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ABSTRACT

Temporal difference reinforcement learning algorithms are
perfectly suited to autonomous agents because they learn
directly from an agent’s experience based on sequential ac-
tions in the environment. However, their most common al-
gorithmic variants are relatively inefficient in their use of
experience data, which in many agent-based settings can be
scarce. In particular, they make just one learning “update”
for each atomic experience. Batch reinforcement learning
algorithms, on the other hand, aim to achieve greater data
efficiency by saving experience data and using it in aggregate
to make updates to the learned policy. Their success has
been demonstrated in the past on simple domains like grid
worlds and low-dimensional control applications like pole
balancing. In this paper, we compare and contrast batch
reinforcement learning algorithms with on-line algorithms
based on their empirical performance in a complex, con-
tinuous, noisy, multiagent domain, namely RoboCup soccer
Keepaway. We find that the two batch methods we con-
sider, Experience Replay and Fitted Q Iteration, both yield
significant gains in sample complexity, while achieving high
asymptotic performance.
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1. INTRODUCTION
Reinforcement learning problems are those in which an

agent takes sequential decisions in its environment in an ef-
fort to maximize its long-term reward. Temporal difference
(TD) algorithms, such as Sarsa [9] and Q-learning [12],
are on-line methods for addressing such problems. We refer
to them as “on-line” because they incrementally update the
agent’s policy based on each individual experience. An ex-
perience is defined as a transition from one state to another,
coupled with an immediate reward signal, resulting from the
agent’s action.

Rather than representing a policy directly, temporal dif-
ference algorithms learn an intermediate structure known as
a value function that represents the expected long-term re-
ward from a given state if an agent takes a particular action.
If the value function is known, the optimal policy follows im-
mediately: from any given state, the agent selects the action
with the maximum value.

Q-learning has been shown to provably converge to the
optimal value function in discrete domains [16]. However,
in so doing, it is very wasteful of its experience data. In fact,
the convergence proof relies on the agent visiting each state
infinitely often. This reliance is due, in large part, to the fact
that the algorithm only processes experience incrementally.
That is, each state transition is used to update the agent’s
value function immediately, and is then discarded.

Incremental updates have the advantage of requiring lit-
tle computation and memory, in exchange requiring a lot of
data. However, in many complex agent domains, the op-
posite constraints are the reality. For example, the time
between training examples on a physical robot or in a com-
plex real-time simulation environment leaves a lot of time for
processing on a modern computer; and even at a (relatively
fast) rate of one state transition per second, memory does
not become constrained for a considerable length of time. In
such domains, the sheer time, tedium, or labor involved in
gathering training experiences could be the overriding con-
cern.

Batch reinforcement learning algorithms are designed ex-
plicitly to reduce the amount of experiential data needed
by leveraging available computation and memory. They do
so by saving experience data and using it in aggregate to
make updates to the learned policy. In this paper, we com-
pare and contrast two model-free batch reinforcement learn-
ing algorithms, Experience Replay [5] and Fitted Q Itera-
tion [2], with on-line TD methods. These batch algorithms
have been shown in the past to speed up learning in simple
domains such as grid worlds and in low-dimensional control



problems such as pole-balancing. We consider the design
issues in scaling them to a complex, continuous, multiagent
task, namely RoboCup soccer Keepaway [11]. Despite be-
ing a simulated environment, Keepaway incorporates the at-
tributes of a real-world task: for instance, agents are pro-
vided noisy perceptions, and must cope with imperfect ac-
tuators. The task itself models a realistic scenario from soc-
cer in which opposing teams of agents vie for possession of
the ball. On-line training in Keepaway takes hours or even
days, so making any reduction in its sample complexity can
have a significant impact on the feasibility to learn in such
a domain. Furthermore, due to the large state space, value
function approximation is a necessity, violating the assump-
tions for guaranteed convergence and thus leaving room for
asymptotic performance gains as well.

The remainder of this paper is organized as follows. Sec-
tion 2 specifies the batch and on-line algorithms implemented
in this paper, and provides a detailed comparison within a
common algorithmic framework. Section 3 introduces the
details of our test-bed domain. Section 4 reports our main
experimental results and Section 5 presents a deeper analy-
sis of our experiments. Section 6 summarizes related work
and Section 7 concludes.

