

We can also apply Conditional Disjunction to [1] and thus rewrite it as the equivalent 

sentence: 

 

[3]  ((P  Q))  R 

Big Idea 

 

Inference rules may be applied only to entire logical expressions. 
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Now that we’ve seen both correct and incorrect ways to apply 

logical rules, let’s take another look at some of the examples that 

we considered at the beginning of this course.  

 
https://www.youtube.com/watch?v=WvFjnuh0F54  

 
 

Problems 
 
1. Give names to the following premises: 
 
B:  Blitzen is pulling the sleigh. 
C:  Cupid is pulling the sleigh. 
D:  Dancer is pulling the sleigh. 
P:  Prancer is pulling the sleigh. 
R:  Rudolph is pulling the sleigh. 
 
Assume the following premises: 
 

[1]  (P  B)  R 

[2]  R  (D  C) 

[3]  R 
[4]  B 
 
Which of the following statements correctly describes a use of one of our inference rules: 
 

a) Use Simplification with [1] to infer P   R. 

b) Use Addition with [2] to infer (R  B)  (D  C). 

c) Use Modus Tollens with [1] and [3] to infer (P  B). 
d) Use Modus Ponens with [1] and [4] to infer R. 
e) Use Contradictory Premises with [3] and [4] to infer C. 

  

Cake and Ice Cream 

 

Give names to the following statements: 

 

C: I get to have cake. 

IC: I get to have ice cream. 

H:  I’ll be extra happy. 

 

Suppose that we are given: 

 

[1]  (C  IC)  H 

 

We may not apply Simplification to (C  IC) to derive C and thus to transform [1] into: 

 

[2]  C   H 

 

Clearly this is a stronger and thus not equivalent claim. We have not been given any reason 

to believe that I’ll be extra happy with only cake. 

https://www.youtube.com/watch?v=WvFjnuh0F54
https://www.youtube.com/watch?v=WvFjnuh0F54
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Suppose You Want More Rules 
 

By the way, there is nothing “magic” about the particular list of identities and inference rules that 

we’ve shown here.  

 

If you decide you need to look at some other “Learn Logic” resources (but why would you?), 

you may find more identities: 

 

 Exportation 

 Negation of Conditional 

 

You may also find more inference rules: 

 

 Biconditional Introduction 

 Biconditional Elimination 

 Disjunction Elimination 

 Constructive Dilemma 

 Destructive Dilemma 

 Absorption 

 Law of Clavius 

 

We chose the ones we did because they’re the most useful.  And at some point, it just isn’t worth 

memorizing a longer list. 

 

But if you want more, you can have them.  You can create them even in the middle of a proof. 

Whenever you’re working with Boolean expressions and you’d like to apply a rule that you’re 

pretty sure is sound but that does not show up on our list, all you have to do is: 

 

1. Write it down.  Probably give it a name. 

 

2. Use a truth table (or the natural deduction technique that we’re about to learn) to prove it. 

 

Then it’s yours. 
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Problems 
 
Indicate, for each of these proposed “identities” and “inference rules”, whether it’s one we could 
have added to our list.  (Hint: Use a truth table.) 
 
 

1. Valid identity or not?   ((p  q)  r)     (p  (q  r)) 
 
 
 

2. Valid rule or not?   p  q  

    r  s 

    p  r 

          q   s 
 
 
 

3. Valid rule or not?   p  q  

    (p  q)  r 

          r 
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Natural Deduction I 
 

Introduction 

 

If we wanted to make an apple pie, we might start with flour, sugar, apples, 

and such.  This is called cooking “from scratch”.  Alternatively, we could buy 

a pre-made pie shell and some apple filling and be 90% done.  If we want to 

prove a Boolean logic theorem, we might build a truth table.  On the other 

hand we might make faster progress using some pre-made theorems: the 

identities and inference rules of the previous sections.  

 

 

Use of the identities and inference rules has three benefits over truth tables: 

 

 

 The size of a truth tables grows as 2mn  , where its 

corresponding statement has n operators and m 

variables.  For even moderate m and n this can be huge. 

 

 

 

 Although a truth table, if completed correctly, produces a bullet-proof argument, there is 

almost no insight arising from the proof.  We may know that something is true but we 

may have little understanding of why that is so. 

 

 

 The truth table approach does not generalize to more powerful logics, including predicate 

logic (which we’ll explore in the next section).  There we’ll allow quantified predicates, 

so we’ll be able to say not just that Chris has a mother but also that all people have 

mothers.  So, in particular, the truth table approach isn’t powerful enough to describe all 

of what, in everyday life, we call “correct reasoning”. 

 

So we actually get a better “proof pie” if we “cheat” and skip the “from scratch” approach.  

