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English Into Logic: Issues and Solutions 
 

Getting Off the Ground 

Introduction 
 

When we try to translate English sentences into logical statements, we may get stuck as we try to 

figure out exactly what the English sentences actually mean.   

 

We could write volumes on the subject of English semantics: the 

process by which meaning is assigned to utterances.   We won’t 

do that here.  What we will do is just to sketch a few issues so 

that we’re aware, as we use English to describe the reasoning that 

we’ll do, of possible misunderstandings or confusion. 
 
 

       https://www.youtube.com/watch?v=jIGOpFOyFcc    

 

 

And, by the way, English isn’t special in this regard.  All natural human languages (Spanish, 

Urdu, Khmer, or whatever) have the problems that we are describing here, although the details 

differ. 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Big Idea 

 

English sentences can be ambiguous, vague, unclear, and sometimes even downright 

misleading. 

 

 

The language of logic helps us avoid those problems. 

 

But, to use it to express our ideas, we need to understand how it relates to our natural 

language, English. 

https://www.youtube.com/watch?v=jIGOpFOyFcc
https://www.youtube.com/watch?v=jIGOpFOyFcc
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Problems 
 
1. We might think that it should be very straightforward to translate into logic claims about 
particular named individuals.  For example, assuming that it is clear which person named Logan 
we are talking about, we can write: 
 

Student(Logan) 
 

But even this is not always so simple.  Suppose that we want to encode into logic the sentence: 
 
 There is a tooth fairy. 
 
Which one or more of the following expressions is a syntactically legal predicate logic statement 
(or wff), that may reasonably encode our claim if we have defined all the predicates 
appropriately: 
 

I.  x (ToothFairy(x)) 

II.   (ToothFairy) 

III.   Tooth Fairy 

IV.  x (BringsMoneyForTeeth(x)) 
 
 
 
2. Suppose that we want to encode into logic the sentence: 
 
 Santa Claus does not exist. 
 
Which one or more of the following expressions is a syntactically legal predicate logic statement 
(or wff), that may reasonably encode our claim if we have defined all the predicates 
appropriately 
 

I.   (SantaClaus) 

II.   SantaClaus 

III.  x (SantaClaus(x)) 

IV.  x (WearsRedSuit(x)  LivesAtNorthPole(x)  ClimbsDownChimneys(x)   
  BringsXmasPresents(x)) 
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Big Idea 

 
In many cases, if we try to map from English sentences to logical ones without clearly 

analyzing what the English sentence is saying, we will have trouble.  It may be tempting to 

jump to the conclusion that we have found a weakness in our logical system itself.  While 

there are real limits to the logical system that we are discussing, we should, before 

assuming that we’ve found one, see if a more careful translation of English into logic can’t 

make the problem disappear. 
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We Must Overcome the Perils of English - Ambiguity 
 

Introduction 
 

English has evolved to be an efficient way for people to communicate with each other.  The price 

we pay for that is that many English sentences are ambiguous: they have two or more meanings.  

Often, we don’t even notice most of those meanings since they’re nonsense.  But logical 

statements are unambiguous.  So, before we can write one, we have to know exactly what we are 

trying to say. 
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Structural Ambiguity 
 

A very common source of ambiguity is structural:  There may be more than one syntactic parse 

(structure) for a sentence.  Each parse corresponds to a different meaning. 

 

 

We’ve already looked at a lot of examples in which ambiguity arises from the lack of 

parentheses in English. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Recall that:   pancakes or bacon and eggs 

 

could mean:   

 

    (pancakes or bacon) and eggs                                              

 

 

                                                OR  

 

 

 

 

 

 

 or it could mean:       

 

    pancakes or (bacon and eggs) 

 

 

            OR 
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A second source of structural ambiguity is postmodifiers (modifiers that come after whatever 

they modify).  The problem is that those modifiers have to get attached to the constituents they 

modify.  There may be more than one way to do that.  Prepositional phrases often cause this kind 

of ambiguity.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Consider:   Chris likes the girl with a cat. 

 

Anyone who reads this sentence is going to assume that the prepositional phrase, “with a 

cat” modifies, “the girl”.  There’s a girl with a cat and Chris likes her.  So we get: 

 

 
But now, suppose that we replace “like” with “shot”, “girl” with “bear”, and “cat” with “rifle”.   

 

We get:   Chris shot the bear with a rifle. 

 

Should we get the same structure? 
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So the problem is that the syntax (grammar) of English allows prepositional phrases to be 

attached in many different ways.  In the case of most sentences, only one of the possible 

attachments makes sense.  We (people) jump directly to it.  But we must be careful, when we 

assert that the meaning of a given sentence is some particular logical claim, that we are clear on 

which parse we are assigning that meaning to. 
  

If we parse it the same way, we get: 

 

 
 

Cute.  But almost surely not what was meant.  Instead, in this case, we want to attach the 

prepositional phrase, “with a rifle,” not to “the bear,” but to the verb phrase, “shot the bear”.   

The parse tree we need is this one: 

 

 

 

Now the prepositional phrase (as is 

common when such phrases modify 

verb phrases) says something about 

the way in which the action (shooting) 

happened. 

 

English syntax would have allowed us 

to produce a parse tree like this for the 

first sentence as well.  In other words, 

we could have attached, “with a cat,” 

to the verb, “likes”, but that wouldn’t 

have made sense – you can’t like using 

a cat. 
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Problems 

 

1. Consider:   You can have potatoes or beans and rice. 

 

Which of the following possible parenthesizations is almost certainly the one that is intended: 

 

a) potatoes OR (beans AND rice) 

  

 

 

 

 

 

 

b) (potatoes OR beans) AND rice 

  

 

 

 

 

 

 

 

 

 

 

 

2. Consider:   Kim ate the fried chicken with a fork. 

 

The prepositional phrase, “with a fork,” modifies: 

 

a) The direct object (“the fried chicken”) 

b) The verb phrase (“ate the fried chicken”)  

 

 

3. Consider:    Tracy likes books with surprise endings. 

  

The prepositional phrase, “with surprise endings,” modifies: 

 

a) The direct object (“books”) 

b) The verb phrase (“likes books”) 
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More Structural Ambiguity 
 

Other syntactic structures can also lead to ambiguity. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Problems 

 
1. Consider:   Jia speaks Chinese more fluently than French. 
 
Possible meanings for this sentence have the form: 
 

Jia speaks Chinese more fluently than  (A)                        speaks  (B)                              . 
 
Write down all the meanings that aren’t nonsense (in our everyday world).  In other words, write 
down all the combinations of ways to fill in the two blanks. 
 
2. Consider:   Jia speaks Chinese more fluently than Jean. 
 
Possible meanings for this sentence have the form: 
 

Jia speaks Chinese more fluently than  (A)                        speaks  (B)                              . 
 
Write down all the meanings that aren’t nonsense (in our everyday world).  In other words, write 
down all the combinations of ways to fill in the two blanks. 
 
3. Consider:   Jia knows Harper better than Morgan. 
 
Possible meanings for this sentence have the form: 
 

Jia knows Harper better than  (A)                        knows  (B)                              . 
 
Write down all the meanings that aren’t nonsense (in our everyday world).  In other words, write 
down all the combinations of ways to fill in the two blanks.  

Suppose we have: 

 

[1]  Chris is crazy about Blake. 

[2]  Chris sort of likes Tracy. 

[3]  Tracy is far and away Blake’s biggest fan. 

 

Now consider: 

 

[4]  Chris likes Blake better than Tracy. 

 

Is [4] true (given what we already know)?  We can’t answer this simple question because [4] 

is ambiguous.  Which of these does it mean: 

 

[4]  Chris likes Blake better than Chris likes Tracy. 

[4]  Chris likes Blake better than Tracy likes Blake. 

 

Based on what we know from [1] – [3], [4] is true.  But [4] is false. 
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Logical Ambiguity 
 

Sometimes ambiguity arises more directly from the logic of the claim that is being made.  This 

kind of ambiguity often happens when the English sentence contains some sort of negative.  

Often, in such statements, the issue is the scope of the not.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Consider:    Mo doesn’t want Jo and Bo to come to the party. 

 

This could mean either of these things: 

 

[1] Mo doesn’t want either Jo or Bo to come to the party. 

[2] Mo doesn’t want it to happen that both of them come (maybe that would make 

things too exciting.) 

 

We can write (very simple versions of) these meanings in Boolean logic if we define: 

 

J:  Mo wants Jo to come to the party. 

B:  Mo wants Bo to come to the party. 

 

[1]  J  B 

[2]  (J  B) 

Consider:   I didn’t take both of my pills this morning. 

 

This could mean either of these things: 

 

[1]  I may have taken one of my pills this morning, but not both of them. 

[2]  For each of my pills, it’s the case that I didn’t take it this morning. 

 

Or, writing the claims in our logical language: 

 

[1]   (x (pill(x) → take(x))) 

[2]  x ((pill(x)  take(x))) 
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Problems 
 
1. Consider:  Smoking is not permitted on all Korean Air flights. 
 
We want to encode the meaning of this sentence.  Define:  
 
KAf(x) :   True if x is a Korean Air flight. 
SP(x):    True if smoking is permitted in or on x. 
 
Shown here five logical expressions.  Mark the two that correspond to the two reasonable 
interpretations of this sentence.  (Hint: first write out the two interpretations in unambiguous 
English.  Then translate each of those into logic.) 
 

a) x ((KAf(x)  SP(x)))   b) x (KAf(x)  SP(x))  

c) x (KAf(x)  SP(x))   d) x (KAf(x)  SP(x))  

e) x (KAf(x)  SP(x)) 
 
2. Consider:   Cruz forgot to invite the whole class. 
 
We want to encode the meaning of this sentence.  So that we can focus on the issue of its 
ambiguity, we’ll simplify the problem.  So we’ll ignore the issue of why Cruz didn’t invite people.  
We’ll just describe who was invited.   Define:   
 
Inclass(x):  True if x is in the class. 
Invited(x, y):  True if x invited y. 
 
Shown here are five logical expressions.  Mark the two that correspond to the two reasonable 
interpretations of this sentence.  (Hint: First write out the two interpretations in unambiguous 
English.   Next, translate each of those into logic.  Then compare your results to the ones listed 
below.  Be careful: It is possible that one of these is not identical to what you have written but is 
logically equivalent to something you have written.  In that case, mark it as one of the 
reasonable ones.) 
 

a) x (Inclass(x)  Invited(Cruz, x)) b) x (Inclass(x)  Invited(Cruz, x)) 

c) x (Inclass(x)  Invited(Cruz, x))   d) x (Inclass(x)  Invited(Cruz, x)) 

e) x (Inclass(x)  Invited(Cruz, x))  
 
3. Consider:   We couldn’t do all of these shows without the staff. 
 
We want to encode the meaning of this sentence.  So that we can focus on the issue of its 
ambiguity, we’ll simplify a bit and define these predicates: 
 
Staff:   True if the staff exists. 
Show(x):  True if x is a show. 
Possible(x):  True if we can do x. 
 
