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Abstract

Layered learning is a hierarchical machine learning paradigm that enables learning of complex behaviors by incrementally learning

a series of sub-behaviors. A key feature of layered learning is that higher layers directly depend on the learned lower layers. In

its original formulation, lower layers were frozen prior to learning higher layers. This article considers a major extension to the

paradigm that allows learning certain behaviors independently, and then later stitching them together by learning at the “seams”

where their influences overlap. The UT Austin Villa 2014 RoboCup 3D simulation team, using such overlapping layered learning,

learned a total of 19 layered behaviors for a simulated soccer-playing robot, organized both in series and in parallel. To the best of

our knowledge this is more than three times the number of layered behaviors in any prior layered learning system. Furthermore,

the complete learning process is repeated on four additional robot body types, showcasing its generality as a paradigm for efficient

behavior learning. The resulting team won the RoboCup 2014 championship with an undefeated record, scoring 52 goals and

conceding none. This article includes a detailed experimental analysis of the team’s performance and the overlapping layered

learning approach that led to its success.
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1. Introduction

Task decomposition is a popular approach for learning complex control tasks when monolithic learning—trying

to learn the complete task all at once—is difficult or intractable [4, 5, 6]. Layered learning [7] is a hierarchical task

decomposition machine learning paradigm that enables learning of complex behaviors by incrementally learning a

series of sub-behaviors. A key feature of layered learning is that higher layers directly depend on the learned lower

layers. In its original formulation, lower layers were frozen prior to learning higher layers. Freezing lower layers

can be restrictive, however, as doing so limits the combined behavior search space over all layers. Concurrent layered

learning [8] reduced this restriction in the search space by introducing the possibility of learning some of the behaviors

simultaneously by “reopening” learning at the lower layers while learning the higher layers. A potential drawback of

increasing the size of the search space, however, is an increase in the dimensionality and thus possibly the difficulty

of what is being learned.

This article considers an extension to the layered learning paradigm, known as overlapping layered learning, that

allows learning certain parameterized behaviors independently, and then later stitching them together by learning at

the “seams” where their influences overlap. Overlapping layered learning aims to provide a middle ground between

✩This article is based on previous conference publications [1, 2, 3].

1



MacAlpine and Stone / Artificial Intelligence 254 (2018) 2

reductions in the search space caused by freezing previously learned layers and the increased dimensionality of con-

current layered learning. Additionally, for complex tasks where it is difficult to learn one subtask in the presence of

another, it reduces the dimensionality of the parameter search space by focusing only on parts responsible for subtasks

working together.

The UT Austin Villa 2014 RoboCup 3D simulation team, using overlapping layered learning, learned a total of

19 layered behaviors for a simulated soccer-playing robot, organized both in series and in parallel. To the best of

our knowledge this is more than three times the number of layered behaviors in any prior layered learning system.

Furthermore, the complete learning process is repeated on four different heterogeneous robot body types, showcasing

its generality as a paradigm for efficient behavior learning. The resulting team won the RoboCup 2014 championship

with an undefeated record, scoring 52 goals and conceding none.

Primary contributions of this article are twofold. First, we introduce the overlapping layered learning paradigm,

and present general scenarios where its use is beneficial. Second, we provide a detailed description and analysis of our

machine learning approach, incorporating overlapping layered learning, to create a large and complex control system

that was a core component of the 2014 RoboCup 3D simulation league championship team as well as three subsequent

championship teams.

The remainder of this article is organized as follows. Section 2 provides background information on the original

layered learning paradigm which is the basis for this work. Section 3 specifies and motivates the overlapping layered

learning paradigm while contrasting it with traditional and concurrent layered learning. In Section 4 we introduce the

RoboCup 3D simulation domain in which we evaluate this research. Section 5 details the overlapping layered learning

approach of the 2014 UT Austin Villa team and in Section 6 we provide detailed analysis of its performance. Section 7

discusses related work while Section 8 concludes.

2. Layered Learning Paradigm

Table 1 summarizes the principles of the original layered learning paradigm which are described in detail in this

section.1

1. A mapping directly from inputs to outputs is not tractably learnable.

2. A bottom-up, hierarchical task decomposition is given.

3. Machine learning exploits data to train and/or adapt. Learning occurs separately at each level.

4. The output of learning in one layer feeds into the next layer.

Table 1. The key principles of layered learning.

Principle 1

Layered learning is designed for domains that are too complex for learning a mapping directly from the input to

the output representation. Instead, the layered learning approach consists of breaking a problem down into several

task layers. At each layer, a concept needs to be acquired. A machine learning (ML) algorithm abstracts and solves

the local concept-learning task.

Principle 2

Layered learning uses a bottom-up incremental approach to hierarchical task decomposition. Starting with low-

level subtasks, the process of creating new ML subtasks continues until reaching the high-level task that deal with the

full domain complexity. The appropriate learning granularity and subtasks to be learned are determined as a function

of the specific domain. The task decomposition in layered learning is not automated. Instead, the layers are defined

by the ML opportunities in the domain.

1This section is adapted from [7].
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Principle 3

Machine learning is used as a central part of layered learning to exploit data in order to train and/or adapt the

overall system. ML is useful for training functions that are difficult to fine-tune manually. It is useful for adaptation

when the task details are not completely known in advance or when they may change dynamically. In the former case,

learning can be done off-line and frozen for future use. In the latter, on-line learning is necessary: since the learner

needs to adapt to unexpected situations, it must be able to alter its behavior even while executing its task. Like the task

decomposition itself, the choice of machine learning method depends on the subtask.

Principle 4

The key defining characteristic of layered learning is that each learned layer directly affects the learning at the

next layer. A learned subtask can affect the subsequent layer by:

• constructing the set of training examples;

• providing the features used for learning; and/or

• pruning the output set.

Formalism

Consider the learning task of identifying a hypothesis h from among a class of hypotheses H which map a set

of state feature variables S to a set of outputs O such that, based on a set of training examples, h is most likely (of

the hypotheses in H) to represent unseen examples. When using the layered learning paradigm, the complete learning

task is decomposed into hierarchical subtask layers {L1, L2, . . . , Ln} with each layer defined as

Li = ( ~Fi,Oi,Ti,Mi,Hi, hi)

where:

~Fi is the input vector of state features relevant for learning subtask Li. ~Fi =< F1
i
, F2

i
, . . . >. ∀ j, F

j

1
∈ S .

Oi is the set of outputs from among which to choose for subtask Li. On = O.

Ti is the set of training examples used for learning subtask Li. Each element of Ti consists of a correspondence

between an input feature vector ~f ∈ ~Fi and o ∈ Oi.

Mi is the ML algorithm used at layer Li to select a hypothesis mapping ~Fi 7→ Oi based on Ti.

Hi is the policy representation mapping ~Fi to Oi.
2

hi is the result of running Mi on Ti. hi is a specific instantiation of Hi and is a function from ~Fi to Oi.

As set out in Principle 2 of layered learning, the definitions of the layers Li are given a priori. Principle 4 is addressed

via the following stipulation. ∀i < n, hi directly affects Li+1 in at least one of three ways:

• hi is used to construct one or more features Fk
i+1

.

• hi is used to construct elements of Ti+1; and/or

• hi is used to prune the output set Oi+1.

It is noted above in the definition of ~Fi that ∀ j, F
j

1
∈ S . Since ~Fi+1 can consist of new features constructed using hi,

the more general version of the above special case is that ∀i, j, F
j

i
∈ S ∪i−1

k=1
Ok.

In the context of this work all learned behaviors—or hypotheses—are represented by parameterized policies,

where a parameterized policy with k parameters for layer Li is the set of parameters Hi = {H
1
i
, . . . ,Hk

i
}, and the

hypothesis is the corresponding set of the parameters’ learned values hi = {h
1
i
, . . . , hk

i
}.

2Previous work [7, 8] included Hi within Mi, however we separate out Hi for ease of notation.
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3. Overlapping Layered Learning Paradigm

As explained in Section 2, layered learning is a hierarchical learning paradigm that enables learning of complex

behaviors by incrementally learning a series of sub-behaviors—each learned sub-behavior is a layer in the learning

progression. Higher layers depend on lower layers for learning. This dependence can include providing features for

learning, such as initial seed values for parameters when H is a parameterized policy, as well as a previous learned

layer’s behavior being incorporated into the learning task for the next layer to be learned. In layered learning’s original

sequential formulation, layers are learned in a sequential bottom-up fashion and, after a layer is learned, it—the learned

hypothesis h of the layer—is frozen before beginning learning of the next layer.

Concurrent layered learning, on the other hand, purposely does not freeze newly learned layers, but instead keeps

them open during learning of subsequent layers: hi is not frozen before the training of Li+1 begins. Thus, the effect

that hi has on Ti+1 is not fixed during learning of Li+1, and in fact changes as hi continues to be learned. We denote

the continued learning of hi as Hi ⊆ Hi+1, meaning that Hi—the set of of parameters that the values of hi are assigned

to—is a subset of Hi+1, and thus the parameters Hi are fully included in what is learned for the hypothesis hi+1—the

parameter values hi are re-learned—in the subsequent layer of learning Li+1. Previously learned layers’ behaviors are

left open so that learning may enter areas of the behavior search space that are closer to the combined layers’ optimum

behavior as opposed to being confined to areas of the joint layer search space where the behaviors of previously learned

layers are fixed. While concurrent layered learning does not restrict the search space in the way that freezing learned

layers does, the increase in the search space’s dimensionality can make learning slower and more difficult.

Overlapping layered learning seeks to find a tradeoff between freezing each layer once learning is complete and

leaving previously learned layers open. It does so by keeping some, but not necessarily all, parts of previously learned

layers open during learning of subsequent layers. The part of previously learned layers left open is the “overlap” with

the next layer being learned. In this regard concurrent layered learning can be thought of as an extreme of overlapping

layered learning with a “full overlap” between layers. Additionally, overlapping layered learning allows for behaviors

to be learned independently in parallel—not just sequentially in series—and then later stitched together by learning

at the “seams” where their influences overlap.