 

In much the same way as in the cooking example, we could consider writing computer code in a 

low level or a high level programing language.  The high level language, which lets us build on 

code that has already been written, makes programming easier and leads to programs that are 

easier to understand.  

 

We’re about to describe a proof technique that we call natural deduction.  It will exploit the 

identities and inference rules that we’ve just been studying.  We call this approach “natural 

deduction” to emphasize the fact that it corresponds to how humans think.   
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Problems 

 

1. Consider the expression: 
  
             (A ∧ P) ∨ ((Q ∧ P) ∨ (A ∧ B)) → R 
  
    How many rows are there in its truth table?    
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The Structure of a Natural Deduction Proof 
 

In the last section, we experimented with our reasoning rules and produced what we can call 

“one-step proofs”.  Now we want to see how to construct multiple-step proofs that may exploit 

many premises, as well as several identities and inference rules. 

 

Our proofs will be composed of a sequence of lines.  Each line consists of four elements: 

 

[line-number]       statement        Rule/Premise       [referenced line number(s)] 

 

 

The sequence of lines obeys the following rules: 

 

1. The line numbers start at 1 and proceed sequentially. 

 

2. Each statement is something that we know (at that point in the proof) to be true.  So it 

must be either a premise (including possibly a conditional one) or something that we have 

just shown to follow from preceding lines of the proof. 

 

3. The third entry in each line justifies the statement on that line.  It can simply say, 

“Premise”.  Or it can be any of the identities or inference rules we have presented.  Or it 

can be a theorem that we’ve previously proved. 

 

4. Whenever we use an identity, inference rule or theorem, we must specify the statement(s) 

to which that identity/rule/theorem applied.  So, on any line that doesn’t correspond to a 

premise, we list those earlier line numbers. 

 

 

 

 

 

 

 

 

 

Of course, what we want to learn how to do is to construct less trivial proofs (we hope of 

interesting things). 

 

So, to review:  To prove a conclusion C, we must: 

 

1. Choose an appropriate set of premises. 

2. Apply our identities and inference rules, starting with one or more of the premises to 

derive C. 

Here’s a simple example that illustrates the format of a proof that relies on two premises: 

 

[1]   A  T   Premise 

[2]   A   Premise 

[3]   T   Modus Ponens   [1], [2] 
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By the way, sometimes when people write proofs, they like to make it clear that they’ve really 

done it.  The conclusion has been proved.  So they may add one last line to their proof:   

 

 Q. E. D. 

 

Q.E.D. is an abbreviation for the Latin expression quod erat demonstrandum, which means, “that 

which was to be proved.”   You can use it if you like. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Problems 

 
1. Consider the following simple proof: 
 

[1]  A  B      Premise 

[2]  K   B    Premise 
[3]  K     Premise 
[4]  __________________  Modus Ponens    [2], [3] 

[5]   A     __________________  [1], [4] 
 
 
a) What expression should fill in the blank in line 4? 
 
b) What rule should fill in the blank in line 5? 
 

  

English Aside 

 

Q.E.D. is now sometimes used in regular English to mean something like, “And so there. End 

of discussion.  I’ve proved it.  I’m right.”  And it’s been translated into a lot of other 

languages.   
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Law of the Excluded Middle 
 

Most of the premises that you’ll use in your proofs will be ones that you’ve chosen to correspond 

to things that are true in the problem domain you’re working in.  There is one premise, though, 

that we’ll mention here because it’s very general and is not infrequently useful.  It is: 

 

Law of the Excluded Middle:    p  p. 

 

 

In other words, for any statement p, either it’s true or 

false.  Either it or its negation must be true.  There’s 

nothing “in the middle”. 

 

 

 

 

 

 

Notice, by the way, that p  p is a tautology.  It’s always true.  (That’s why 

it’s always a safe premise.)  We’ve chosen to exhibit it here and give it a name 

because it actually comes up in arguments.  We’ve used it a few times already 

in this course.  But, in fact, it’s always safe to use as a premise any tautology.  

Such a premise will never make it possible to prove something that wasn’t 

provable (perhaps less directly) some other way. 

 

 

 

 

 

 

 

 

 

 

  

Nifty Aside: 

 

The Law of the Excluded Middle is noncontroversial in Boolean logic.  It’s a 

tautology.  But we should point out that, when we move on to predicate 

(quantified) logic, there are approaches that do not take it as an axiom.  

We will.  But you should know that not everyone does. 
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English Aside 

 

When we’re talking in English, rather than writing in logic, it is frequently less 

obvious that the Law of the Excluded Middle applies.  There are many 

reasons for this including: 

 

 Many concepts are fuzzy.  It’s generally quite clear what a cat is.  