2. ON-LINE AND BATCH

REINFORCEMENT LEARNING

Reinforcement learning involves trial and error. Typically,
an agent in some state s will choose to execute an action
a, on whose execution it will receive a reward r from the
environment and be transported to a new state s′. The
sample (s, a, r, s′) constitutes an experience, which provides
it information to improve its behavior.

On-line reinforcement learning is the paradigm where the
agent only uses its latest experience to update its policy. For
example, consider an on-line Q-learning agent that begins
with an initial action value function Q0, and goes through a
sequence of t experiences Dt = d1, d2, d3, . . . , dt, where di =
(si, ai, ri, si+1), i = 1, 2, 3, . . . , t. On gathering experience
dt, the agent makes an update to its Q-function as follows:
Qt(st, at) ← Qt−1(st, at) + α(rt + γ maxa Qt−1(st+1, a) −
Qt−1(st, at)), using some learning rate α and discount rate
γ. Notice that to compute the updated action value function
Qt, the agent only needs its previous value Qt−1 and the last
experience dt.

In discrete domains, on-line Q-learning is guaranteed to
converge to the optimal value function, so long as each state
is visited infinitely often, and some other minor conditions
are met [16]. The convergence guarantee does not extend
to continuous domains; in fact, even with discrete domains,
the time taken to achieve convergence may exceed the lim-
its imposed by practical applications. It is usually the case
that faster learning can be achieved by not just using the
last experience dt in the update, but by also using past
experiences encountered in the sequence Dt. Batch re-
inforcement learning algorithms have the precise motiva-
tion that gathered experience samples can be used more
efficiently by simultaneously using all of them in making
an update to the policy. Such an update would look like:
Qt = trainBatch(Qt−1, Dt). In fact, even Qt−1 is not nec-
essary for the update since the experience sequence Dt and
the initial action value function Q0 contain all the informa-
tion necessary to compute Qt. Nevertheless, knowledge of

Qt−1 can help speed up the update.
Batch reinforcement algorithms can potentially extract

more information from a given sequence of experiences than
on-line algorithms, since they are not constrained to make
only a single learning update based on each experience1.
This can lead to faster learning, with fewer samples being
needed to learn good policies. In practice, it is usually the
case that batch learning updates are not made after each
experience, but only after intervals, or batches, of several
experiences. Algorithm 1 outlines a general framework for
batch reinforcement learning. The agent begins with some
initial policy represented through the action value function
Q0 (line 1). The policy is interpreted through the selec-
tAction() function, which, for instance, may implement ǫ-
greedy action selection (line 14). It follows this policy for
m episodes, saving the experiences encountered to memory
(lines 14–19). The sequence of experiences D thus gathered
is then used as a batch to compute a revised action value
function Q, which defines its new policy (line 21). This pol-
icy is again used to generate a new batch of experiences, and
the cycle continues until Q has converged. The size of the
memory D can be controlled by choosing a suitable value
for m.2 Note that in Algorithm 1, we have omitted the
subscripts for D and Q, treating them as implicit.

Algorithm 1 Batch Reinforcement Learning

1: Q← Q0. // Initialize action value function.

2: // Generate batches of experiences, and update policy
after each generation.

3: repeat

4: D ← ∅. // Initialize sequence of experiences D.
5: i← 0. // Initialize size of D.

6: // Collect experiences for m episodes.
7: episodes← 0.
8: repeat

9: i← i + 1.

10: if new episode then
11: si ← getStateFromEnvironment().
12: episodes← episodes + 1.
13: end if

14: ai ← selectAction(Q, si).
15: Execute ai.
16: ri ← getRewardFromEnvironment().
17: si+1 ← getStateFromEnvironment().
18: di ← (si, ai, ri, si+1).
19: D.append(di).

20: until episodes = m.

21: Q← trainBatch(D). //Update policy.

22: until Q has converged

In this paper, we examine two different methods to im-
plement the trainBatch() function in Algorithm 1, namely

1In this presentation, as also in our experiments, we only
consider algorithms that do not make use of a model of the
underlying task for the purpose of learning. Model-based
methods have been used in the past to learn good control
based on a small sample of training experiences [7].
2In our experiments, we store all past experiences in D, not
just the experiences generated during the current batch. We
cite reasons for doing so in Section 5.



Experience Replay [5] and Fitted Q Iteration [2]. Ex-
perience replay can be viewed as a direct extension of on-line
learning to the batch case. With on-line learning, a single
update is made based on an experience and then that expe-
rience is discarded. Rather than discarding each experience
after a single update, with experience replay, experiences
are stored and the batch update replays them repeatedly.
As shown in Algorithm 2, k passes are made through the
collected set of experiences D, and within every pass a Q-
learning update is made for each experience.