Overlapping Layered Learning: Layered learning both in series and parallel in which some, but not necessarily

all, parts of previously learned layers are left open during learning of subsequent layers.

A layer of learning can be partially left open by freezing only a subset of its learned behavior’s policy’s parameters

during subsequent layers of learning. We denote a set of parameters H′ as being open and learned in a layer of learning

Li if the set of parameters are included in the layer’s learned policy representation Hi (i.e. H′ ⊆ Hi), and conversely

a set of previously learned values h′ for parameters H′ are frozen if they are still part of the layer of learning—in the

context of this work previously learned and frozen parameter values serve to define behavior used in the training task

Ti which we denote as h′ ≺ Ti—but are not included in the layer’s learned policy representation (i.e. H′ ∩ Hi = ∅).

A previously learned set of parameter values h′ may also be used to initialize or seed values of Hi. We denote such a

relationship as h′ 99K Hi

The following are several general scenarios, depicted in the bottom row of Figure 1, for overlapping layered

learning that help to clarify the learning paradigm and identify situations in which it is useful:

Combining Independently Learned Behaviors (CILB): Two or more behaviors are learned independently in the

same or different layers, and then are combined together for a joint behavior at a subsequent layer by relearning

some subset of the behaviors’ parameters or “seam” between the behaviors. Let Li,b represent learning of the bth

independent behavior in the ith layer of learning. In the case of two independent behaviors learned in parallel in

the same layer, which we notate as hi,1 learned in Li,1 and hi,2 learned in Li,2, they are combined in a subsequent

layer of learning L j,b, where j > i, to learn a joint behavior h j,b containing parts or all of either or both of Hi,1

and Hi,2 (i.e. Hi,1 ∈ L j,b, Hi,2 ∈ L j,b, and ∃H′ ⊆ {Hi,1 ∪ Hi,2} s.t. both H′ , ∅ and H′ ⊆ H j,b). This scenario is

best when subtask behaviors are too complex and/or potentially interfere with each other during learning, such

that they must be learned independently, but ultimately need to work together for a combined task. Example: A

basketball playing robot that must be able to dribble the ball across the court and shoot it in the basket. The
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Figure 1. Paradigms for layered learning. Boxes represent different behaviors with the behaviors or parts of behaviors being learned shown in red.

The arrows represent the transition from one layer of learning to the next.

tasks of dribbling and shooting are too complex to attempt to learn them together, but after the tasks are learned

independently they can be combined by re-optimizing parameters that control the point on the court at which

the robot stops dribbling and the angle at which the robot shoots the ball.

Partial Concurrent Layered Learning (PCLL): Only part, but not all, of a previously learned layer’s behavior pa-

rameters are left open when learning a subsequent layer with new parameters. Thus there exists a non-empty

proper subset of parameters H′
i

of a learned behavior hi that are re-learned in the behavior hi+1 as part of the

subsequent layer of learning Li+1 (i.e. ∃H′
i
⊂ Hi s.t. H′

i
, ∅ and H′

i
⊂ Hi+1). The part of the previously learned

layer’s parameters left open is the “seam” between the layers. Partial concurrent learning is beneficial if full

concurrent learning unnecessarily increases the dimensionality of the search space to the point that it hinders

learning, and completely freezing the previous layer diminishes the potential behavior of the layers working

together. Example: Teaching one robot to pick up and hand an object to another robot. First a robot is taught to

pick up an an object and then reach out its arm and release the object. The second robot is then taught to reach

out its arm and catch the object released by the first robot. During learning by the second robot to catch the

object, the part of the previously learned behavior of the first robot to hand over the object is left open so that

the first robot can adjust its release point of the object to a place that the second robot can be sure to reach.

Previous Learned Layer Refinement (PLLR): After a layer is learned and frozen, and then a subsequent layer is

learned, part or all of the previously learned layer is then unfrozen and relearned to better work with the newly

learned layer that is now fully or partially frozen. We consider re-optimizing a previously frozen layer under

new conditions as a new learned layer behavior with the “seam” between behaviors being the unfrozen part of

the previous learned layer. Thus there exists a non-empty subset of parameters H′
i

of a learned behavior hi that

is frozen in a subsequent layer of learning L j, where j > i, but then is eventually unfrozen and re-learned in the

behavior hk as part of a later layer of learning Lk, where k > j (i.e. ∃H′
i
⊆ Hi s.t. H′

i
, ∅, h′

i
≺ T j but H′

i
∩H j = ∅

(learned values h′
i

for parameters H′
i

are frozen in L j), and H′
i
⊆ Hk (learned values h′

i
for parameters H′

i
are

unfrozen in Lk)). This scenario is useful when a subtask is required to be learned before the next subsequent task

layer can be learned, but then refining or relearning the initial learned subtask layer’s behavior to better work

with the newly learned subsequent task layer’s behavior provides a benefit. Example: Teaching a robot to walk.

First the robot needs to learn how to stand up so that if it falls over it can get back up and continue trying to

walk. Eventually the robot learns to walk so well that it barely if ever falls over during training. Later, when the

robot does eventually fall over, it is found that the walking motion learned by the robot is not stable if the robot

tries to walk right after standing up. The robot needs to relearn the standing up behavior layer such that after

doing so it is in a stable position to start walking with the learned walking behavior layer.
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Figure 2. A screenshot of the Nao humanoid robot (left), and a view of the soccer field during a 11 versus 11 game (right).

4. Testbed Domain: 3D Simulated RoboCup Soccer

Robot soccer has served as an excellent testbed for learning scenarios in which multiple skills, decisions, and

controls have to be learned by a single agent, and agents themselves have to cooperate or compete. There is a rich

literature based on this domain addressing a wide spectrum of topics from low-level concerns, such as perception and

motor control [9, 10], to high-level decision-making [11]. The domain serves both as the motivation for the research

presented in this paper and the evaluation testbed. We therefore introduce it in this section.

The RoboCup 3D simulation environment is based on SimSpark [12, 13],3 a generic physical multiagent systems

simulator. SimSpark uses the Open Dynamics Engine4 (ODE) library for its realistic simulation of rigid body dynamics

with collision detection and friction. ODE also provides support for the modeling of advanced motorized hinge joints.

The robot agents in the simulation are modeled after the Nao robot, which has a height of about 57 cm and a mass

of 4.5 kg. The agents interact with the simulator by sending torque commands and receiving perceptual information.

Each robot has 22 degrees of freedom: six in each leg, four in each arm, and two in the neck. Joint perceptors provide

the agent with noise-free angular measurements every simulation cycle (20 ms), while joint effectors allow the agent

to specify the torque and direction in which to move a joint. Although there is no intentional noise in actuation, there

is slight actuation noise that results from approximations in the physics engine and the need to constrain computations

to be performed in real-time.

Visual information about the environment is given to an agent every third simulation cycle (60 ms) through noisy

measurements of the distance and angle to objects within a restricted vision cone (120◦). Agents are also outfitted

with noisy accelerometer and gyroscope perceptors, as well as force resistance perceptors on the sole of each foot.

Additionally, a single agent can communicate with the other agents every other simulation cycle (40 ms) by sending

messages limited to 20 bytes.

In addition to the standard Nao robot model, four additional variations of the standard model, known as heteroge-

neous types, are available for use. The variations from the standard model include changes in leg and arm length, hip

width, and also the addition of toes to the robot’s foot. Figure 2 shows a visualization of the standard Nao robot and

the soccer field during a game.

5. Overlapping Layered Learning Applied to Robot Soccer

UT Austin has been a perennial participant in the annual RoboCup soccer competitions, and has won the champi-

onship six times between 2011 and 2017. The team began using sequential layered learning in 2011, but introduced

overlapping layered learning in 2014, and has used it since. In this section, we therefore focus on that year’s team.

3http://simspark.sourceforge.net/
4http://www.ode.org/
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The 2014 UT Austin Villa team introduced an extensive layered learning approach to learn skills for the robot

such as getting up, walking, and kicking. This approach includes sequential layered learning where a newly learned

layer is frozen before learning of subsequent layers, as well as overlapping layers where parts of previously learned

layers are re-optimized as part of the current layer being learned.

In total over 500 parameters were optimized during the course of layered learning. All parameters were optimized

using the Covariance Matrix Adaptation Evolution Strategy (CMA-ES) algorithm [14], which has been successfully

applied previously to learning skills in the RoboCup 3D simulation domain [15]. CMA-ES is a policy search al-

gorithm that successively generates and evaluates sets of candidates—with each candidate being a set of parameter

values—sampled from a multivariate Gaussian distribution. Once CMA-ES generates a group of candidates, each

candidate is evaluated with respect to an objective function—also known as a fitness measure—that returns a real

number value indicating how well a candidate performed on the training task being learned. When all the candidates

in the group are evaluated, the mean of the multivariate Gaussian distribution is recalculated as a weighted average of

the candidates with the highest returned values. The covariance matrix of the distribution is also updated to bias the

generation of the next set of candidates toward directions of previously successful search steps.

A total of 705,000 learning trials were performed during the process of optimizing 19 behaviors. As CMA-ES is

a parallel search algorithm, optimization was performed on a Condor [16] distributed computing cluster allowing for

many jobs to be run in parallel. Running the complete optimization process took about 5 days, and we calculated it

could theoretically be completed in as little as 49 hours assuming no job queuing delays on the computing cluster,

and all possible parallelism during the optimization process is exploited. Note that this same amount of computation,

when performed sequentially on a single computer,5 would take approximately 561 days, or a little over 1.5 years, to

finish.

The following subsections document the overlapping layered learning parts of the approach used by the team.

Full details of all of the learned behavior layers are provided in Appendix A,6 and a diagram of how all the different

layered learning behaviors fit together during the course of learning can be seen in Figure 3.

Figure 3. Different layered learning behaviors with the number of parameters optimized for each behavior shown in parentheses (best viewed in

color). Solid black arrows show number of learned and frozen parameters passed from previously learned layer behaviors, dashed red arrows show

the number of overlapping parameters being passed and relearned from one behavior to another, and the dotted blue arrows show the number of

parameter values being passed as seed values to be used in new parameters at the next layer of learning. Overlapping layers are colored with CILB

layers in orange, PCLL in green, and PLLR in yellow. Descriptions of the layers are provided in Appendix A.