Shown here are five logical expressions.  Mark the two that correspond to the two reasonable 
interpretations of this sentence.  (Hint: first write out the two interpretations in unambiguous 
English.  Then translate each of those into logic.) 
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a) Staff  (x (Show(x)  Possible(x)))   b) Staff  (x (Show(x)  Possible(x))) 

c) Staff  (x (Show(x)  Possible(x)))  d) (x (Show(x)  Possible(x)))  Staff 

e)  (x (Show(x)  Possible(x)))  Staff    
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Referential Ambiguity - Pronouns 
 

The job of noun phrases is to refer to things.  Ambiguity arises when we can’t tell which things. 

 

Pronouns are often a problem.  To decide on the meaning of a sentence that contains a pronoun, 

we have to determine the pronoun’s referent (the thing to which it refers).  Sometimes that’s 

straightforward.  Sometimes it isn’t. 

 

 

 

 

 

 

 

 

 

 

 

  

Here’s an easy case:    Jen saw Bill at the movies.  She went over to talk to him. 

 

We’ll assume that there isn’t any larger, complicating context and that names are being 

used conventionally.  Then “she” must refer to Jen and “him” must refer to Bill. 

 

But there are harder cases:    The dog spotted the cat on the lawn.  It ran away. 

 

Now it’s possible that either the dog or the cat decided to run. 



14  7. English Into Logic: Issues and Solutions 

Problems 

 
1. Consider:   
 
[1]   Crystal told Sherry that her sister wanted to meet her for lunch. 
 
Now consider: 
 
I.  Crystal’s sister wanted to meet Crystal for lunch. 
II. Crystal’s sister wanted to meet Sherry for lunch. 
III.  Sherry’s sister wanted to meet Sherry for lunch. 
IV. Sherry’s sister wanted to meet Crystal for lunch. 
 
(Part 1) How many of these is/are possible paraphrase(s) for what Crystal told Sherry? 
 
(Part 2) Why is [1] ambiguous? 
 
2. A Winograd schema (named after the linguist/philosopher Terry Winograd) is a sentence 
that mentions two objects and contains a pronoun that could refer back to either of them.  We 
then ask a person (who can use world knowledge) to decide on the referent of the pronoun.  In 
a properly designed Winograd schema, it is possible, by changing a single word in the 
sentence, to change the answer that a person will give.   
 
Consider:   The toaster won’t fit in the box because it is too big. 
 
(Part 1) “it” refers to: 
 

a) the toaster    b) the box 
 
(Part 2) Which of the following words would, if changed, change your answer to Part 1: 
 

a) toaster    b) box     c) big 
 
3. A Winograd schema is a sentence that mentions two objects and contains a pronoun that 
could refer back to either of them.  We then ask a person (who can use world knowledge) to 
decide on the referent of the pronoun.  In a properly designed Winograd schema, it is possible, 
by changing a single word in the sentence, to change the answer that a person will give. 
 
Consider:    Maria made cookies for the students.  They were delicious. 
 
(Part 1) “they” refers to: 
 

a) the cookies    b) the students 
 
(Part 2) Which of the following words, if inserted in place of “delicious”, would change your 
answer to Part 1: 
 

a) hungry   b) oatmeal   c) expensive 
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Referential Ambiguity – The Definite Article 
 

Pronouns, however, are not the only source of referential ambiguity. 

 

The definite article “the” introduces a description of an object that is assumed (in the current 

context) to be unique. If it’s not, the resulting sentence may have multiple meanings. And, if 

there is no possible referent, the sentence will typically be meaningless.  All this matters if we 

want to translate the sentence into a logical expression and then evaluate the truth value of that 

expression. 

 

 

 

 

 

 

 

 

 

 

 

 

 

(As an aside, we’ll point out that we can also use “the” when the referent, while not unique, is 

unique enough for the current purpose.  For example, we can say, “Cam went to the store.”  

There may be many stores around, but we say this when it doesn’t matter which one Cam went 

to.) 

 
  

 
 
 

The purple balloon popped.    No problem. 

 

The green balloon popped.   Which one?  

 

The black balloon popped.   Huh? 
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Problems 

 

1. Before we can assign a truth value to an assertion, it must be clear what objects are being 
discussed.   In the case of sentences that contain the definite article “the”, that will only be the 
case if there is exactly one reasonable referent for the noun phrase that “the” introduces.   
 
In each of these examples, assume an arbitrary, reasonable context. Indicate the number of 
possible referents for the underlined noun phrase. 
 
(Part 1) The state flower of Texas is the bluebonnet. 
 
a) None.  
b) Exactly one. 
c) There could easily be more than one. 
 
(Part 2) The square root of Paris is 2. 
 
a) None. 
b) Exactly one. 
c) There could easily be more than one. 
 
(Part 3)  The magazine on the table has a great article about breakfast tacos. 
 
a) None.   
b) Exactly one. 
c) There could easily be more than one. 
 
2. It’s not possible to assign a truth value to an English sentence until it has been 
disambiguated.  If two people agree to accept as a premise an English sentence that is 
ambiguous, they may find out later that the arrive at different conclusions (because they have, 
without realizing it, accepted different logical premises) 
 
For each of the following sentences, indicate whether this could be a problem because there is 
not a unique referent of the underlined noun phrase: 
 
a) The square of every even number is even. 
 
b) The best actor on the planet is an American.  
 
c) The capital of the happiest country in the world is Canberra. 
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Referential Ambiguity – Rhetorical Devices 
 

The problem of assigning referents is further complicated by the use of various kinds of 

rhetorical devices (figures of speech), such as metonymy. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 

Problems 
 

1. For each of the following sentences mark the statement that is true of it: 
 
(Part 1) The White House just announced a new policy on greenhouse gases. 
 
a) The literal meaning could be true. 
b) The literal meaning is false or nonsense but there is a meaning that exploits a figure of 

speech and that could be true. 
c) It’s hard to find any meaning that isn’t nonsense. 
 
(Part 2) Wall Street overreacted to the latest unemployment numbers. 
 
a) The literal meaning could be true. 
b) The literal meaning is false or nonsense but there is a meaning that exploits a figure of 

speech and that could be true. 
c) It’s hard to find any meaning that isn’t nonsense. 
 

  

Is this statement true, false, or nonsense: 

 

Michigan is in Nebraska now. 

 

Taken literally, it is false.  The state of Michigan is not contained in the state of Nebraska. 

 

But this statement does have a sensible meaning that could, in some circumstances be true:  

Something (very likely a sports team) associated with the state of Michigan is now in 

Nebraska.  In fact, a newscaster said it when the University of Michigan’s solar car entered 

the state of Nebraska on its way from Austin to Minnesota, where it won the 2014 solar car 

challenge. 
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Situated Truth 
 

Whenever we say or write something, we do so in some particular situation.  A claim can be true 

in one situation, but not in another.   

 

 

 

 

 

 

 

 

 

 

 

 

 

We will need to assume, in our discussions, that we begin with claims for which any situational 

ambiguity (including whether we’re talking about the real world or some imaginary one) has 

already been resolved. 

 

  

[1] I live in Texas.  (Depending on who is speaking, and thus what the referent of “I” is, this 

sentence is either true or false.) 

 

[2] The principal is from Kansas.  (When we use the word, “the”, we presuppose that there 

exists some unique object to which we’re referring.  Clearly there are many, many 

principals in the world.  But said in the context of a particular school, this sentence refers 

to one person and is either true or false.) 

 

[3] There’s an ice cream store down the street.  (True in some places and false in others.) 

 

[4] Tomorrow is a holiday.  (True on some days and in some places, and false in others.)  
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Problems 
 
1. Consider the claim, “A Presidential election is held every four years.” 
 
Consider the following statements about this claim: 
 
I. To assign it a truth value requires additional information about the time at which it was 

asserted. 
II. To assign it a truth value requires additional information about the place in which it was 

asserted. 
III. To assign it a truth value requires additional information about the entities (such as people 

or things) in the situation where it was asserted. 
 
Which of them is/are true (don’t stretch super far to find some exceptional case): 
 
 
 
2. Consider the claim, “Kerry likes ice cream.” 
 
Consider the following statements about this claim: 
 
I. To assign it a truth value requires additional information about the time at which it was 

asserted. 
II. To assign it a truth value requires additional information about the place in which it was 

asserted. 
III. To assign it a truth value requires additional information about the entities (such as people 

or things) in the situation where it was asserted. 
 
Which of them is/are true (don’t stretch super far to find some exceptional case): 
 
 
 
3. Consider the claim, “5 is a prime number”. 
 
Consider the following statements about this claim: 
 
I. To assign it a truth value requires additional information about the time at which it was 

asserted. 
II. To assign it a truth value requires additional information about the place in which it was 

asserted. 
III. To assign it a truth value requires additional information about the entities (such as people 

or things) in the situation where it was asserted. 
 
Which of them is/are true (don’t stretch super far to find some exceptional case): 
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Ambiguity of Some Logical Operators – NEGATION 
 

In logic, for any predicate P, we can write both:    

 

[1]  P(x)             

[2]  P(x)   

 

Given some appropriate definition of P, The Law of the Excluded Middle tells us that, for any x 

in P’s domain, one of these claims must be true.  And, if we write many simple claims in 

English, it will also be the case that either the claim or its apparent negation must be true.  

 

 

 

 

 

 

 

 

But this doesn’t always happen, particularly when we allow for the variety of ways of expressing 

negation in English. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Have we violated the Law of the Excluded Middle in a case like this?  No.  “Dislikes” is not 

equivalent to “not likes”. 

 

The problem is that many of the more natural tools that English gives us for expressing negations 

(including “doesn’t”, and prefixes such as “dis-”, “un-”, “il”-, and so forth) are almost like 

logical negation, but not quite.  Often this happens because the property that is being described 

can best be thought of as describing, not a dichotomy, but rather points on some spectrum.  In 

So, for example, we could write: 

 

 [1]  French(Jean)     Jean is French.    

[2] French(Jean)   Jean isn’t French. 

 

(with respect to whatever definition of the predicate French we have provided).  

 Consider: 

 

 [1]  Travis likes Jody.      

[2]  Travis doesn’t like Jody.   (an apparently simple negation of [1]) 

 

Must one of those sentences be true?  It depends on what [2] means.  It could mean either: 

 

[3]  It is not the case that Travis likes Jody. 

[4]  Travis dislikes Jody. 

 

If it means [3], then yes, one of [1] and [3] must be true.  We can express this as a logical 

claim: 

 

 Likes(Travis, Jody)   Likes(Travis, Jody) 

 

But if it means [4], no, it is not necessarily the case that one of [1] and [4] must be true.  It is 

possible that Travis knows nothing about Jody.  Or perhaps Travis is neutral about Jody.  Then 

both [1] and [4] are false.  Travis neither likes nor dislikes Jody.   
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this case, we often define a logical predicate that corresponds to some part (typically one end) of 

that spectrum.  Then its negation must cover all of the rest.  Yet related negative words in 

English often apply only at the other end. 

