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Abstract. In 2012, UT Austin Villa claimed the Standard Platform
League championships at both the US Open and the 2012 RoboCup
competition held in Mexico City. This paper describes the code release
associated with the team and discusses the key contributions of the re-
lease. This release will enable teams entering the Standard Platform
League and researchers using the Naos to have a solid foundation from
which to start their work as well as providing useful modules to exist-
ing researchers and RoboCup teams. We expect it to be of particular
interest because it includes the architecture, logic modules, and debug-
ging tools that led to the team’s success in 2012. This architecture is
designed to be flexible and robust while enabling easy testing and de-
bugging of code. The vision code was designed for easy use in creating
color tables and debugging problems. A custom localization simulator
that is included permits fast testing of full team scenarios. Also included
is the kick engine which runs through a number of static joint poses and
adapts them to the current location of the ball. This code release will
provide a solid foundation for new RoboCup teams and for researchers
that use the Naos.
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1 Introduction

Developing intelligent behavior for robots is difficult due to the time and effort
needed to create and debug code for robots. This code release attempts to reduce
that burden for researchers that use humanoid robots. Specifically, it contains
the code from the UT Austin Villa team that competes in RoboCup, the Robot
Soccer World Cup. The international research initiative behind RoboCup pushes
towards advancing robotics and artificial intelligence by using the game of soccer
as a test domain. Soccer requires robots to deal with real world issues such as
teamwork, localization, motion, and vision all in real time while interacting with
an environment that is not under their control. The long-term goal of RoboCup
is to build a team of 11 humanoid robot soccer players that can beat the best
human soccer team on a real soccer field by the year 2050 [5].

RoboCup is organized into several leagues, including both simulation leagues
and leagues that compete with physical robots. This paper describes the code
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used by the 2012 championship team in the Standard Platform League (SPL)1.
All teams in the SPL compete with identical Aldebaran Nao humanoid robots
robots2, making it essentially a software competition. This format allows for
teams to share ideas and code, such as this code release, to speed the development
of capable, intelligent robots.

UT Austin Villa has competed in the Standard Platform League with the Nao
robots every year since the Nao was introduced in 2008. Through these years,
we have built a substantial code infrastructure for robot soccer that served as
the base for our championship in 2012 [2, 1]. This paper describes the partial
release of that code base, including its software architecture, stream-lined vision
processing, localization, localization simulator, kick engine, and debug tool. The
high level strategy and behavior code is omitted, but is described in [3, 1].

2 Code Release

This section describes the steps necessary to use the released code3 and adapt
it to new situations. More documentation is included in the code release in the
form of a README and comments in the code. The vision system is based on
colors, which it interprets through the use of color tables. Generating these color
tables is done with the provided UTNaoTool, using a combination of painting
colors onto the images and annotating objects in the images as described in
Section 4. In addition, as the included behavior only directly walks towards and
kicks the ball, it will be necessary to create more complex behaviors. Further
behaviors can be created using a task hierarchy that is written in Lua for rapid
development and testing.

The main components of the code are contained in the core directory, with
modules separated into their respective directories, but note that the behavior
code is contained in the lua directory. The main access point to modules is the
processFrame function, and the main control of the vision and cognition process
is primarily handled by the processFrame function in the file lua/init.lua.
The main control of the motion process is handled by processFrame in
MotionCore.cpp. The NaoQi interface is primarily found in
interfaces/nao/src/naointerface.cpp.

In 2012, UT Austin Villa won the Standard Platform League at the 16th
International RoboCup Competition in Mexico City, Mexico. Twenty-five teams
entered the competition, and games were played with four robots on each team.
Our code release allows new teams to ramp up quickly with modules that have
been demonstrated to support a RoboCup championship.

In principle, this code release can be useful for projects other than RoboCup
and on robots other than the Nao. The included tools for color-based vision are
easy and quick to use. The localization algorithms used are general and can be

1 http://www.tzi.de/spl/
2 http://www.aldebaran.com/
3 http://www.cs.utexas.edu/~AustinVilla/?p=downloads/source_code_and_
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extended to use other types of landmarks, while coordinating with other robots.
Furthermore, the most useful tool included is the general infrastructure of the
memory and modules. This infrastructure permits creating and replaying logs
in a simple and customizable manner, and these logs are vital for understanding
and debugging behaviors on robots. In addition, it allows for decoupling the
code modules, while still maintaining good computational performance. This
infrastructure is described in more depth in the following section.

3 Software Architecture

When dealing with robots, it is important that the code be both easily debugable
and testable. The design’s key element is to enforce that the environment inter-
face and its logic are kept distinct (Figure 1), and that all communication is done
via shared memory. The interface simply extracts sensor data into memory and
then sends commands to the joints, whether the system is a robot, simulator,
or debug tool. This design allows the same logic to be applied regardless of the
underlying system being used. The advantages of this architecture are discussed
further in [1].

Fig. 1. Overview of the UT Austin Villa software architecture, which separates inter-
face, memory, and logic.