5As measured on an Intel(R) Xeon(R) CPU E31270 @ 3.40GHz.
6Videos of some of the behaviors being learned are available at

http://www.cs.utexas.edu/˜AustinVilla/sim/3dsimulation/overlappingLayeredLearning.html
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5.1. Getup and Walking using PLLR

The UT Austin Villa team employs an omnidirectional walk engine using a double inverted pendulum model to

control walking. The walk engine has many parameters that need to be optimized in order to create a stable and fast

walk including the length and frequency of steps as well as center of mass offsets. Full details of the walk engine and

its parameters are given in Appendix B. Instead of having a single set of parameters for the walk engine, which in

previous work we found to limit performance [1], walking is broken up into different subtasks for each of which a set

of walk engine parameters is learned.

Before optimizing parameters for the walk engine, “getup” behaviors are learned so that if the robot falls over it

is able to stand back up and start walking again. Getup behaviors are necessary for faster learning during walk opti-

mizations, as without the ability to get up after falling, a walk optimization task would have to be terminated as soon

as the robot fell over. There are two such behaviors for getting up: GetUp Front Primitive for standing up from lying

face down and Getup Back Primitive for standing up from lying face up. Each getup behavior consists of different

joint angle movements that form a fixed series of poses. The poses themselves are specified in a parameterized skill

description language. Information about the skill description language is provided in Appendix D. During learning,

getup behaviors are evaluated based on how quickly the robot is able to stand up [17].

After the getup primitive behaviors are learned, we start optimizing the first walk engine parameter set in the

next layer of learning. This is the Walk GoToTarget behavior which is used for walking to different target locations

on the soccer field. Learning this walk is accomplished by having the robot walk to a series of target points on the

field in the form of an obstacle course, and the robot is rewarded for how quickly it can complete the obstacle course

while being penalized for every time it falls over. After the Walk GoToTarget parameter set is learned and fixed,

the Walk Sprint walk engine parameter set used to quickly walk straight forward—to targets within 15◦ of the robot’s

current heading—is then optimized in the third layer of learning using the same obstacle course optimization task. Full

details of how these walk parameter sets are optimized can be found in Appendix C. Note that the optimization tasks

used for learning different walk parameter sets purposely transition between all previously learned walk parameter

sets and the current one being learned to ensure that the robot can smoothly transition between them without losing

stability.

After learning both the Walk GoToTarget and Walk Sprint walk engine parameter sets, we re-optimize the getups

by learning the GetUp Front Behavior and GetUp Back Behavior behaviors in the fourth layer of learning. GetUp Front Behavior

and GetUp Back Behavior are overlapping layered learning behaviors as they contain the same parameters as the

previously learned GetUp Front Primitive and GetUp Back Primitive behaviors respectively. The getup behavior pa-

rameters are re-optimized from their primitive behavior values through the same optimization as the getup primitives,

but with the addition that right after completing a getup behavior the robot is asked to walk in different directions and

is penalized if it falls over while trying to do so. Unlike the getup primitive behaviors, which were learned in isolation,

the relearned getup behaviors are stable transitioning from standing up and then almost immediately walking. One

might think that the walk parameter sets learned would be stable transitioning from the original learned getups due

to the getup primitive behaviors being used in the walk parameter optimization tasks, however this is not always the

case. During learning, walks become stable such that toward the end of optimizing a walk parameter set the robot

almost never falls, and thus rarely uses the getup primitive behaviors. Relearning the getup behaviors is an example

of previous learned layer refinement (PLLR).

5.2. Kicking using CILB

Four primitive kick behaviors were learned by the 2014 UT Austin Villa team (Kick Long Primitive, Kick Low Primitive,

Kick High Primitive, and Kick Fast Primitive). Each kick primitive, or kicking motion, was learned by placing the

robot at a fixed position behind the ball and having it optimize joint angles for a fixed set of key motion frames defined

by a skill description language. Information about the skill description language is provided in Appendix D. Note that

initial attempts at learning kicks directly with the walk, instead of learning kick primitives independently, proved to

be too difficult due to the variance in stopping positions of the walk as the robot approached to kick the ball.

While the kick primitive behaviors work quite well when the robot is placed in a standing position behind the ball,

they are very hard to execute when the robot tries to walk up to the ball and kick it. One reason for this difficulty

is that when the robot approaches the ball to kick it using the Walk ApproachToKick walk parameter set—used for

approaching and stopping at a precise position behind the ball before executing a kick—the precise offset position

8
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from the ball that the kick primitives were optimized to work with do not match that of the position the robot stops

at after walking up to the ball. In order to allow the robot to transition from walking to kicking, full kick behaviors

for all the kicks are optimized (Kick Long Behavior, Kick Low Behavior, Kick High Behavior, Kick Fast Behavior).

Each full kick behavior is learned by having the robot walk up to the ball and attempt to kick it from different starting

positions—as opposed to having the robot just standing behind the ball as was done when optimizing the kick primitive

behaviors.

The full kick behaviors are overlapping layered learning behaviors because they re-optimize previous learned

parameters. In the case of Kick Fast Behavior, only the x and y kick primitive offset position parameters from the

ball, which is the target position for the walk to reach for the kick to be executed, are re-optimized. The fast kick

is quick enough that it almost immediately kicks the ball after transitioning from walking, and thus just needs to be

in the correct position near the ball to do so. A comparison of overlapping layered learning paradigms for learning

Kick Fast Behavior is shown in Figure 4. The above overlapping layered approach of first independently learning

the walk approach and kick, and then learning the two position parameters, does better than both the sequential

layered learning approach where all kick parameters are learned after freezing the approach, and the concurrent layered

learning approach where both approach and kick parameters are learned simultaneously.

Figure 4. Performance of different layered learning paradigms across generations of CMA-ES when optimizing Kick Fast Behavior. Results are

averaged across five optimization runs and error bars show the standard error.

For the other full kick behaviors, all kick parameters from their respective kick primitive behaviors are re-

optimized. Unlike the fast kick, there is at least a one second delay between stopping, walking, and kicking the ball,

9
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during which the robot can easily become destabilized and fall over. By opening up all kicking parameters the robot

has the necessary freedom to learn kick motions that maintain its stability between stopping after walking and making

contact with the ball. Learning the kick behaviors by combining them with the Walk ApproachToKick behavior for

walking up to the ball are all examples of combining independently learned behaviors (CILB).

5.3. KickOff using both CILB and PCLL

For kickoffs the robot is allowed to “teleport” itself to a starting position next to the ball before kicking it, and thus

does not need to worry about walking up to the ball. Scoring directly off a kickoff is not allowed, however, as another

robot must first touch the ball before it goes into the opponent’s goal. In order to score on a kickoff we perform a

multiagent task where one robot touches the ball before another kicks it.

The first behavior optimized for scoring off the kickoff is KickOff Kick Primitive in which a robot kicks the ball

from the middle of the field. The robot is rewarded for kicking the ball as high and as far as possible as long as the ball

crosses the goal line below the height of the goal. In parallel a behavior for another robot is learned to lightly touch the

ball called KickOff Touch Primitive. Here a robot is rewarded for touching the ball lightly and, after ensuring that the

robot has made contact with the ball, that the ball moves as little as possible. Finally an overlapping layered behavior

called KickOff Kick Behavior is learned which re-optimizes x, y, and θ angle offset positions from the ball from

both the KickOff Kick Primitive and KickOff Touch Primitive behaviors. Re-optimizing these positioning parameters

together is important so that the robots do not accidentally collide with each other and also so that the kicking robot is

at a good position to kick the ball after the first agent touches it. Learning KickOff Kick Behavior is another example

of combining independently learned behaviors (CILB).

In addition to the positioning parameters of both robots being re-optimized for KickOff Kick Behavior, a new

parameter that determines the time at which the first robot touches the ball is optimized. This synchronized timing

parameter is necessary so that the robots are synced with each other and the kicking robot does not accidentally try to

kick the ball before the first robot has touched it. As a new parameter is optimized along with a subset of previously

learned parameters, learning KickOff Kick Behavior is also an example of partial concurrent layered learning (PCLL).

Further information about the kickoff, including how a seed for the kick was learned through observation, can be

found in [18].

6. Results and Analysis

At the 2014 RoboCup 3D simulation competition—the first year the UT Austin Villa team used overlapping lay-

ered learning—UT Austin Villa finished first among 12 teams while scoring 52 goals and conceding none across

15 games. Considering that most of the team’s strategy layer—including team formations using a dynamic role as-

signment and formation positioning system [19]—remained unchanged from that of the previous year’s second place

finishing team, a key component to the 2014 team’s improvement and success at the competition was the new approach

incorporating overlapping layered learning used to learn the team’s low level behaviors.

After every RoboCup competition teams are required to release the binaries that they used during the competition.

In order to analyze the performance of the different components of our overlapping layered learning approach before

the 2014 competition, we played 1000 games with different versions of the UT Austin Villa team against each of

the top three teams from the RoboCup 2013 competition. The following subsections provide analysis of game results

when turning on and off the kickoff and kicking components learned though an overlapping layered learning approach.

Additionally, to demonstrate the generality of our overlapping layered learning approach, we provide data that isolates

the performance of our complete overlapping layered learning approach applied to different robot models.

6.1. Overall Team Performance

Table 2 shows the average goal difference across all games against each opponent achieved by the complete 2014

UT Austin Villa team. Against all opponents the team had a significantly positive goal difference, and in fact out of

the 3000 games played the team only lost one game (to AustinVilla2013). These game results show the effectiveness

of the team’s overlapping layered learning approach in dramatically improving the performance of the team from the

previous year in which the team achieved second place at the competition—the 2014 team is able to beat the previous

year’s team by an average of 1.525 goals.
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Table 2. Full game results, averaged over 1000 games. Each row corresponds to one of the top three finishing teams at RoboCup 2013. Entries show

the average goal difference achieved by the 2014 UT Austin Villa team versus the given opponent team. Values in parentheses are the standard

error. Total number of wins, losses, and ties across all games was 2852, 1, and 147 respectively.