So if we let C stand for the claim that Lucy is a cat, we probably 

won’t get in trouble when we try to assign it a truth value (T or F).  

But now suppose that Brett is 11 months old.  Is it true or false that 

Brett is a baby?  Maybe baby is right.  Or maybe a toddler, but not 

a baby.  A person might say, “Sort of”. 

 

 Recall that a presupposition is something that a speaker assumes to 

be true but doesn’t explicitly mention.  When presuppositions are 

false, it’s hard to assign any truth value.  Should we assign T or F to, 

“The king of France has red hair”?  (Exactly who is “the king of 

France?”)  

 

 “Not” can do many different things in English.  Consider the 

sentence, “Travis likes Jody”.  To negate that in an unambiguous 

way, we’d have to say, “It’s not the case that Travis likes Jody.”  If 

we do that, then one or the other of the sentences is true (although 

even here we could be in trouble if Travis admits to having a lot of 

conflicting feelings about Jody.)  But sentences like our second one 

are rare.  We’d be much more likely to say, “Travis doesn’t like 

Jody”, which is likely to be interpreted as, “Travis dislikes Jody”.  But 

now it could easily happen that neither “Travis likes Jody,” nor 

“Travis dislikes Jody,” is true.  It’s possible that Travis doesn’t know 

Jody and has no opinion about her.  Yet both of these sentences 

assert that Travis does have some opinion.  So they could both be 

false. 

 

We’ll have more to say about these issues later, when we talk about the 

complex ways in which English sentences map to logical ones.  For now, 

however, we’ll take the Law of the Excluded middle as a premise.   
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Creating Natural Deduction Proofs 
 

We’re going to walk through the process of constructing natural deduction proofs for a collection 

of representative examples.  

For each of these problems, we suggest that you first try to do the proof yourself.  You can do 

this with StepWise, our interactive proof checker.   

You can also watch a video in which we walk through the 

construction of a proof.  

https://www.youtube.com/watch?v=PUVuBoLlsY4  
 

Forward Reasoning – Modus Ponens Proof Example: Relaxing 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Relaxing: 

 

We’ll start with a simple example.  We’ll do this one with 

just symbols (p, q, r, and s) so that we’re not distracted by 

a particular real world problem.  At the end, we’ll suggest 

such a problem that could correspond to this generic 

proof.  
 

 
                https://www.youtube.com/watch?v=gj5B4w6LZM0  

Prove:  

   p 

   p  q 

   (q  s)  r 

       r 

 

You should try to do this proof yourself: 

 

You can also watch our video, which will outline a strategy for creating a proof. 

  

 

On the next page, you’ll find a summary of the approach that is described in the video. 

https://www.youtube.com/watch?v=PUVuBoLlsY4
https://www.youtube.com/watch?v=gj5B4w6LZM0
https://www.youtube.com/watch?v=gj5B4w6LZM0
https://www.youtube.com/watch?v=PUVuBoLlsY4
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We are given three hypotheses and, although we do not know if we will use them all, let’s 

include them all in the proof – if we notice some are superfluous, we can delete them later.  

So we can write the first three lines of our proof of r: 

 

 

[1]  p   Premise 

[2]  p  q   Premise 

[3]  (q  s)  r  Premise 

   

Now let’s do some strategizing.  The first thing to notice is that (on the basis of what our 

premises tell us) the only way to conclude r is first to derive q  s.  The role of s is perplexing – it 

appears nowhere else.  It’s one of those “out of thin air” sorts of statements. Two of our 

inference rules allow for statements to be introduced out of thin air: Addition and 

Contradictory Premises.  Using Contradictory Premises is fairly rare since it requires a 

contradiction – and a glance at the premises doesn’t suggest any contradiction.  Thus it 

appears that the use of Addition is going to be one key to this proof.   

 

We need to obtain q somehow before we can use addition to get q  s.  But that’s easy from 

the premises, by using Modus Ponens. Thus the next line of the proof is: 

 

[4]  q   Modus Ponens   [1], [2] 

 

Remember that [1], [2] indicates that we have used lines 1 and 2. 

Now it is easy to get q  s using Addition: 

 

[5]  q  s   Addition    [4] 

 

 

Finally, another use of Modus Ponens gets our conclusion:  

 

[6]  r   Modus Ponens   [3], [5] 

 

Notice, by the way, that we did use all of the hypotheses.  We could check by seeing if each 

of the premise line numbers [1], [2], and [3] in this case, appears someplace in the rightmost 

column.  Here’s our complete proof: 

 

[1] p   Premise 

[2] p  q   Premise 

[3] (q  s)  r  Premise 

[4]  q   Modus Ponens   [1], [2] 

[5]  q  s   Addition    [4] 

[6]  r   Modus Ponens   [3], [5] 

 

By the way, this example could have come from a more real world seeming problem: 

Suppose we are given that Peter is home, the home will be Quiet when Peter is home, and if 

the home is Quiet or it is TueSday it’s easy to Relax.  We prove that it’s easy to Relax. 
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Disjunctive Syllogism Proof Example: Who Drives Me? 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Who Drives Me? 

