

Predicate Logic

The Logicians on our cover are:

 Euclid (? - ?)

 Augustus De Morgan (1806 – 1871) Charles Babbage (1791 – 1871)

George Boole (1815 – 1864) Aristotle (384 BCE – 322 BCE) George Cantor (1845 – 1918)

 Gottlob Frege (1848 – 1925) John Venn (1834 – 1923)

 Bertand Russell (1872 – 1970)

Reasoning

An Introduction to
Logic, Sets, and Functions

Chapter 5
Predicate Logic Proofs

Elaine Rich
Alan Kaylor Cline

The University of Texas at Austin

Image credits:

Book on plane: http://hardcoversandheroines.com/2013/06/

Glass with straw on plane: http://guestofaguest.com/tag/airplane-drinking/

Fire-spewing dragon: http://brightcat13527.deviantart.com/art/The-Fire-Dragon-16859273

Alan Turing: http://www.npg.org.uk/collections/search/portrait/mw165875

REASONING—AN INTRODUCTION TO LOGIC, SETS AND FUNCTIONS Copyright © 2014 by Elaine Rich and
Alan Kaylor Cline. All rights reserved. Printed in the United States of America. No part of this book may
be used or reproduced in any manner whatsoever without written permission except in the case of brief
quotations embodied in critical articles or reviews. For information, address Elaine Rich,
ear@cs.utexas.edu.

http://www.cs.utexas.edu/learnlogic
Library of Congress Cataloging-in-Publication Data

Rich, Elaine, 1950 -
 Reasoning—An Introduction to Logic Sets and Functions / Elaine Rich.— 1st ed. p. cm.
 ISBN x-xxx-xxxxx-x 1

http://hardcoversandheroines.com/2013/06/
http://guestofaguest.com/tag/airplane-drinking/
http://brightcat13527.deviantart.com/art/The-Fire-Dragon-16859273
http://www.npg.org.uk/collections/search/portrait/mw165875
http://www.cs.utexas.edu/learnlogic

Inference Rules for Predicate Logic ... 1

Creating Predicate Logic Proofs ... 48

Soundness/Completeness/Decidability ... 62

Appendices .. 65

Table of Contents

5. Predicate Logic Proofs 1

Identities and Inference Rules for Predicate Logic I

Moving On From Representation to Proof

Recall that the point of our entire endeavor here is to get at truth.

What we’ve just spent a lot of effort on is simply representation. Our goal in doing that was to

give ourselves a tool that lets us make claims that are unambiguous. We can’t ask whether a

claim is true if we’re not sure what it means. No fighting about meaning allowed.

Approved Electronic Devices

Consider this sign. What does it mean?

Define:

A(x): True if x has been approved.

ED(x): True if x is an electronic device.

UIF(x): True if x may be used in flight.

Here’s one possible meaning for the sign:

If x is an electronic device that has been approved, it may be used in flight.

and

If it’s not true that x is an electronic device that has been approved, it may

not be used in flight.

We can write that as this logical statement:

[1] x (((ED(x)  A(x))  UIF(x))  (((ED(x)  A(x)))  UIF(x)))

But is that really what the sign means? It says that anything that isn’t an electronic device

(whether approved or not) cannot be used in flight.

2 5. Predicate Logic Proofs

Now it’s time to move on and see how to reason with the logical sentences that we write. In

other words, we need to learn how to write proofs.

The job of a proof is to:

 Assure us that some claim is true, and

 (Ideally) give us some insight into why it is true.

We should be on firm ground here – this is exactly what we demanded of our proofs in Boolean

logic.

Surely the sign isn’t intended to ban straws and good old fashioned books. So here’s another

possible meaning for the sign:

If x is an electronic device that has

been approved, it may be used in

flight.

and

If x is an electronic device that has not

been approved, it may not be used in

flight.

In other words, this is a sign only about

electronic devices. It says nothing

about books or straws (which, as it turns

out, may be used). Nor does it say

anything about guns or knives (which,

as it turns out, may not be used).

We can write this second interpretation as this logical statement:

[2] x (((ED(x)  A(x))  UIF(x))  ((ED(x)  A(x))  UIF(x)))

The point of our notation is that, while English signs are often ambiguous, logical statements

are not.

(extra space for text hidden by images)

5. Predicate Logic Proofs 3

Review – Sound Arguments

Recall that, in our discussion of Boolean logic proofs, we said that an argument (proof) is:

 valid provided that every one of its steps can be justified by a sound inference rule.

 sound provided that it is valid and that its premises are true (in whatever world we are

reasoning about).

We’ll consider these same properties of predicate logic proofs.

Note as before the somewhat unfortunate (but conventional) use of the word “sound” to mean

one thing when applied to inference rules (i.e., the property that truth is preserved by the

reasoning process) and another thing when applied to entire arguments (i.e., that truth is both

introduced by the premises and preserved by the argument).

As in our discussion of Boolean logic, our focus here will be on the construction of valid proofs.

Choosing premises (axioms) is another issue, best left to experts in whatever problem domain we

want to consider.

Consider the following argument:

Lucy is a cat.

All cats are mammals.

Therefore: Lucy is a mammal.

This argument is valid. (We’ll soon describe the logical inference rules that will let us construct

this proof.) It’s also sound, since both of the premises are true.

Consider the following argument:

Lucy is a cat.

All cats live on Mars.

Therefore: Lucy lives on Mars.

This argument is also valid. (We can prove it using the same inference rules we used above.)

But it isn’t sound, since it has a premise that isn’t true.

Consider the following argument:

Lucy lives on Mars.

All cats live on Mars.

Therefore: Lucy is a cat.

This argument isn’t valid. Our second premise is a quantified version of CAT  MARS. We

know MARS (in the case of Lucy). But, since Converse isn’t a valid inference rule, we can’t

go from that to CAT (in the case of Lucy).

4 5. Predicate Logic Proofs

Problems

1. Imagine a world that contains:

 Bambi

(Part 1) Consider the following argument: Smokey is a bear.

Smokey has a tail.
Therefore all bears have tails.

Which of the following is true of this argument:

a) It is sound.
b) It is valid but not sound.
c) Its premises are true but its reasoning is invalid.
d) It is total junk.

(Part 2) Consider the following argument: Bambi is a bear.

All bears have tails.
Therefore Bambi has a tail.

Which of the following is true of this argument:

a) It is sound.
b) It is valid but not sound.
c) Its premises are true but its reasoning is invalid.
d) It is total junk.

(Part 3) Consider the following argument: Smokey is a bear.

All bears have tails.
Therefore Smokey has a tail.

Which of the following is true of this argument:

a) It is sound.
b) It is valid but not sound.
c) Its premises are true but its reasoning is invalid.
d) It is total junk.

5. Predicate Logic Proofs 5

(Part 4) Consider the following argument: Bambi is a bear.
All bears are brown.
Therefore Bambi isn’t black.

Which of the following is true of this argument:

a) It is sound.
b) It is valid but not sound.
c) Its premises are true but its reasoning is invalid.
d) It is total junk.

6 5. Predicate Logic Proofs

Review – Natural Deduction Proofs

Boolean logic gives us two quite different-looking ways to build proofs:

 Truth tables

 Natural deduction

Of course, we proved (using truth tables) that our natural deduction rules are sound. So, at a

logical level, these two techniques are equivalent. Sometimes one is more convenient than the

other.

Unfortunately, we cannot, in general, use truth tables to construct proofs in predicate logic. Why

not? Because a truth table is a finite list of possible interpretations (combinations of truth values

of the primitive objects). But predicate logic lets us quantify over domains that may be

genuinely infinite or ones whose members we don’t know enough about to enumerate.

Clearly, if there are infinitely many things for which we would have to consider truth values, we

can’t enter them into a table of finite size. And, if there are finitely many things but we’re

unable to make a list of all them, we can’t put them into a table either. So truth tables won’t

work.

But Boolean natural deduction does generalize to predicate logic. Proofs will have the same

structure that they did in Boolean logic. Recall that a proof starts with a set of premises (or

axioms). Then we apply rules of inference to create new statements. Any statement derived in

this way is called a theorem.

Here’s an example where we have an infinite domain:

We can say that every positive integer has a successor:

x (PositiveInteger(x)  HasSucessor(x))

Here are a couple of examples where the domain is formally finite but we can’t, as a

practical matter, enumerate it:

We can say that every citizen must pay taxes:

x (Citizen(x)  MustPayTaxes(x))

Or we can say that all people have birthdays:

x (Person(x)  HasBirthday(x))

5. Predicate Logic Proofs 7

To generalize natural deduction to predicate logic, we will need to add some new inference rules.

As before, we must assure that all of our inference rules are sound (truth-preserving). In other

words, if they’re applied to a set of premises, they can derive only conclusions that are entailed

by those premises. Said another way, they can derive only conclusions that must be true in every

interpretation in which the premises are true.

To refresh our memory, here’s a simple Boolean logic natural deduction proof:

[1] p Premise

[2] p  q Premise

[3] (q  s)  r Premise

[4] q Modus Ponens [1], [2]

[5] q  s Addition [4]

[6] r Modus Ponens [3], [5]

We’ve proven that r follows from our three premises.

8 5. Predicate Logic Proofs

We Inherit All the Rules From Boolean Logic

We’ve already developed a large collection of tools for working with Boolean logic sentences.

Fortunately they generalize to predicate logic in two important ways:

 The identities can be used to transform wffs, whether or not they are statements.

 The inference rules can be applied to fully quantified wffs.

Let’s look first at how we can use the Boolean identities. Recall that the job of the identities is to

let us rewrite expressions into forms that we may find more useful.

We may want to do that to a wff that is inside the scope of one or more quantifiers. In that case,

the wff itself is not a statement as it doesn’t have a truth value. We are allowed to transform

such a wff into another one as long as we preserve the property that, once it is fully quantified, it

will have the same truth value as the original one did. All of our Boolean identities do that. This

shouldn’t come as a surprise. All of the operators that we use to build predicate logic wffs are

defined in exactly the same way that they are in Boolean logic. So they have all the same

properties.

Now suppose that we are dealing with not just any wff but one that is in fact a statement. All

variables in it are bound. It has a truth value. Now we can work with it in all the ways we could

work with Boolean statements. We can, of course, apply the identities. And, now, we can also

For example, we can exploit the fact that and is commutative. Using that fact, we can

rewrite the underlined wff on the left as the underlined one on the right:

x(P(x)  Q(x)) can be rewritten as x(Q(x)  P(x)).

Recall that one of the Boolean De Morgan’s Laws tells us that, if we “push” not through

an and, the and becomes an or:

((p  q))  ((p)  (q))

So suppose we want to say that late sleepers and breakfast eaters don’t overlap. We could

say that everyone has the property that they don’t both sleep late and eat breakfast. We

write:

 x ((SleepsLate(x)  EatsBreakfast(x)))

Then, we could use De Morgan to rewrite the underlined wff above as the underlined wff

below (which we can read as everyone either doesn’t sleep late or doesn’t eat breakfast, or

possibly doesn’t do either):

 x (SleepsLate(x)  EatsBreakfast(x))

5. Predicate Logic Proofs 9

apply inference rules that allow us to combine statements to derive new statements that follow

from the statements that we started with.