Opponent Average Goal Difference

Apollo3D 2.726 (0.036)

AustinVilla2013 1.525 (0.032)

FCPortugal 3.951 (0.049)

Data provided in Appendix E, showing the overall team’s performance when playing against the released 2014

teams’ binaries, corroborates the overall team’s strong performance. When playing 1000 games against each of the

eleven 2014 opponents UT Austin Villa did not lose a single game out of the 11,000 played, and had at least an

average goal difference of 2 against every opponent. Additionally, bolstered by the team’s strong set of skills developed

through overlapping layered learning techniques, UT Austin Villa won all games it played at the RoboCup 2015 [20],

2016 [21], and 2017 competitions.

6.2. KickOff Performance

To isolate the performance of the learned multiagent behavior to score off the kickoff, we disabled this feature and

instead just had the robot taking the kickoff kick the ball toward the opponent’s goal to a position as close as possible

to one of the goal posts without scoring. Table 3 shows results from playing against the top three teams at RoboCup

2013 without attempting to score on the kickoff.

Table 3. Full game results, averaged over 1000 games. Each row corresponds to one of the top three finishing teams at RoboCup 2013. Entries show

the average goal difference achieved by a version of the 2014 UT Austin Villa team not attempting to score on a kickoff versus the given opponent

team. Values in parentheses are the standard error. Total number of wins, losses, and ties across all games was 2644, 5, and 351 respectively.

Opponent Average Goal Difference

Apollo3D 2.059 (0.038)

AustinVilla2013 1.232 (0.032)

FCPortugal 3.154 (0.046)

By comparing results in Table 3 to that of Table 2 we see a significant drop in performance when not attempting

to score on kickoffs. This result is not surprising as we found that the kickoff was able to score around 90% of

the time against Apollo3D and FCPortugal, and over 60% of the time against the 2013 version of UT Austin Villa.

The combination of using both CILB and PCLL overlapping layered learning led to a large boost to the team’s

performance.

6.3. Kicking Performance

To isolate the performance of kicking learned through an overlapping layered learning approach we disable all

kicking (except for on kickoffs where we once again have a robot kick the ball as far as possible toward the opponent’s

goal without scoring) and used an “always dribble” behavior. Data from playing against the top three teams at the

RoboCup 2013 competition when only dribbling is shown in Table 4.

Table 4. Full game results, averaged over 1000 games. Each row corresponds to one of the top three finishing teams at RoboCup 2013. Entries show

the average goal difference achieved by a version of the 2014 UT Austin Villa team using a dribble only strategy versus the given opponent team.

Values in parentheses are the standard error. Total number of wins, losses, and ties across all games was 2480, 15, and 505 respectively.

Opponent Average Goal Difference

Apollo3D 1.790 (0.033)

AustinVilla2013 0.831 (0.023)

FCPortugal 1.593 (0.028)

Here we see another significant drop in performance when comparing Table 4 to Table 3. Kicking provided a large

gain in performance, nearly doubling the average goal difference against FCPortugal, compared to only dribbling.

This result is in stark contrast to when UT Austin Villa won the 2011 RoboCup competition, in which the team tried

to incorporate kicking skills without using an overlapping layered learning approach, and found that kicking actually

hurt the performance of the team [22].
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6.4. Different Robot Models

At the 2014 RoboCup competition teams were given the option of using five different robot types with the require-

ment that at least three different types of robots must be used on a team and no more than seven of any one type. The

five types of robots available were the following:

Type 0: Standard Nao model

Type 1: Longer legs and arms

Type 2: Quicker moving feet

Type 3: Wider hips and longest legs and arms

Type 4: Added toes to foot

We applied our overlapping layered learning approach for learning behaviors to each of the available robot types.

Game data from playing against the top three teams at RoboCup 2013 is provided in Table 5 for each robot type.

Table 5. Full game results, averaged over 1000 games. Each row corresponds to one of the top three finishing teams at RoboCup 2013. Entries

show the average goal difference achieved by a version of the 2014 UT Austin Villa team using different heterogeneous robot types versus the given

opponent team.

Avg. Goal Difference per Robot Type

Opponent Type 0 Type 1 Type 2 Type 3 Type 4

Apollo3D 1.788 1.907 1.892 1.524 2.681

AustinVilla2013 0.950 0.858 1.152 0.613 1.104

FCPortugal 2.381 2.975 3.331 2.716 3.897

While there are some differences in performance between the different robot types, likely due to the differences in

their body models, all of the robot types are able to reliably beat the top teams from the 2013 RoboCup competition.

This shows the efficacy of our overlapping layered learning approach and its ability to generalize to different robot

models. During the 2014 competition the UT Austin Villa team used seven type 4 robot models as they showed the

best performance, two type 0 robot models as they displayed the best performance on kickoffs, and one each of the

type 1 and type 3 robot models as they were the fastest at walking [3].

6.5. Summary of Results

Results from the data we collected in Section 6.1 and Appendix E provide evidence of the 2014 team’s overall

improvement and success gained by incorporating overlapping layered learning into the approach used to learn the

team’s low level behaviors. In particular, kicks learned through overlapping layered learning techniques boosted the

performance of the team as shown by the data isolating the kicks’ contributions to game results in Sections 6.2 and 6.3.

Finally, the generality of our learning approach is demonstrated by its success when applied to different robot models

in Section 6.4.

7. Related Work

Within RoboCup soccer domains there has been previous work in using layered learning approaches to learn

complex agent behaviors. Stone used layered learning to train three behaviors for agents in the RoboCup 2D simulation

domain and specified an additional two that could be learned as well [7]. Gustafson et al. used two layers of learning

when applying genetic programming to the keep away subtask within the RoboCup 2D simulation domain [23].

Whiteson and Stone later introduced concurrent layered learning within the same keepaway domain during which

four layers were learned. Cherubini et al. used layered learning for teaching AIBO robots soccer skills that included

six behaviors [24]. Layered learning has also been applied to non-RoboCup domains such as Boolean logic [25],

non-playable characters in video games [26], and concept synthesis in road traffic simulations [27]. To the best of our

knowledge our overlapping layered learning approach, containing 19 learned behaviors, has more than three times the

behaviors of any previous layered learning systems.

Work by Mondesire has discussed the concept of learned layers overlapping, and focuses on a concern of informa-

tion needed to perform a subtask being lost or forgotten as it is replaced during the learning of a task in a subsequent
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layer [28]. Our work differs in that we are not concerned with the performance of individual subtasks in isolation, but

instead are interested in maximizing the performance of subtasks when they are combined.

Our use of CMA-ES as the optimization algorithm allows for a high degree of parallelization during learning, and

recent work by Salimans et al. has corroborated the success and scalability of evolution strategies when applied to re-

inforcement learning tasks [29]. While our implementation of overlapping layered learning uses CMA-ES for learning

the component skills, its hierarchical nature also bears some resemblance to, and shares some motivation with, classic

approaches to hierarchical reinforcement learning for learning complex behaviors. Most hierarchical reinforcement

learning approaches use gated behaviors: a gating function decides which among a collection of behaviors should be

executed, with each behavior mapping potential environment states to low-level actions [30]. In these approaches, the

behaviors and gating function are all control tasks with similar inputs and actions (sometimes abstracted). Layered

learning, on the other hand, allows for conceptually different tasks, such as a soccer player evaluating the probability

of a pass being successful and moving to get open for a pass [8], at the different layers.

One widely used approach to hierarchical reinforcement learning is the MAXQ algorithm [31]. The MAXQ al-

gorithm learns at all levels of a hierarchy simultaneously. MAXQ converges to a recursively optimal policy in which

learned subtasks are locally optimal as opposed to being hierarchically optimal—the learned substasks’ policies are

not necessarily optimal when taking into account transitions to and from other subtasks. Also, unlike MAXQ, layered

learning allows for the flexibility of using different machine learning algorithms at each level of the hierarchy.

Another popular approach to hierarchical reinforcement learning is the options framework [32]. Options, or tem-

porally extended actions, can be thought of as learned policies with initiation and termination conditions used to

complete subtasks. Layers in our behavior hierarchy can be seen as options in the sense that they are policies that run

for limited periods of time within the overall behavior. In the context of robot soccer one could learn two separate

options for both walking and kicking a ball, and—after finding out that the robot is unable to transition from the

walk option to the kick option without falling—then learn a third option as a bridge to transition between walking

and kicking that stops and stabilizes the robot before it kicks the ball. However, it could be inefficient and slow to

need to execute three option behaviors to walk to and kick the ball. Instead, it may be possible to learn a better policy

through overlapping layered learning and CILB that is more efficient and faster to execute: a policy consisting of a

new behavior that combines the previously learned walking and kicking subtask behaviors without needing to stop

and stabilize the robot before kicking the ball.

Progressive neural networks [33] follow some of the concepts of layered learning. These networks have been

successfully used to learn policies for a series of related reinforcement learning tasks. Progressive neural networks

are sequentially trained on individual tasks, with only the weights for a single column of the network being learned

for the current task the network is being trained on. After each task is learned the weights of the neural network are

frozen, and a new column with open weights is added to the network before learning the next task. The outputs from

the layers of the previously learned task’s network column is used as inputs to the layers of the current task’s net-

work column that is being learned. The architecture of progressive neural networks—where the output of a previously

learned task is used as input to the next task being learned—is similar in spirit to layered learning. The architecture

differs from overlapping layered learning, however, in that learned weights of the network are never unfrozen and re-

learned. Furthermore, progressive neural networks leverage task similarities to learn successive tasks through transfer

learning [34], in which they focus on learning policies for tasks that are performed in isolation from each other, where

as overlapping layered learning is better suited for developing subtasks that work well together and can smoothly

transition between each other.

8. Summary and Discussion

This article introduces overlapping layered learning methodologies and motivates general scenarios for their use.