 

Next, let’s use natural deduction to prove an extension of one of the claims that we’ve 

already proved with a truth table. We’ll pick up where we left off with the <ex Who Drives 

Me> example. We’ll assign the following names to basic statements: 

 

J:  John must drive me to the store. 

M:  Mary must drive me to the store. 

L:  John will be late for work.  

G:  Mary must buy gas. 

Y: Mary must have money. 

W:  Mary must work at a paying job. 

 

(Note that we’ve simplified reality to assert that Mary must have a paying job in order to 

have money.) 

        
Our premises will be: 

 

[1]  J  M  John or Mary must drive me to the store. 

[2]   J  L  If John drives me to the store, he will be late for work. 

[3]   L  John cannot be late for work. 

[4]   M  G If Mary must drive me to the store, she must buy gas. 

[5]   G  Y  If Mary must buy gas, she must have money.   

[6]   Y  W  If Mary must have money, then she must work at a paying job. 

 

We’d like to prove: 

 

W  Mary must work at a paying job. 

 

Again, you should try to do this proof yourself. 

 

You can also watch our video, which will outline a 

strategy for creating a proof. 

 

https://www.youtube.com/watch?v=vr2rndev_Bo 

 

On the next page, you’ll find a summary of the approach 

that is described in the video. 

       http://youtu.be/CseB3r_mzx0 

https://www.youtube.com/watch?v=vr2rndev_Bo
http://youtu.be/CseB3r_mzx0
https://www.youtube.com/watch?v=vr2rndev_Bo
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Disjunctive Syllogism Proof Example: Who Drives Me? - Continued 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Notice that this example is a poster child for natural 

deduction as an alternative to proof by truth table, at 

least when the proofs have to be constructed by 

people.  It uses six variables.  So the truth table that 

we’d have to build for it would have 26 = 64 rows and 

13 columns, for a total of 832 entries.  While 

automatic proving systems can easily handle truth 

tables that are orders of magnitude bigger than that, 

we sure don’t want to have to write them out by hand. 

 

  

How shall we start?  We notice that the only one of our premises that mentions W is [6].  In 

order to use it (with Modus Ponens), we’ll have to know Y.  We could derive Y using [5] if we 

knew G.  We could derive G from [4] if we knew M.  How can we prove M?  The only premise 

that mentions M is [1], so somehow we’re going to have to use it.  In order to use it to 

produce M by itself, we could use Disjunctive Syllogism.  But to do that, we’d have to know 

J.  Can we prove that?  Sure.  We can apply Modus Tollens to [2] and [3].  Okay, so we’ve 

got a plan.  To come up with it, we reasoned backward from what we wanted to prove.   

 

But this is important: While we walked backward to figure out what to do, the actual proof 

must proceed forward from the premises to the conclusions.  Let’s do the first step: 

 

[1]  J  M   Premise 

[2]   J  L    Premise  

[3]   L   Premise 

[4]   M  G   Premise 

[5]   G  Y   Premise  

[6]   Y  W   Premise 

[7]  J   Modus Tollens   [2], [3] 

[8] M   Disjunctive Syllogism  [7], [1] 

[9]   G    Modus Ponens  [4], [8] 

[10]  Y   Modus Ponens  [5], [9] 

[11]  W   Modus Ponens  [6], [10] 
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Conditional Disjunction Proof Problem 
 
 

Prove:   q  p  

   p 

   (q  s) 
 

         s  r   
 
(Hint: There are two reasonable and quite different ways to do this proof.  One involves 
Conditionalization.  We’ll say more about that soon.  So you probably want to do this one 
without Conditionalization.  Instead, you may want to use both Conditional Disjunction and 
Addition.  Recall that Addition lets you introduce a variable “out of thin air”.  Look at the 
statement of this problem to see why you might need to do that.) 
 
 
You should do this proof yourself.   
 
 
You can also watch our video, which will outline our strategy 
for doing this. 
 
 
 

         https://www.youtube.com/watch?v=-4ywUW61wJk  

  

 

 

Problems 
 

1. Prove:  R  W 

   W  S 

   S  C 
   R 

   C  I 

   I    
 
(Hint: This one is easy.  Focus on how you can use Modus Ponens.) 
 
 
 

2. Prove:  R  W  

   W  S 

   S  C 
   R 

   W  Y 

  R  Y 
 

(Hint: What rule lets you create a conjunction out of two or more statements you already have?) 
 