Algorithm 2 trainBatchExperienceReplay(D)

1: Q← Q0. // Initialize action value function.

2: // Train for k iterations.
3: for iteration = 1 to k do

4: // Replay each experience.
5: for all i ∈ [1..|D|] do
6: // di = (si, ai, ri, si+1).
7: Q(si, ai) ← Q(si, ai) + α(ri + γ maxa Q(si+1, a) −

Q(si, ai)).
8: end for

9: end for

10: Return Q

Fitted Q Iteration, presented in Algorithm 3, adopts the
approach of computing the action value function through a
series of successive approximations, starting with some ini-
tial approximation Q0. The training data set D is processed
through several epochs (line 2). At the beginning of every
epoch, a target Q-value Ti is fixed for each experience di in
D (lines 4-7), based on the current approximation Qepoch−1.
The next approximation, Qepoch, is obtained by training the
function approximator in a supervised fashion to fit these
targets (lines 10-15). The targets get revised again based on
the new approximation, and the cycle continues for a num-
ber of epochs E until the approximations begin to converge.

Algorithm 3 trainBatchF ittedQIteration(D)

1: // Starting with initial value Q0, compute a sequence of
approximations of Q until it converges.

2: for epoch = 1 to E do

3: // Fix targets for each di based on Qepoch−1.
4: for all i ∈ [1..|D|] do
5: // di = (si, ai, ri, si+1)
6: Ti ← ri + γ maxa Qepoch−1(si+1, a)
7: end for

8: // Fit the targets using supervised learning.
9: Qepoch ← Q0.

10: for iteration = 1 to k do

11: for all i ∈ [1..|D|] do
12: // di = (si, ai, ri, si+1).
13: Qepoch(si, ai)← Qepoch(si, ai) + αsupervised(Ti −

Qepoch(si, ai)).
14: end for

15: end for
16: end for

17: Return QE

Before empirically comparing the on-line and batch algo-
rithms that we use in our experiments, i.e., simple on-line

learning (OL), Experience Replay (ER), and Fitted Q It-
eration (FQI), we first compare and contrast their general
properties. ER and FQI are both batch methods that make
updates based on saved data. However, the “batch” up-
date of ER is simply a series of repeated Q-learning updates
based on individual saved experiences. Consider the (un-
usual) case when k is set to 1 in Algorithm 2; this models an
ER algorithm that replays experiences from a batch exactly
once. Learning from the same batch of experiences, and
visiting them in the same order, this ER algorithm would
make the same updates and learn exactly the same action
value function as an on-line algorithm. In contrast, the up-
dates made to the function approximator using FQI are akin
to supervised learning updates: target Q-values are frozen
prior to making the updates, which are themselves gradient
descent steps to minimize the error function defined by the
targets. Since the targets for all the experiences in the batch
are fixed before making updates to any state-action pair, we
can think of FQI’s update as multi-experience. Table 1 sum-
marizes the relationship between OL, ER, and FQI.

Table 1: Comparison of Methods
Update Experiences Experiences

not saved saved (Batch)
Single-experience On-Line Experience Replay
Multi-experience n/a Fitted Q Iteration

Our test domain for comparing OL, FQI, and ER is Keep-
away, which is described in the next section.

3. TEST DOMAIN: KEEPAWAY SOCCER

Keepaway soccer [11] is a challenging benchmark problem
for reinforcement learning. Keepaway is a subtask of sim-
ulated RoboCup soccer [6], a domain in which agents have
both teammates and adversaries, are provided partial and
noisy sensory perceptions, have imperfect actuators, and
must act in real time. In Keepaway, a team of m keep-
ers faces the task of keeping possession of the ball3 within
a rectangular region of play, resisting attempts by the op-
posing team of n takers to wrest possession. The task is
episodic; each episode begins with one of the keepers having
possession, and ends when any of the takers gets the ball
or the ball goes outside the rectangular region. The keep-
ers are evaluated simply based on the length of the episode,
also called the hold time. Figure 1 shows a screen-shot
from Keepaway with 3 keepers and 2 takers (3 versus 2).