The article also includes a detailed description and experimental analysis of the extensive overlapping layered learning

approach used by the UT Austin Villa team in winning the 2014 RoboCup 3D simulation competition.7 Furthermore,

the complete learning process is repeated on four different robot body types, showcasing its generality as a paradigm

7Team video highlights from the competition can be found on the team’s homepage at

http://www.cs.utexas.edu/˜AustinVilla/sim/3dsimulation/#2014
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for efficient behavior learning. While first introduced in 2014, overlapping layered learning has continued to be used

successfully by the UT Austin Villa team in all years since then as well.

Currently the overlapping layered learning methodologies require a person to select which parameters to freeze and

leave open during each successive layer of learning. Additionally, learning of complex skills is manually segmented

into different layers of learning. Future work in the area of layered learning includes the automated determination

of appropriate subtasks for layered learning, as well as automated identification and selection of useful layer overlap

or “seams” to use with overlapping layered learning methodologies. If these selection processes can be automated it

would lessen the burden and potential need for someone with expert domain knowledge when performing optimiza-

tions.

A base code release of the 2015 UT Austin Villa RoboCup 3D simulation agent [35], which includes hooks for op-

timizing the skills and behaviors presented in this work, can be found at http://github.com/LARG/utaustinvilla3d.
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A. Learned Behavior Layers

For all layers of learned behaviors the CMA-ES [14] algorithm is used as the ML algorithm (M). All input feature

vector ( ~F) for learned behavior layers include the position of each of the robots’ 22 joints, as well as the robots’ three

dimensional (x, y, z) accelerometer and gyroscope measurements. Any behavior in which a kick is learned also takes

in as input the x and y position of the ball relative to the robots. The output (O) for all behavior layers are current

target positions for each of the robots’ joints. A diagram of how all the layers connect with each other can be seen in

Figure 3 within Section 5.

L1,1 : Getup Front Primitive: The robot learns a behavior to stand up when starting from lying on its front.

T1,1: The robot is forced to fall on its front from a standing position and then attempts to get up. The robot is

then given a negative return value equal to the time it remains in a fallen over state as measured over 4

seconds. The objective function used during optimization is the following where time is in seconds:

fgetup front primitive = −timeNotStanding

See [17] for more details about the training task.

M1,1: Learning was performed across 200 generations of CMA-ES with a population size of 150.

H1,1: The learned policy consists of 9 parameters specifying a fixed series of poses for a getup motion de-

fined by our skill description language. Information about the skill description language is provided in

Appendix D. Initial parameter values were seeded with those from a hand-coded policy.

L1,2 : Getup Back Primitive: The robot learns a behavior to stand up when starting from lying on its back.

T1,2: The robot is forced to fall on its back from a standing position and then attempts to get up. The robot is

then given a negative return value equal to the time it remains in a fallen over state as measured over 4

seconds. The objective function used during optimization is the following where time is in seconds:

fgetup back primitive = −timeNotStanding

See [17] for more details about the training task.

M1,2: Learning was performed across 200 generations of CMA-ES with a population size of 150.

H1,2: The learned policy consists of 26 parameters specifying a fixed series of poses for a getup motion de-

fined by our skill description language. Information about the skill description language is provided in

Appendix D. Initial parameter values were seeded with those from a hand-coded policy.

L1,3 : KickOff Touch Primitive: Single robot behavior where the robot learns to lightly touch the ball resulting in

little ball motion.

T1,3: The robot attempts to lightly touch the ball and is given lower return values the more the ball moves. If

the robot falls over, fails to touch the ball, or touches the ball more than once it is given a negative return

value. The objective function used during optimization is the following where distance is in meters:

ftouch =

{

−1 : Failure

10 − distBallTraveled : Otherwise

See [18] for full details of the training task.

M1,3: Learning was performed across 100 generations of CMA-ES with a population size of 150.

H1,3: The learned policy consists of 12 parameters specifying a fixed series of poses for a ball touch motion

defined by our skill description language. Information about the skill description language is provided in

Appendix D. Parameters for the x, y, and θ offset standing position of the robot from the ball are also

learned. Initial parameter values were seeded with those from a hand-coded policy.
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L1,4 : KickOff Kick Primitive: Single robot kick behavior where the robot learns a kick that scores on a kickoff

from a motionless ball.

T1,4: The robot attempts to kick the ball on a kickoff directly into the opponent’s goal. The robot is given

higher return values for both kicks that travel closer to the opponent’s goal, and for kicks that travel farther

distances while remaining above the height of opponent robots. If the robot fails to kick the ball it is given

a negative return value, and if it kicks the ball out of bounds—misses the goal—it receives a return value

of 0. The objective function used during optimization is the following where all distances are in meters:

fkick kickoff =



















−1 : Failure

0 : Missed goal

100 + distBallForward + 2 ∗ distBallInAir : Otherwise

See [18] for full details of the training task.

M1,4: Learning was performed across 300 generations of CMA-ES with a population size of 150.

H1,4: The learned policy consists of 59 parameters specifying a fixed series of poses for a kick motion defined

by our skill description language. Information about the skill description language is provided in Ap-

pendix D. Parameters for the x, y, and θ offset standing position of the robot from the ball are also learned.

Initial parameter values were seeded with those sampled from an observed kick as described in [18].

L1,5 Kick Fast Primitive: The robot learns a short but fast to execute kick starting from a standing position behind

the ball. The robot is also expected to be stable and still standing after the kick.

T1,5: The robot attempts to quickly kick the ball as far as possible from a standing position behind the ball.

The robot is given higher return values for longer kicks, is penalized if the kick takes too long to execute

(greater than 0.25 seconds), and is given a negative return value if it fails to kick the ball or falls over while

doing so. The objective function used during optimization is the following where distance is in meters and

time is in seconds:

fkick fast primitive =



















−1 : Failure

−1 : Robot fell over

distBallForward −max(kickTime − 0.25, 0) : Otherwise

M1,5: Learning was performed across 300 generations of CMA-ES with a population size of 150.

H1,5: The learned policy consists of 33 parameters specifying a fixed series of poses for a fast kick motion

defined by our skill description language. Information about the skill description language is provided in

Appendix D. Parameters for the x and y offset standing position of the robot from the ball are also learned.

Initial parameter values were seeded with those from a hand-coded policy.

L2,1 : Walk GoToTarget: The robot learns a walk for moving to general target positions on the field.

T2,1: The training task consists of an obstacle course in which the robot tries to navigate to a variety of tar-

get positions on the field. Each target is active, one at a time for a fixed period of time, which varies

from one target to the next, and the robot is rewarded based on its distance traveled toward the active

target. To promote stability, the robot is given a penalty if it falls over. After falling the robot executes one

of the getup behaviors learned in L1,1 and L1,2—Getup Front Primitive or Getup Back Primitive respec-

tively—so that it can stand up and continue the walk training task. Full details of the training task, known

as the goToTarget task, are provided in Appendix C.1.

M2,1: Learning was performed across 300 generations of CMA-ES with a population size of 150.

H2,1: The learned policy consists of 27 parameters for a walk engine described in Appendix B. The maxStepx

and maxStepy parameters in Table B.6 are learned as a single value, however, as we found this advan-

tageous in ensuring that the learned policy would not overly favor walking in the x direction over the y

direction. Initial walk engine parameter values were seeded with those from a hand-coded policy used on

physical robots as described in [1].
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L2,2 : KickOff Kick Behavior: A two robot behavior is learned for scoring on a kickoff with one robot lightly touch-

ing ball before the other robot kicks the ball in the goal.

T2,2: One robot attempts to lightly touch the ball at the beginning of a kickoff, after which the second robot

attempts to kick the ball in the goal. During the task the touch and kick robots use the previously learned

KickOff Touch Primitive and KickOff Kick Primitive respectively. The task is evaluated with the same

objective function as is used in the training task T1,4, except that a negative return value is also given if the

first robot fails to touch the ball before the second robot kicks the ball. The objective function used during

optimization is the following where all distances are in meters:

fkickoff =































−1 : First robot failed touch

−1 : Second robot failed kick

0 : Missed goal

100 + distBallForward + 2 ∗ distBallInAir : Otherwise

See [18] for full details of the training task.

M2,2: Learning was performed across 100 generations of CMA-ES with a population size of 150.

H2,2: The learned policy consists of the x, y, and θ offset standing position parameters of both the robots from

the ball that are part of H1,3 and H1,4. This learning is an example of CILB as H1,3 ∈ L2,2, H1,4 ∈ L2,2, and

{H′
1,3 ∪ H′

1,4} ⊂ H2,2 where H′
1,3 and H′

1,4 are the subsets of standing position parameters of H1,3 and H1,4

respectively. An additional synchronized timing parameter for how long the first robot should wait before

touching the ball is also learned so that the second robot does not accidentally try and kick the ball before

the first robot has touched it. This new added parameter makes this learned behavior also an example of

PCLL as {H′
1,3 ∪ H′

1,4} ⊂ H2,2 instead of just {H′
1,3 ∪ H′

1,4} = H2,2.

L2,3 : Kick Long Primitive: The robot learns a kicking motion to kick the ball a long distance starting from a stand-

ing position behind the ball.

T2,3: The robot attempts to kick the ball as far as possible from a standing position behind the ball. The robot

is given higher return values for longer kicks, is penalized if the kick takes too long to execute (greater

than 2 seconds), and is given a negative return value if it fails to kick the ball. The objective function used

during optimization is the following where distance is in meters and time is in seconds:

fkick long primitive =

{

−1 : Failure

distBallForward −max(kickTime − 2, 0) : Otherwise

M2,3: Learning was performed across 300 generations of CMA-ES with a population size of 150.

H2,3: The learned policy consists of 70 parameters specifying a fixed series of poses for a long kick motion

defined by our skill description language. Information about the skill description language is provided

in Appendix D. Parameters learned in h1,4 for the KickOff Kick Primitive are used as seed values for an

initial policy (h1,4 99K H2,3), and added parameters for speeding up the kick are also learned. Parameters

for the x, y, and θ offset standing position of the robot from the ball are learned as well.

L3,1 : Walk Sprint: The robot learns a walk for quickly walking in the forward direction.

T3,1: The same goToTarget training task is performed as in L2,1, however the robot only uses the walk it is

learning when its orientation is within 15◦ of its target. During the remainder of the training task the robot

is using the learned behavior from L2,1 thus ensuring that the walk being learned can transition from/to

the previously learned Walk GoToTarget behavior’s walk. Full details of the training task are provided in

Appendix C.2.