  

https://www.youtube.com/watch?v=-4ywUW61wJk
https://www.youtube.com/watch?v=-4ywUW61wJk
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Backward Reasoning – Modus Tollens Proof Problem: Election 
 
Election: 
 
Assign the following names to basic statements: 
 
C:  I endorse Carol. 
P:  I endorse Peter. 
W:  Carol will win. 
X:  Taxes are cut. 
 

Prove:  C  P  I must endorse Carol or Peter. 

  C  W  If I endorse Carol, she will win. 

  W  X  If she wins, taxes will be cut. 

  X  Taxes cannot be cut. 
 

   P    I must endorse Peter. 
 
 
 
You should do this proof yourself.   
 
 
You can also watch our video, which will outline our strategy for 
doing this.  
 
 

 

https://www.youtube.com/watch?v=irTEOkEN8qI     

https://www.youtube.com/watch?v=irTEOkEN8qI
https://www.youtube.com/watch?v=irTEOkEN8qI
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Problems 
 
1. Prove:  H  (S  G)  

   G 
   H 

  S 
 
 

2. Prove:  p  r 

   r  s 

   s 

  p 
 
(Hint: For this one, you’re not going to be able to reason forward with Modus Ponens.  You’ll 
want to reason “backwards”.  What rule lets you do that?)  
 

 

3. Prove:  p  (q  r)  

   q  (r  p)  
 
(Hint: You can use Conditional Disjunction to turn ors into implications.) 
 
 
4. Let’s return yet again to a famous Catch-22 situation.  We’ve given names to the following 
statements:         
 
C: I’m crazy. 
R: I’ve requested a mental health discharge from the Army. 
E: I’m eligible for a mental health discharge from the Army. 
 
In Joseph Heller’s book, the Army has two rules about this.  We have encoded them as 
premises as follows: 
 

[1]  E → C  R Only way to be eligible is to be crazy and request the discharge. 

[2]  R → C I’m not crazy if I’ve requested the discharge. 
 
We want to prove that it’s not possible that I’m eligible for a discharge. (And, since we could do 
this same proof for anyone else, there can never be any of these discharges.) 
 

So prove:  E → C  R      

   R → C  

         E    
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Natural Deduction II 
 

Conditionalization 
 

 

We are about to do a couple of examples that exploit the 

Conditionalization rule.  Before we do that, let’s review it.  

Recall: 

 

 

 

 

 
             https://www.youtube.com/watch?v=aR7IHkD85L8  

 

 

Conditionalization:     A, a set of premises 

(A  p) entails q 

            p  q  

 

 

 

 

. 
 

  

https://www.youtube.com/watch?v=aR7IHkD85L8
https://www.youtube.com/watch?v=aR7IHkD85L8
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Conditional Premise Proof Problem: Party 
 

Party: 

 

If we come home early and then, if we go to sleep early, we will get up early.  Either we will 
come home early or we will go to the party. In either case, we will go to sleep early.  Therefore, 
if we do not go to the party, we will get up early.  
 
Assign the following names to basic statements: 
  
H:  We come Home early. 
S:  We go to Sleep early. 
U:  We will get Up early. 
P:  We will go to the Party.  
  

Prove : H  (S  U)  If we come home early, and then if we go to    
        sleep early, we will get up early.  

  H  P   Either we will come home early or we will go   
     to the party. 
  S    We will go to sleep early. 

     P  U   If we do not go to the party, we will get up early.   
 
 
 
You should do this proof yourself.   
 
 
You can also watch our video, which will outline a strategy for 
creating a proof. 
 
                
https://www.youtube.com/watch?v=77q6XjPlZRw  

  

  

https://www.youtube.com/watch?v=77q6XjPlZRw
https://www.youtube.com/watch?v=77q6XjPlZRw
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Conditional Premise Proof Problem: Stay in Austin 
 
Stay in Austin 
 
If Kelly gets her degree, she will get a good job and a good house.  If she has a good job she 
will live in either Palo Alto or Austin.  Kelly will not live in Palo Alto. Therefore, if she gets a 
degree she will live in Austin. 
 
Assign the following names to basic statements: 
  
D:  Kelly gets her Degree. 
J:  Kelly will get a good Job. 
H:  Kelly will get a good House. 
P:  Kelly will live in Palo Alto. 
A:  Kelly will live in Austin. 
  

Prove:  D  (J  H) If Kelly gets  degree, she will get a good job and house. 

  J  (P  A) If Kelly has a good job she will live in Palo Alto or Austin. 

  P  Kelly will not live in Palo Alto. 
 

      D  A   If Kelly gets a degree she will live in Austin. 
  

 
You should try this problem yourself.  