 

 

 

 

 

 

 

 

 

 

 

Some adjectives correspond to dichotomies, but many don’t.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Later, we’ll have more to say about the difficulty of dichotomizing our analog world and the 

vague words we tend to use when we attempt to do that. 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

  

“Legal” does correspond to a dichotomy: 

 

 Illegal    is equivalent to   Legal 

 

Anything in the domain of Legal must either be legal or not legal (illegal).  

“Likely” doesn’t correspond to a dichotomy: 

 

 Unlikely   is not equivalent to   Likely 

 

Something with probability close to 50/50 is neither likely nor unlikely.  

Big Idea 

 

The Law of the Excluded Middle says that, for any statement P, P or P is true.  It doesn’t 

say that P or some Q that may seem like not P must be true.  If Q is not exactly P, then it’s 

possible that there are more than two alternatives.  Failure to recognize that can lead to 

the logical error called a False Dichotomy.   

 

A classic example of this is the expression, “If you’re not with us, you’re against us.”  The 

phrase “against us” is not exactly equivalent to “not with us”.  It’s possible to be neutral.  

Unfortunately, people who are trying to make a point may say things like this and hope 

that their listeners will be fooled into believing their argument. 
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Problems 
 
1.   Let’s say that a pair of claims C1 and C2 sets up a “true dichotomy” if, for any x in the domain 

of C1 and C2, C2(x) is equivalent to C1(x).  In this case, the Law of the Excluded Middle says 
that C1(x) or C2(x) must be true.  For example, Legal(x) and Illegal(x) set up a true dichotomy.  
Likely(x) and Unlikely(x) don’t.  
  
In each of the following examples, the second of the two claims is an English negation of the 
first.  Indicate whether or not the two claims set up a true dichotomy.  In other words, is the 
second claim the logical negation of the first?   
 
a) Let the domain be the set of tasks to be accomplished.  
 
 C1 :  x is complete. 
 C2 :  x is incomplete. 
 
b) Let the domain be the set of people.  Assume that we’re using “sensitive” in the sense of a 

personality trait.  
 
 C1 :  x is sensitive. 
 C2 :  x is insensitive. 
 
c) Let the domain be the set of people.   
 
 C1 :  x is smart. 
 C2 :  x isn’t smart. 
 
d) Let the domain be the set of decisions.  
 
 C1 :  x is fair. 
 C2 :  x isn’t fair. 
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Ambiguity of Some Logical Operators - OR 
 

And, finally, we must deal with the fact that some English words that appear to refer to logical 

operators are themselves ambiguous. 

 

We’ve already seen that the English word “or” can be used to indicate both: 

 

 the logical operator  (inclusive or) – Recall that p  q is true whenever p or q or both 

is/are true. 

 the logical operator XOR (exclusive or) – Recall that p XOR q is true whenever p or q 

but not both is true. 

 

Sometimes, context makes it clear what meaning is intended.  Sometimes, however, there is 

ambiguity. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

In these examples, context tells us that “or” means inclusive or: 

 

 If it rained or the sprinklers went off, the sidewalk will be wet.  (The sidewalks will be 

wet even if both rain and sprinklers.) 

 You’ll love the concert if you’re into percussion or you love everything Japanese. 

(You’ll like the concert even if both you’re into percussion and you love everything 

Japanese.) 

 If you or your partner works at ZZZ Corp, you are eligible for their insurance. (You can 

get the insurance even if both of you work for ZZZ.) 

In these examples, context tells us that “or” means exclusive or: 

 

 Lightening or Black Thunder will win the race tomorrow.  (They can’t both win.) 

 If you have the winning ticket, you get the car or the trip.  (You can’t have both.) 

 I will buy my Calculus textbook from the University Co-op or Amazon.  (Students don’t 

buy multiple Calculus textbooks.) 

But in these examples, there is ambiguity that could lead different people to different 

interpretations (and thus ways of encoding the sentence in logic): 

 

 You can have cake or pie for dessert.  (Maybe you have to choose, but maybe you 

can have both.) 

 Every house in the neighborhood has a play room or a home theater. (Maybe there 

was space for only one of these, but maybe it’s an upscale neighborhood and some 

houses have both.) 
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Problems 
 
1. In each of the following examples, there is one meaning of “or” that most people will find 

obvious.  Indicate which ( or XOR) it is. 
 
(Part 1) Whenever I go to Seattle it is cold or rainy. 
 
(Part 2) Whenever I try to call FlyByNightCo, I get a busy signal or the call doesn’t even go 
through.   
 
(Part 3) Whenever I go to Cupcakes Forever, I run into Maria or Jose. 
 
(Part 4) Whenever I work on Sunday, the head security guard is Tim or Kristin. 
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Ambiguity of Some Logical Operators - IMPLIES 
 

 

The logical operator  (implies) has a single clear meaning.  

If you’re not sure you remember our discussion of that, you 

may want to rewatch our Implies video. 

 

 
https://www.youtube.com/watch?v=3RFamYOCEHA  
 

 

It’s much less clear, however, what we mean when we say, in English, “implies” or “if” or 

“if/then”. 

 

There are at least three common meanings of those terms (and the many other ways there are of 

saying the same thing): 

 

 Material implication.  This is the meaning of  that we have been using.  So, in particular, 

the meaning of p  q is given by this truth table: 

 

p q p →  q 

T T T 

T F F 

F T T 

F F T 

 

 

 

 

 

 

 

 

 

 

 Equivalence (if and only if).  Sometimes,“if” actually means “if and only if”, whose meaning 

is given by this truth table: 

 

p q p   q 

T T T 

T F F 

F T F 

F F T 

 

In other words, you might say p  q but mean (p  q)  (p  q).  Notice that (p  

q) is the converse of your actual claim.  The converse of a statement P is not necessarily 

 If Drew comes, there will be ice cream. 

 If Drew comes then there will be ice cream. 

 Drew coming definitely implies there will be ice cream. 

 

In all three of these cases, we’re saying that Drew’s coming means there will be ice 

cream.  We haven’t said anything about what will happen if Drew doesn’t come.  

Possibly there are other things that might cause ice cream to appear. 

https://www.youtube.com/watch?v=3RFamYOCEHA
https://www.youtube.com/watch?v=3RFamYOCEHA
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true whenever P is.  So I (the listener) can’t logically conclude  p  q.  But it may 

nevertheless part of the meaning that you intended.  How can I know that?  I will generally 

assume that you are trying to communicate effectively.  So you’ll make the strongest claim 

you reasonably can.  If q is true regardless of p, you would just have asserted q.  We’ll say 

more about this idea, called conversational implicature, later. 

 

 

 

 

 

 

 

 

 

 

By the way, it is common for mathematicians (and others) to say “if” in definitions, when 

they actually mean “if and only if”. 

 

 

 

  

 

 Causality.  

 

 

 

 

 

 

Each of these sentences is making a claim of material implication and an additional claim 

about causality.  That claim must be represented separately in logic if we want to reason with 

it. 

 

  

 If it rains, we’ll move the picnic indoors. 

 

But what if it doesn’t rain?  On hearing this sentence, most of us would conclude that, 

unless it rains, we’ll have the picnic outside.  Why?  Partly because we can’t imagine why 

the picnic would be moved unless there is rain.  But also because, if the picnic is going to 

be moved regardless of the weather, why would you not simply have said, “We’re going 

to move the picnic inside”? 

 An integer greater than 1 is prime if it has no divisors other than itself and 1. 

 

 If the sweater gets wet, the colors will run.  (The color run will be caused by the water.) 

 

 If you eat too much, you’ll get sick.  (Eating too much causes one to be sick.) 
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Problems 
 
1. Indicate for each of the following sentences, which meaning of if/implies is most likely 
intended by the speaker.  (Do not stress if your answer to some of these differs from ours.  
These sorts of sentences can be ambiguous and open to misinterpretation.) 
 
(Part 1) If Koko is tired, she’ll be grumpy. 
 
a) Material implication.   
b) Equivalence.  
 
(Part 2) Morgan will sing if Casey does. 
 
a) Material implication. 
b) Equivalence. 
 
(Part 3) We run out of hot dogs whenever the Astros play. 
 
a) Material implication. 
b) Equivalence.  
 
(Part 4) You are a senior if you have at least 90 credits. 
 
a) Material implication. 
b) Equivalence.  
 
(Part 5) On Fridays, we go to Torchy’s.  (Hint: start by rewriting this to make the “if” explicit.) 
 
a) Material implication.  
b) Equivalence.  
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“Paradoxes” of Material Implication 
 
Material implication, the definition of  that we are using, is similar to the English expressions 

“implies” and “if/then”.  But it isn’t identical.  The differences lead to various kinds of 

confusion, sometimes thought of as paradoxes. 

 

Define:  A:  Austin is in Texas 

M: The Moon is made of green cheese. 

C: Dallas is the coolest city in Texas. 

 

Now we can look at some of these “paradoxes”. 

 

The “Paradox” of Entailment (or the Principle of Explosion) 

 

 

 

 

 

 

 

 

 

 

More generally, for any claims p and q:   

 

  (p  p)  q 

 

False   p 

 

This observation, which follows directly from the truth table definition of , is also called the 

Principle of Explosion (because, if we accept even one contradiction, we must accept every 

claim as true).   It’s also called, in the Latin of classical logic, ex falso quodlibet or ex 

contradictione sequitur quodlibet.  

 

If p is True 

 

 

 

 

 

 

 

 

  

 

This sentence is true: 

 

If Austin is in Texas and Austin isn’t in Texas then the moon is made of green 

cheese. 

 

(A  A)  M 

 

This is so even though there is no connection whatever between (A  A) and M. 

 

This sentence is true: 

 

If Austin is in Texas then “The moon is made of green cheese implies that Austin is 

in Texas.” 

 

  A  (M   A) 

 

Again, this is so even though there is no connection between A and M. 
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More generally, there is a simple truth table proof that, for any p and q, if p is true, then any q 

implies it: 

  p  (q  p) 

   

One Implication Must Be True 

 

 

 

 

 

 

 

 

More generally (and provable by truth table) for any p, q, and r: 

 

  (p  q)  (q  r) 

 

An English argument for the truth of this claim is:  q must be either true or false.  If it’s true, then 

(p  q) is true (regardless of the truth of p).  If it’s false, then (q  r) is true (regardless of the 

truth of r). 

If p Doesn’t Imply q 

 

 

 

 

 

 

 

 

More generally (and provable by truth table) for any p and q: 

 

  (p  q)  (p  q) 

 

An English argument for the truth of this claim is:  The only way that the claim (p  q) can be 

false is if p is true, yet q is false. 

 
  

This sentence (under the interpretation given by the parentheses shown here) is true: 

 

(Austin being in Texas implies that Dallas is the coolest city in Texas) or (Dallas 

being the coolest city in Texas implies that the moon is made of green cheese). 

 

  (A  C)   (C   M) 

This sentence is true: 

 

If it’s not true that Austin being in Texas implies that Dallas is the coolest city in 

Texas, then Austin is in Texas and Dallas isn’t the coolest city in Texas. 

 

  (A  C)  (A  C) 
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Problems 

 

1. On the same subject as the old adage that, if there’s smoke there’s fire, let’s assert one 

premise: 

 

[1]  It’s not true that fire implies smoke. 