Furthermore, for better modularity, the logic is organized into a number of
modules that each take care of specific functionality. These modules are discussed
in depth in Sections 4–6. In addition, the memory is split into memory blocks
that group related pieces of information and allow us to analyze which modules
rely on each piece of information. Modules communicate via the memory blocks;
for example, the higher level strategy behavior talks to the walk and kick engines
in the form of motion request blocks and get information about odometry and
the current status of the kick in the form of information blocks.

To take advantage of the modularity of our code, the execution is split into
three separate processes:
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1. Interface: this code runs at 100 hz, is called by naoqi (or a simulator), and
copies the current sensor information to memory and writes out the current
motion commands

2. Motion: this code runs at 100 hz and converts high level commands into
direct commands for the motors

3. Vision: this code runs at 30 hz and processes the incoming imaging and
selects the high level commands

Splitting execution into three processes allows us to restart crashed processes,
as well as debug each process separately. In addition, it aids in development
as changing code in the motion and vision processes does not require the slow
procedure of restarting the NaoQi interface on the robots. However, this design
requires us to store our memory structure in shared memory. The majority of
the information is kept separate for each of the processes, so mutex locks are
only required when copying local information into these shared blocks.

The walk engine included in the release was developed by the B-Human team
from the University of Bremen [8], using the code for interfacing with this walk
engine released by Bowdoin College’s Northern Bites team [6]. All the other
major modules, comprising the large majority of the codebase, were developed
by the Austin Villa team. These modules are described in the following sections.

4 Vision

The vision system is dedicated to the task of detecting the ball, goals, field
lines, and robots in the camera images and reporting their relative distance and
bearings to the robot. The team’s vision system divides the object detection
task into 4 stages, each of which is carried out on both cameras. These stages
are listed below:

1. Segmentation - The raw image is read and segmented using a color table.
2. Blob Formation - The segmented image is scanned using horizontal and

vertical scan lines, and “blobs” are formed for further processing.
3. Object Detection - The blobs are merged into different objects.
4. Transformation - The information given by the pose of the robot is used

to generate ground plane transformations of the line segments detected.

In addition, our tool’s vision analysis system provides a set of key features
for debugging and tuning color calibrations. In particular, the log annotation
and color table generation features are useful for creating and analyzing color
tables with measurable accuracy. Since the vision system is based on segmented
images, proper construction of color tables is key to its effectiveness.

The overall framework for these processing steps is outlined in detail along
with high level descriptions of the color table analysis system in our previous
papers [2, 1]. We therefore focus on new implementation techniques that are
found in this code release, the first of which is the arrangement of object detection
methods into segmentation and detector modules.
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The vision system relies on a handful of primary classes:

– TransformationProvider - This class converts body position estimates into
transforms for mapping pixel values into world locations and vice versa.

– Classifier - Classifies pixels by color and constructs vertical and horizontal
runs of contiguous color. This is the segmentation phase.

– BlobDetector - Merges adjacent runs of common color into a number of
blobs. This is the blob formation phase.

– [Line,Ball,Goal,Cross,Robot]Detector - These detector classes run in
sequence to transform blobs into complete object detections. Each detector
is responsible for finding relevant blobs, performing sanity checks, and in-
dicating results to the global world object array. Various statistics such as
bearing and image position are stored as well.

Object
Detectors

Line
Detector

Ball
Detector

Goal
Detector

Cross
Detector

Robot
Detector

It should be noted that the cross detector, which is responsible for discerning
the cross directly in front of the goal box, was used only for the goalie as a
localization aid. In general it can be difficult to discern the cross from other
lines on the field due primarily to occlusion, however in the setting of the goalie
we are able to enforce more restrictive assumptions on what qualifies as the
cross. Other field lines are too ambiguous to provide the goalie with enough
certainty in its position. Goal posts provide a good alternative to field lines
as localization anchors, however they often lie outside the goalie’s field of view
and would thus require a complete head turn to maintain positional certainty.
The cross overcomes both of these drawbacks by providing a unique localization
anchor that is consistently between the goalie and the main area of play.

The vision system also implements selective high-resolution scanning based
on subsampled pixel values, which is used most effectively for locating the ball
across large distances. In normal operation, each of the listed object detectors
relies on a 320x240 subsampled segmented image to ensure that vision process-
ing runs at the hardware-enforced framerate of 30 Hz. At any point a detector
may request a high-resolution scan of the top camera image for a particular
color from the Classifier. The Classifier then reclassifies all regions surrounding
subsampled pixels of the detected color using the full 640x480 resolution allowed
by our implementation. Generally only small regions of the image are reclassi-
fied, thus providing the benefits of full resolution images with virtually no hit
to performance. By using this technique we are able to reliably detect the ball
at distances up to 5 meters, up by a factor of 2 over detections with subsam-
pled images. High resolution scans of the goal are also enabled, which similarly
improves goal detection distances.
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5 Localization

Keeping track of the location of the robot is important in all robot tasks, es-
pecially in the RoboCup domain. The goal of the localization system is to take
in the detected objects from vision, and output the location of the robot, the
ball, the robot’s teammates, and the robot’s opponents. Having a good world
model like this enables the robot to make smart strategic decisions during the
game. Like many other teams at the competition [7, 4], since 2011 we have used
a multi-modal 7-state Unscented Kalman Filter (UKF) for localization [2]. The
UKF provides a number of benefits compared to other approaches such as Monte
Carlo localization as it is computationally efficient and enables easy sharing and
integration of ball information between teammates.