 
 
You can also watch our video, which will outline a strategy for 
creating a proof. 

 

 

       https://www.youtube.com/watch?v=EtACAymnx4w   

 

Contradictory Premises and Conditionalization Proof Problem 
 
 

Prove:   (q  s) 

   q  p 

   p 

  s  r  
 
Notice that you’ve seen this problem before.  This time, use 
Conditionalization to complete your proof.   
 
You can also watch our video, which will outline our strategy for 
doing this.        

 

       

       https://www.youtube.com/watch?v=UVxnodlKAn0  

https://www.youtube.com/watch?v=EtACAymnx4w
https://www.youtube.com/watch?v=UVxnodlKAn0
https://www.youtube.com/watch?v=EtACAymnx4w
https://www.youtube.com/watch?v=UVxnodlKAn0
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Conditionalization Problems 
 

1. Prove:   (A  (B  C))  (A  (B  C)) 
 
(Hint: Think about using Simplification and/or Addition to remove terms from a conjunction or 
add terms to a disjunction.) 
 
 
2. We know that the show starts at 7 or 8 on some day. We want to show that if it is not true that 
the show starts on Saturday at 7 then, if it starts at Saturday at a time other than 8, they will 
burn down the theater.     
 
Assign the following names to basic statements: 
 
E:  Show is Early (at 7). 
L:  Show is Late (at 8). 
S:  Show is on Saturday. 
B:  Theater Burns down. 
 

Prove:   E  L 

 ((E   S))  ((S  L)  B) 
 
(Hint: Employ the Conditionalization rule more than once.) 
 
 
3. Either Joe or Mary or Sally will go to New York. If Paul stays home, then Joe will not go. 
Therefore, if Paul stays home and Mary does not go to New York, Sally must go to New York.   
 
Assign the following names to basic statements: 
 
J: Joe will go to New York. 
M: Mary will go to New York. 
S:  Sally will go to New York. 
P:  Paul stays home. 
 

Prove:  J  (M  S)  Joe or Mary or Sally will go to New York. 

  P  J     If Paul stays home, Joe will not go to New York.  

         (P  M)  S   If Paul stays home and Mary doesn’t go to NY, Sally  
      must go to New York. 

 
4. Prove that the following claim is a tautology (in other words, derive it without any premises): 
 

 (p  (q  p))  q   
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Theorem upon Theorem (Again): Using Lemmas and Corollaries 
 

Recall that back in our discussion of truth 

tables, we introduced the idea that, when 

confronted with a nontrivial problem, we could 

prove some intermediate results and then use 

those results (theorems) as though they were 

additional premises. 

 

This same idea is important when we’re 

building natural deduction proofs of interesting 

claims.  In fact, there are two notions of “related 

theorems” that we’ll find useful.  They are 

typically given names: 

 

 A lemma is a theorem that we prove 

along the way toward a proof of a bigger 

claim.  Once we’ve proved a lemma, we 

can, of course use it in other proofs as 

well. 

 

 A corollary is a theorem that’s a not too 

distant spinoff of a theorem we’ve just 

proved.  Typically the proof of a 

corollary is fairly straightforward.  But 

the corollary may put the claim of the 

theorem in a more useful form. 
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Problems 
 
1. Suppose that we have the following premises: 
 

[1]  a  p      

[2]  w  r   

[3]  s  x   

[4]  s  w   

[5]  (x  w)  a     

[6]  (x  w)  b     

[7]  (x  w)  c     
 
Further suppose that a, b, and c are all important conclusions that we’d very much like to be 
able to prove.  Which one of the following possible lemmas would it make sense to try to prove: 
 
a) a   
b) r    
c) s      
d) x      
e) w       
 
2. Suppose that we have the following premises:  
 

[1]  e       

[2]  p  q   

[3]  p  v   

[4]  q  s   

[5]  q  b   

[6]  r  w     

[7]  r  c    

[8]  s  (a  e)   

[9]  s  d    

[10]  s  r   
 
Further suppose that a, b, c, and d are all important conclusions that we’d very much like to be 
able to prove.  Which one of the following possible lemmas would it make sense to try to prove: 
 
a) p   
b) q   
c) r      
d) s      
e) w       
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Soundness and Completeness 
 

Introduction 
 
The proofs that we’ve done so far are syntactic objects.  We write down a set of premises.  Then 

we do symbol manipulation.  We’ve seen two ways to do that: 

 

We can construct a natural proof by 

applying the identities and inference 

rules that we’ve described.  Then out 

comes a final line that we term a 

“theorem”. 