The one thing that we’re still stuck on is the use of inference rules within the scope of

quantifiers. We’ll soon see how to do that.

Let’s do an example of the use of a Boolean logic inference rule. Suppose that we have a

close but somewhat fractious family whose dynamics can be described with the following

premises (assuming that the universe is the family members):

[1] If everyone comes to the party then there will be at least one dispute:

(x (HasComeToTheParty(x)))  (y (Dispute(y)))

[2] Everyone has come to the party:

 (x (HasComeToTheParty(x)))

We’ve underlined three wffs in [1] and [2], above. All three of them are statements. (One

way to check this, in the case of [1], is to observe that  doesn’t occur inside the scope of

any quantifier. There is a fully quantified wff on its left, and another one on its right.)

Recall Modus Ponens: From premises p  q and p, infer q.

Observe that [1] has the form p  q. And [2] is p. So we can conclude that there will be a

dispute:

[1] (x (HasComeToTheParty(x)))  (y (Dispute(y))) Premise

[2] (x (HasComeToTheParty(x))) Premise

[3] (y (Dispute(y))) Modus Ponens [1], [2]

10 5. Predicate Logic Proofs

Problems

1. Consider the following dialogue:

Brady: What I think is that people who don’t watch tv are clueless.
Drew: Nah, the real truth is that clueless people don’t watch tv.

Is it possible for both Brady and Drew to be right? (Hint, write both of them in predicate logic.
You can use predicates like WatchTV(x) and Clueless(x).)

a) Yes
b) No

2. Consider the following dialogue:

Chris: What I think is that dogs that won’t play Frisbee are pretentious.
Jody: Nah, the real truth is that unpretentious dogs think Frisbee is silly

and refuse to play.

Is it possible for both Jody and Chris to be right?

a) Yes
b) No

3. Consider the following dialogue:

 Bryn: There aren’t any unhappy smart people.
 Kelly: The way I see it, everyone is happy or not at all smart.

Is there any disagreement between Bryn and Kelly?

a) Yes
b) No

5. Predicate Logic Proofs 11

4. Consider the following sentence:

 x (y ((P(x)  Q(y))))

We can use the Boolean identities to manipulate the wff that is inside the scope of the two
quantifiers. Which of the following statements can be derived in that way? (Hint: Another way
to ask this question is: Which of the following statements is/are equivalent to the one we started
with?)

I. x (y (P(x)  Q(y)))

II. x (y (P(x)  Q(y)))

III. x (y (P(x)  Q(y)))

a) Just I.
b) Just II.
c) Just III.
d) I and II.
e) II and III.

5. Consider the following sentence:

 x ((P(x)  Q(x))  R(x))

We can use the Boolean identities to manipulate the wff that is inside the scope of the quantifier.
Which of the following statements can be derived in that way? (Hint: Another way to ask this
question is: Which of the following statements is/are equivalent to the one we started with?)

I. x ((P(x)  Q(x))  R(x))

II. x ((P(x)  Q(x))  R(x))

III. x ((P(x)  Q(x))  R(x))

a) Just I.
b) Just II.
c) Just III.
d) Two of the three.
e) All three.

12 5. Predicate Logic Proofs

6. Contagious Disgruntledness
Suppose that we have a group of people among whom grumpiness is highly contagious. If even
one person gets disgruntled, the bad vibes will quickly spread to the whole group. So assume
that the universe is our group of people. Then we might write:

[1] (x (Disgruntled(x)))  (x (Disgruntled(x)))

(Part 1) Let’s first use everyday reasoning. (In other words, we’re not limited to the formal
inference rules that we’ve so far described.) Which of the following additional premises would
be sufficient, when combined with [1], to allow us to conclude that everyone is disgruntled:

I. Disgruntled(Grouchy)

II. Disgruntled(Sunshine)

III. (x (Disgruntled(x)))

a) Just I.
b) Just II.
c) Just III.
d) I or II.
e) I or III.

(Part 2) Now let’s use just the formal inference rules that we’ve described. Which of the
following additional premises would be sufficient, when combined with [1], to allow us to
conclude that everyone is disgruntled:

I. Disgruntled(Grouchy)

II. Disgruntled(Sunshine)

III. (x (Disgruntled(x)))

a) Just I.
b) Just II.
c) Just III.
d) I or II.
e) I or III.

5. Predicate Logic Proofs 13

Law of the Excluded Middle

We’ve just said that we will import all of the identities of Boolean logic into our system of

predicate logic. There is one special case that we should say a bit more about.

The Law of the Excluded Middle:

 For any statement P: P  P

The Law of the Excluded Middle (LEM) is a useful theorem

proving tool.
 https://www.youtube.com/watch?v=oaSLa1Ya5-M

Classical logic, following Aristotle, assumes both LEM and the Principle of Noncontradiction:

For any statement P: (P  P)

In Boolean logic, both of these rules are tautologies:

 LEM Noncontradiction

P P P  P P  P (P  P)

T F T F T

F T T F T

In predicate logic, they are not. They (or some variant) must be asserted as premises. The

Principle of Noncontradiction is not controversial, since it’s not possible to build a useful logical

system without it.

LEM, however, is slightly controversial. There are philosophers and mathematicians (such as

constructivists) who don’t assume it.

But consider the following derivation:

[1] (P  P) Principle of Noncontradiction

[2] P    P De Morgan

[3] P  P Double Negation

[4] P  P Commutativity

Watch the video for a good example. In it, we prove that there exist irrational numbers x and

y such that:

 xy is rational.

https://www.youtube.com/watch?v=oaSLa1Ya5-M
https://www.youtube.com/watch?v=oaSLa1Ya5-M

14 5. Predicate Logic Proofs

Line [4] is exactly LEM. We have derived it from the (noncontroversial) Principle of

Noncontradiction. Why then, must LEM be assumed as a separate premise if we want to use it?

The answer is that, in predicate logic, Double Negation is not a tautology. It too is rejected by

the constructivists.

Arguments for rejecting LEM (and Double Negation) fall into at least two categories:

 Philosophical and mathematical ones. For example,

mathematicians from the constructivist school do not

want to accept, as a proof of the existence of some

object x with property P, anything short of the

exhibition of a specific such x or a concrete procedure

for finding it.

 Essentially linguistic ones. There are English

sentences that, on first analysis, seem to contradict

LEM in the sense that they do not appear to be either

true or false. Further analysis often shows that the

issue is the mapping from English into logic, rather

than a logical problem with the LEM.
https://www.youtube.com/watch?v=r_KG3EZuJmw

We will follow Aristotle and assume the Law of the Excluded Middle. Then we can prove

Double Negation by running the derivation we just did, but backwards. (Alternatively, we could

assume Double Negation and then prove LEM.)

Problems

1. Assume standard definitions of the words used here. Mark each argument as sound (correct)
or not.

(Part I)

[1] x is an integer Premise
[2] x is not negative Premise
[3] x is a positive integer LEM [1], [2]

(Part II)

[1] x is an integer Premise
[2] x is not even Premise
[3] x is an odd integer LEM [1], [2]

https://www.youtube.com/watch?v=r_KG3EZuJmw
https://www.youtube.com/watch?v=r_KG3EZuJmw

5. Predicate Logic Proofs 15

Quantifier Exchange

We’ve already seen that we can get a lot of mileage out of our Boolean reasoning techniques.

But not quite enough. To reason with quantified statements, we need one new pair of identities

and four new inference rules.

First, we’ll introduce the two identities. They are variously called:

 Quantifier exchange, or

 Pushing nots through quantifiers.

Here are they are:

[Quantifier Exchange A] (x (P(x)))  x (P(x))

[Quantifier Exchange B] (x (P(x)))  x (P(x))

Let’s read these to see what they say:

[A] Suppose that we have that it’s not the case that P(x) is true for all values of x. An equivalent

way of saying the same thing is that there must be at least one value of x for which it’s false.

[B] Suppose we have that there is no value of x for which P is true. An equivalent way of saying

the same thing is that P(x) is false for all values of x.

As we work with logical expressions, we often want to “reduce the scope of nots.” By this we

mean that we want nots to apply to simple subexpressions rather than complex ones. It’s often

easier to work with the overall expression once it’s in that form. So one way that describes how

these rules are often used is:

You can push a not rightward across a quantifier by doing two things:

1. Flip the quantifier. In other words,  becomes  and  becomes . Then:

2. Apply the not to the entire scope of the original quantifier.

For example, we might start with the claim that it’s not true that everyone is the mother of

someone. Then we can reason as follows:

[1] x (y (MotherOf(x, y))) Premise

[2] x (y (MotherOf(x, y))) Quantifier Exchange [A] [1]

[3] x (y (MotherOf(x, y))) Quantifier Exchange [B] [2]

16 5. Predicate Logic Proofs

Recall that we’ve already observed that:

 The quantifier  is a shorthand for a large conjunction. When we say x (P(x)), what

we’re really saying is:

[1] P(x1)  P(x2)  P(x3)  …  P(xn), where n is the number of objects in our domain.

 The quantifier  is a shorthand for a large disjunction. When we say x (P(x)), what

we’re really saying is:

[2] P(x1)  P(x2)  P(x3)  …  P(xn), where n is the number of objects in our domain.

When we look at the quantifiers in this way, what we see is that our quantifier exchange rules are

simply giant versions of the Boolean De Morgan’s laws. Recall that those laws are:

[De Morgan 1] ((p  q))  (p  q) Push not through and.

[De Morgan 2] ((p  q))  (p  q) Push not through or.

As given here, each of De Morgan’s laws applies in the case of a conjunction or disjunction of

exactly two terms. Suppose that the generalization to n (for any value of n) terms were true:

[Generalized De Morgan 1] ((p1  p2  p3  …  pn))  (p1  p2  p3  …  pn)

[Generalized De Morgan 2] ((p1  p2  p3  …  pn))  (p1  p2  p3  …  pn)

(Note that we’ve left out a lot of parentheses here. They’re not necessary since both and and or

are associative. So we’ve used this more readable form rather than our usual, fully parenthesized

one.) It turns out that both of these generalized claims are true. This can be proved

straightforwardly using a proof technique called induction that we’ll consider later in this course.

For now, assume that they’re true.

Now let’s rewrite our new Generalized De Morgan’s laws using quantifiers. Assume that our

domain contains n objects and that P(x) is equivalent to the Boolean expression px. (For

example, P(1) and p1 are just two ways of saying the same thing.)

To get [2], we pushed the not through , which changed it to  and landed the  just inside

the outermost parentheses. To get [3], we did a second quantifier exchange. This time we

pushed the not through , which changed it to  and landed the  just inside one more level

of parenthesization.

Now we have the equivalent claim that there exists someone who fails to be the mother of

every single person (assuming people is our domain).