The keeper who is closest to the ball, denoted K1, can
choose to execute one of m high-level actions: HoldBall(),
by which it keeps the ball within kick-able distance, but
away from any approaching taker, or PassBall(k), k =
2, 3, 4 . . . , m, which is a direct pass to its k − th teammate,
the teammates always being ordered based on their dis-
tances to K1. In this paper, we treat treat HoldBall()
and PassBall(k) as actions; nonetheless, they are actually
high-level skills or options [13] implemented through low-
level actions like Turn and Kick. HoldBall() usually lasts
1 − 2 cycles of simulation time, a cycle being 100 millisec-
onds in real time. PassBall(k) typically lasts between 4

3possession of the ball means having it close enough for it
to be kicked.



Figure 1: 3 versus 2 Keepaway.

and 12 cycles, depending on the distance the pass has to
travel. The learning problem is to decide which action K1

must execute from any given state, in order that episode
length be maximized. The behaviors of keepers other than
K1 and the takers are fixed. Since the state space is con-
tinuous, it is represented using a set of state variables. For
the 3 versus 2 version of the task, Stone et al. [11] use 13
such state variables, involving distances and angles among
the players. They also provide a solution to the Keepaway
problem that involves on-line Sarsa reinforcement learning.
A function approximator, whose inputs are the 13 state vari-
ables, is used to store the action value function Q for every
action. The action a that the learned policy π chooses from
any state s, is given by π(s) = argmaxa Q(s, a). Since the
task is episodic, no discounting is used for computing the
Q-function.

The main focus of this paper is to study the performance
of batch algorithms on Keepaway, and especially how they
compare with the Sarsa based on-line algorithm of Stone et
al.. Our experiments use a slightly modified version of the
benchmark version of Keepaway [10, 11]. The modifications
preserve the main challenges posed by Keepaway, including
its continuous and high-dimensional state space that neces-
sitates the use of function approximation, and noise both
in perception and action. In aggregate, they make the task
itself slightly more difficult, providing the scope to differen-
tiate among the learning methods. Informal testing shows
that they do not adversely affect the on-line learning by
a significant amount; also, all the experiments reported in
this paper are performed on this same version of the task, so
comparisons among the algorithms remain fair. The modi-
fications are as follows.

• Agent Communication: Unlike Stone et al.’s algorithm,
in which the keepers all learn autonomously, we al-
low them to communicate messages in order to share
their experiences, effectively simulating a centralized
learning paradigm. In the autonomous learning case,
an agent’s updates depend upon the policy followed
by other agents, making the learning problem non-
stationary. In the centralized paradigm, there is effec-
tively only a single learner, and the learning task be-
comes stationary. The latter approach has been shown
in the past to speed up learning in Half Field Offense
[3], a task that extends Keepaway to a goal shooting
scenario.

• Action Value function: In our implementation, batch
learning algorithms often have to make updates based
on samples generated by very different policies, so it
is more convenient to learn the optimal action value
function Q∗, by making Q-learning updates, as op-
posed to learning the on-policy action value function
using Sarsa updates. We verified that Q-learning and
Sarsa have similar performance with on-line learning
in our task variant.

• State Variables: The state variables adopted by Stone
et al. [11] (depicted in Figure 1) involve distances and
angles between the other players and K1. We find that
though K1 is typically very close to the ball, better
generalization is achieved by actually using the posi-
tion of the ball instead of the position of K1 while com-
puting state variables. Thus, we would use
dist(Ball, T1) as a state variable in place of dist(K1, T1).

• Taker Possession time: In the benchmark version [10,
11], a taker is deemed to have acquired possession only
if it keeps the ball for 5 cycles of simulation time.
Therefore, it often happens that a taker gets the ball,
but some keeper is able to steal it before 5 cycles have
elapsed. The dynamics of the learning problem are
made more straightforward by avoiding such a sce-
nario, so we terminate an episode as soon as a taker
is in a position to kick the ball (for 1 cycle). Note,
however, that doing so makes the keepers’ task more
difficult: episodes that would not have ended in the
benchmark version, do end in our version.

4. EXPERIMENTS AND RESULTS

We implemented each of the three learning algorithms
(OL, ER, and FQI) on Keepaway with two different func-
tion approximation schemes: CMAC tile coding (CMAC)
and neural network (NNet). Under both schemes, we main-
tain a separate function approximator for each action, which
takes as input the 13 state variables, and computes as out-
put the Q value for that action.