 

 

 

 

Alternatively, we can build a big truth table using 

the small truth tables that serve as the definitions 

of the logical operators.  For convenience in the 

following discussion, let’s consider “proof by 

truth table” to be just one more inference rule 

(even though it feels quite different from the 

“natural” ones). 
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Getting at Truth – An Inference System that is Sound and Complete 
 

The big deal though is that we want proofs to tell us something about truth.  They can do that if 

we design our inference rules appropriately.  To see how to do that, we need two definitions: 

 

 We’ll say that an inference rule is sound if and only if, whenever it is applied to a set P 

of premises, any conclusion that it produces is entailed by P (i.e., it must be true 

whenever P is).     

 

 A set of inference rules R is complete if and only if, given any set P of premises, all 

statements that are entailed by P can be proved by applying the rules in R.   

 

If we can define a set of inference rules that is both sound and complete then the set of theorems 

that can be proved from P will exactly correspond to the set of statements that must be true 

whenever all the premises in P are true.    

 

So do we have a set of sound and complete inference rules for Boolean logic?  The answer is yes.  

Proof by truth table (all by itself) is both sound and complete (even if not convenient).  Moving 

on to natural deduction: All our rules are sound.  We know this because we’ve shown the truth 

tables that prove them to be so.  (Thus it’s never possible to use one of them to derive a 

conclusion that doesn’t follow from the premises.)  And, taken together, they are complete.  (So 

it’s always possible, given a statement S that does in fact follow from our premises, to construct 

a proof of S using our rules.)  

 

 

 

 

 

 

Completeness is important if we don’t want to be stuck, staring at something we know to be true, 

but unable to construct a proof. 

 

Soundness is even more fundamental.  If we admitted even a single unsound inference rule, 

proof would no longer tell us anything about truth (our ultimate goal in this whole endeavor).  To 

see why that’s so, suppose that we added, say, this new rule: 

 

Flimflam:    p  

    p  q 

 

Thus, from premise p conclude p and anything we want. 

 

Recall that the Addition rule tells us that, from p, we can infer p  q for any 

statement q.  This new rule, Flimflam, lets us do a similar thing except that we 

can introduce and instead of just or. 

 

  

Big Idea 

 

The Boolean logic inference engine that we have just studied is both sound and complete.
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Let’s see what we can do with it:  

 

[1]  Q  Premise   

[2]  Q  Q Flimflam   [1]* 

[3]  F   Computation   [2] 

 

* Note that Flimflam lets us conjoin Q with absolutely any statement.  We 

happen to have picked the statement Q in order to get a very simple example 

of the damage that Flimflam has wrought. 

 

So we see: Flimflam lets us derive False.   

 

And we can keep going: 

 

[4]   The moon is made of green cheese.  Contradictory Premises   [2] 

 

This is precisely the kind of flawed reasoning that sound rules will not let us 

do. 

 

That we have a set of sound and complete inference rules is great news.  Given any problem that 

we can represent in Boolean logic, we can, in principle, prove all and only the conclusions that 

follow from the premises that we choose.   
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Problems 
 
1. Given a set of premises P and a conclusion C: if we can use the natural deduction system 
that we’ve just described to conclude C from P, is it possible for all the premises in P to be true 
but C to be false? 
 

a) Yes. 
b) No. 

 
 
2. Given a set of premises P and a conclusion C that is entailed by P (i.e., must be true 
whenever P is), is it possible that, in our system, there is no proof of C? 
 

a) Yes.   
b) No.   

 
 
3. Assume that a set of premises P entails a conclusion C.  Suppose that we add a new premise 
p to P.  Is it possible that, in our system, there is no proof of C? 
 

a) Yes.   
b) No.   

 
 
4. Suppose that a set of premises P does not entail a conclusion C.  Is it possible that our 
reasoning system could produce a proof of C from P? 
 

a) Yes.   
b) No.   

 
 

5. Suppose that P is a set of premises and p is one more.  If (p  P) entails some conclusion C, 
is it possible that our reasoning system could be unable to produce a proof of C given just the 
premises in P? 
 

a) Yes 
b) No 
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Getting at Truth – Sound and Valid Arguments 
 

So now we know that we’ve got a set of inference rules that, given some set of premises P, let us 

prove: 

 

 all, and 

 

 only 

 

the statements that follow from P. 

 

We’ll say that an argument (proof) is valid provided that every one of its steps can be justified by 

a sound inference rule.  Sometimes, when presented with such an argument, we’ll say, “Its 

reasoning is valid.” 

 

But does this mean that the conclusion of a valid argument is necessarily true?  Unfortunately, 

no. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

We’ll say that an argument (proof) is sound provided that it is valid and that its premises are true 

(in whatever world we are reasoning about).  The Lucy argument that we just gave is valid but 

not sound. 

 

To get at truth, we must construct sound arguments.  They must start from premises that are true 

and their reasoning must be valid. 