5. Predicate Logic Proofs 17

Look at the left hand side of Generalized De Morgan 1. It’s the not of a large conjunction. Since

the universal quantifier  is a shorthand for a large conjunction, we can use it here. Our left

hand side becomes:

 x (P(x))

And the right hand side is simply a large disjunction (each term of which happens to be negated).

Our shorthand for that is the existential quantifier . So our right hand side becomes:

 x (P(x))

Putting the two sides together and then doing a similar thing for Generalized De Morgan 2, we

get:

[Quantified Generalized De Morgan 1] x (P(x))  x (P(x))

[Quantified Generalized De Morgan 2] x (P(x))  x (P(x))

Compare these two equivalences to the two Quantifier Exchange rules at the top of this slide.

They look the same. There actually is one difference: we derived our Generalized De Morgan

rules assuming some finite sized set (we called the size n). The Quantifier Exchange rules at the

top of this slide, however, don’t make that assumption. They work for any size set, finite or

infinite. That’s why they’re new rules for reasoning in predicate logic. They’re not just another

way of writing something that we could have done in our Boolean framework.

So what we see now is that the Quantifier Exchange rules are generalizations to any size set,

including infinite ones, of De Morgan’s laws.

Since Quantifier Exchange and De Morgan’s laws do the same thing, we’ll often see that it’s

useful to combine them. In particular, if we apply Quantifier Exchange and are able to produce a

wff that contains no more quantifiers, we may continue to simplify by treating the wff as a

Boolean expression and applying De Morgan’s laws.

From now on, we’ll lump Quantifier Exchange A and Quantifier Exchange B together as a single

identity called simply Quantifier Exchange.

For example, suppose that we start with the (obviously true) statement that there’s no one

who both hates chocolate and is trustworthy. Then we can reason as follows:

[1] x (Hates(x, Chocolate)  Trustworthy(x)) Premise

[2] x ((Hates(x, Chocolate)  Trustworthy(x))) Quantifier Exchange B [1]

[3] x (Hates(x, Chocolate)  Trustworthy(x)) (Boolean) De Morgan [2]

Now we’ve reduced the scope of not to individual predicates. We have derived a new

universal rule: One doesn’t hate chocolate or one isn’t trustworthy.

18 5. Predicate Logic Proofs

Problems

1. Consider the plight of a poor talent scout for a musical. She moaned, “It’s hopeless.
Everyone who tried out sounds like a cat in heat or has two left feet.” We’ll simplify a bit. Define:

S(x): True if x can sing. Alternatively: True if x does not sound like a cat in heat.
D(x): True if x can dance. Alternatively: True if x does not have two left feet.

Assume that x ranges over the set of people who tried out. Which one or more of the following
expressions correspond(s) to the scout’s lament? (Hint: Write out one expression that captures
the meaning. Then use the Quantifier Exchange rules to see what other expression(s) are
equivalent to yours.)

I. x (S(x)  D(x))

II. x ((S(x)  D(x)))

III. x (S(x)  D(x))

5. Predicate Logic Proofs 19

2. Consider this sign (often seen on the doors of greedy
movie theaters). Exactly what does it mean? First, let’s
assume that the adjective “outside” applies to both food and
drink.

Define:

Outside(x): True if x is from outside.
Food(x): True if x is food.
Drink(x): True if x is a drink.

Assume that the job of the sign is to make a claim that must be true of objects that are brought
into the theater.

Which (one or more) of the following expressions correspond(s) to the intended meaning of this
sign? (Hint: Write out one expression that captures the meaning. Then use the Quantifier
Exchange rules to see what other expression(s) are equivalent to yours.)

I. x ((Outside(x)  (Food(x)  Drink(x)))

II. x (Outside(x)  (Food(x)  Drink(x)))

III. x (Outside(x)  (Food(x)  Drink(x)))

IV. x (Outside(x)  (Food(x)  Drink(x)))

3. Let the universe of discourse be the natural numbers. Let P(x, y) correspond to the claim that
x > y. What are the truth values of each of the following expressions? Justify your answer.

a) x (y (P(x, y)))

b) x (y (P(x, y)))

c) x,y (P(x, y))

d) x (y (P(x, y)))

English Aside

Yet another way in which English suffers from a lack of explicit parentheses is that it’s

ambiguous whether modifiers attach just to the thing they’re closest too or whether they

have wider scope. In the case of our sign, we’re assuming (since this is consistent with

maximum greediness) that the intent is:

 No outside (food or drink).

But suppose that we’d said, “No smelly food or drink.” Now (given the lack of smell of most

drinks) the most likely interpretation is:

 No (smelly food) or drink.

20 5. Predicate Logic Proofs

4. Consider the following expression:

 x (y ((P(x)  Q(x))  R(x, y)))

Using the Quantifier Exchange rules and the rules of Boolean logic, we can construct an

equivalent expression that contains no instances of .

Which of the following is such an expression:

a) x (y ((P(x)  Q(x))  R(x, y)))

b) x (y ((P(x)  Q(x))  R(x, y)))

c) x (y ((P(x)  Q(x))  R(x, y)))

d) x (y ((P(x)  Q(x))  R(x, y)))

e) x (y (P(x)  (Q(x)  R(x, y))))

5. Prove that these two expressions are equivalent by using Quantifier Exchange, plus Boolean
identities, to transform the first into the second:

[1] ¬∃x (y (z (P(x, y)  P(y, z))))

[2] x (y (z (P(x, y) → ¬P(y, z))))

5. Predicate Logic Proofs 21

Identities and Inference Rules for Predicate Logic I

New Rules for Instantiating and Generalizing Quantifiers

So now our proof toolkit includes all of the Boolean identities and inference rules. And we have

just added two new identities, the two Quantifier Exchange rules.

The last thing we need is some new inference rules that will allow us to reason with quantified

expressions. To see why, consider the following argument that we should surely be allowed to

make:

Breathes

[1] x (Student(x)  Person(x)) All students are people.

[2] x (Person(x)  Breathes(x)) All people breathe.

Therefore:

[3] x (Student(x)  Breathes(x)) All students breathe.

An argument with this structure is called a syllogism. Syllogisms have formed the core of

classical logic since the days of Aristotle. We have no problem writing syllogisms in Boolean

logic. In fact, the inference rule that lets us write them is called Hypothetical Syllogism:

 From p  q and q  r, infer p  r.

We’ve already seen that we can treat a predicate logic statement (i.e., an entire expression that

has a truth value) as a single proposition and then reason with it just as we would have done in

Boolean logic.

But this won’t solve the problem of writing syllogisms like the Breathes one. To do that, we

need to reach inside quantified expressions. We want to match the (nonstatement) wff Person(x)

on the right hand side of the implication in [1] with the same (nonstatement) wff on the left hand

side of the implication in [2] so that we can chain the two statements together. We don’t yet

have a way to do that. We’ll present one soon.

But, first, let’s see why we can’t just wing it.

22 5. Predicate Logic Proofs

To guarantee that we continue to use only inference rules that we know are sound, we need to

formalize the ways that we can work with quantified statements.

Problems

1. For each of the following arguments, indicate whether or not it is a syllogism:

(a) All great desserts are chocolate.
 Brownies are chocolate.

  Brownies are great desserts.

(b) All unicorns have stripes.
 All striped things are happy.

  All unicorns are happy.

(c) All wooly things are warm.
 All sheep are wooly.

  All sheep are warm.

NONMYTHOLOGICAL STUDENTS

Assume the following premises:

[1] All students are creatures.

[2] All zebras are creatures.

[3] All creatures are mortal unless they are mythological.

[4] All mythological creatures have stripes.

[5] There are no striped students.

[6] Not all zebras have stripes.

Can we conclude:

[7] All students are mortal.

[8] All zebras are mortal.

The answer is yes for [7] and no for [8]. And this time, it’s much less obvious how we can

reason correctly and not make mistakes.

5. Predicate Logic Proofs 23

Our Approach – Back and Forth to Boolean Logic

So we need a way to reach inside quantified expressions to reason with them.

To solve this problem, we’ll propose a bigger picture plan:

 We observe that we have very flexible inference rules for Boolean logic.

 So, to work in predicate logic, we will define a set of rules that allow us to:

1. Transform predicate logic expressions into Boolean ones,

2. Reason in the Boolean world, and finally

3. Transform the Boolean expressions back into predicate logic.

Of course, we must do that in a way that is sound.

Here’s the key idea we’ll use:

 In Boolean logic we reason about individuals one at a time.

 But quantified statements, like x (P(x)) or x (Q(x)), let us reason about entire groups of

individuals all at once.

 So what we need is a way to transform quantified statements into statements about particular

individuals. Then we can reason with them.

 And finally we need a way to transform back into generalized (quantified) statements.

The set of steps that we just did is what we now must formalize.

With this idea in mind, let’s return to the Nonmythological Students example:

[1] All students are creatures.

[2] All creatures are mortal unless they are mythological.

[3] All mythological creatures have stripes.

[4] There are no striped students.

We’ll reason as follows. Consider any student. (Now we’re not talking about all students.

We’re talking about just one student but (s)he’s an arbitrary one. We don’t know anything

special about him/her.) We do know (s)he must be a creature (from [1]) and that (s)he is not

striped (from [4]). Thus (s)he cannot be mythological (from [3]). So (s)he must be mortal

(from [2]). And so we can conclude, that if an arbitrary student must be mortal, all students

are mortal. We’ve thus proved:

[5] All students are mortal.

24 5. Predicate Logic Proofs

Working with Universal Quantifiers: Arbitrary Elements

To make this work in the case of universally quantified expressions, we’ll introduce the idea of

an arbitrary element. What we mean by “arbitrary” is that the element has no additional

characteristics other than being an element of the universe.

To see how this helps, let’s return to the Breathes syllogism problem. Recall that we have:

[1] x (Student(x)  Person(x)) All students are people.

[2] x (Person(x)  Breathes(x)) All people breathe.

And we want to prove:

[3] x (Student(x)  Breathes(x)) All students breathe.

We’ll assume a universe of living things. Let’s let c be a name for some “arbitrary living thing”.

We could call our arbitrary living thing anything we want. We could call him/her/it

supercalifragilisticone. The only thing that matters is that we don’t pick a name that we’re using

anywhere else in our system. We don’t want to be able to pick up any extra information about

our “arbitrary living thing” that we wouldn’t know of absolutely every living thing.

We know, from [1] above, that anyone who is a student is a person.

There ought to be an inference rule (and soon we’ll define one) that lets us apply this claim to the

particular case of our arbitrary living thing c. That would give us:

[1a] Student(c)  Person(c)

Similarly, from [2] above, we have that anyone who is a person breathes.

The same rule that let us go from [1] to [1a] should let us go from [2] to [2a], which makes a

particular claim about our arbitrary living thing c:

[2a] Person(c)  Breathes(c)

Now we’ve got two quantifier-free expressions. The Boolean hypothetical syllogism rule can be

used to chain [1a] and [2a] together to produce another claim about our particular living thing c:

[3a] Student(c)  Breathes(c)

Now comes the biggie: Since c was an arbitrary living thing about whom we knew nothing

except what we could derive from general statements about all living things, anything we know

about c must generalize to the entire domain of living things. So we need a second new

inference rule that will allow us to conclude that “any student breathes”:

[3] x (Student(x)  Breathes(x))

5. Predicate Logic Proofs 25

The details will come soon, but let’s review the big picture of what we just did because this is the

key:

 We had a universal statement (actually two of them).