 

For each of the following claims, indicate whether (given the premise) it must be true, it must be 

false, or it could be either true or false (depending on the truth of other claims). 

 

Hint: Write out the premise and each of these claims in clear Boolean logic. 

 

(Part 1) There’s fire and not smoke. 

(Part 2) If there’s smoke, it’s sunny.  

(Part 3) There’s smoke or there isn’t fire. 

(Part 4) It’s sunny and there’s a fire. 

(Part 5) If there’s no fire, then it’s Tuesday. 

(Part 6) If it’s Tuesday, there’s no fire. 

 



7. English Into Logic: Issues and Solutions  31 

Summary 
 
 
 
 
 
 
 
 
 
 
 
 

We Must Overcome the Perils of English - We Leave Out a Lot and Are Sloppy 
 

Introduction 
 

Talking Approximate number of words a moderately fast-talking English 

speaker can utter per minute: 

160 

Wifi Approximate number of words a not very state-of-the-art wifi 

connection can transmit per minute: 

30,000,000 

 

English evolved to support talking, not wifi, communication.  So: 

 

 In the interest of efficiency, English arguments leave out a lot.  We assume that the 

people to whom we’re talking (or writing) share much of our understanding of the world 

around us. 

 

 We’re also often sloppy.  Again, we assume that the people we’re communicating with 

will be able to figure out, from what we literally say, what we actually mean. 

 

But the language of logic doesn’t allow this.  In order to use it to represent the intended 

meanings of English sentences, we must first determine exactly what those meanings are.  And 

then we must be very careful as we map those meanings into logical statements. 

 

 

 

  

Big Idea 

 

In many cases, if we try to map from English sentences to logical ones without clearly 

analyzing what the English sentence is saying, we will have trouble.  It may be tempting to 

jump to the conclusion that we have found a weakness in our logical system itself.  While 

there are real limits to the logical system that we are discussing, we should, before 

assuming that we’ve found one, see if a more careful translation of English into logic can’t 

make the problem disappear. 
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The Cooperative Principle and Conversational Implicature 
 

In our everyday use of language, what we explicitly say and 

what we actually mean (and intend others to understand) are 

often quite different. 

 

This happens for a variety of reasons, including our desire to be 

brief and our need to follow social conventions, such as the rules 

that govern what it means to be polite.     https://youtu.be/Nocwm9-bH7Y 

 

One important idea that goes a long way toward explaining why communication works even in 

the face of this problem is the Cooperative Principle.    

 

The philosopher/linguist Paul Grice described a set of four conversational maxims: rules that 

describe cooperative conversation:   

 Quality:  Say only things that you believe to be true and for which you have 

  adequate evidence. 

 Relevance:  Say only things that are relevant. 

 Quantity:  Give as much information (no more and no less) as is appropriate to the 

    situation.  Put differently: make the strongest true and relevant statement 

you can. 

 Manner:   Be clear and brief. 

 

In some contexts, other maxims also apply.  For example: 

 Politeness:   Be polite. 

 Legality:  Don’t say things that lawyers tell you not to say. 

 

If we assume that others are following these rules, then sentences can generate implicatures: 

conclusions that follow from what was literally said. 

 

Suppose that we are trying to find a way to get our whole class to the museum.  I say: 

 

 My car can hold 4 people. 

 

If you assume that I’m being cooperative, you will conclude: 

 

 My car can hold 4 people   and   no more than 4 people. 

 

If my car can hold 6 people, I have violated the maxim of quantity.  The claim, “and no more 

than 4 people” is an implicature. 

 

Cooperative conversation is efficient because it lets speakers leave out claims that they know can 

be derived by listeners who assume that the maxims are being followed.  But the rules of 

cooperative conversation complicate the mapping between English sentences and logical 

meaning. 

https://youtu.be/Nocwm9-bH7Y
https://youtu.be/Nocwm9-bH7Y
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Problems 

 

1. Suppose that I ask you, “Do you know what time it is?”  Mark each of the following possible 

responses as Cooperative or Not Cooperative.  If you’re on the fence, choose Not Cooperative. 

Keep in mind that being succinct is cooperative, but that must be balanced against providing 

just enough information as to be useful in the current situation.  Assume that everything that is 

stated in any of these responses is true and known to be true by the responder. 

 

a) Yes.       

b) Um.  Let me see.  Um.  2:15.    

c) No.        

d) No.  But there’s a clock out in the hall.     

e) No.  But it’s Tuesday.      

 

2. Suppose that I ask you, “Shall we go to a movie tonight?”  You reply, “I have to study for an 

exam tomorrow.”  Which of the following describes your response: 

 

a) You have not been cooperative.  You didn’t answer the question. 

b) You have been cooperative.  I should be able to infer that you’ve said yes. 

c) You have been cooperative.  I should be able to infer that you’ve said no.t 
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Presuppositions 
 

Recall that cooperative conversation is brief.  One way to make 

short claims possible is to leave out shared assumptions.  We 

call such unstated assumptions presuppositions.   

 

The definite article “the” typically carries the presupposition that 

some object exists (and, often, is unique). 

 
  https://www.youtube.com/watch?v=TNFpdNNSays      

 

 

 

 

 

 

 

When presuppositions are true, we generally don’t notice them. We have no difficulty 

interpreting the sentences that carry them.  And assigning truth values to those sentences is 

straightforward. 

 

But when presuppositions are false, we do notice them.  We are forced to assume that whoever 

uttered the sentences that carry them must (unless deliberately talking nonsense) be assuming 

them to be true.  But we are left unsure how to interpret those sentences or to assign truth values 

to them. 

 

The use of presuppositions isn’t limited to our discussions about everyday ideas like kings.  We 

can use them in talking about mathematics. 

 

 

 

 

 

 

 

It is common for presuppositions to assume: 

 

 The existence, and sometimes the uniqueness, of something. 

 

 

 

 

 

  

 

 

Consider: “The President of the United States lives in the White House.” This sentence carries 

the presupposition that such a President exists.  That presupposition is true. 

 

Consider: “The King of the United States lives in a castle.” This sentence carries the 

presupposition that such a king exists.  But now the presupposition is false. 

“The President/King of the United States lives in the White House/a castle.” 

“My cat’s favorite school subject was math” carries the false 

presupposition that there exists a school subject that was my cat’s 

favorite. 

Consider: “The identity for multiplication is 1.”  This sentence carries the (true) presupposition 

that there is a multiplicative identity. 

 

Consider: “The last decimal digit of the largest prime number is 1.” This sentence carries the 

(false) presupposition that there is a largest prime number. 

https://www.youtube.com/watch?v=TNFpdNNSays
https://www.youtube.com/watch?v=TNFpdNNSays
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 That some event occurred or is occurring. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 That two or more things are comparable. 

 

 

 

 

 

 

 

 

 

Notice that, if we negate a sentence that carries a presupposition, its presuppositions don’t 

change. 

 

 

 

 

 

 

  

“There are no longer just 13 states in the U.S.” carries the true 

presupposition that there once were just 13 states in the U. S. 

“The Flying Pizza Monster was re-elected President of the U.S.” carries the 

false presupposition that the Flying Pizza Monster exists and was already 

the President. 

“While Thomas Dewey was president, Harry Truman sat and licked his 

wounds” carries the false presupposition that Dewey was ever president. 

“After the rain stopped, the worms came out” carries a cascaded pair of 

presuppositions: It rained.  Then the rain stopped. 

 

“The University of Texas is a bigger school than Hollywood is” carries the 

false presupposition that Hollywood is a school. 

 

“There are no longer just 13 states in the U.S.” carries the true presupposition that there once 

were just 13 states in the U. S.   

 

If we change the sentence to “There are still just 13 states in the U.S”, the presupposition is still 

that there were once 13 states.  The presupposition is still true, even though the sentence that 

carries it is now false. 

“The University of Texas is a bigger school than Harvard is” carries the true 

presupposition that Harvard is a school. 
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Problems 
 

1. Mark the most accurate truth value claim for each of these English sentences: 

 

(Part 1) The ocean in the middle of Texas is full of fish. 

 

a) True. 

b) False. 

c) Hard to assign a truth value because it presupposes something false.   

 

(Part 2) They don’t sell Twinkies any more. 

 

a) True. 

b) False.       

c) Hard to assign a truth value because it presupposes something false.   

 

(Part 3) They don’t sell flying purple pizza monsters any more. 

 

a) True. 

b) False. 

c) Hard to assign a truth value because it presupposes something false.  

 

2. Consider the following English sentences: 

 

I.  George Washington named his son George, Jr. 

II.  The bacterium that causes colds can be killed with penicillin.  

III.  The capital of France is London.  

 

Which of them has/have a presupposition that’s false in the world in which we live/have lived? 

 

3. Consider the following formal claims: 

 

I. For every integer, there is another integer that is larger than it is. 

II. Each input record will be processed on time. 

III. Every employee has a social security number. 

 

Which of them has/have any presupposition at all? 

 

4. Consider the claim:  Maria always watches her daughter’s soccer games on Saturday. 

  

This claim carries the presuppositions: 

 

[1]  Maria has a daughter. 

[2]  Her daughter plays soccer. 

 

Which one or more of the following sentences carry these same two presuppositions: 

 

a) Maria never watches her daughter’s soccer games on Saturday. 

b) Maria sometimes watches her daughter’s soccer games on Monday. 

c) Maria rarely watches her son’s soccer games on the weekend. 
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5. We’ve talked about three common kinds of presuppositions: 

 

[A] The existence of some object. 

[B]  That some event has occurred or is occurring. 

[C] That two or more things are comparable. 

 

Consider the claim:  George, the USA’s first President, lost his cell phone again. 

 

This claim carries false presupposition(s) of which type(s)? 
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Interpreting Sentences that Carry Presuppositions 
 

What truth value shall we assign to sentences like “The largest prime number ends in 1.”  This 

sentence carries the false presupposition that there is a largest prime number.  Here are two 

possible approaches: 

 

1) If a sentence S carries a false presupposition, assign the truth value False to both S and S. 

 

2) If a sentence S carries a false presupposition, then assign no truth value to either S or S. 

 

But have we now identified a challenge to the Law of the Excluded Middle (if we take approach 

2) or the Principle of Noncontradiction (if we take approach 1)? 

 

No. 

 

Both the Law of the Excluded Middle and the Principle of Noncontradiction are claims about 

logical statements.  They are not claims about English sentences. 

 

There is, however, one thing that we can say about English sentences: The relationship between 

them and useful logical statements can be complex.  The problem of assigning meaning to 

English sentences is hard. Centuries of philosophers and linguists have worked on it. We can 

only scratch the surface of that problem here. 

 

Recall that presuppositions are unstated assumptions.  So a good first step, in attempting to map 

English sentences into logical expressions is to make those assumptions explicit. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Consider again:  “The last decimal digit of the largest prime number is 1.” 

 

We can rewrite it as: “There exists a largest prime number and the last decimal digit of that 

number is 1.” 

 

Or, in our logical language:  x (Prime(x)  (y (Prime(y)  x > y))  LastDigitOf(x, 1)) 

 

Now there is no confusion.  Since there exists no x such that (y (Prime(y)  x > y)), this entire 

statement is simply false. 