CMAC [1] is a linear function approximation scheme that
partitions the input space into axis-aligned regions called
tiles. Several different partitions can be overlaid, and each
is called a tiling. The function approximator associates a
weight with each tile, and the function value for any input
point is computed as the sum of the weights of the tiles
(one from each tiling) within which that point falls. In our
experiments, we found CMAC to be robust to parameters
like the number of tilings and the width of tiles, and we
used the same values used by Stone et al. [11], i.e., 32 one-
dimensional tilings along each state variable, with tile widths
of 3m for state variables that represent distances, and 10◦

for angles. CMAC weights were initially set to 0. Learning
updates involved simple gradient descent, with a learning
rate of α = 0.125.

We found that NNet, which can represent complex, non-
linear functions, is more sensitive than CMAC to the actual
parameter settings. We experimented informally with net-
works having one and two hidden layers, with the number of
hidden nodes ranging from 20 to 100. With these configura-
tions, we tried multiple values of the learning rate α ranging
from 10−6 to 10−1. We found that the best performance
was achieved by a network with one hidden layer compris-



ing 40 nodes, using sigmoid activation functions. The net-
work weights were initialized to random values in the range
[−0.5, 0.5]. It was trained using back-propagation. Unlike
CMAC, we found it necessary to tune the learning rate to
the specific algorithm employing NNet; we used α = 5×10−4

with OL, α = 10−4 with ER, and α = 10−5 with FQI.
Figure 2 shows the performance of these algorithms on the

Keepaway task. The x axis marks the number of episodes
of training. At intervals of 50 episodes, we freeze the policy
learned at that time and evaluate it by running it off-line
(without learning) for 1000 episodes. The y axis represents
the average hold time per episode during the evaluation pe-
riod. Notice that initially, i.e., after 0 episodes of training,
all policies register a hold time of about 4.8 seconds, which
corresponds to the performance achieved by a random pol-
icy. Each curve in the graph represents an average of at
least 30 independent trials.

Figure 2: Performance: 500 episodes
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From the graph, it is apparent that there is a stark differ-
ence in the learning speed of the batch and on-line methods.
After just the first 50 episodes of training, ER and FQI are
able to achieve hold times that are between 1 and 3 seconds
higher than those achieved by OL, irrespective of the func-
tion approximator being used. In fact, most of their learning
occurs within the the first 300 episodes. ER and FQI achieve
a hold time of 8 seconds in fewer episodes than OL, with a
p-value of p < 10−13, both under CMAC and NNet. This
is in spite of rounding down the number of episodes taken
by the OL–CMAC and OL–NNet to the nearest multiple
of 500, past the first 500 episodes of training. Table 2 dis-
plays the average number of episodes taken by the methods
to achieve hold times of 6, 7, 8, 9, and 10 seconds. Each
entry also provides the number of runs amongst the total
conducted for each algorithm that reach the specified hold
time. Thus, all the runs of all the algorithms reach 6, 7, and
8 seconds of hold time, but only 32 of the 36 runs conducted
for ER–CMAC reach 9 seconds. Incidentally, FQI–CMAC
is never able to learn policies having a hold time of 9 sec-
onds or more. Note that the number of samples on average
needed by FQI–NNet and ER–NNet to reach 10 seconds of
hold time, which is close to the best performance achieved
by any algorithm on this task, improves the number of sam-
ples required by OL–CMAC and OL–NNet to achieve the
same hold time by over an order of magnitude.

Due to the high computation time needed by the batch al-

Table 2: Sample Complexity
Algorithm 6s 7s 8s 9s 10s

OL–CMAC 262 325 777 1497 2761
34 34 34 34 34 23

ER–CMAC 61 89 132 217 297
36 36 36 36 32 16

FQI–CMAC 50 69 248 − −
39 39 39 32 0 0

OL–NNet 222 486 2235 3262 3583
36 36 36 36 21 6

ER–NNet 62 104 157 199 263
37 37 37 37 35 30

FQI–NNet 50 63 82 151 246
39 39 39 39 39 27

gorithms (see Section 5), we were unable to run experiments
with them beyond 400 episodes. Nevertheless, we were able
to train using the on-line algorithms for up to 5000 episodes.
Figure 2 shows that past the first 150 episodes, OL–CMAC
registers a better performance than OL–NNet; from Figure 3
we see that by 1500 episodes, it has also overtaken FQI-
CMAC. It is not clear if the performance of ER–NNet has
begun to stabilize after 400 episodes, when it has achieved
a hold time of 10.28 seconds. OL–CMAC appears to have
reached its highest performance, a hold time of 9.67 seconds,
at 3500 episodes. A single tailed t-test comparing their best
performance values reveals that ER–NNet outperforms OL-
CMAC with p-value p < 2.5 × 10−3, establishing its su-
perior asymptotic performance. FQI–NNet, on the other
hand, registers 9.84 seconds after 400 episodes, and exceeds
OL–CMAC’s performance with p-value p < 0.14; thus, their
performances are at best comparable.