 Using new-rule-to-come-1, we gave a name to an arbitrary element.

 We argued (using Boolean logic) about the arbitrary element and came to some

conclusion about it.

 And then, since it was arbitrary, we expressed the conclusion, using new-rule-to-come-2,

as a new universal statement.

Problems

1. Assume the following premises:

[1] x (Phlobber(x)  Crazy(x)) All phlobbers are crazy.

[2] x ((Green(x)  Zamzow(x)) Crazy(x)) All green zamzows are crazy.

[3] x (Crazy(x)  Funny(x)) All crazy things are funny.

Let’s use the reasoning process that we just described. Let c be an arbitrary element of the
universe (as we did above). Consider the following statements that we might like to derive:

[I] Phlobber(c)  Crazy(c) If c is a pholbber, c is crazy.

[II] Zamzow(c) Crazy(c) If c is a zamzow, c is crazy.

[III] Crazy(c)  Funny(c) If c is crazy, c is funny.

Which of the following statements is true:

a) Exactly one of these can be derived using the idea of an arbitrary element.
b) Just I and II can be derived using the idea of an arbitrary element.
c) Just I and III can be derived using the idea of an arbitrary element.
d) Just II and III can be derived using the idea of an arbitrary element.
e) All of them can be derived using the idea of an arbitrary element.

26 5. Predicate Logic Proofs

Working with Existentially Quantified Statements: “The One”

Now we need a similar process for working with existentially quantified statements. But there is

a crucial difference. An existential quantifier guarantees the existence of (possibly only) one

element that satisfies its predicate. So we can’t pick an arbitrary element and assume that it’s

“the one”. What we can do is to give a name to “the one”. We’ll soon describe exactly how to

do this with new-rule-to-come-3.

As before, the key is that we must pick a name that doesn’t match any other elements that we’re

reasoning about. We know nothing special about “the one” except that it exists and satisfies one

particular predicate. So, in particular, if we are working with multiple existentially quantified

expressions, we must not assume that “the one” for one of them is necessarily the same as “the

one” for any others.

And now for the key difference between the arbitrary elements that arise when we’re working

with universally quantified expressions and the existential elements (“the ones”) that arise from

existentially quantified expressions:

 Dealing with arbitrary elements: We saw that if we have proved a claim about an arbitrary

element, then we can (using new-rule-to-come-2) generalize that claim so that we create a

new universally quantified statement.

 Dealing with existential elements: After proving a claim about “the one”, all we know is that

our claim is true of that one and, thus, of at least one element. So we can generalize our

claim but only to an existentially quantified statement.

So the final rule that we’re about to describe (for now we’ll call it new-rule-to-come-4) will let

us assert that existentially quantified statement.

As a bookkeeping matter: When we’re writing a proof, we must clearly distinguish between

arbitrary elements (about which we’ve made no assumptions) and “the ones” (about which we’ve

Suppose that we have:

[1] x (Likes(x, Rootbeer))

[2] x (Likes(x, Beets))

Assuming that we have new-rule-to-come-3, which will let us name “the one”, we could

write:

[1a] Likes(d*, Rootbeer)

[2a] Likes(e*, Beets)

What’s critical is that we not use the same symbol in both [1a] and [2a]. It’s possible that d*

= e* (in other words that it’s the same person who likes both rootbeer and beets), but we

have no basis for concluding that.

5. Predicate Logic Proofs 27

made the specific assumption that they are “the ones”). To make it easy to keep these two kinds

of objects distinct, every time we introduce a name for “the one”, we’ll end the name with an

asterisk (as we’ve just done).

While it’s critical that we not confuse arbitrary elements and “the ones”, it’s worth pointing out

that people do sometimes fail to make that distinction. When that happens, logical nonsense

results.

Problems

1. Assume:

[1] x (Mathematician(x)  Funny(x))
[2] Philosopher(Frege)
[2] Philosopher(Russell)

Which of these can be proved using some combination of the new rule that we just described,
plus the identities and inference rules of Boolean logic?

I. Mathematician(Frege)  Funny(Frege)

II. Mathematician(e*)  Funny(e*)
III. Mathematician(Russell)
IV. Mathematician(c*)

Suppose I say, “Some kittens are fluffy”:

 [1] x (Kitten(x)  Fluffy(x))

Since this is an existentially quantified statement, we are allowed to write:

[1a] Kitten(k*)  Fluffy(k*)

In this case, k* is “the one”, about whom we know absolutely nothing except that it’s a fluffy

kitten.

Now suppose that someone else says, “My kitten Lucy isn’t fluffy” (as if that were a

counterexample to my claim). We’d write that specific statement as:

[2] Kitten(Lucy)  Fluffy(Lucy)

Now compare [1a] and [2]. It is possible that Lucy and k* are aliases for the same individual.

But nothing requires that they be. So we can’t conclude any contradiction between them.

Our guy k* may be a big ball of fluff while his third cousin Lucy could be as sleek as can be.

So I should respond, “I did not make a universal statement about all kittens. I said there is at

least one fluffy kitten. Lucy might not be that one fluffy kitten”.

28 5. Predicate Logic Proofs

Substituting One Variable for Another

Notice that, both when we introduce arbitrary elements and when we introduce names for “the

one”, we end up rewriting logical expressions and substituting one name for another.

For example, suppose we start with:

[1] x (Boy(x)  Stupid(x))

Then we can name “the one” b* and write:

[1a] Boy(b*)  Stupid(b*)

What we’ve done is to substitute b* for x. Notice that, when we do this, we must do it

consistently within the entire scope of the quantifier that binds x. Within that scope, every

instance of x (and nothing else) must be replaced by b*.

We need a concise notation for describing such substitutions. Let P be any wff and let x and y

be any variables. Then we’ll write:

 P(x/y)

Read this as, “P, with x (whatever it is) substituted in every place that a free (unbound) instance

of y (whatever it is) appeared.

So, continuing with our example, let P be the wff:

[3] Boy(x)  Stupid(x)

Then P(b*/x) yields:

[1a] Boy(b*)  Stupid(b*)

You may now be saying, “Wait. I thought that you said that substitution happens to free

(unbound) variables. Yet, in [1], the instances of x are bound by the existential quantifier .”

True. But we’re letting P be [3], the (nonstatement) wff that is inside the scope of . So the

instances of x are free and we’ll substitute for them. This will be important since, as in [1a], we

want to derive statements that are quantifier-free.

We are now ready to see the new rules. Two deal with  and two deal with . Two (one for 

and one for ) remove the quantifiers (in favor of arbitrary or existential elements). The process

of introducing the arbitrary or existential element is called instantiation (i.e., defining an

instance). Two (again one each for  and ) reapply the quantifiers. This process is called

generalization (i.e., making a general statement from an instance).

5. Predicate Logic Proofs 29

Problems

1. Let P be the wff: Hungry(x)  Thirsty(x).

What is P(Gerry/x)?

a) Hungry(x, Gerry)  Thirsty(x, Gerry)

b) Hungry(Gerry)  Thirsty(Gerry)

c) Hungry(Gerry)  Thirsty(x)

Explanation: We substitute Gerry for every occurrence of x.

2. Let P be the wff: Friendly(x)  Likes(x, y).

What is P(Sunny/x)?

a) Friendly(Sunny)  Likes(y, Sunny)

b) Friendly(Sunny)  Likes(x, y)

c) Friendly(Sunny)  Likes(Sunny, y)

d) Friendly(Sunny)  Likes(Sunny, Sunny)

30 5. Predicate Logic Proofs

Universal Instantiation

Universal Instantiation: x (P(x))

  P(c/x)

Note: The substitution of c for x must be for all free occurrences of x and for no other variables.

Thus, from the fact that P is true for all values of x, conclude that it must be true

for any particular object c.

This is what we have been calling new-rule-to-come-1.

Uses of Universal Instantiation usually occur early in proofs for which the premises have

universally quantified statements.

There are two main ways in which we use this rule. The first is the simplest: we want to prove a

claim about some particular individual. We reason that, if P must be true of everyone, it must, in

particular be true of Smokey or Fred or 275 or whatever.

And now for the second use of Universal Instantiation: We can use it to make claims about

arbitrary elements (about which we know nothing else). To do this, we must use names about

which we have no other premises (unlike what we did in the Lucy case above). If we introduce

arbitrary elements, then we can prove new general claims by doing what we’ve already done in

our proof of the <ex Breathes> syllogism. We introduce arbitrary elements with Universal

Instantiation, reason about them, and then conclude by using what we’ve been calling new-rule-

to-come-2 (next) to derive a new universally quantified claim. We’ll hold off giving an example

of this until we have new-rule-to-come-2 to work with.

For example, we can use Universal Instantiation to make the following argument:

No cats are birds. Lucy is a cat. Therefore, Lucy is not a bird.

Define:

Bird(x): True if x is a bird.

Cat(x): True if x is a cat.

Proof:

[1] x (Cat(x)  Bird(x)) Premise

[2] Cat(Lucy) Premise

[3] Cat(Lucy)  Bird(Lucy) Universal Instantiation [1]

[4] Bird(Lucy) Modus Ponens [2] , [3]

5. Predicate Logic Proofs 31

Problems

1. Assume that we are willing to use Universal Instantiation, along with some number of
Boolean identities and inference rules. Consider the following premises. There’s a way to
exploit exactly four of them (together) to prove that ActsStrange(Kelly). Which one isn’t
necessary?

a) x ((SleepDeprived(x)  SimplyCrazy(x))  ActsStrange (x))

b) x ((AttendsUT(x)  SimplyCrazy(x))  ActsStrange(x))

c) x (Student (x)  SleepDeprived(x))

d) x (AttendsUT (x)  Student (x))
e) AttendsUT (Kelly)

2. Suppose that we start with:

[1] x (Happy(x)  Sad(x))

Which of these claims is true:

a) We can apply Universal Instantiation to [1] and derive (Happy(Pogo)  Sad(Pogo)).

b) We can apply Universal Instantiation to [1] and derive (Happy(Pogo)  Sad(Pogo)).
c) We cannot apply Universal Instantiation to [1].

32 5. Predicate Logic Proofs

Universal Generalization

Universal Generalization: P(c/x) P is true for the specific value c

(which appears everywhere a more

general value x might appear).

  x (P(x)) P is true for any value x.

Restrictions:

 c must not appear as a free variable in P(x).

 c is not mentioned in any hypothesis or undischarged assumption. (Recall that, to use

the Conditionalization inference rule, we introduce one or more assumptions, reason

with them, and then discharge them when we capture their effect by writing that they

imply the conclusion. What we’re saying here is that we cannot generalize any

variable that was arbitrarily introduced for that purpose but that has not yet been

discharged.) In other words, c is an arbitrary element of the universe.