Big Idea 

 
It’s critical to keep in mind the difference between English sentences and logical ones.  

The mapping from the former to the latter is not always straightforward. 
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Problems 

 
1. Consider:   “Taylor’s brother’s son likes ice cream.” 

 

Assume that the referent of Taylor is clear, so there is no issue there. 

 

We want to encode this English sentence as a logical claim that will be either true or false.  So 

we need to make its presuppositions explicit.  Which one or more of the following logical 

expressions correctly does that?  (Read BrotherOf(x, y) as x is the brother of y, SonOf(x, y) as x is 

the son of y, and Likes(x, y) as x likes y.) 

 

I. x (y (BrotherOf(x, Taylor)  SonOf(y, x)  Likes(y, ice cream))) 

II. y (Likes(y, ice cream)  x (BrotherOf(x, Taylor)  SonOf(y, x)))  

III. y (Likes(y, ice cream)  SonOf(y, x)  BrotherOf(x, Taylor))  

 

 

2. Let the domain be the reals.  Consider:  

 

 [1] √−2 > 0. 

 

Which of the following is true: 

 

a) [1] carries no presuppositions. 

b) [1] carries one or more presuppositions but they are all true. 

c) [1] carries one or more false presuppositions. 

 

 

3. Let the domain be the reals.  Consider: 

 

 [1] √−2 > 0. 

 

We want to encode this claim as a logical claim that will be either true or false.  So we need to 

make any presuppositions explicit.  Which one or more of the following is a well-formed logical 

expressions (assuming the domain is the reals) that correctly does that? 

 

I.  √−2 > 0 

II.  x (x = √2  x > 0)  

III.  x (√−2 > 0)  
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We Omit the “Obvious” 
 

But presuppositions aren’t the only things we leave out.  We often construct arguments in which 

every statement has a truth value.  But it isn’t possible to prove the conclusion using only the 

claims that have been explicitly mentioned. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

When we argue to each other, we rely on a pre-existing  set of shared premises about our world. 

 

If we want to apply our logical tools, we’ll have to be careful.  We must make sure that our 

inference engine has all the premises it needs.  We can do that either by providing them 

explicitly ourselves or by appealing to a knowledge base that has already been crafted by 

someone else. 

 

 

  

[1]  Jamie is holding Alex’s Ming vase.   

[2]  If Jamie lets go of the vase, Alex will be furious. 

 

Probably none of us would question that [2] follows from [1].  But notice that, in evaluating 

the validity of argument, we bring to the table at least the following additional (unstated) 

premises: 

 

[3]  If Jamie lets go of the vase, it will fall to the floor.  (Gravity) 

[4]  If a porcelain vase falls to the floor, it will break. 

[5]  A broken vase has very little value. 

[6]  An unbroken Ming vase has substantial value. 

[7]  People get furious when the value of their possessions is destroyed. 
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We’re Often Sloppy 
 

Sometimes the problem is even worse than just omission.  We’re often sloppy and we count on 

our listeners/readers to figure out what we really must have meant. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

  

Look at the sign shown below on the right.  To its left is a picture 

that makes it clear that the sign doesn’t mean what it says.  It 

probably is meant to say something like, “Must be at least 42 

tall to climb. 
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Problems 
 
1. Consider this airport sign.  Taken literally, it says that if you’re 12 and under, the rule applies 
to you.  Let’s try to figure out whether that’s what it really means. 
 
 
 
 
(Part 1) Reese is 10.  Is this claim true or false: 
 

  age(Reese) = 12  age(Reese) < 12. 
 
 
 
(Part 2) Reese is 12.  Is this claim true or false: 
 

  age(Reese) = 12  age(Reese) < 12. 
 
 
 
(Part 3) Reese is 15.  Is this claim true or false: 
 

  age(Reese) = 12  age(Reese) < 12. 
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Back to the Law of the Excluded Middle 
 

Recall that the Law of the Excluded Middle (LEM) says that every logical sentence has a truth 

value: it must be true or false. 

 

Take another look at the second Law of the Excluded Middle 

video that we watched back at the time of our discussion of the 

importance of the LEM is as a theorem-proving tool.  Recall 

that we considered a set of English sentences that appear to 

challenge the LEM. 

 

The key to understanding why these examples don’t in fact 

challenge the LEM as a logical tool is that their issues are 

linguistic.  The way to resolve them is with a careful mapping 

of the English sentences into the language of formal logic. 

 
       https://www.youtube.com/watch?v=r_KG3EZuJmw 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Let’s now look at a new example, where we must be careful in how we translate an English 

adjective into a reasonable logical predicate. 

 

 

 

 

 

 

 

 

 

Consider:   4 and 7 are friends. 

 

The logical predicate Friends isn’t defined on numbers. 

Consider:   The king of France has red hair. 

 

When we translate sentences with presuppositions into logic, we must make the (implicit) 

presuppositions explicit.   

Consider:    The chili is hot. 

 

While English adjectives are often vague, logical predicates cannot be. 

https://www.youtube.com/watch?v=r_KG3EZuJmw
https://www.youtube.com/watch?v=r_KG3EZuJmw
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Finally, let’s consider a class of sentences called Liar Paradox sentences, which appear to pose a 

substantive threat to the LEM. 

 

 

 

 

 

 

 

 

 

But, again, we must dig deeper.  Exactly how shall we represent liar sentences in our logical 

language?  Liar sentences are self-referential: They make a claim about themselves.  So we need 

Consider:    John was brave. 

 

Suppose that John died peacefully, as an old man, never having faced any situations in 

which bravery was called for.   Could one argue that neither: 

 

 Brave(John)   nor    Brave(John) 

 

is true?  If so, we have a challenge to the LEM.  But let’s look more closely at how the English 

word “brave” can reasonably be translated into logic.  What should its definition be? 

 

How about: 

 

 Brave(x) iff:      HasShownBravery(x) 

 

Then, (because he had no opportunity to behave bravely), Brave(John) is true.  The LEM is 

still intact, but this may not seem fair to John.   

 

So how about a definition that describes a personality trait, independent of whether that trait 

has had a chance to manifest itself: 

 

 Brave(x) iff:      WouldShowBraveryWheneverNecessary(x) 

 

Now we can say that one of Brave(John) or Brave(John) is true.  We’ll just never know which 

(because John never got a chance to show us).  But, again, the LEM is intact.  It says only 

that there is a truth value.  Not that we know what it is. 

 

 

 

 

 

 

 

Nifty Aside 

 

This example is due to Michael Dummett. 

Consider this sentence, which we will call S:   This sentence is false.  

 

If S is true then, taking it at its word, it is false. 

 

If, on the other hand, S is false, again taking it at its word, it cannot be false. 

 

It appears, then, that S is neither true nor false. 
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a way to encode their claims and then assert something about those encoded claims.  There is no 

straightforward way to do that in the first-order predicate logic language that we have defined.   

 

Using other logical mechanisms, however, there are ways to handle Liar sentences.  Here are 

two: 

 

 Define a set of logical languages, arranged in levels.  At one level, one can make claims 

only about sentences at some lower level.   Thus no sentence, on any level, can make a 

claim about itself.  (This is the Alfred Tarski solution.) 

 

 Interpret every sentence as implicitly asserting that it, itself, is true (in addition to 

whatever else it says).  So we translate the Liar sentence S, above, as: 

 

  This sentence is true          This sentence is false. 

 

The challenge to the LEM has disappeared.  That sentence must be false (since every 

statement of the form P and P is false). (This approach is due to Arthur Prior, among 

others.) 

 

 

 

 

 

 

 

 

 
Problems 

 

1. Which of the following sentence pairs constitute Liar Paradoxes?  To answer each question, try 

to find a consistent way of assigning truth values to the two sentences, without appeal to either 

the Tarski or Prior solutions, described above.  If you cannot do so, answer that there is a 

paradox.  If you can, then indicate the truth values that you have found, where [v1, v2] means 

assign the value v1 to sentence 1 and the value v2 to sentence 2.  If there is more than one 

consistent assignment, show all of them. 

 

(Part 1)  [1]  Sentence 2 is true. 

[2]  Sentence 1 is false. 

 

(Part 2)  [1]  Sentence 2 is false. 

[2]  Sentence 1 is false. 

 

(Part 3)  [1]  Sentence 1 is true. 

[2]  Sentence 2 is false. 

 

(Part 4)  [1]  Sentence 2 is true. 

[2]  Sentence 1 is true. 

 

  

Big Idea 

 

The Law of the Excluded Middle applies to logical statements, not English ones.  And the 

mapping between English and logic is not always straightforward. 
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Predicate Logic Doesn’t Solve All Our Representation and Reasoning Problems 
 

Sketching Some of the Problems 
 

Unfortunately, predicate logic all by itself, without substantial additional theory and, in some 

cases, significant structural changes, doesn’t do a good job of capturing the full range of 

statements that we often make about the world around us. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

  

Consider the following story: 

 

        [1]   It doesn’t rain very often in Austin. 

        [2]   Kelly only likes dancing in the rain. 

        [3]   Kelly won’t go anywhere unless he can plan a long time in advance and be 

                pretty sure he’ll be able to dance. 

        [4]   Judy won’t go anywhere without Kelly unless something really unusual happens. 

        [5]   Fran does exactly what Judy does.  

 

        [6]   Judy probably isn’t coming to Austin any time soon.  (Because Kelly isn’t.) 

     [7]   Fran’s mom isn’t counting on seeing her in Austin any time soon.  (Because Judy isn’t 

   coming.) 

 

The derivation of [5] from the premises [1] – [4] seems right.  But we can’t do it in our system. 

 

Let’s look at the lines one at a time to see what’s going on:  

 

[1] We need to be able to represent statistical truth.  What does “very often” mean?  

Let’s say we could agree that it means that the chances of rain on a given day are 

less than 5%.  How should we represent and reason with even that more concrete 

fact? 

[2] This one we can do if we stretch.  But we’ll need some way to represent time and 

place since this sentence is saying that Kelly likes dancing at a particular time, in a 

particular place, if and only if it’s raining at that time in that place. 

[3] Again we need statistical reasoning.  What does pretty sure mean?  And we need to 

be able to reason from the fact that it doesn’t rain very often to the fact that, a long 

time in advance, it won’t be possible to know whether it’s going to rain. 

[4] How can we represent the “unless” clause here?  It’s saying that, in the absence of 

information about some unusual event, we should assume that Judy won’t go if Kelly 

doesn’t.  In other words, we are to take our lack of knowledge as telling us something.  

But we must be prepared, if suddenly we are told about an unusual event, to undo 

our reasoning and give up on the conclusion that Judy won’t go. 

[5] We can represent actions with predicates, such as VisitsAustin(Judy) or Dances(Kelly).  

Then what we want to say here is something like:  P (P(Fran)  P(Judy)).  Read this as, 

for all predicates P, P is true of both Fran and Judy or neither of them.  But our logical 

system doesn’t allow us to quantify over predicates. 

[6] Again we need statistical reasoning. 