M3,1: Learning was performed across 300 generations of CMA-ES with a population size of 150.

H3,1: The learned policy consists of 27 parameters for a walk engine described in Appendix B. Initial values

for the policy are seeded with those from h2,1 (h2,1 99K H3,1) that were optimized for walking to general

target positions on the field.
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L3,2 : Kick High Primitive: The robot learns a kicking motion to kick the ball over opponents starting from a stand-

ing position behind the ball.

T3,2: The robot attempts to kick the ball as far as possible in the air from a standing position behind the ball. The

robot is given higher return values for kicks that travel longer distances at a height above that of opponents,

is penalized if the kick takes too long to execute (greater than 2 seconds), and is given a negative return

value if it fails to kick the ball. The objective function used during optimization is the following where

distance is in meters and time is in seconds:

fkick high primitive =

{

−1 : Failure

distBallInAir −max(kickTime − 2, 0) : Otherwise

M3,2: Learning was performed across 300 generations of CMA-ES with a population size of 150.

H3,2: The learned policy consists of 70 parameters specifying a fixed series of poses for a high kick motion

defined by our skill description language. Information about the skill description language is provided

in Appendix D. Parameters for the x, y, and θ offset standing position of the robot from the ball are also

learned. Parameters learned in h2,3 for the Kick Long Primitive are used as seed values for an initial policy

(h2,3 99K H3,2).

L3,3 : Kick Low Primitive: The robot learns a kicking motion to kick the ball such that it stays below the height of

the goal when starting from a standing position behind the ball.

T3,3: The robot attempts to kick the ball as far as possible on the ground from a standing position behind the

ball. The robot is given higher return values for kicks that travel longer distances, is penalized if the kick

takes too long to execute (greater than 2 seconds), and is given a negative return value if it fails to kick the

ball or the ball travels above the height of the goal. The objective function used during optimization is the

following where all distance is in meters and time is in seconds:

fkick low primitive =



















−1 : Failure

−1 : Kick above goal height

distBallForward −max(kickTime − 2, 0) : Otherwise

M3,3: Learning was performed across 300 generations of CMA-ES with a population size of 150.

H3,3: The learned policy consists of 70 parameters specifying a fixed series of poses for a low kick motion

defined by our skill description language. Information about the skill description language is provided

in Appendix D. Parameters for the x, y, and θ offset standing position of the robot from the ball are also

learned. Parameters learned in h2,3 for the Kick Long Primitive are used as seed values for an initial policy

(h2,3 99K H3,3).

L4,1 : Getup Front Behavior: The robot learns to stand up when starting from lying on its front and then walks

around.

T4,1: The training task is the same as T1,1 except that after standing up the robot is asked to walk in different

directions, and its return value is penalized if it falls over while trying to do so. The objective function

used during optimization is the following where time is in seconds:

fgetup front =

{

−timeNotStanding − 5 : Fell over after standing

−timeNotStanding : Otherwise

M4,1: Learning was performed across 200 generations of CMA-ES with a population size of 150.

H4,1: The learned policy consists of the same 9 Getup Front Primitive parameters in H1,1 which are now un-

frozen and relearned. As parameters are unfrozen and relearned this learned behavior is an example of

PLLR.
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L4,2 : Getup Back Behavior: The robot learns to stand up when starting from lying on its back and then walks

around.

T4,2: The training task is the same as T1,2 except that after standing up the robot is asked to walk in different

directions, and its return value is penalized if it falls over while trying to do so. The objective function

used during optimization is the following where time is in seconds:

fgetup back =

{

−timeNotStanding − 5 : Fell over after standing

−timeNotStanding : Otherwise

M4,2: Learning was performed across 200 generations of CMA-ES with a population size of 150.

H4,2: The learned policy consists of the same 26 Getup Back Primitive parameters in H1,2 which are now

unfrozen and relearned. As parameters are unfrozen and relearned this learned behavior is an example of

PLLR.

L4,3 : Walk PositionToDribble: The robot learns a walk for dribbling the ball.

T4,3: The robot starts from different positions relative to the ball and is asked to dribble the ball toward the

opponent’s goal for 15 seconds. The robot only uses the walk it is learning when positioning around the

ball to dribble it. During the remainder of the training task the robot is using the learned behaviors from

L2,1 and L3,1 thus ensuring that the walk being learned can transition from/to the previously learned walk

behaviors for walking and sprinting. The robot is given a return value equal to the distance it is able to

dribble the ball toward the opponent’s goal while being penalized if it falls over. Full details of the training

task, known as the driveBallToGoal2 task, are given in Appendix C.3.

M4,3: Learning was performed across 300 generations of CMA-ES with a population size of 150.

H4,3: The learned policy consists of 27 parameters for a walk engine described in Appendix B. Initial values

for the policy are seeded with those from h2,1 (h2,1 99K H4,3) that were optimized for walking to general

target positions on the field.

L5,1 : Walk ApproachToKick: The robot learns a walk for stopping at a precise position behind the ball in prepara-

tion to kick the ball.

T5,1: The robot is asked to walk to a target position near the ball from which a kick might be executed. The

robot is rewarded for stopping at this target position in as little time as possible while being penalized if it

runs into the ball or falls over. The robot only uses the walk it is learning when close to the ball. During

the remainder of the training task the robot is using the learned behaviors from L2,1 and L3,1 thus ensuring

that the walk being learned can transition from/to the previously learned walk behaviors for walking and

sprinting. The objective function used during optimization is the following where distance is in meters and

time is in seconds:

fwalk approach to kick =

−timeTaken

+fFellOver ? − 1 : 0

+timeTaken > 12 ? − 0.7 : 0

+fRanIntoBall ? − 0.5 : 0

+velocityWhenInPositionToKick > 0.005 ? − 0.5 : 0

See [3] for full details of the training task.

M5,1: Learning was performed across 300 generations of CMA-ES with a population size of 150.

H5,1: The learned policy consists of 27 parameters for a walk engine described in Appendix B. Initial values

for the policy are seeded with those from h4,3 (h4,3 99K H5,1) that were optimized for positioning around

the ball when dribbling. Additional parameters described in [3] for determining how quickly the robot

should accelerate and decelerate to reach its target without running into the ball are also learned.
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L6,1 : Kick Fast Behavior: The robot learns to walk to the ball and perform a short but fast to execute kick. The

robot is also expected to be stable and still standing after the kick.

T6,1: The same T1,5 optimization task for kicking a ball quickly is used, except instead of starting from a

standing position behind the ball the robot walks up to the ball and attempts to kick it from different

starting positions. Walk parameter sets optimized in previously learned layers are used when approaching

to kick the ball thus ensuring the robot can smoothly transition between walking and kicking. The objective

function used during optimization is the following where distance is in meters and time is in seconds:

fkick fast =



















−1 : Failure

−1 : Robot fell

distBallForward −max(approachAndKickTime ∗ 2 − 10, 0) : Otherwise

M6,1: Learning was performed across 100 generations of CMA-ES with a population size of 150.

H6,1: The learned policy consists of the same two Kick Fast Primitive x and y offset position parameters from

the ball in H1,5—the target position for the walk to reach for the kick to be executed—which are now

re-optimized. This learned behavior is an example of CILB as the two independently learned behaviors

Kick Fast Behavior and Walk ApproachToKick (L1,5 and L5,1) are combined (H1,5 ∈ L6,1, H5,1 ∈ L6,1) by

re-learning a subset of their parameters (H6,1 ⊂ {H1,5 ∪ H5,1}).

L6,2 : Kick High Behavior: The robot learns to walk to the ball and perform a high kick to kick the ball over oppo-

nents.

T6,2: The same T3,2 optimization task for kicking a ball high is used, except instead of starting from a standing

position behind the ball the robot walks up to the ball and attempts to kick it from different starting posi-

tions. Walk parameter sets optimized in previously learned layers are used when approaching to kick the

ball thus ensuring the robot can smoothly transition between walking and kicking. The objective function

used during optimization is the following where distance is in meters and time is in seconds:

fkick high =

{

−1 : Failure

distBallInAir −max(approachAndKickTime ∗ 2 − 10, 0) : Otherwise

M6,2: Learning was performed across 300 generations of CMA-ES with a population size of 150.

H6,2: The learned policy consists of the same 73 Kick High Primitive parameters in H3,2 which are now re-

optimized. This learned behavior is an example of CILB as the two independently learned behaviors

Kick High Behavior and Walk ApproachToKick (L3,2 and L5,1) are combined (H3,2 ∈ L6,2, H5,1 ∈ L6,2) by

re-learning a subset of their parameters (H6,2 ⊂ {H3,2 ∪ H5,1}).

L6,3 : Kick Low Behavior: The robot learns to walk to the ball and perform a low kick that stays below the height

of the goal.

T6,3: The same T3,3 optimization task for kicking a ball low is used, except instead of starting from a standing

position behind the ball the robot walks up to the ball and attempts to kick it from different starting posi-

tions. Walk parameter sets optimized in previously learned layers are used when approaching to kick the

ball thus ensuring the robot can smoothly transition between walking and kicking. The objective function

used during optimization is the following where distance is in meters and time is in seconds:

fkick low =



















−1 : Failure

−1 : Kick above goal height

distBallForward −max(approachAndKickTime ∗ 2 − 10, 0) : Otherwise

M6,3: Learning was performed across 300 generations of CMA-ES with a population size of 150.
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H6,3: The learned policy consists of the same 73 Kick Low Primitive parameters in h3,3 which are now re-

optimized. This learned behavior is an example of CILB as the two independently learned behaviors

Kick Low Behavior and Walk ApproachToKick (L3,3 and L5,1) are combined (H3,3 ∈ L6,3, H5,1 ∈ L6,3) by

re-learning a subset of their parameters (H6,3 ⊂ {H3,3 ∪ H5,1}).

L6,4 : Kick Long Behavior: The robot learns to walk to the ball and perform a long kick.