One of the challenges of the RoboCup Standard Platform League in 2012 is
that there are no unique markers anywhere on the field. Therefore, the robots
must do a good job of integrating both odometry and vision estimates of land-
marks while recovering from noise added by bumps, falls, and kidnapping. Since
the field is symmetrical, the robot has no information to recover its orienta-
tion on its own. Instead, the robot takes advantage of shared information from
teammates to resolve which direction it is facing. Our solution to resolving this
issue was to have robots check whether their teammates thought the ball was
in the same location or in the symmetrically opposite location. It is impor-
tant to listen to more than one teammate, as we do not want one teammate
that is going the wrong way to convince the entire team to start going the
wrong direction. This functionality is described in the processSharedBall and
checkSharedBallForFlips functions in the file localization/UKFModule.cpp.

Fig. 2. The localization simulator.

However, testing and debugging
localization with full teams of robots
is quite challenging. Therefore, we
wrote a localization simulator to im-
plement, test, and debug our solu-
tions, shown in Figure 2. The simula-
tor can be run from the world window
of the tool included in the code re-
lease. The simulator takes advantage
of the modularity of our code. Instead
of interfacing with the code at the per-
ception and motor command layers, it populates the code with simulated output
from the vision module, and then uses the code’s output to the kicking and walk-
ing modules to move the robots in the simulation. The simulator proved useful
not just for localization, but also for testing various strategies and behaviors.

The main interface into the localization module is in the processFrame func-
tion in the file localization/UKFModule.cpp, and the updates from observa-
tions is handled by the processObservations function. The UKF has many pa-
rameters that affect how it handles observations and odometry updates. These
parameters were initially optimized using a number of long logs of the robot’s ob-
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servations and movements. Additional tuning was performed by hand to handle
issues that were discovered during test games.

6 Kick Engine

The code release includes our static standing kick engine, which is found in
the file motion/KickModule.cpp. This kick engine utilizes a series of keyframe
states that the robot moves through at specified times. For each state, we define
a state time, a joint movement time, the desired center of mass in x,y,z space,
and the desired kicking foot position in x,y,z space. These values are defined for
each state in the file lua/cfgkick.lua. The robot’s joints are controlled using
inverse kinematics to reach each desired state in the allocated joint movement
time. In particular, our kick engine utilizes the states shown in Table 1.

State Description

Stand stand at the same height as when walking
Shift shift the center of mass away from the kicking foot
Lift lift the kicking foot
Align align the kicking foot
Spline swing the kicking foot through the ball
ResetFoot reset the kicking foot such that it is centered under the body
FootDown place the kicking foot back on the ground
ShiftBack shift the center of mass back towards the center of the body
FinishStand stand at the same height as when walking

Table 1. States utilized by our static kick engine

In the Spline state, splines are used to compute the path for the kicking foot
to follow as it moves forward through the ball. We use splines in this state to
obtain a smooth path for the kicking foot to follow, as informal experimentation
showed that a smooth kicking foot trajectory resulted in a more consistent kick.
You might note that two additional states — Kick1 and Kick2 — are defined in
the file lua/cfgkick.lua. The state time for these states is set to 0 though, so
these states are not currently utilized by the kick engine (although the target
for the end of the Spline state uses the desired swing foot position defined for
the Kick2 state). However, one could remove the Spline state by setting its state
time to 0, and give positive state times to the Kick1 and Kick2 states, to obtain
a kick that does not use splines to compute the path for the foot to follow as it
moves through the ball.

The kick engine obtains the desired kick distance by controlling the amount
of time needed to move the foot during the Spline state. For RoboCup 2012,
the only static standing kicks that the robots used were straight kicks ranging
between 1.5 meters and 3.5 meters. Hence, 190 ms were spent in the Spline state
for the 3.5 meter kicks, while 300ms were spent in the Spline state for the 1.5
meter kicks.

The kick engine alters the desired swing foot position for the Align and Spline
states of the kick engine based on the desired kick distance and the current ball
position with respect to the kicking foot. The complete details of this kick engine
are available in [2], and the improvements to it for 2012 are available in [1].
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7 Conclusion

This paper describes the partial release of 2012 RoboCup SPL champions UT
Austin Villa’s 2012 code base. The code release includes UT Austin Villa’s soft-
ware architecture, stream-lined vision processing, localization, localization sim-
ulator, motion engine, and debug tool. This release omits the strategy and high
level behaviors for playing soccer. Importantly, all of the code was developed
on a flexible architecture developed previously, that enables easy testing and
debugging of code. This code release is intended to serve as a useful foundation
for any team entering the RoboCup SPL competition as well as any researchers
using the Nao robots or similar platforms.
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