So, if P(c) holds for some arbitrary element c of the universe, we can conclude that it

must in fact hold for any element. Thus we can conclude, x (P(x)).

But we must be careful. If c represents some specific element of the universe that may

have properties that other elements don’t have, then the generalization is not valid.

This is what we have been calling new-rule-to-come-2.

Use of Universal Generalization usually occurs at the end of proofs for which the conclusion has

a universally quantified statement. Before we can apply it, we must go back through our proof to

make sure that the value that we are generalizing is in fact an arbitrarily chosen one.

For example, recall our proof that Lucy is not a bird:

[1] x (Cat(x)  Bird(x)) Premise

[2] Cat(Lucy) Premise

[3] Cat(Lucy)  Bird(Lucy) Universal Instantiation [1]

[4] Bird(Lucy) Modus Ponens [2] , [3]

Notice that, on line [2], we had Cat(Lucy). But Lucy wasn’t an arbitrary element. It

was a specific element about which we had a premise. So we cannot generalize [2]

to conclude that everything in the universe is a cat.

5. Predicate Logic Proofs 33

So now we’ve seen that Universal Instantiation and Universal Generalization, taken together,

give us a way to prove traditional syllogisms. Alternatively, we could have introduced a special

syllogism rule. Many logicians have done that. We chose to go our way, however, because it

does more than solve the syllogism problem. It’s more general. The idea that we start a

predicate logic proof by first moving into the Boolean world, doing what we need to do

(however many steps that takes) and finally moving back to quantified statements is very

powerful.

We can now write out a complete proof, in our standard notation, of the Breathes syllogism.

Note that the Hypothetical Syllogism rule that we use here is the same one we’ve been using

since we started writing Boolean proofs.

[1] x (Student(x)  Person(x)) Premise

[2] x (Person(x)  Breathes(x)) Premise

[1a] Student(c)  Person(c) Universal Instantiation [1]

[2a] Person(c)  Breathes(c) Universal Instantiation [2]

[3a] Student(c)  Breathes(c) Hypothetical Syllogism [1a], [2a]

[3] x (Student(x)  Breathes(x)) Universal Generalization [3a]

Notice that when we apply Universal Instantiation, we can pick any value we like (after all,

the claim is universal. So, in particular, if we apply it twice, we can choose the same value

both times. That’s what we’ve done here. And that’s often what we want to do.

Suppose that we are given two premises:

[1] x ((P(x)  Q(x))  R(x))

[2] x (P(x))

We want to prove: x (Q(x)  R(x))

This seems as though it ought to be true. If P(x) is true of everything anyway, we shouldn’t

have to worry about it. But is that so? Let’s see if we can prove it.

[1] x ((P(x)  Q(x))  R(x)) Premise

[2] x (P(x)) Premise

[3] (P(c)  Q(c))  R(c) Universal Instantiation [1]

We’ve chosen c as an arbitrary element of the universe. This is allowed. We

know nothing else about it.

While we’re at it, let’s also instantiate our other premise, [2]. This time, we

won’t instantiate to a new arbitrary element. We’ll instantiate to the specific

element c that we already have. This is allowed. If P(x) is true for all x, it

must, in particular, be true of c, regardless of what c is. Thus c is still an

arbitrary element.

[4] P(c) Universal Instantiation [2]

Now we can work with [3] and [4] completely in the Boolean world, applying

as many identities and rules as we need.

34 5. Predicate Logic Proofs

[5] (P(c)  Q(c))  R(c) Conditional Disjunction [3]

[6] (P(c) Q(c))  R(c) De Morgan [5]

[7] P(c)  (Q(c)  R(c)) Associativity of or [6]

[8] (Q(c)  R(c))  P(c) Commutativity of or [7]

[9] Q(c)  R(c) Disjunctive Syllogism [8], [4]

[10] Q(c)  R(c) Conditional Disjunction [9]

Now we’re close to the claim we’re trying to prove. The only issue is that we

know that it’s true of the arbitrary element c. We want to show that it must

be true for any element. But that’s easy; Universal Generalization will do that

for us (precisely because c is arbitrary). So we have:

[11] x (Q(x)  R(x)) Universal Generalization [10]

We just proved our claim for arbitrary predicates P,

Q, and R. But we can see why it might be useful if

we give meanings to them. Define:

P(x): True if x is a person.

Q(x): True if x was born in the United States.

R(x): True if x is a citizen of the United States.

Then our original claim is that if you’re a person and

you were born in the U.S., you’re a citizen of the

U.S. Given an arbitrary universe, we need the

restriction that you must be a person since cats

and mice, although born in the U.S., are not

citizens. But if we assume a universe of people

(thus assuming that everything in question is a

person), we can drop the explicit person

requirement and say simply that if you’re born in

the U.S., you’re a U.S. citizen.

5. Predicate Logic Proofs 35

Problems

1. Define: P(x): x is Popular
 L(x, y): x Likes y

Fill in the ten blanks in the following proof:

[1] x (y (P(x)  L(y, x))) Premise
[2] P(Riley) Premise
[3] P(Tracy) Premise

[4] y (P(Riley)  L(y, _______{1})) _______________{2} [1]

[5] P(Riley)  L(_______{3}, _________{4}) _______________{5} [4]
[6] L(_______{6}, _________{7}) Modus Ponens [2], [5]

[7] y (L(_______{8}, _________{9})) _______________{10} [6]

36 5. Predicate Logic Proofs

Existential Instantiation

Existential Instantiation x (P(x))

  P(c*/x)

Restrictions:

 c* must be a symbol that has not previously been used.

 If the quantified expression x (P(x)) originally occurred inside the scope of one or

more universal quantifiers that have already been instantiated then:

If any of those universals have been instantiated to arbitrary elements, then

we must describe c* as depending on the values of those arbitrary

elements. (See example below to make this clearer.)

This rule says that if P holds for some element of the universe, then we can give that

element a name such as c*. When selecting symbols, we must be careful: the symbols

must be selected one at a time and must not duplicate any symbol that has already been

selected within the same proof.

Thus, if x (P(x))  y (Q(y)) is true, then, to use this rule, we select a name, let’s say c*,

for the object of which P must be true. Then we select a different name, let’s say d*, for

the object of which Q, must be true.

This is what we have been calling new-rule-to-come-3.

To simplify our bookkeeping and to guarantee that we don’t confuse the names we choose here

for “the ones” with the names we choose for arbitrary elements when we apply Universal

Instantiation, we’ll always choose names (like c* and d*) that end with an asterisk.

Voters

Consider the following argument: If you are 18 years old then you can vote. Someone, call

the person c, is 18 years old. Therefore c can vote.

Define:

E(x): True if x is 18 years old.

V(x): True if x can vote.

Then the proof proceeds as follows:

[1] x (E(x)  V(x)) Premise

[2] x (E(x)) Premise

[3] E(c*) Existential Instantiation [2]

[4] E(c*)  V(c*) Universal Instantiation [1]

[5] V(c*) Modus Ponens [3], [4]

5. Predicate Logic Proofs 37

Notice, in this example, that we’ve ended by concluding something (i. e., can vote) of some

object c* about which we know nothing else. But we do in fact know one more thing. We now

know that there exists someone who can vote. We need one more rule, to be described next. It

will let us take that step.

Problems

1. Consider the following beginning of a proof:

[1] Student(Blake) Premise
[2] Cat(Lucy) Premise

[3] x (y (Likes(x, y))) Premise

Which of the following is/are legal possibilities for step [4]:

I. [4] y (Likes(c*, y)) Existential Instantiation [3]

II. [4] y (Likes(Blake, y)) Existential Instantiation [3]

III. [4] x (Likes(x, Lucy)) Existential Instantiation [3]

2. Consider the following beginning of a proof:

[1] Student(Blake) Premise
[2] Cat(Lucy) Premise

[3] x (y (Likes(x, y))) Premise

[4] y (Likes(c*, y)) Existential Instantiation [3]

Which of the following is/are legal possibilities for step [5]:

I. [5] Likes(c*, Lucy) Existential Instantiation [4]
II. [5] Likes(c*, d*) Existential Instantiation [4]
III. [5] Likes(c*, c*) Existential Instantiation [4]

In step 3 above, a specific person with property E was given the name c*. For that same

person c*, the statement E(c*)  V(c*) holds by Universal Instantiation. Note that the order of

steps 3 and 4 cannot be reversed. We can do Existential Instantiation first and give the name

c* to “the one”. Then we can use Universal Instantiation since, when we apply it, we may

make the claim about any element and thus, in particular c*. But, if we do Universal

Instantiation first and choose c* as the name of some arbitrary element, then that name has

already been used. The best we’d be able to do, if we apply Existential Instantiation at that

point, would be to choose a second name for “the one”. But then we’d not be able to

conclude anything about either c* or (say) d* because they’d be different.

38 5. Predicate Logic Proofs

Skolem Functions

But first, before we introduce our last new rule, let’s explain the second restriction on the use of

this instantiation rule. Suppose that we began with the following expression, with respect to the

universe of bears:

[1] x (y (MotherOf(y, x)))

If we wish to use the instantiation rules, we must begin at the outside (in other words, with the

entire statement). So we first instantiate x. If we do that for a specific value, say Smokey, then

we get:

[2] y (MotherOf(y, Smokey))

Now we can give a name to the particular individual who is Smokey’s mother. We can write:

[3] MotherOf(c*, Smokey)

We haven’t gotten into any trouble (yet).

But now suppose that we begin by instantiating x with an arbitrary element. Recall that we do

this when we want to reason about that arbitrary element, typically with the intent of generalizing

it later. When we do this, we can make no specific claims about the value that we choose. So, in

particular, we can’t claim that there’s any one c* who is the mother of any arbitrary bear.

Clearly different bears can have different mothers.

We can still apply the Existential Instantiation rule. But we must make clear that the value we’re

asserting the existence of depends on the value that is chosen for x. To do that we’ll use the

notation:

 f(x),

which we’ll read as, “f of x”, meaning “a value that depends on x”.

So, suppose that we’d used Universal Instantiation on [1] to produce:

[4] y (MotherOf(y, a))

Then we can use Existential Instantiation to produce:

[5] MotherOf(f(a), a)

So we have that, no matter who a is, there’s something, whose value depends on a, who is a’s

mother.