T6,4: The same T2,3 optimization task for kicking a ball a long distance is used, except instead of starting from

a standing position behind the ball the robot walks up to the ball and attempts to kick it from different

starting positions. Walk parameter sets optimized in previously learned layers are used when approaching

to kick the ball thus ensuring the robot can smoothly transition between walking and kicking. The objective

function used during optimization is the following where distance is in meters and time is in seconds:

fkick long =

{

−1 : Failure

distBallForward −max(approachAndKickTime ∗ 2 − 10, 0) : Otherwise

M6,4: Learning was performed across 300 generations of CMA-ES with a population size of 150.

H6,4: The learned policy consists of the same 73 Kick Long Primitive parameters in H2,3 which are now

re-optimized.This learned behavior is an example of CILB as the two independently learned behaviors

Kick Long Behavior and Walk ApproachToKick (L2,3 and L5,1) are combined (H2,3 ∈ L6,4, H5,1 ∈ L6,4) by

re-learning a subset of their parameters (H6,4 ⊂ {H2,3 ∪ H5,1}).

B. Walk Engine

The UT Austin Villa team uses an omnidirectional walk engine based on one that was originally designed for the

real Nao robot [36]. The omnidirectional walk is crucial for allowing the robot to request continuous velocities in the

forward, side, and turn directions, permitting it to approach continually changing destinations (often the ball) more

smoothly and quickly than the team’s previous set of unidirectional walks [15].

The walk engine, though based closely on that of Graf et al. [36], differs in some of the details. Specifically,

unlike Graf et al., the walk engine uses a sigmoid function for the forward component and uses proportional control

to adjust the desired step sizes. The walk engine uses a simple set of sinusoidal functions to create the motions of the

limbs with limited feedback control. The work flow of how joint commands are generated for the walk is shown in

Figure B.5. The walk engine processes desired walk velocities chosen by the behavior, chooses destinations for the

feet and torso, and then uses inverse kinematics to determine the joint positions required. Finally, PID controllers for

each joint convert these positions into torque commands that are sent to the simulator.

The walk engine selects a trajectory for the torso to follow, and then determines where the feet should be with

respect to the torso location. The walk uses x as the forwards dimension, y as the sideways dimension, z as the vertical

dimension, and θ as rotating about the z axis. The trajectory is chosen using a double linear inverted pendulum, where

the center of mass is swinging over the stance foot. In addition, as in Graf et al.’s work [36], the walk engine uses the

simplifying assumption that there is no double support phase, so that the velocities and positions of the center of mass

must match when switching between the inverted pendulums formed by the respective stance feet.

We now describe the mathematical formulas that calculate the positions of the feet with respect to the torso. More

than 40 walk engine parameters were used, but only the ones we optimize are listed in Table B.6.

To smooth changes in the velocities, the walk engine uses a simple proportional controller to filter the requested ve-

locities coming from the behavior module. Specifically, the walk engine calculates stepi,t+1 = stepi,t+δstep(desiredi,t+1−

stepi,t)∀i ∈ {x, y, θ}. In addition, the value is cropped within the maximum step sizes so that −maxStepi ≤ stepi,t+1 ≤

maxStepi.

The phase is given by φstart ≤ φ ≤ φend, and t =
φ − φstart

φend − φstart

is the current fraction through the phase. At each time

step, φ is incremented by ∆seconds/φlength, until φ ≥ φend. At this point, the stance and swing feet change and φ is

reset to φstart. Initially, φstart = −0.5 and φend = 0.5. However, the start and end times will change to match the previous

pendulum, as given by the equations
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Figure B.5. Workflow for generating joint commands from the walk engine.

Notation Description

maxStep{x,y,θ} Maximum step sizes allowed for x, y, and θ

yshift Side to side shift amount with no side velocity

ztorso Height of the torso from the ground

zstep Maximum height of the foot from the ground

fg Fraction of a phase that the swing foot spends on the ground before lifting

fa Fraction that the swing foot spends in the air

fs Fraction before the swing foot starts moving

fm Fraction that the swing foot spends moving

φlength Duration of a single step

δstep{x,y,θ} Factor of how fast the step sizes change for x, y, and θ

xoffset Constant offset between the torso and feet

xfactor Factor of the step size applied to the forwards position of the torso

δtarget{tilt,roll} Factors of how fast tilt and roll adjusts occur for balance control

ankleoffset Angle offset of the swing leg foot to prevent landing on toe

errnorm Maximum COM error before the steps are slowed

errmax Maximum COM error before all velocity reach 0

COMoffset Default COM forward offset

δCOM{x,y,θ} Factors of how fast COM changes x, y, and θ values for balance control

δarm{x,y} Factors of how fast the arm x and y offsets change for balance control

Table B.6. Optimized parameters of the walk engine.

k =

√

9806.65/ztorso

α = 6 − cosh(k − 0.5φ)

φstart =



















cosh−1(α)

0.5k
if α ≥ 1.0

−0.5 otherwise

φend = 0.5(φend − φstart)
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The stance foot remains fixed on the ground, and the swing foot is smoothly lifted and placed down, based on a

cosine function. The current distance of the feet from the torso is given by

zfrac =



















0.5(1 − cos(2π
t − fg

fa
)) if fg ≤ t ≤ fa

0 otherwise
zstance = ztorso

zswing = ztorso − zstep ∗ zfrac

It is desirable for the robot’s center of mass to steadily shift side to side, allowing it to stably lift its feet. The side to

side component when no side velocity is requested is given by

ystance = 0.5ysep + yshift(−1.5 + 0.5 cosh(0.5kφ))

yswing = ysep − ystance

where ysep is the distance between the feet. If a side velocity is requested, ystance is augmented by

yfrac =























0 if t < fs

0.5(1 + cos(π
t− fs
fm

)) if fs ≤ t < fs + fm

1 otherwise

∆ystance = stepy ∗ yfrac

These equations allow the y component of the feet to smoothly incorporate the desired sideways velocity while still

shifting enough to remain dynamically stable over the stance foot.

Next, the forwards component is given by

s = sigmoid(10(−0.5 +
t − fs

fm
))

xfrac =



















(−0.5 − t + fs) if t < fs
(−0.5 + s) if fs ≤ t < fs + fm
(0.5 − t + fs + fm) otherwise

xstance = 0.5 − t + fs
xswing = stepx ∗ xfrac

These functions are designed to keep the robot’s center of mass moving forwards steadily, while the feet quickly, but

smoothly approach their destinations. Furthermore, to keep the robot’s center of mass centered between the feet, there

is an additional offset to the forward component of both the stance and swing feet, given by

∆x = xoffset − stepxxfactor

After these calculations, all of the x and y targets are corrected for the current position of the center of mass. Finally,

the requested rotation is handled by opening and closing the groin joints of the robot, rotating the foot targets. The

desired angle of the groin joint is calculated by

groin =



























0 if t < fs

1
2
stepθ(1 − cos(π

t − fs

fm
)) if fs ≤ t < fs + fm

stepθ otherwise

After these targets are calculated for both the swing and stance feet with respect to the robot’s torso, the inverse

kinematics module calculates the joint angles necessary to place the feet at these targets. Further description of the

inverse kinematic calculations is given in [36].

To improve the stability of the walk, the walk engine tracks the desired center of mass as calculated from the

expected commands. Then, the walk engine compares this value to the sensed center of mass after handling the delay

between sending commands and sensing center of mass changes of approximately 20ms. If this error is too large, it

24



MacAlpine and Stone / Artificial Intelligence 254 (2018) 25

is expected that the robot is unstable, and action must be taken to prevent falling. As the robot is more stable when

walking in place, the walk engine immediately reduces the step sizes by a factor of the error. In the extreme case, the

robot will attempt to walk in place until it is stable. The exact calculations are given by

err = max
i

(abs(comexpected,i − comsensed,i))

stepFactor = max(0,min(1,
err − errnorm

errmax − errnorm

))

stepi = stepFactor ∗ stepi ∀i ∈ {x, y, θ}

This solution is less than ideal, but performs effectively enough to stabilize the robot in many situations.

C. Optimization Process and Training Tasks for Learning Walk Parameter Sets

The following subsections detail the optimization process and training tasks used during the layered learning

approach to develop three walk parameter sets needed for general walking, sprinting, and dribbling the ball. The

Covariance Matrix Adaptation Evolution Strategy (CMA-ES) algorithm [14] was used to learn the walk engine pa-

rameters listed in Table B.6 for each set of walk parameters. Further details about the development of the optimization

process—first implemented for the 2011 team—are available in [1], however here we only present the details most

relevant to the 2014 team.

C.1. Walk GoToTarget Parameter Set Optimization

To learn walk parameters for moving to general target positions on the field we created a training task—called the

goToTarget optimization task—consisting of an obstacle course in which the robot tries to navigate to a variety of

target positions on the field. Each target is active, one at a time for a fixed period of time, which varies from one target

to the next, and the robot is rewarded based on its distance traveled toward the active target. If the robot reaches an

active target, the robot receives an extra reward based on extrapolating the distance it could have traveled given the

remaining time on the target. In addition to the target positions, the robot has stop targets, where it is penalized for

any distance it travels. To promote stability, the robot is given a penalty if it falls over during the optimization run.

In the following equations specifying the agent’s rewards for targets, Fall is 5 if the robot fell and 0 otherwise,

dtarget is the distance traveled toward the target, and dmoved is the total distance moved. Let ttotal be the full duration a

target is active and ttaken be the time taken to reach the target or ttotal if the target is not reached.

rewardtarget = dtarget

ttotal

ttaken

− Fall

rewardstop = −dmoved − Fall

The goToTarget optimization includes quick changes of target/direction for focusing on the reaction speed of

the agent, as well as targets with longer durations to improve the straight line speed of the agent. The stop targets

ensure that the agent is able to stop quickly, while remaining stable. The trajectories that the agent follows during the

optimization are described in Figure C.6.

C.2. Walk Sprint Parameter Set Optimization

To further improve the forward speed of the agent, we optimized a parameter set for walking straight forwards for

ten seconds starting from a complete stop. Unfortunately, when the robot tried to switch between the forward walk

and Walk GoToTarget parameter sets it was unstable and usually fell over. This instability is due to the parameter sets

being learned in isolation, resulting in them being incompatible.