Figure 3: Performance: 5000 episodes
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5. DISCUSSION
Our results show that batch algorithms can yield signifi-

cant gains in both sample complexity and asymptotic perfor-
mance when compared to on-line algorithms. Their superi-
ority is demonstrated on a complex task. In this section, we
proceed to investigate their behavior along several dimen-
sions, motivating design issues for extending them to other
problems. We also consider possible directions for future
research.



5.1 Function Approximation
An attractive feature of linear function approximators like

CMAC is that under some conditions, they can be shown to
converge. Such a guarantee is not available when making
Q-learning updates; nonetheless, our experiments show that
both on-line and batch algorithms using CMAC eventually
achieve good performance. A very natural extension to the
experiments we have carried out would be an implementa-
tion of Least-Squares Policy Iteration, a provably conver-
gent batch learning method for linear function approxima-
tors that has been proposed by Lagoudakis and Parr [4]. In
Section 6, we discuss some issues involved in doing so.

Despite having no guarantees of convergence, we find in
our experiments that that both ER and FQI show higher
asymptotic performance with NNet than with CMAC. NNet
is indeed capable of representing far more complex functions
than linear function approximators, but due to the broad
and “global” nature of its generalization, it can be very sen-
sitive to parameter settings. Nonetheless, our experiments
demonstrate that its potential can be realized through stable
batch algorithms like FQI, extending the findings of Ried-
miller [8], which were limited to low-dimensional control
tasks, to the more complex Keepaway domain.

5.2 Training Experiences
For all our batch algorithms, we gathered training expe-

riences in batches of 50 episodes, an episode typically com-
prising 10 − 20 experiences. At the end of each batch, we
used all the experiences so far gathered to compute a new
policy. Thus, the first policy update would use experiences
from the first 50 episodes, the second from the first 100 (in-
cluding the first 50), the third from the first 150, and so
on. Our scheme contrasts with the more common approach
followed by batch learning and policy iteration algorithms,
which only use “recent” experiences for making a batch pol-
icy update (as outlined in Algorithm 1). For instance, in
Lin’s experience replay algorithm [5], only samples from the
100 most recent experiences are used for replaying.

There are advantages to using only recent samples for up-
dates. Bootstrapping methods are likely to converge only
when updates are on-policy [12]. With on-policy updates,
the learned policy is likely to be sub-optimal if the updates
involve samples from early in the training phase, when be-
havior is close to random. In fact, it becomes necessary in
non-stationary environments to only use recent experiences,
as past ones may have ceased to reflect the current dynam-
ics of the task. Interestingly, though, our experiments in
the Keepaway domain revealed that the best performance
is always achieved by using all the training samples gath-
ered prior to an update for making that update. A possible
explanation for this observation is as follows. As successive
batch updates start yielding better policies, then by follow-
ing them, fewer and fewer sub-optimal actions are taken.
Hence, for some state s, the most recent experiences are
likely to contain only information about taking the opti-
mal action from s; by making the next update to the policy
based on these experiences alone, the function approximator
receives little information about the consequences of taking
other actions from s. But since the new policy implicitly
represents the action to choose from s through Q-functions
for all actions, it is possible that in the absence of training
data, non-optimal actions have higher Q-values for s than
the optimal action. This could lead to non-optimal actions

being chosen, affecting the performance of the policy. How-
ever, in samples obtained early in training, all actions are
taken with reasonable likelihood; so these result in a bet-
ter estimate of the Q-function for non-optimal actions as
well. Note that in order to accommodate for the use of sam-
ples generated by different policies, with both ER and FQI,
we perform off-policy updates that directly approximate the
optimal action value function Q∗. Also, our variant of the
Keepaway task is stationary; so samples obtained from early
in training continue to reflect the true dynamics of the en-
vironment.

Both with ER and FQI, the batch update involves a num-
ber of atomic updates to the function approximator making
use of state-action pairs from the individual samples. The
order in which these updates are made can have an impact
on the learning. Lin [5] suggests that it is useful to replay
experiences in backward order, i.e., replay more recent ex-
periences first, in order to propagate rewards faster. We
followed the same procedure in our experiments with ER.
For FQI, we randomized the order of updates within every
supervised training iteration.