5. Predicate Logic Proofs 39

What if the original existentially quantified expression occurred inside the scope of two or more

universal quantifiers? Easy. We simply make the instantiated value depend on all of them.

https://www.youtube.com/watch?v=MFw3yIk_KCQ

Suppose for example, that we want to claim that, for every pair of Facebook users, there’s a

definition of their Facebook relationship. (This definition includes whether they are friends,

whether one has hidden the other, etc.) Then (assuming a universe of Facebook users) we

could write:

[6] x (y (z (FBRelDef(z, x, y))))

After applying Universal Instantiation twice, we will have:

[7] z (FBRelDef(z, a, b))

Then we apply Existential Instantiation and we get the fact that the Facebook relationship

that exists for a and b depends on who a and b are:

[8] FBRelDef(f(a, b), a, b)

Nifty Aside

Objects such as c*, are sometimes called Skolem constants. Objects such as f(a) and f(a,

b) are sometimes called Skolem functions. While it’s true that these objects are clunky for

us to reason with, they play a very important role in some computational logic systems (i.e.,

programs that produce proofs).

https://www.youtube.com/watch?v=MFw3yIk_KCQ
https://www.youtube.com/watch?v=MFw3yIk_KCQ

40 5. Predicate Logic Proofs

Problems

1. Given:

[1] x (y (z (P(x, y, z))))

Which of the following statements could result from a correct application of the Instantiation
rules that we have presented? Assume that all uses of Universal Instantiation derive arbitrary
elements.

a) P(a, b*, c)
b) P(a, f(a), c)
c) P(a, f*(a,), c)
d) P(a, b*, a)

5. Predicate Logic Proofs 41

Existential Generalization

Existential Generalization P(c/x) P is true for the specific value c

(which appears everywhere a more

general value x might appear).

  x (P(x)) There is some value of x for which

P is true.

Restriction: x does not appear free in ()P c .

This is perhaps the simplest of all of these rules. What it says is that if there is some

element c in the universe that has the property P, then we can say that there exists

something in the universe that has the property P.

This is what we have been calling new-rule-to-come-4.

Note that c must be a specific value. It cannot be a function (as described on the previous

slide) of some other value.

Now let’s continue the Voting example. We’d like to show that there is someone who can

vote. All we need to do is to add line [6]:

[1] x (E(x)  V(x)) Premise

[2] x (E(x)) Premise

[3] E(c*) Existential Instantiation [2]

[4] E(c*)  V(c*) Universal Instantiation [1]

[5] V(c*) Modus Ponens [3], [4]

[6] x (V(x)) Existential Generalization [5]

42 5. Predicate Logic Proofs

Summary of the New Rules

Here’s one way to think about how we use these instantiation and generalization rules:

 https://www.youtube.com/watch?v=d8XbF8LxGgI

We instantiate. Then we work in the simpler world of Boolean logic. Then we generalize at the

end.

Here are some important ideas to keep in mind as you’re doing this:

 Quantifier Exchange is an equivalence rule. So it can be used anywhere in an expression. (In

other words, it’s fine to apply it to an entire expression, but application to smaller

subexpressions is also allowed.)

 Inference rules (unlike equivalence rules) can be applied only to entire statements, not to

subexpressions within statements. The instantiation and generalization rules are inference

rules.

 So, if we want to instantiate (i.e., remove a quantifier), we must work from the outside in.

Predicate

Logic
Boolean

Logic

Generalization

Instantiation

Suppose that we are given:

 x (y (P(x, y)))

We can apply Quantifier Exchange to the existential quantifier that occurs inside the larger,

universally quantified expression. If we do that, we get:

 x (y (P(x, y)))

https://www.youtube.com/watch?v=d8XbF8LxGgI
https://www.youtube.com/watch?v=d8XbF8LxGgI

5. Predicate Logic Proofs 43

 On the other hand, if we want to generalize (i.e., add a quantifier), we must work from the

inside out.

 Because of the requirement that Existential Instantiation must use a previously undefined

element (but Universal Instantiation does not have that requirement), it generally makes

sense to do Existential Instantiations first.

Suppose that we are given:

x (y (P(x, y)))

We can apply Universal Instantiation to the entire expression. We’ll get:

y (P(c, y))

But we may not apply Existential Instantiation to the inner subexpression without getting rid of

the outer quantifier first.

Suppose that we had again started with:

[1] x (y (P(x, y)))

Then we applied Universal Instantiation to the entire expression, getting rid of x and yielding:

[2] y (P(c, y))

Then we applied Existential Instantiation to that, getting rid of y and yielding:

[3] P(c, f(c))

(Recall that since the existentially quantified y occurs inside the scope of the universally

quantified x, we must make our instantiated y depend on particular values of x.)

Now suppose that we want to generalize back. (In a real proof, we’d do some work first, but

we’re simplifying here.)

We can apply Universal Generalization to this, (replacing c with x) giving us:

[4] x (P(x, f(x))

But now we’re stuck. We cannot reach inside this expression to do Existential Generalization.

If we want to do that, we must do it first, starting from [3], and writing:

[5] y (P(c, y))

And then we can apply Universal Generalization and get [1] back.

44 5. Predicate Logic Proofs

 Some of our new predicate logic rules are natural generalizations, to a possibly infinite

domain, of Boolean logic rules that we already had:

 The quantifier exchange rules generalize the Boolean De Morgan’s laws. We’ve

already seen why that’s so.

 Universal Instantiation generalizes Boolean Simplification. Recall that the quantifier

 can be thought of as another way of writing a large (possibly even infinite)

conjunction. So we have this generalization of Simplification:

 P(x1)  P(x2)  P(x3)  . . . written as: x (P(x))

  P(xk)

If I know that some claim is true for all values, then I can conclude that it must be

true for any individual one.

 Universal Generalization generalizes Boolean Conjunction: Again, recall that  can

be thought of as another way of writing a large (possibly even infinite) conjunction.

So we have this generalization of Conjunction:

Let’s return to the <ex Voters> example. Recall that we had:

[1] x (E(x)  V(x)) Premise

[2] x (E(x)) Premise

[3] E(c*) Existential Instantiation [2]

[4] E(c*)  V(c*) Universal Instantiation [1]

[5] V(c*) Modus Ponens [3], [4]

[6] x (V(x)) Existential Generalization [5]

We did Existential Instantiation first and gave a name, c*, to the object that must exist. Then,

since a universal claim is true of everything, we asserted that it must, in particular, be true of

c*.

Suppose, on the other hand, we’d tried to use Universal Instantiation first. Then we’d have:

[1] x (E(x)  V(x)) Premise

[2] x (E(x)) Premise

[3] E(c)  V(c) Universal Instantiation [1]

At this point, we’ve picked someone, c, to make the claim about. If there were additional

universally quantified statements, we could also assert them of c. But there aren’t. There is,

however, an existentially quantified one. But to use it, we’ll have to pick a new name for the

object that we know must exist:

[4] E(d*) Existential Instantiation [2]

Oops. We can’t combine [3] and [4] to conclude anything.

5. Predicate Logic Proofs 45

 P(c)  P(x1)

 P(x2)

 . . .

  P(x1)  P(x2)  . . . written as: x (P(x))

If I know that some claim is true for some arbitrary individual c, then I know that it

must be true for individual1 and individual2 and so forth. Thus it is true of all

individuals. Note the sense in which Universal Instantiation and Universal

Generalization are inverses of each other.

 Existential Generalization generalizes Boolean Addition: Recall that the quantifier 

can be thought of as another way of writing a large (possibly even infinite)

disjunction So we have this generalization of Addition:

 P(x1)

  P(x1)  P(x2)  P(x3) . . . written as: x (P(x))

If I know that some claim is true for one individual then I know that it is true of at

least one element out of some possibly infinite set.

 Existential Instantiation doesn’t generalize any of our Boolean rules, but it’s

interesting nevertheless to write it out in an analogous way:

P(x1)  P(x2)  P(x3) . . . written as: x (P(x))

  P(xk) for some xk

If I know that there exists some individual of whom some claim is true, then there

must be at least one specific one of whom it’s true. Note the sense in which

Existential Instantiation and Existential Generalization are inverses of each other.

Big Idea

In the appendix, you’ll find a Predicate logic “cheat sheet”. You may want to keep it

handy while working proofs.

46 5. Predicate Logic Proofs

Checking Predicate Logic Proofs

StepWise (the proof checking tool that we used for Boolean

logic) also works for predicate logic proofs.

 https://www.youtube.com/watch?v=4RU9po49OcE

We’ll soon see how to design nontrivial proofs using all of the rules at our disposal. But, before

we do that, let’s practice using the instantiation and generalization rules that we’ve just learned.

https://www.youtube.com/watch?v=4RU9po49OcE
https://www.youtube.com/watch?v=4RU9po49OcE

5. Predicate Logic Proofs 47

Problems

1. Assume the following premises:

[1] x (Dragon(x)  SpewsFire(x)) All dragons spew fire.

[2] x (Dragon(x)) Dragons exist.

Prove:

x (SpewsFire(x)) Fire spewing creatures exist.

2. Assume the following premises:

[1] x (Dragon(x)  PetOwner(x)) No dragons own pets.

[2] x (PetOwner(x)  Grumpy(x)) Anyone without a pet is grumpy.

Prove:

 x (Dragon(x)  Grumpy(x)) All dragons are grumpy.

3. Let the universe over which x quantifies be the set of dragons. Assume the following
premise:

x (y (Tail(y)  HasPart(x, y))) Every dragon has a tail.

Here’s a proposed proof that all dragons share the same tail:

[1] x (y (Tail(y)  HasPart(x, y))) Premise

[2] y (Tail(y)  HasPart(d, y)) Universal Instantiation [1]

[3] Tail(t*)  HasPart(d, t*) Existential Instantiation [2]

[4] x (Tail(t*)  HasPart(x, t*)) Universal Generalization [3]

[5] t (x (Tail(t)  HasPart(x, t))) Existential Generalization [4]

Clearly it does not follow from our premise that all dragons share the same tail. So there’s at
least one thing wrong with this proof. In which line did we make our first mistake? You should
be able to explain exactly what we did wrong.

a) Line [2]
b) Line [3]
c) Line [4]
d) Line [5]

48 5. Predicate Logic Proofs

Creating Predicate Logic Proofs I

Overview

Just as we did in Boolean logic, we’re now going to walk through the process of constructing

natural deduction proofs for a collection of representative examples. There’s a video for each of

them.

For each of these problems, we suggest that you first try to do the proof yourself. Then you can

watch a video in which we walk through the construction of a proof.

5. Predicate Logic Proofs 49

Universal Generalization Proof Problem: The Barber

The Barber

Assume that whenever we have a barber and a person who needs a haircut then the barber can
cut the person’s hair. Let’s show that any barber who needs a haircut could cut his/her own
hair. (But notice that, in the real world, self barbering is actually hard. Maybe what we really
should do is to change our premise to prevent drawing our conclusion.)

Assign the following names to basic statements:

B(x): True if x is a barber.
H(x): True if x needs a haircut.
C(x, y): True if x can cut y’s hair.

Prove: x (y ((B(x)  H(y))  C(x, y))) Whenever we have a barber and a
 person who needs a haircut then the
 barber can cut the person’s hair.

 z ((B(z)  H(z))  C(z, z)) Any barber who needs a haircut can
 cut his or her own hair.

You should do this proof yourself.