To overcome this incompatibility, we ran the goToTarget subtask optimization again, but this time we fixed the

Walk GoToTarget parameter set and learned a new parameter set. We call these parameters the Walk Sprint parameter

set, and the agent uses them when its orientation is within 15◦ of its target. The Walk Sprint parameter set was seeded

with the values from the Walk GoToTarget parameter set. This approach to optimization is an example of sequential

layered learning as the output of one learned subtask (the Walk GoToTarget parameter set) is fed in as input to the

learning of the next subtask (the learning of the Walk Sprint parameter set). By learning the Walk Sprint parameter

set in conjunction with the Walk GoToTarget parameter set, the robot was stable switching between the two parameter

sets.
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• Long walks forward/backwards/left/right

• Walk in a curve

• Quick direction changes

• Stop and go forward/backwards/left/right

• Switch between moving left-to-right and right-to-left

• Quick changes of target to simulate a noisy target

• Weave back and forth at 45 degree angles

• Extreme changes of direction to check for stability

• Quick movements combined with stopping

• Quick alternating between walking left and right

• Spiral walk both clockwise and counter-clockwise

Figure C.6. GoToTarget Optimization walk trajectories

C.3. Walk PositionToDribble Parameter Set Optimization

Although adding the Walk GoToTarget and Walk Sprint walk engine parameter sets improved the stability, speed,

and game performance of the agent, the agent was still a little slow when positioning to dribble the ball. This slow-

ness is explained by the fact that the goToTarget subtask optimization emphasizes quick turns and forward walking

speed while positioning around the ball involves more side-stepping to circle the ball. To account for this discrep-

ancy, the agent learned a third parameter set which we call the Walk PositionToDribble parameter set. To learn this

parameter set, we created a new driveBallToGoal28 optimization in which the agent is evaluated on how far it is

able to dribble the ball over 15 seconds when starting from a variety of positions and orientations from the ball. The

Walk PositionToDribble parameter set is used when the agent is .8 meters from the ball and is seeded with the values

from the Walk GoToTarget parameter set. Both the Walk GoToTarget and Walk Sprint parameter sets are fixed and the

optimization naturally includes transitions between all three parameter sets, which constrained them to be compatible

with each other. As learning of the Walk PositionToDribble parameter set takes the two previously learned parameter

sets as input, it is a third layer of sequential layered learning.

D. Skill Description Language

The UT Austin Villa agent has skills for getting up after falling and kicking, each of which is implemented as
a periodic state machine with multiple key frames, where a key frame is a static pose of fixed joint positions. Key
frames are separated by a waiting time that lets the joints reach their target angles. To provide flexibility in designing
and parameterizing skills, we designed an intuitive skill description language that facilitates the specification of key
frames and the waiting times between them. Below is an illustrative example describing a kick skill.

SKILL KICK_LEFT_LEG

KEYFRAME 1

setTarget JOINT1 $jointvalue1 JOINT2 $jointvalue2 ...

setTarget JOINT3 4.3 JOINT4 52.5

wait 0.08

8The ’2’ at the end of the name driveBallToGoal2 is used to differentiate it from the driveBallToGoal optimization that was used in [1].
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KEYFRAME 2

increaseTarget JOINT1 -2 JOINT2 7 ...

setTarget JOINT3 $jointvalue3 JOINT4 (2 * $jointvalue3)

wait 0.08

.

.

.

As seen above, joint angle values can either be numbers or be parameterized as $<varname>, where <varname>

is a variable value that can be loaded after being learned. Values for skills and other configurable variables are read in

and loaded at runtime from parameter files.

E. Competition Results

In winning the 2014 RoboCup competition UT Austin Villa finished with an undefeated record of 13 wins and

2 ties [3].9 During the competition the team scored 52 goals without conceding any. Despite finishing with an unde-

feated record, the relatively few number of games played at the competition, coupled with the complex and stochastic

environment of the RoboCup 3D simulator, make it difficult to determine UT Austin Villa being better than other

teams by a statistically significant margin. At the end of the competition, however, all teams were required to release

their binaries used during the competition. Results of UT Austin Villa playing 1000 games against each of the other

11 teams’ released binaries from the competition are shown in Table E.7.

Table E.7. UT Austin Villa’s 2014 released binary’s performance when playing 1000 games against the released binaries of all other teams at

RoboCup 2014. This includes place (the rank a team achieved at the competition), average goal difference (values in parentheses are the standard

error), win-loss-tie record, goals for/against, and the percentage of own kickoffs which the team scored from.

Opponent Place Avg. Goal Diff. Record (W-L-T) Goals (F/A) KO Score %

BahiaRT 5-8 2.075 (0.030) 990-0-10 2092/17 96.2

FCPortugal 4 2.642 (0.034) 986-0-14 2748/106 83.4

magmaOffenburg 3 2.855 (0.035) 990-0-10 2864/9 88.3

RoboCanes 2 3.081 (0.046) 974-0-26 3155/74 69.4

FUT-K 5-8 3.236 (0.039) 998-0-2 3240/4 96.3

SEU Jolly 5-8 4.031 (0.062) 995-0-5 4034/3 87.6

KarachiKoalas 9-12 5.681 (0.046) 1000-0-0 5682/1 87.5

ODENS 9-12 7.933 (0.041) 1000-0-0 7933/0 92.1

HfutEngine 5-8 8.510 (0.050) 1000-0-0 8510/0 94.7

Mithras3D 9-12 8.897 (0.041) 1000-0-0 8897/0 90.4

L3M-SIM 9-12 9.304 (0.043) 1000-0-0 9304/0 93.7

UT Austin Villa finished with at least an average goal difference greater than two goals against every opponent.

Additionally UT Austin Villa did not lose a single game out of the 11,000 that were played in Table E.7. These game

results show that UT Austin Villa winning the 2014 competition was far from a chance occurrence.

The overlapping layered learning system employed by UT Austin Villa was also vital in the team winning the

subsequent competitions in 2015 [20], 2016 [21], and 2017. Table E.8 shows post competition analysis of the 2015

competition in which UT Austin Villa was again able to beat all opponents by an average goal difference of over two

goals. The team was also able to beat all opponents at the 2016 competition by at least an average goal difference

of close to two goals as shown by the post 2016 competition analysis in Table E.9. Post 2017 competition analysis,

provided in Table E.10, shows that UT Austin Villa was able to beat all opponents at the 2017 competition by an

average goal difference of almost four goals.

9Full tournament results can be found at

http://wiki.robocup.org/wiki/Soccer_Simulation_League/RoboCup2014#3D
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Table E.8. UT Austin Villa’s 2015 released binary’s performance when playing 1000 games against the released binaries of all other teams at

RoboCup 2015. This includes place (the rank a team achieved at the competition), average goal difference (values in parentheses are the standard

error), win-loss-tie record, and goals for/against.

Opponent Place Avg. Goal Diff. Record (W-L-T) Goals (F/A)

FUT-K 2 2.082 (0.036) 927-2-71 2178/96

FCPortugal 3 2.399 (0.040) 945-4-51 2624/225

BahiaRT 4 2.496 (0.044) 944-1-55 2501/5

Apollo3D 5 3.803 (0.046) 995-0-5 3805/2

magmaOffenburg 6 4.167 (0.051) 999-0-1 4171/4

RoboCanes 7 4.187 (0.049) 998-0-2 4235/48

Nexus3D 8 5.571 (0.044) 1000-0-0 5573/2

CIT3D 9 6.321 (0.050) 1000-0-0 6321/0

ITAndroids 11 10.125 (0.041) 1000-0-0 10125/0

Miracle3D 12 10.521 (0.056) 1000-0-0 10521/0

HfutEngine3D 10 11.897 (0.068) 1000-0-0 11897/0

Table E.9. UT Austin Villa’s 2016 released binary’s performance when playing 1000 games against the released binaries of all other teams at

RoboCup 2016. This includes place (the rank a team achieved at the 2016 competition), average goal difference (values in parentheses are the

standard error), win-loss-tie record, and goals for/against.

Opponent Place Avg. Goal Diff. Record (W-L-T) Goals (F/A)

FUT-K 2 1.809 (0.036) 888-3-109 1872/63

FCPortugal 3 2.431 (0.040) 954-1-45 2452/21

BahiaRT 4 3.123 (0.040) 985-0-15 3123/0

magmaOffenburg 5 3.921 (0.049) 996-0-4 3926/5

KgpKubs 8 7.728 (0.046) 1000-0-0 7729/1

ITAndroids 6 9.022 (0.053) 1000-0-0 9024/2

HfutEngine3D 9 10.192 (0.056) 1000-0-0 10192/0

Miracle3D 7 11.126 (0.059) 1000-0-0 11126/0

Table E.10. UT Austin Villa’s 2017 released binary’s performance when playing 1000 games against the released binaries of all other teams at

RoboCup 2017. This includes place (the rank a team achieved at the 2017 competition), average goal difference (values in parentheses are the

standard error), win-loss-tie record, and goals for/against.

Opponent Place Avg. Goal Diff. Record (W-L-T) Goals (F/A)

magmaOffenburg 2 3.756 (0.057) 983-0-17 3778/22

FUT-K 3 4.793 (0.056) 995-0-5 4823/30

AIUT3D 5 5.946 (0.054) 1000-0-0 5981/35

BahiaRT 6 6.677 (0.055) 1000-0-0 6677/0

FCPortugal 7 6.753 (0.062) 1000-0-0 6818/65

Nexus3D 11 7.486 (0.035) 1000-0-0 7486/0

KgpKubs 8 7.510 (0.057) 1000-0-0 7510/0

RoboCanes 4 7.801 (0.066) 1000-0-0 7806/5

HfutEngine3D 12 7.952 (0.049) 1000-0-0 7957/5

Miracle3D 10 8.404 (0.056) 1000-0-0 8404/0

ITAndroids 9 11.169 (0.057) 1000-0-0 11169/0

RIC-AASTMT 13 11.466 (0.051) 1000-0-0 11466/0
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