The ability to re-use experiences entails the cost of storing
them. In general, our approach of storing all previous expe-
riences may not be feasible. Ideally, we would only like to
store at any point, a small, bounded set of experiences. It is
an avenue for future research to identify which experiences
are likely to be “useful”, and to only save a manageable
number of useful experiences.

5.3 Computational Complexity
An important concern with batch algorithms is the com-

putational expense involved in making the batch update.
An on-line learning algorithm only makes one update to the
function approximator for every experience, so the number
of such updates it makes while encountering n training sam-
ples is just θ(n). A batch of n examples that has to be vis-
ited over k iterations by ER, however, takes θ(nk) updates.
If FQI sweeps through the batch for E epochs, and within
each epoch takes k iterations to train the function approx-
imator to convergence, its complexity is θ(nEk). The best
results were achieved in our experiments by setting: k = 10
for ER–CMAC; E = 5, k = 100 for FQI–CMAC; k = 10 for
ER–NNet; and E = 10, k = 500 for FQI–NNet. With these
values, it took FQI–NNet roughly a day on a 3.0 GHz dual
CPU processor for doing a batch update using 400 episodes
of experience. It was indeed the large computation time
taken by batch algorithms that prevented us from training
them with more than 400 episodes of experience for our ex-
periments.

The main motivation for employing batch algorithms, de-
spite the computational overhead involved, is their economy
in sample complexity. In many domains, it can be laborious
and time consuming to collect experiences; and the most ef-
ficient use needs to be made of the small sample collected.
Though Keepaway is a simulated domain, in which this is
not the case, it is easy to imagine a similar task involving
real robots that would take much longer. Possibly, a human
would have to be present while gathering data from the envi-
ronment. It could be impractical to learn such a task using
OL, but the thousands of episodes saved by ER and FQI
could in fact make it feasible.

Based on the settings used for our experiments, we find
that ER–CMAC and FQI–CMAC roughly make about 10



and 500 times as many updates as OL–CMAC, respectively,
for training a single batch of samples. FQI–CMAC’s asymp-
totic performance compares poorly with those of ER–CMAC
and OL–CMAC, despite making far more updates per episode
than either. It seems unlikely, then, that computational
complexity alone accounts for the superior performance of
batch algorithms. Lin [5] examines the issue of over-training,
which occurs when the same experiences are used far too
many times. We noticed too, that increasing the number of
iterations k of ER–CMAC beyond 10 sometimes causes the
CMAC weights to diverge.

5.4 Underlying Algorithm
The two batch algorithms we used in our experiments, ER

and FQI, both show high initial learning speed. After 400
episodes, we find that ER has learned a better policy than
FQI under both CMAC and NNet function approximation
schemes. It should be mentioned, though, that ER requires
more careful tuning than FQI, which seems to operate rea-
sonably well under a wider range of parameter values. A pos-
sible explanation is that the supervised learning approach
employed by FQI lends greater stability while training the
function approximator. It emerges that the performance of a
batch algorithm rests on the interplay of several parameters:
the number of samples used for the batch update, their dis-
tribution, the complexity of the update, and the properties
of the function approximator. The main contribution of this
paper is a demonstration that with careful experimentation,
it is possible to realize batch algorithms that yield significant
gains over on-line algorithms in complex domains.

ER and FQI are both model-free methods that make up-
dates to the function approximator solely based on the tran-
sitions observed from the environment. If a model of the en-
vironment is available, or if it can be learned, then it can be
used to simulate transitions that mimic the dynamics of the
environment. This can greatly reduce sample complexity,
as updates can be made based on the simulated transitions.
Of course, the quality of the solution will depend on the
accuracy of the model. To the best of our knowledge, a
model-based approach has not been considered before for
Keepaway. The domain poses challenges in the form of a
continuous, partially observable state space, and noisy, high-
level actions. To be able to learn a model for this domain
and use it to speed up learning promises to be an interesting
problem for future research.