You can also watch our video, which will outline our strategy
for doing this.

 https://www.youtube.com/watch?v=lxNkUWim2I8

https://www.youtube.com/watch?v=lxNkUWim2I8
https://www.youtube.com/watch?v=lxNkUWim2I8

50 5. Predicate Logic Proofs

Problems

1. Amazed Teacher : Assume the following premise:

[1] (x (Student(x)  CompletedHomework(x)))  Amazed(Teacher)

Assume that we want to prove:

 Amazed(Teacher)

Which of the following statements, would if combined with [1], be sufficient to enable us to prove
Amazed(Teacher)?

I. Student(Flopsy)
II. CompletedHomeworks(Flopsy)

III. x (CompletedHomework(x))

a) I and II are sufficient.
b) III is sufficient.
c) All of them are required.
d) No combination is sufficient.

2. Let’s continue the Amazed Teacher example. We’ll abbreviate CompletedHomework(x) as
Done(x). Assume the following premises:

[1] (x (Student(x)  Done(x)))  Amazed(Teacher)

[2] x (Done(x))

Prove Amazed(Teacher).

3. NotMotherOfSelf : Assume the following premise:

[1] x (y (MotherOf(x, y)  MotherOf(y, x)))

Prove: x (MotherOf(x, x))

3. Assume the following premises:

[1] x (P(x)  R(x))

[2] x ((P(x)  (Q(x)  R(x)))  W(x))

Prove: x (W(x)  S(x))

4. Assume: [1] x (P(x)  R(x))

[2] x ((P(x)  (Q(x)  R(x)))  W(x))

Prove: x (W(x)  S(x))

5. Predicate Logic Proofs 51

Existential Instantiation Proof Problem: Absolute Value

Absolute Values

Suppose our universe is the set of integers and we assume that every integer has both an
absolute value and another number that is its successor. Thus every integer has an absolute
value.

Assign the following names to basic statements:

A(x): True if x has an absolute value.
S(x): True if x has a successor.

Prove: x (y (A(x)  S(y))) Every integer has an absolute value and a successor.

  z (A(z)) Every integer has an absolute value.

You should do this proof yourself. (Hint: Be careful. Notice that
the existentially quantified variable occurs within the scope of a
universally quantified one. You will need to instantiate y as a
function of the variable you used when you instantiated x.)

You can also watch our video, which will outline our strategy for
doing this.

 https://www.youtube.com/watch?v=gogJe8bMGj8

Problems

1. Assume the following premise:

[1] x (y (R(x, y))) Premise

Prove: y (x (R(x, y)))

https://www.youtube.com/watch?v=gogJe8bMGj8
https://www.youtube.com/watch?v=gogJe8bMGj8

52 5. Predicate Logic Proofs

Universal Instantiation Proof Problem: Fathers and Sons

FathersAndSons

Assume the universe of male people. We assume that if anyone is the father of some person
then that father cannot be the son of his own son. Thus no one is his own father.

Assign the following names to basic statements:

F(x, y): True if x is the father of y.

Prove: x (y (F(x, y)  F(y, x))) If anyone is the father of some person then
 that father cannot be the son of his own son.

  x (F(x, x)) No one is his own father.

You should do this proof yourself.

You can also watch our video, which will outline our strategy for
doing this.

 https://www.youtube.com/watch?v=uLu8ihQz510

https://www.youtube.com/watch?v=uLu8ihQz510
https://www.youtube.com/watch?v=uLu8ihQz510

5. Predicate Logic Proofs 53

Quantifier Exchange Proof Problem: First Class

FirstClass

Assume that if anyone has a coach class ticket but there is no coach seat available then that
passenger gets a first class ticket. Alice has a coach class ticket. But every coach seat is one
that cannot be occupied by Alice. Thus, Alice gets a first class ticket.

Assign the following names to basic objects and statements:

A: Alice
C(x): True if x has a Coach class ticket.
O(x, y) True if Person x may Occupy seat y.
F(x) True if x gets a First class ticket.

Prove: x ((C(x)  y (O(x, y)))  F(x)) If anyone has a coach class ticket but there
 is no coach seat then that passenger gets a
 first class ticket.
 C(A) Alice has a coach class ticket.

 y (O(A, y)) Every coach seat is one that cannot be
 occupied by Alice.

  F(A) Alice gets a first class ticket.

You should do this proof yourself.

You can also watch our video, which will outline our strategy for
doing this.

 https://www.youtube.com/watch?v=G1TlZ7QNoak

https://www.youtube.com/watch?v=G1TlZ7QNoak
https://www.youtube.com/watch?v=G1TlZ7QNoak

54 5. Predicate Logic Proofs

Problems

1. Neighborhood Gangs : Assume the following premise:

[1] (x (MemberOfGangWeHate(x)  InOurNeighborhood(x))) HighAlert

(By the way, notice the predicate HighAlert. It looks like a Boolean proposition. It is. There’s
no reason that we can’t, in predicate logic, use Boolean propositions. Think of them as
predicates that don’t take any arguments.)

Suppose that we want to prove:

 HighAlert

(Part I) Which of the following statements, would if combined with [1], be sufficient to enable us
to prove HighAlert?

I. MemberOfGangWeHate(OneEye)
II. MemberOfGangWeHate(Bugsy)
III. InNeighborhood(Lefty)
IV. InNeighborhood(Bugsy)

V. x (InNeighborhood(x))

a) I and III together is the only sufficient combination.
b) II and IV together is the only sufficient combination.
c) I and V together is the only sufficient combination.
d) I and V together is a sufficient combination but there are other sufficient combinations of

these premises.
e) No combination of these premises is sufficient.

2. Let’s return to the Neighborhood Gangs problem. We’ll abbreviate MemberOfGangWeHate
as Member and InOurNeighborhood as In. Prove HighAlert assuming the following premises:

[1] (x (Member(x)  In(x))) HighAlert Premise
[2] Member(Bugsy) Premise
[3] In(Bugsy) Premise

3. Back to the Neighborhood Gangs problem again. This time, prove HighAlert using the
following premises:

[1] (x (Member(x)  In(x))) HighAlert Premise
[2] Member(OneEye) Premise

[3] x (In(x)) Premise

5. Predicate Logic Proofs 55

Creating Predicate Logic Proofs II

This section contains some additional examples, including some with videos.

Existential Instantiations, Then Universal Ones

Recall that, whenever we use Existential Instantiation, we must instantiate to some previously

undefined element. Yes, we know that some element exists. But we know nothing else about it.

But this isn’t so for Universal Instantiation. When we have a universal statement, its claim

applies to all elements, and so, in particular, to any specific element we may be working with.

Because of this difference, it generally makes sense, when we have a choice, to do Existential

Instantiations first.

White Mammals
Suppose that we want to prove that there exists a white mammal. We have two

premises:

x (Bear(x)  Mammal(x)) All bears are mammals.

x (Bear(x)  White(x)) There exists a white bear.

We can prove our claim as follows:

[1] x (Bear(x)  Mammal(x)) Premise

[2] x (Bear(x)  White(x)) Premise

[3] Bear(c*)  White(c*) Existential Instantiation [2]

[4] Bear(c*) Simplification [3]

[5] White(c*) Simplification [3]

[6] Bear(c*)  Mammal(c*) Universal Instantiation [1]

[7] Mammal(c*) Modus Ponens [4], [6]

[8] Mammal(c*)  White(c*) Conjunction [5], [7]

[9] x (Mammal(x)  White(x)) Existential Generalization [8]

We used Existential Instantiation in step [3], chose the name c*, and then used Universal

instantiation to state the general claim in [1] as a specific claim about c*. If we’d tried to

do those two instantiations in the opposite order, we’d have gotten stuck:

[1] x (Bear(x)  Mammal(x)) Premise

[2] x (Bear(x)  White(x)) Premise

[3] Bear(d)  Mammal(d) Universal Instantiation [1]

[4] Bear(c*)  White(c*) Existential Instantiation [2]

Oops. We can’t combine what we know about d with what we know about c*.

56 5. Predicate Logic Proofs

Existential Instantiation and Generalization Proof Problem: Drug Test

DrugTest

Assume that if there is any woman who uses any medication then that woman may participate

in our drug test. There is a woman who uses some medication. Thus, someone may participate in

our drug test.

Assign the following names to basic statements:

W(x): True if x is a Woman.

U(x, y) True if person x Uses medication y.

P(x) True if x may Participate in our drug test.

Prove: x (y ((W(x)  U(x, y))  P(x))) If there is any woman who uses any

 medication then that woman may

 participate in our drug test.

 p (q (W(p)  U(p, q))) There is a woman who uses some

 medication.

  z (P(z)) Someone may participate in our drug test.

You should do this proof yourself.

You can also watch our video, which will outline a strategy
for creating a proof.

 https://www.youtube.com/watch?v=BfZ1EU3daxs

https://www.youtube.com/watch?v=BfZ1EU3daxs
https://www.youtube.com/watch?v=BfZ1EU3daxs

5. Predicate Logic Proofs 57

Contradictory Premises Proof Problem: Funny

Assume that anyone who is funny is not sad. There is someone who is sad while everyone is
funny. Thus, someone is richer than everyone.

Assign the following names to basic statements:

F(x): True if x is Funny.
S(x) True if x is Sad.
R(x, y) True if x is Richer than y.

Prove: x (F(x)  S(x)) Anyone who is funny is not sad.

 x (y (F(y)  S(x))) There is someone who is sad while everyone is funny.

  x (y (R(x, y))) Someone is richer than everyone.

Yes, you are reading this correctly. The premises are about being funny and being sad, and the
conclusion is about what appears to be something completely unrelated: wealth. Recall what we
learned in Boolean logic about proving something that appears to come out of the blue.

You should do this proof yourself.

You can also watch our video, which will outline a strategy for
creating a proof.

 https://www.youtube.com/watch?v=3gabk6libRA

https://www.youtube.com/watch?v=3gabk6libRA
https://www.youtube.com/watch?v=3gabk6libRA

58 5. Predicate Logic Proofs

Quantifier Exchange Proof Problem: Asleep in Class

Assume that Alice is in class. If Tom is asleep then it is not true that Alice is in class and Bob
did his homework. If anyone is in class then everyone did the homework. Thus, it isn’t true that
everyone is asleep.

Assign the following names to basic objects and statements:

A, B, T: Alice, Bob, Tom, respectively.
C(x): True if x is in Class.
H(x) True if x did his or her Homework.
S(x) True if x is aSleep.

Prove: C(A) Alice is in class.

 S(T)  (C(A)  H(B)) If Tom is asleep then it is not true that Alice is in
 class and Bob did his homework.

 (y (C(y)))  (x (H(x))) If anyone is in class then everyone did the
 homework.

  z (S(z)) It isn’t true that everyone is asleep.

You should do this proof yourself. You will notice that, since T
stands for true in that system, the problem uses M in place of T.

You can also watch our video, which will outline a strategy for
creating a proof.

 https://www.youtube.com/watch?v=OWWGmMwFL24

https://www.youtube.com/watch?v=OWWGmMwFL24
https://www.youtube.com/watch?v=OWWGmMwFL24

5. Predicate Logic Proofs 59

Problems

1. Prove that this claim holds with no premises required:

 (x (y (R(x, y))))  (u (v (R(v, u))))

Hint: Recall the Conditionalization inference rule that we defined in Boolean Logic:

 A, a set of premises

(A  p) entails q

  p  q

To use the rule, we assume whatever we want. Call it p. We prove that, with that
assumption, along with whatever other premises we have (call them A), q must follow.
We can then assert:

 p  q

This rule is useful in proving claims (as in this problem) of the form: p  q.