[7] First, we need to reason that, since Judy isn’t coming to Austin, neither is Fran.  In 

addition, how should we represent not just basic facts (such as it’s not likely that Judy 

will come to Austin), but also people’s beliefs about those facts? 
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Summarizing, we’ve recognized the following issues: 

 

1. We need a way to talk about statistical truth. 

2. We need a way to reason about time and place. 

3. We need a way to reason with default information (assume unless told otherwise). 

4. We need a way to reason not just about objects, but also about predicates. 

5. We need a way to reason about what we know or believe. 

 

There exist reasoning systems that solve these (and other) problems.  We can’t go into them here.  

But in the next few slides we’ll say a little more about the issues that we’ve just raised. 

 

 

 
Problems 

 
1. Consider the following argument: 
 
[1]  Most peppers are spicy. 
[2] Chris doesn’t like spicy food. 
[3]  Chris saw Skip put a lot of peppers in the chili for the party. 
[4]  Chris won’t go to a party unless he loves the food or his favorite movie star will be there. 
 
[5] Taylor has given up hoping to see Chris at the party. 
 
Only one of the first four claims is fairly straightforwardly representable in the logical framework 
we’ve been using.  The others aren’t. Which one is representable? 
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Dichotomizing the Analog World 
  

Introduction 
 

A logical statement (in the systems we have defined) is either true or false.  There’s no such 

thing as, “slightly true”, or “mostly true” or “really true.”  Unfortunately we live in an analog 

world.   

 

 

 

  

“That school is hard to get into.” 

 

What counts as “hard to get into”?  Only 1 out of 25 applicants get in?  Or 1 out of 

10?  Or 1 out of 5? 

“The chili is hot.” 

 

 

 

 

 

 

 

 

 

How hot does the chili have to be to count as “hot”? 

“It’s likely to rain.” 

 

What counts as “likely”?  95% certainly does.  What about 65% 
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The Sorites Paradox 
 

Suppose that we accept the following two premises: 

 

[1] One grain of sand is not a heap. 

 

[2] One grain of sand is too small to make a difference in determining whether something is or is 

not a heap.   

 

Then, nothing, including this can be a heap:  

 

 

 

But it clearly is a heap. 

 

 

 

 

Thus we appear to have a logical paradox, classically called the 

Sorites Paradox. 

 

The English word “heap” is vague:  Are 75,000 grains enough?  

120,000 grains?  So we have a problem in deciding how to map 

English sentences about heaps into logic.   

 
https://www.youtube.com/watch?v=brz8tIYV1U8  

 

But we do not have a logical problem.  The reason that we appeared, above, to get into trouble, is 

that we chose, as premises, to claims that don’t, in fact, do a good job of characterizing heapness. 

 

  

https://www.youtube.com/watch?v=brz8tIYV1U8
https://www.youtube.com/watch?v=brz8tIYV1U8
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Problems 

 
1. Sometimes, a Sorites-like problem formulation may look reasonable (as in the case of the 
heap of sand).  But sometimes it’s obvious that such a pair of premises doesn’t correspond to 
the situation.  In these latter cases, it’s easy to see how to write premises that do clearly define 
the boundary between having some property P and not having it. 
 
Mark each of the following pairs of premises as Sorites-like if, as in the sand example, it’s hard 
to decide how to get out of the apparent paradox.  Mark it not Sorites-like if it is straightforward 
to write a more accurate set of premises. 
 
(Part 1)  A one word story isn’t a novel.  

Adding one word to a short story won’t make it a novel. 
 
(Part 2)  A one-year old is not old enough to drive. 

Getting one year older doesn’t change whether or not you’re old enough to drive. 
 
(Part 3) A one gram package is easy to carry. 

Adding one gram to a package doesn’t change how hard it is to carry. 
 
(Part 4) One credit isn’t enough to get you a degree.  
  Getting one additional credit can’t make you degree-eligible. 
 
(Part 5)  One molecule of detergent won’t get the clothes clean.  

Adding one additional molecule of detergent to the wash won’t change how clean 
the clothes get. 

 
Explanation:  There doesn’t seem to be a hard and fast boundary that separates “enough 
detergent” from “not enough” detergent. 
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Taming Vagueness in Describing the Everyday World 
 

 

 

 

 

 

 

Sometimes we make comparative statements: 

 

 

 

 

How shall we represent claims such as these in the logical language that we’ve defined? The 

answer is that it depends on how we want to reason with them.   

 

One standard approach is to define a numeric scale (say 1 to 10).  Then we can make numeric 

claims.  We can specify cutoffs that define adjectives like tall.   

 

If we want to be more sophisticated, we can make such cutoffs relative to a reference set. 

 

 

 

 

 

There are other digitizing issues that don’t so naturally correspond to numeric scales.  

 

 

 

 

 

A lot has been written about issues such as these.  We’ll have to skip most of them for now.  The 

key for us will be to stay focused on the reasoning that we want to do.  Then we must make 

representation decisions that let us do that reasoning.  We should never imagine that we’ve 

captured everything anyone might want to say.  

 

  

Consider the question of height: 

 

[1] Professional basketball players are tall. 

[2] Elephants are very tall. 

[3] Giraffes are super tall. 

Indian food is spicier than Irish food. 

For example, it’s possible to be a tall person at a height that would be in midget territory for a 

giraffe. 

Suppose that I have an apple in the refrigerator.  I take it out and eat one bit and put it 

back, I probably still have an apple in the fridge.  What if I eat half the apple and put the rest 

back.  Do I still have an apple in the fridge?  What if I eat all but one bite? 
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Taming Vagueness in Formal Applications 
 

We can’t typically tolerate vagueness in formal applications, including: 

 

 Mathematics 

 Software and hardware specifications 

 Critical databases 

 

So, while philosophers and linguists have, over the centuries, devoted substantial attention to the 

problem of vagueness, there are many practical situations in which we effectively define it away. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Problems 

 
1. Consider this vague rule about who may invest in our new, risky hedge fund: 
 

Only rich people may invest in the Gotcha Fund. 
 
Assume that these predicates mean what they appear to mean.  Indicate, for each of the 
following clear statements, whether or not it could be what was intended: 
 

a) x ((Networth(x) > $10M)  MayInvest(x, GF)) 
 

b) x ((AnnualIncome(x) > $1M)  MayInvest(x, GF)) 
 

c) x ((Networth(x) > $100M)  MayInvest(x, GF)) 
 

d) x ((NumberOfHousesOwned (x) >3)  MayInvest(x, GF)) 

  

Unacceptable specification for a Human Resources database application: 

 

 An employee who has worked here a long time can retire. 

 

Acceptable specification for a Human Resources database application: 

 

 An employee E can retire if and only if: 

 

   AgeInYears(E) + NumYearsEmployeed(E) ≥ 80 

Unacceptable specification for a factory control system: 

 

The line must shut down if the machine gets hot. 

 

Acceptable specification for a factory control system: 

 

The line must shut down if the internal temperature of the compressor exceeds 150 F. 
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Statistical (Likelihood) Reasoning 
 

Consider these two statements: 

 

[1] People have more neurons than earthworms do. 

 

[2] Healthy male birds sing faster than sick ones do. 

 

These may sound like similar claims.  But they’re different in an important way.  The first is a 

categorical statement.  All people have more neurons than all earthworms.  The second, though, 

is a statistical statement.  We might rephrase it as: 

 

[3] On average, healthy male birds sing faster than sick ones do. 

 

Or we could actually show the distributions for song speed for two groups of birds: 

 

 

 

 

 

 

 

 

 

 

 

 

 

As the distribution makes clear, it isn’t true that all healthy birds sing faster than all unhealthy 

ones.  But the statistical claim that healthy birds are faster singers than sick ones is correct. 

 

Many everyday claims are statistical ones. 

 

 

 

 

 

 

 

 

 

 

 

Fortunately, the science of statistics gives us precise tools for reasoning with these kinds of 

statements when we need to.  And that science rests on the core logical structures that we will 

study.  Logic is not irrelevant to this kind of reasoning.  It’s just not enough.  

[4] Older children are taller than younger ones.  (As in the bird song example, this is a 

claim about distributions.  There certainly are 8-year olds who are taller than some 10-

year olds.) 

[5] In Florida, it rains in the afternoon.  (This sentence means that the probability of rain in 

any given afternoon is very high, although not certain.) 

[6] Children like ice cream better than broccoli.  (Again, I won’t accuse you of lying just 

because I find a single child who likes broccoli better.  This is a statistical claim.) 

[7] It’s likely to rain tomorrow.  (Sometimes we even make explicit the statistical nature of 

our claim.) 
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Most 
 

A common kind of everyday claim involves the notion of “most”.  Let’s analyze “most” 

reasoning more carefully since it illustrates one fundamental way in which statistical reasoning 

differs from the kind of absolute reasoning that we’ve been studying. 

 

We’ve shown that: 

 

      x (P(x)  Q(x)) 

      x (Q(x)  R(x)) 

 

   x (P(x)  R(x)) 

  

So, for example, if all cats are mammals and all mammals have lungs, then all cats have lungs. 

 

But now suppose that we tried to introduce a new quantifier (sort of an upside down M) 

corresponding to the idea of “most”: 

 

           x (P(x)  Q(x)) 

           x (Q(x)  R(x)) 

 

        x (P(x)  R(x)) 

 

If we allowed this reasoning, we’d get some useful things. 

 

 

 

 

 

 

But we’d also get some junk.   

 

 

 

 

 

 

This sort of attempt to reason with most can fail even if one of the quantifiers is universal.  

 

 

 

 

 

 

 

We need a statistically based reasoning system to work with problems like these. 

      All babies are children.   

      Most children go to school.   

 

   Most babies go to school.        

 

      Most American adults can read. 

      Most adults who can read are not Americans.   

 

   Most American adults are not Americans.        

     Most soda has a lot of sugar. 

     Most sugary stuff is unhealthy. 

 

  Most soda is unhealthy        
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Problems 
 
1. Define:  
 
P(x):   True if x is an American soldier fighting in Afghanistan. 
Q(x):   True if x was born in the United States. 
R(x):    True if x has never been to Afghanistan. 
 
Assume that most American soldiers fighting in Afghanistan were born in the United States and 
that most people born in the United States have never been to Afghanistan.  Consider this 
argument: 
 

           x (P(x)  Q(x)) 

           x (Q(x)  R(x))  
 

        x (P(x)  R(x))  
 
In this case, is the conclusion true or false? 
 
 
2. Define:    
 
P(x):   True if x is a knife.    
Q(x):   True if x is sharp. 
R(x):    True if x is dangerous. 
 
Assume that most knives are sharp and that most sharp things are dangerous.  Consider this 
argument:  
 

           x (P(x)  Q(x))  

           x (Q(x)  R(x)) 
 

        x (P(x)  R(x)) 
 
In this case, is the conclusion true or false? 
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3. Define:   
 
P(x):   True if x is a kitten.    
Q(x):   True if x is fluffy. 
R(x):    True if x is cute. 
 
Assume that most kittens are fluffy and that most fluffy things are cute.  Consider this argument:   
 

           x (P(x)  Q(x))   

           x (Q(x)  R(x)) 
 

        x (P(x)  R(x)) 
 
In this case, is the conclusion true or false? 
 