  

Give names to the following statements: 

 

L:  Lucy is a unicorn. 

H:  Lucy has a large horn on her head. 

 

Suppose that we have the following premises: 

 

[1]  L  Lucy is a unicorn 

[2]  L  H  If Lucy is a unicorn then she has a large horn on her head. 

 

Then, using Modus Ponens, we have: 

 

[3]  H    Lucy has a large horn on her head. 

 

But Lucy has no horn.  The problem is that she’s a cat, not a unicorn.  Our reasoning is valid.  

But we’ve proven something that isn’t true. 
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By the way, in case you’re a bit confused about terminology here, you’re not alone.  There is an 

unfortunate (but so conventional that we cannot ignore it) use of the word “sound” to mean one 

thing when applied to inference rules and another thing when applied to entire arguments: 

 

 An inference rule is sound just in case it preserves truth.  In other words, it can derive 

only conclusions that follow from the premises.  

 An argument (proof) is sound just in case truth is both introduced by the premises and 

preserved by the argument. 

 

Sorry about that.  But don’t worry.  The key thing is that good arguments possess both 

properties. We are focusing on developing sound inference rules.  When people go to apply those 

rules to help them reason about real problems, it’s up to them to choose premises that make sense 

in their problem domains. 
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Problems 

 
1. Assume the following premises: 

 

[1]  C   Lucy is a cat.       

[2]  M   Lucy lives on Mars.  

[3] M  N   If Lucy lives on Mars, there is catnip on Mars. 

[4]  C  P   If Lucy is a cat, Lucy purrs.  

[5]  G  P   If Lucy is a tiger, Lucy purrs. 

 

(Part 1) Consider the following conclusion that we would like to prove: 

 

[6] N   There is catnip on Mars.     

 

Which of the following statements is true: 

 

a) It is not possible to construct a valid argument to support this conclusion. 

b) It is possible to construct a valid argument, but not a sound one, to support this 

conclusion.   

c) It is possible to construct a sound argument to support this conclusion. 

 

 

(Part 2) Consider the following conclusion that we would like to prove: 

 

[7]  P   Lucy purrs. 

 

Which of the following statements is true: 

 

a) It is not possible to construct a valid argument to support this conclusion. 

b) It is possible to construct a valid argument, but not a sound one, to support this 

conclusion.   

c) It is possible to construct a sound argument to support this conclusion.   

 

 

(Part 3) Consider the following conclusion that we would like to prove: 

 

[7]  G   Lucy is a tiger. 

 

Which of the following statements is true: 

 

a) It is not possible to construct a valid argument to support this conclusion 

b) It is possible to construct a valid argument, but not a sound one, to support this 

conclusion.   

c) It is possible to construct a sound argument to support this conclusion.  
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Appendices 
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Boolean Identities 

Double Negation:     p     (p)      

Equivalence:     (p  q)       (p  q)  (q  p) 

Idempotence:      (p  p)     p 

     (p  p)     p 

DeMorgan1:      ((p  q))    (p  q)  

DeMorgan2:       (p  q)     (p  q)  

Commutativity of or:      (p  q)     (q  p) 

Commutativity of and:    (p  q)     (q  p) 

Associativity of or:      (p  (q  r))    ((p  q)  r) 

Associativity of and:      (p  (q  r))    ((p  q)  r) 

Distributivity of and over or:  (p  (q  r))    ((p  q)  (p  r)) 

Distributivity of or over and:  (p  (q  r))    ((p  q)  (p  r)) 

Conditional Disjunction:    (p  q)    (p  q) 

Contrapositive:      (p  q)    (q  p) 

Boolean Inference Rules 

Modus Ponens:      From p and p  q,   infer q 

Modus Tollens:      From p  q and q,   infer p . . . 

Disjunctive Syllogism:     From p  q and q,   infer p  . . . 

Simplification:      From p  q,    infer p  . . . 

Addition:      From p,    infer p  q . . . 

Conjunction:       From p and q,    infer p  q 

Hypothetical Syllogism:    From p  q and q  r,   infer p  r 

Contradictory Premises:    From p and p,   infer q 

Resolution:      From p  q and p  r,  infer q  r . . .  

Conditionalization:   Assume premises A.  

Then, if (A  p) entails q,  infer p  q 

Computation 

p  p   T    p  p   T 

p  p    F    p  p    F 

p  T   T    T  p    T 

p  F   p    F  p   p 

p  T   p    T  p   p 

p  F   F    F  p   F 

p  p   T    p  p   T 

p  p    F    p  p    F 

p  T   T    T  p    T 

p  F   p    F  p   p 

p  T   p    T  p   p 

p  F   F    F  p   F 

A Useful Axiom 

Law of the Excluded Middle:      p  p 