(Here, we’ll just let A be the empty set of premises.) Remember that, to use this rule
correctly, we begin by assuming p. We must then later (often at the end), “discharge” p
by making it the antecedent of an implication.

2. Assume the following premises:

[1] y (P(y)) → x (Q(x))
[2] P(a)

[3] R(c) → (P(a)  Q(b))

Prove: z (R(z)).

3. Assume the following premises:

[1] x (y ((G(x)  N(x, y)) → L(y)))

[2] u (v (G(u)  N(u, v)))

Prove: z (L(z))

60 5. Predicate Logic Proofs

Lemmas

Recall that a lemma is really just a theorem. But we typically call a theorem a lemma when the

reason that we’ve proved it is that it’s a useful intermediate step. Once it’s proved, we can use it

as often as we like in other proofs. The idea of proving lemmas so that we can save a lot of

repeated work can be very useful. We saw several examples of this in our discussion of Boolean

logic. Lemmas can be even more useful when we’re working in predicate logic because there

may be many more steps involved in our proofs.

Wine and Chocolate

Define:

Wine(x): True if x is a wine lover.

Choc(x): True if x is a chocolate lover.

Food(x): True if x loves food.

Drink(x): True if x loves drinks.

Paris(x): True if x loves Paris.

Suppose that we’re given the following premises:

x (Choc(x)  Food(x)) Chocolate lovers are food lovers.

x (Wine(x)  Drink(x)) Wine lovers are drink lovers.

x ((Drink(x)  Food(x))  Paris(x)) Anyone who loves food and drink loves Paris.

We’re also told about a lot of people who love wine and chocolate. We’d like to be able to

peg all of them as Paris lovers. The easiest way to do that will be to prove a lemma:

x ((Wine(x)  Choc(x))  Paris(x))

Then we can go directly to Paris-loving for everyone who’s a lover of wine and chocolate.

This is a particularly good thing to do because proving the lemma, while not hard, is a bit

annoying. We don’t want to have to do that reasoning more than once. So here it is (once):

[1] x (Choc(x)  Food(x)) Premise

[2] x (Wine(x)  Drink(x)) Premise

[3] x ((Drink(x)  Food(x))  Paris(x)) Premise

We’ll use the Conditionalization inference rule. So we’ll assume the antecedent of our goal.

More specifically, we’ll assume that it’s true of some arbitrary individual c. At the end of the

proof, we can generalize it to all individuals.

[4] (Wine(c)  Choc(c)) (Conditional) Premise

[5] Choc(c) Simplification [4]

[6] Choc(c)  Food(c) Universal Instantiation [1]

[7] Food(c) Modus Ponens [5], [6]

[8] Wine(c) Simplification [4]

[9] Wine(c)  Drink(c) Universal Instantiation [2]

[10] Drink(c) Modus Ponens [8], [9]

[11] (Drink(c)  Food(c))  Paris(c) Universal Instantiation [3]

[12] (Drink(c)  Food(c)) Conjunction [10], [7]

[13] Paris(c) Modus Ponens [12], [11]

5. Predicate Logic Proofs 61

[14] (Wine(c)  Choc(c))  Paris(c) Conditional Discharge [4], [13]

[15] x ((Wine(x)  Choc(x))  Paris(x)) Universal Generalization [14]

Whew. Done. Now we can identify a lot of Paris lovers very easily.

62 5. Predicate Logic Proofs

Soundness/Completeness/Decidability

As in Boolean logic, we will say that an inference rule is sound if, whenever it is applied to a set

P of statements (premises), any conclusion that it produces is entailed by P (i.e., it must be true

whenever P is). Clearly we are willing to accept only rules that are sound (and all of ours are).

We haven’t worked this hard to set up a system that lets us prove claims that aren’t true. Of

course, we could make that happen by having very weak rules. Why go out on any limbs?

But that won’t do. We need something else as well. We’ll say that a set of inference rules R is

complete if (and only if), given any set P of premises (axioms), all statements that are entailed by

P can be proved by applying the rules in R. In other words, if some statement S has to be true

whenever all the premises in P are true, then it must be possible, using the rules in R, to prove it.

We want a set of rules powerful enough to let us prove every theorem that follows from our

premises.

In fact, what we’d hope for is all three of the following things (assume that P is a set of premises,

S is a statement, and R is a set of inference rules):

(1) A guarantee that, if S is a theorem, given premises P, then we have the tools we need to

prove it. In other words, we have a complete set R of inference rules. And, of course, R

can’t “overprove”: every rule in R must be sound.

(2) A guarantee that, if S is actually true in some world that we’re trying to describe, then we can

come up with a set P of premises such that S is a theorem given P. In other words, all true

things are theorems. Also, of course, all false things aren’t theorems.

(3) An effective procedure (think computer program or algorithm) that can look at S and be

guaranteed to answer correctly the question, “Is S a theorem given P?”

Okay, good news first:

 We have (1). We can’t just use truth tables, the way we did in Boolean logic. But there

are rule sets that work. This was proved by the Austrian/American mathematician Kurt

Gödel in 1929. (So this isn’t obvious; for example it wasn’t something that the ancient

Greeks knew.) This result is called Gödel’s Completeness Theorem.

And now for the bad news:

 We don’t have (2). Kurt Gödel (the very man who proved the completeness result that

we just mentioned), went on to prove aa pair of Incompleteness Theorems that tell us that

there are interesting systems (think arithmetic) that have the property that there’s no set

of axioms that will make all true statements theorems while at the same time avoiding

inconsistencies.

Visit http://en.wikipedia.org/wiki/G%C3%B6del%27s_incompleteness_theorems for

more on this fundamental theorem that shook the mathematical world in 1931.

http://en.wikipedia.org/wiki/G%C3%B6del%27s_incompleteness_theorems

5. Predicate Logic Proofs 63

 We don’t have (3) either. We know (from the Completeness Theorem) that, if S is a

theorem, there’s a way to find a proof of it. But what if it isn’t? Can we assert that we

tried really hard to find a proof but we failed? Does that mean that S isn’t a theorem? No

it doesn’t. In some cases (in other words, given some sets of axioms) it’s possible to do

this. But in some other cases, it isn’t. This claim, that there’s no effective procedure for

deciding whether S is a theorem is called the undecidability of predicate logic. This

claim was proved in another fundamental, ground-shaking theorem in 1936, this time by

the British mathematician Alan Turing. And, by the way, Turing’s proof of this

particular undecidability result laid the groundwork for a much broader set of

undecidability proofs. There’s a whole class of problems that will not ever be able to be

solved by any sort of computer. Speed doesn’t matter. Memory size doesn’t matter. The

existence of a solution to any one of these problems creates a logical contradiction.

One last thing: Do not be confused by the fact that there exists both a Completeness Theorem

and an Incompleteness Theorem. The terminology is unfortunate since it is based on two

different notions of completeness. The Completeness Theorem tells us that there exist rule sets

that are complete (in the sense we defined at the top of this page). The Incompleteness Theorem

tells us that we may always be stuck with a theorem set that is incomplete in the sense that it

doesn’t completely cover the set of true statements.

Nifty Aside

Alan Turing is a hero to computer scientists. He worked on

the earliest computers. He developed a machine that

cracked German U-boat codes during the World War II. He

proved key theoretical results (like the one we just

mentioned). He wrote one of the first computer chess

programs. And he had a sad death when he was way too

young. Visit http://www.turing.org.uk/ for more on him and

his work. Also, search YouTube for videos about him.

Big Idea

There are provable limits to what predicate logic can do for us. And there are provable

limits to what we can compute. Sometimes, in trying to solve real problems, those limits bite

us. Nevertheless, the logical system that we’ve just defined can serve us well when we

understand it.

http://www.turing.org.uk/

64 5. Predicate Logic Proofs

Problems

1. A set of inference rules that allows us to derive all and only claims that must be true
whenever the premises are true is said to be:

a) sound
b) complete
c) both
d) something else but not either of these

2. Alan Turing is famous for many seminal contributions to computer science. One is his
attempt to define what it would mean for a computer to be intelligent. A version of his proposed
“Imitiation Game” is now called the Turing Test. You can read about it here:
http://en.wikipedia.org/wiki/Turing_test In his 1950 paper (http://orium.pw/paper/turingai.pdf),
Turing famously predicted, “I believe that in about fifty years’ time it will be possible, to
programme computers, with a storage capacity of about 109, to make them play the imitation
game so well that an average interrogator will not have more than 70 per cent chance of making
the right identification after five minutes of questioning.”

Was Turing right? There are many modern chatbots that play the imitation game. One
interesting one is Alice (http://alice.pandorabots.com/). Try having a conversation with Alice.

http://en.wikipedia.org/wiki/Turing_test
http://orium.pw/paper/turingai.pdf
http://alice.pandorabots.com/

5. Predicate Logic Proofs 65

Appendices

66 5. Predicate Logic Proofs

Boolean Identities

Double Negation: p  (p)

Equivalence: (p  q)  (p  q)  (q  p)

Idempotence: (p  p)  p

 (p  p)  p

DeMorgan1: ((p  q))  (p  q)

DeMorgan2: (p  q)  (p  q)

Commutativity of or: (p  q)  (q  p)

Commutativity of and: (p  q)  (q  p)

Associativity of or: (p  (q  r))  ((p  q)  r)

Associativity of and: (p  (q  r))  ((p  q)  r)

Distributivity of and over or: (p  (q  r))  ((p  q)  (p  r))

Distributivity of or over and: (p  (q  r))  ((p  q)  (p  r))

Conditional Disjunction: (p  q)  (p  q)

Contrapositive: (p  q)  (q  p)

Boolean Inference Rules

Modus Ponens: From p and p  q , infer q

Modus Tollens: From p  q and q , infer p . . .

Disjunctive Syllogism: From p  q and q , infer p . . .

Simplification: From p  q , infer p . . .

Addition: From p, infer p  q . . .

Conjunction: From p and q , infer p  q

Hypothetical Syllogism: From p  q and q  r, infer p  r

Contradictory Premises: From p and p, infer q

Resolution: From p  q and p  r, infer q  r . . .

Conditionalization: Assume premises A.

Then, if (A  p) entails q, infer p  q

A Useful Axiom

Law of the Excluded Middle: p  p

Q uantifier Exchange

Quantifier Exchange A : ((()))x P x   (())x P x 

Quantifier Exchange B: (())x P x   (x (P(x))

Instantiation and Generalization

Universal Instantiation: From x (P(x)), infer P(c/x)

Universal Generalization: From P(c/x), infer x (P(x))

Existential Instantiation: From x (P(x)), infer P(c*/x)

Existential Generalization: From P(c/x), infer x (P(x))