   
4. Define:   
 
P(x):   True if x is a bird.    
Q(x):   True if x can fly. 
R(x):    True if x is an insect. 
 
Assume that most birds can fly and that most things that can fly are insects.  Consider this 
argument:   
 

           x (P(x)  Q(x))  

           x (Q(x)  R(x)) 
 

        x (P(x)  R(x)) 
 
In this case, is the conclusion true or false? 
 
 

5. Define: 

 

PB(x):   True if x is a professional basketball player.    
RH(x):   True if x is right-handed. 
PA(x):    True if x is a professional athlete.    
 
Assume that most professional basketball players are right-handed and that most right-handed 
people are not professional athletes. Consider this argument:   
 

           x (PB(x)  RH(x))  

           x (RH(x)  PA(x)) 
 

        x (PB(x)  PA(x)) 
 
In this case, is the conclusion true or false? 
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Extending the Logical Framework 
 

A variety of ways of extending classical logic to solve some of these problems have been 

proposed.  We’ll look briefly at a few of them. 

 

 

 

Nonmonotonic Reasoning 
 

So far, the reasoning system that we’ve been studying has the following key property: 

 

 As we add premises, it is possible (in fact, likely) that new statements will become theorems. 

 

 As we add premises, no old theorems get eliminated.  In other words, if it was possible to 

prove P before adding the new premise(s), it is still possible to prove it. 

 

Thus we’ll say that our reasoning system is monotonic.  The set of provable claims can change 

in only one (thus the prefix “mono-”) direction as we add premises (in this case, it can only 

grow).   

 

But not all everyday reasoning has that property. In particular, whenever we make do with 

incomplete information by exploiting some kind of default fact (for example, assume it’s not 

raining in Austin unless you know otherwise), we must be prepared to undo some conclusions if 

new information (for example, that it is actually raining in Austin) comes in. 

 

In default reasoning, we conclude some fact in the absence of some indication that we should do 

otherwise.   

 

In the system we already have, we can write: 

 

[3]  x ((P(x)  Q(x))  C(x))  

 

But, to use [3] to conclude C(x), we must actually be able to prove Q(x).  What if we simply 

don’t know anything about Q(x)?  We’re stuck.  

 

But suppose we could write: 

 

[4]  x (P(x)  C(x) UNLESS Q(x))  

 

We w ant to interpret this to mean that we can conclude C(x) unless we have explicit information 

that Q(x) is true.  Of course, if new information about Q(x) shows up, we’ll have to add it to our 

system.  We’ll also have to eliminate any conclusions that we derived based on its absence.  
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Our inference system can’t do this.  But there exist formal systems that can.  And, of course, 

people do it all the time. 

 

 

 

 

 

 

 

 

 
Problems 

 
1. Consider the statement: 
 

[1]  x ((Room(x)  y (Lamp(y)  In(y, x)  TurnedOn(y)))  Lit(x)) 
 
If there’s a lamp in the room and the lamp is turned on, then the room will be lit.  This fact could 
be useful, for example, to a household robot.  It suggests that, upon entering a dark room, a 
reasonable thing to do would be to turn on a lamp. 
 
But what we really should have written here is: 
 

[2]  x ((Room(x)  y (Lamp(y)  In(y, x)  TurnedOn(y)))  Lit(x) UNLESS ( …) ) 
 
In the real world, many things could go wrong and prevent the room from lighting up when the 
lamp is turned on.   
 
List at least three such things.   
 

Consider the following claim that might be useful in trying to solve the problem of getting to 

the airport: 

 

          CanDriveToAirport   UNLESS    (CarWillStart     

         FlatTire       

         FireTrucksBlockingDirveway  

         StreetsCoveredInIce   

         CityLockedDownInEmergency   ) 

 

Notice that, in everyday planning, we are rarely even conscious of all the terms in the UNLESS 

clause.  If we wanted to build a problem-solving robot (perhaps even a self-driving car), 

we’d need it also to plan an action without having to stop first and verify that all of the 

UNLESS terms are in fact false. 

Big Idea 

 

We use default reasoning to enable us to reason about typical situations without getting 

completely bogged down worrying about all the unlikely things that might occur.  People 

do this all the time.  Intelligent agents and robots will also have to be able to do it. 
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2. Consider the statement: 
 

[1]  x ((Warehouse(x)  Unlocked(x))  CanHideIn(x)) 
 
If you need to hide someplace and there’s a warehouse nearby, you can hide there.  This fact 
could be useful, for example, to an agent in a first person shooter game. 
 
But what we really should have written here is: 
 

[2]  x ((Warehouse(x)  Unlocked(x))  CanHideIn(x) UNLESS ( …)   ) 
 
In the real world, many (generally very low probability) things could prevent it being possible to 
hide in a warehouse.   
 
List at least three such things.   

Inheritance 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The flying birds situation is an example of a very common sort of default reasoning in which 

individuals are assumed to inherit (take on) the properties of a typical member of some class to 

which they belong.  Birds typically fly.  Dogs typically have tails.  Houses typically have 

kitchens.  People typically can talk.  

 

As with any sort of nonmonotonic reasoning, we must be prepared to undo conclusions if new 

information (such as the fact that our bird has a broken wing) comes in. 

 

 

 

 

Problems 

 

1. We might be tempted to say that anyone who is a friend inherits the property of 

being trustworthy: 

 

Recall that we’ve already considered the issue of the flying capabilities of birds. We might be 

tempted to say: 

 

[1]  x (Bird(x)  CanFly(x)) 

 

And, if we did that, we’d be right most of the time. But emus and penguins can’t fly.  Neither 

can birds that have just been born or ones with crude oil on their wings or ones with broken 

wings.    What we really want to say here is something like: 

 

[2]  x (Bird(x)  CanFly(x)  UNLESS (Emu(x)  Penguin(x)  Baby(x)  WingBroken(x)  … ) ) 

 

But we want [2] to function like [1] most of the time. If I know that x is a bird and I know 

nothing else, I want to assume that it can fly. 
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[1]  x (Friend(x)  CanBeTrusted(x)) 

 

If we did that, we’d be right most of the time.  But there are exceptions.  Suppose that 

we’re trying to program a game agent.  We might want to say: 

 

[2]  x (Friend(x)  CanBeTrusted(x)    UNLESS (   …   )  ) 

 

Think of at least three claims that could go inside the UNLESS clause.   
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The Closed World Assumption 
 

There’s a specific kind of reasoning in the absence of facts that often makes sense when we’re 

working with the contents of a database. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Let’s generalize a bit.  Suppose that, in some arbitrary application, we have: 

 

[2]  x (P(x))  Q 

 

In other words, if there’s no x that 

satisfies some property P, then we can 

assert some claim Q.  If we want to 

reason with [2], how shall we go about 

showing that there is no such x?  If we 

can actually prove that, great.  Absent 

such a proof, we could look around for a 

while to see if we can see an example x.  

But failing to find one is not a proof that 

none exists.  For example, we could look 

around for quite a while and fail to find 

an albino peacock.  That is not, however, 

a proof that none exists.  In fact, they do. 

So we can’t, in general admit “I tried to 

find one but I couldn’t,” as a proof 

technique. 

 

In a database application, on the other hand, we often want to do exactly that.  Returning to our 

outdated supplier list problem: If we systematically check the database but fail to find a recent 

order from some supplier, we can conclude that there hasn’t been such an order.  (Or at least we 

can if we assume that our order entry process works as it should.)  We can thus conclude that the 

supplier should be dropped. 

 

In the special case in which we believe that we are operating in a closed world in which all 

relevant facts are explicitly asserted to be true, we can take the absence of an assertion as 

Suppose that we want a rule that says that we’ll drop from our approved supplier list any 

company from whom we haven’t bought anything in the last 24 months.  We might write (for 

simplicity, assume that the date of a transaction is stated in months): 

 

[1]  x ((y (Order(y)  (Supplier(x, y)  (Month(y) > Now – 24)))   

         ApprovedSupplier(x)) 

 

Read this as, “For any x, if there doesn’t exist an order y that was supplied by x more recently 

than 24 months ago, then x isn’t an approved supplier. 

 

Fine.  But how shall we prove that there doesn’t exist an order?   
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equivalent to the claim that it is false.  When we do this, we’ll say that we’re exploiting the 

closed world assumption. 

 

Implementing this requires that we add a technique that can’t be described in the predicate logic 

framework that we’ve been using. 

 

 
Problems 

 
1. Assume that you have access to the registrar’s database at University U.  You also have the 
following rule: 
 

x ((Student(x)  (c (Course(c)  Taken(x, c)  DeptOf(c, English))))  CanGraduate(x)) 
 
In other words, no one can graduate without taking an English course. 
 
Suppose that we want to try to prove that some student x cannot graduate.  Which of the 
following is true: 
 
a) The closed world assumption is valid here.  Failure to find an English course taken by x 

should enable us to conclude that x cannot graduate. 
b) The closed world assumption is not valid here.  Failure to find an English course taken by x 

tells us nothing for sure. 
 
 
2. Assume that you can look at your friend Chris’s Facebook account and see her list of 
Facebook friends.  You also take the following as a premise: 
 

x (Knows(Chris, x)  WorthKnowing(x)) 
 
In other words, anyone Chris doesn’t know isn’t worth knowing. 
 
Suppose that we want to try to prove that some person x isn’t worth knowing.  Which of the 
following is true: 
 
a) The closed world assumption is valid here.  Failure to find x on Chris’s list of Facebook 

friends should enable us to conclude that Chris doesn’t know x. 
b) The closed world assumption is not valid here.  Failure to find x on Chris’s list of Facebook 

friends tells us nothing for sure. 
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Higher Order Logic 
 

The logical framework that we have been describing is called first-order because it allows 

quantification over variables (and thus the objects to which they refer) but not over predicates or 

functions.  So, for example: 

 

 We can say:  x (Bear(x)  Mammal(x)) 

 

We’ve quantified over the objects of which Bear or Mammal might be true. 

 

 We cannot say: P (x ((LivingProp(P(x))  Dead(x))  P(x))) 

 

What we’re trying to do here is to quantify over predicates to say that if P is any 

predicate that describes a property of living things, then it ceases to be true if the thing in 

question becomes dead.  In a first-order system, we can’t do this. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A system that allows quantification over predicates is called second-order.  Even higher order 

logics exist.  In them, it’s possible to quantify over properties of properties, and so forth.  

 

The reason that we don’t allow these sorts of quantification in the formal system that we’re 

defining is that, if we do, both the computational and the formal logical properties of the 

resulting system would make using it very difficult. 

 

This means that, to get the same effect, we must say what we have to say separately for each 

predicate. 

Here’s an example of how we could exploit quantification over predicates if only it were 

allowed: 

 

We’ll let LivingProp be true of any predicate that is true only of living things.  Then we can 

assert: 

 

[1]  LivingProp(Breathing(x))  Breathing is a property of living things. 

[2]  LivingProp(NeedsWater(x))  Needing water is a property of living things. 

[3]  LivingProp(CellsDivide(x))  Cells dividing is a property of living things. 