6. RELATED WORK
This paper presents empirical evidence that two existing

batch algorithms, Experience Replay and Fitted Q Itera-
tion, can significantly improve upon the performance of on-
line methods in a complex task for reinforcement learning:
Keepaway. Experience Replay is due to Lin [5], who intro-
duces it as a technique to speed up on-line learning. His
test domain is a 25× 25 grid world in which an agent must
reach cells containing food, while evading enemies pursu-
ing it. It is shown in this domain that ER learns faster
than OL. Incidentally, the function approximator employed
is a neural net; in our experiments too, ER–NNet shows
the best asymptotic performance. In addition, our results
demonstrate the feasibility of using ER in conjunction with
CMAC for function approximation.

Ernst et al. introduce Fitted Q Iteration [2] as a batch re-
inforcement learning method, and prove convergence prop-

erties for certain classes of function approximators called
kernel-based methods. They consider the special case of
tree-based function approximators, and provide empirical
support for the guarantees of the algorithm on classical con-
trol problems like Acrobot and Mountain Car. Riedmiller
[8] expressly studies the use of neural networks as function
approximators with FQI. He reports that successful policies
can be learned using relatively few training samples on three
control tasks: Pole Balancing, Mountain Car, and Cart-pole.
These tasks have continuous state spaces, with perfect state
information, but none of them involve more than 4 state
variables. Our test domain, 3 versus 2 Keepaway, employs
as many as 13 state variables; further, state information
is noisy. Another key difference between the control tasks
Riedmiller considers and Keepaway is that in the former, it
is possible to generalize across actions. In Pole Balancing,
for instance, the two available actions are a left force and
right force of equal magnitude; these are given to the neural
network through a single input. No such generalization is
possible in Keepaway, since the actions are composite, high-
level commands HoldBall() and PassBall(k). Since we
use a separate function approximator for each action, learn-
ing becomes all the more difficult.

Lagoudakis and Parr’s Least-Squares Policy Iteration
(LSPI) [4] is a model-free batch learning method applica-
ble exclusively to problems where the function approxima-
tor computes the action value function as some linear com-
bination of basis functions defined over the state variables.
If there are k such functions, LSPI’s batch update directly
computes their weights through a linear operation involving
a k × k matrix that has been populated based on sample
data from the batch. While it is guaranteed that LSPI will
converge, the quality of the solution hinges on the particu-
lar choice of basis functions and the distribution of collected
samples, both of which become important concerns if the
method is to be applied to Keepaway. We note that for the
tasks they consider in their experiments, Lagoudakis and
Parr only have to employ a few tens of basis functions to
represent the Q-function. With our current CMAC scheme,
a few thousand basis functions are used in order to achieve
good resolution for the Q-function: this could result in a
very large matrix. Also, in their experiments, just a single
batch of experiences collected using a random policy seems
to suffice for learning a good policy; our results indicate
that in Keepaway, samples collected by following updated
versions of the policy contribute significantly to the learned
performance. For these reasons, a direct comparison of our
methods against LSPI is not straightforward, and falls be-
yond the scope of this paper. Nonetheless, implementing
LSPI for Keepaway holds promise as future work.

Keepaway is a challenging benchmark problem for rein-
forcement learning. Accompanying their introduction of the
task, Stone et al. [11] present a Sarsa-based on-line algo-
rithm for Keepaway, using CMAC for function approxima-
tion. On-line learning has subsequently been extended to
other function approximators like neural networks and ra-
dial basis functions [10]. Problems related to reinforcement
learning, such as behavior transfer [15] have been studied in
the context of Keepaway. Taylor et al. [14] have also applied
evolutionary methods to this domain, which, like the batch
methods we have considered, use a significant amount of off-
line processing time to improve the learned policy. But to
the best of our knowledge, none of the other algorithms ap-



plied to Keepaway give qualitative results of a reduction in
sample complexity comparable with the order of magnitude
reduction seen in our experiments.

7. CONCLUSION
In this paper, we have compared batch reinforcement learn-

ing algorithms with on-line algorithms. Our particular con-
cern is economy in the sample complexity of algorithms,
which is a key issue for learning in complex domains. We
have adopted Keepaway, one such complex, continuous, mul-
tiagent domain to carry out our experiments. On this task,
we demonstrate the superior sample complexity achieved by
two existing batch algorithms, Experience Replay and Fitted
Q Iteration. In addition to comparing and contrasting batch
algorithms an on-line algorithms, this paper presents the
first implementations of batch RL algorithms with a CMAC
function approximator, and presents results for batch algo-
rithms in a significantly more complex scenario than has
been previously studied. Our results indicate that using
batch algorithms may be a viable approach to scaling up
reinforcement learning to more real-world tasks.
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