[4]  LivingProp(CanSing(x))  Can sing is a property of living things. 

[5]  P (x ((LivingProp(P(x))  Dead(x))  P(x))) Properties that hold of living  

         things become false when  

         something dies. 

[6]  Dead(Elvis) 

 

Now we’d like to be able to conclude: 

 

[7]  Breathing(Elvis) 

[8]  NeedsWater(Elvis) 

[9]  CellsDivide(Elvis)  

[10]  CanSing(Elvis)   This is the one that makes many people sad. 
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Of course, when we reason informally and don’t care about how computationally difficult it 

would be to create a formal proof automatically, we do use this sort of higher order reasoning 

quite often. 

 

  

Continuing with our example, we’d need to replace [5] with this set of premises: 

 

[5a]  x (Dead(x))  Breathing(x)) 

[5b]  x (Dead(x))  NeedsWater(x)) 

[5c]  x (Dead(x))  CellsDivide(x)) 

[5d]  x (Dead(x))  CanSing(x)) 
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Problems 
 
1. Which of the following statements is/are legal in first-order logic? 
 

a) x (P(x)  Q(x))    

b) P (x (P(x)  Q(x)))   

c) x (P(x)  P(x)) 

d) x (P (P(x)  Q(x)))   

e) P (P(Chirpy)  P(Elvis))   

 
 
2. Recall this claim about what happens to all predicates of which LivingProp is true: 
 

    [5]  P (x ((LivingProp(P(x))  Dead(x))  P(x))) Properties that hold of 
        living things become false  
          when something dies. 
 
Suppose that we allowed reasoning about predicates and that we already had the axiom given 
above about what happens to living properties if an object dies.  If you were axiomatizing the 
world in which we live, which (one or more) of the following axioms/premises could you assert 
(assume that the predicate names are mnemonic and correctly describe the property in 
question): 
 

I.  LivingProp(WillDieLater(x)) 
II.  LivingProp(BlowsInTheWind(x)) 
III.  LivingProp(HasMass(x)) 
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Equality 
 

But, getting back to the formal system that we’re setting up here:  There is one restricted use of 

higher order reasoning that is so important that even most computational logic systems support 

it.  We’ll allow it too. 

 

The thing we can’t live without is equality.  We want to be able to say (typically because we’ve 

managed to prove it) that two things are equal.   

 

But what does it actually mean for two things to be equal?  What we want it to mean is that the 

two things share all the same properties.  Oops.  That’s a second-order logic idea.  What we want 

to be able to say is: 

 

P (x, y (((x = y)  P(x))  P(y))) 

 

What this says is that, for any property P, if there are two objects x and y and they are known to 

be equal, then if P is true of x it must also be true of y. 

 

  Let’s look at an example where equality is exactly what we need.  Suppose that we are 

given the following premises: 

 

[1]  Roommates share an address.  In other words, if x and y are roommates and if z is the 

address of one of them, then z is the address of the other. 

[2]  Kelly’s address is prestigious. 

[3]  Kelly and Chris are roommates. 

 

We can write these formally as follows, assuming the existence of a function, addressOf, that 

returns the address of its argument: 

 

[1]  x, y (Roomates(x, y)  (addressOf(x) = addressOf(y))) 

[2]  Prestigious(addressOf(Kelly)) 

[3]  Roomates(Kelly, Chris) 
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We need this interpretation of what equality actually means if we want to do arithmetic and 

algebra in the way we are used to doing them. 

 

 

 

 

 

 

 

 

 

 

 

A first-order system that branches out just enough to allow equality, in this meaningful sense, is 

called (of all things) a first-order system with equality.   

 

 

 

 

 

 

 

 

 

  

We’d like to be able to show that Chris also lives at a prestigious address.  Let’s assume that 

we have the premise that tells us that if two objects are equal then they share all properties.  

That’s (as stated above): 

 

[4]  P (x, y (((x = y)  P(x))  P(y))) 

 

Then we can reason as follows: 

 

 Since Kelly and Chris are roommates, addressOf(Kelly) = addressOf(Chris).  (from [1]) 

 Prestigious(addressOf(Kelly)) is a premise.   

 But addressOf(Chris) has all the same properties as addressOf(Kelly). 

 So we have Prestigious(addressOf(Chris)). 

Suppose that we have: 

 

[1]  x = y 

[2]  x + b > 10 

 

We should be able to reason that, since x and y are equal, we can substitute one for the 

other anywhere.  So we should be able to derive:  

 

[3]  y + b > 10 

Big Idea 

 
Equality is such an important concept that almost all practical first-order systems are 

extended to support it. 
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Explicit Reasoning about Knowledge and Belief 
 

So far, we’ve seen that we can write logical expressions that describe what we believe to be true.  

We call them our premises.  Then we can reason with them and derive additional claims that we 

will then also believe to be true because we’ve proved them so. 

 

So we’ve been, in some sense, reasoning about belief.  Or perhaps you want to make the stronger 

claim that we’re reasoning about facts that we know to be true.   

 

But what we have not done, nor are we able to do in our framework, is to reason about claims 

that explicitly mention believing or knowing.   

 

 

 

 

 

 

 

It’s not that we can’t write such claims at all.  We can, in a clunky way: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In some sort of way, we’ve encoded the facts of [1] – [3].  The problem is that we haven’t 

encoded them in a useful way. 

 

 

 

 

 

For example, consider: 

 

[1]  I know that Kelly is a student. 

[2]  I believe that Chris will come to the party. 

[3]  I think that Chris won’t come to the party, so I won’t either. 

Give names to the following statements: 

 

K: Kelly is a student. 

P: Chris will come to the party. 

C:  Chris won’t come to the party. 

 

And define: 

 

Know(x, y):   True if x knows y. 

Believe(x, y):   True if x believes y. 

Think(x, y):   True if x thinks y. 

WillAttendParty(x):  True if x will attend the party. 

 

Then we can write: 

 

[1]  Know(I, K) 

[2]  Believe(I, P) 

[3]  Think(I, C)  WillAttendParty(I) 

 

Take another look at [3], for example.  Notice that the thing that I think (namely that Chris 

won’t come to the party) is an atomic claim, C.  It doesn’t explicitly represent party 

attendance in any way that would make it straightforward to reason about my party 

attendance versus Chris’s.  
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Perhaps you’re wondering why we can’t be clearer. 

 

 

 

 

 

 

 

 

 

 

 

 

The problem is that, in a first-order logic system, we can’t make claims about predicates such as 

Student or WillAttendParty.  Predicates have truth value and they can be combined using the 

logical operators.  But they can’t themselves be the arguments of other predicates. Nor can 

complete logical statements.  The only things that we can assert claims about are specific objects.  

 

Recall that, in our system, objects can be indicated either by a specific name or value or as the 

value of a function. 

 

 

 

 

 

 

 

So in particular, in our system, we cannot make explicit assertions about belief or knowing.  In 

fact, we can’t make explicit assertions about anything that we’re already representing as a 

predicate. 

 

There exist belief logics that can solve this problem, but they are beyond the scope of this class. 

 

 

 
Problems 

 
1. We’re going to consider a set of claims.  Try to represent them in our logical system.  Think 
carefully about the predicates you use.  Even if you do that, however, you’ll have trouble 
encoding one of these claims.  Which one? 
 
a) Shelby likes peanut butter. 
b) Everyone who likes peanut butter likes jelly. 
c) Jody likes everyone who likes jelly. 
d) Casey likes it when Jody likes someone. . 
e) Casey hates peanut butter and jelly. 

  

For example, why can’t we define: 

 

Student(x):  True if x is a student. 

WillAttendParty(x): True if x will attend the party. 

 

And then we could write: 

 

[1]  Know(I, Student(K)) 

[2]  Believe(I, WillAttendParty(C)) 

[3]  Think(I, WillAttendParty(C))  WillAttendParty(I) 

 Chris, London, and 5 are values.  They can be arguments to predicates. 

 age(x) is a function.  Given a specific value for x, it returns another specific value 

(maybe 25).  That value can then be an argument to a predicate. 

 WillAttendParty(x) is already a predicate.  It cannot be an argument to another 

predicate. 



70  7. English Into Logic: Issues and Solutions 

So Where Does That Leave Us? 
 

By now, you’ve seen that, in the predicate logic framework that we’ve described, we can: 

 

 Naturally represent and reason with mathematical facts. (By the way, there are many 

more examples of this in our follow-on course, Sets, Relations and Functions.) 

 

 

 

 

 Naturally represent and reason with formal specifications for programs. 

 

 

 

 

 Naturally represent and reason with constraints and policies that are stated in terms of 

objects in databases. 

 

 

 

 

 Sometimes represent and reason with our knowledge about the everyday world. 

 

 

 

 

Of course, we wish that reasoning about the everyday world were easier.  But even if that’s what 

you care primarily about, the logical foundation that we’ve built will serve you well.  There exist 

formal extensions to predicate logic that can solve many of the problems that we’ve encountered.  

And sound everyday reasoning, while not sticking to our formalism, rests on its foundation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

x (Prime(x)  ((x = 1)  y (Div(x, y)  ((x = y)  (y = 1))))) 

x (Disk(x)  On(x, Pole1, time1)) 

x ((Loan(x)  Approved(x))  (y (z (Super(y)  Signed(y, x)  Signed(z, x)  

                                                                                      (y = z))))) 

x (y (Friends(x, y)  Friends(y, x))) 

[1]   Everyone who’s invited to the party works at MegaLogicLand. 

[2]   Every couple who’s coming to the party has to bring something. 

[3]   Jamie is planning to attend the party, but she knows that her partner is bringing 

   cookies, so she’s not worried about getting something. 

[4]   Since Jordan works at MegaLogicLand, he assumes he’s invited to the party. 

 

Jamie’s reasoning is sound.  In its essence, [2] says: 

 

[2]  Party  Bring something 

 

Jamie knows that her partner’s bringing cookies makes that claim true for them.  So she need 

take no further action. 
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Problems 

 
1. Consider the following claims: 
 
[1]  Everyone who thinks that it’s going to rain tomorrow will bring an umbrella. 
[2]  It’s going to rain tomorrow. 
[3]  The weather forecast is very accurate if you ask for just one day in the future. 
[4]  Bailey just checked the weather forecast. 
[5]  Dana never checks the weather forecast. 
[6]  Bailey will bring an umbrella tomorrow. 
[7]  Dana won’t bring an umbrella tomorrow. 
 
Take [1] – [5] as premises.  Which of the following statements is correct: 
 
a) [6] follows from the premises but [7] does not.  
b) [7] follows from the premises but [6] does not. 
c) Both [6] and [7] follow from the premises. 
d) Neither [6] nor [7] follows from the premises. 

 

Big Idea 

 

The logical tools that we have developed form the basis for sound reasoning in 

mathematics, in many areas of computer science, and in our everyday world. 

But Jordon’s reasoning is flawed.  In its essence, [1] says: 

 

[1]  Invited  MegaLogicLand 

 

Jordan has used Modus Ponens backwards to attempt to reason: 

 

  MegaLogicLand  Invited 

 

And that, we know, does not preserve truth. 


