
UT Austin Villa 2008: Standing On Two Legs

Todd Hester, Michael Quinlan and Peter Stone

Department of Computer Sciences

The University of Texas at Austin

1 University Station C0500

Austin, Texas 78712-1188

{todd,mquinlan,pstone}@cs.utexas.edu

http://www.cs.utexas.edu/~AustinVilla

Technical Report UT-AI-TR-08-8

November 3, 2008

Abstract

In 2008, UT Austin Villa entered a team in the first Nao competi-
tion of the Standard Platform League of the RoboCup competition. The
team had previous experience in RoboCup in the Aibo leagues. Using
this past experience, the team developed an entirely new codebase for the
Nao. Development took place from December 2007 until the competition
in July of 2008. This technical report describes the algorithms and code
developed by the team for the 2008 RoboCup competition in Suzhou,
China. A major development was a software architecture designed for
easy use, extendability, and debugability. On top of this architecture, the
team developed modules for vision, localization, motion, and behaviors.
These developments provide a strong foundation for our team to compete
successfully in the Standard Platform League in future RoboCup compe-
titions.

1



1 Introduction

RoboCup, or the Robot Soccer World Cup, is an international research initiative
designed to advance the fields of robotics and artificial intelligence, using the
game of soccer as a substrate challenge domain. The long-term goal of RoboCup
is, by the year 2050, to build a team of 11 humanoid robot soccer players that
can beat the best human soccer team on a real soccer field [4].

Figure 1: The Alde-
baran Nao robot.

RoboCup is organized into several leagues, includ-
ing both simulation leagues and leagues that compete
with physical robots. This report describes our team’s
entry in the Nao division of the Standard Platform
League (SPL)1. In the SPL, all the teams compete
with identical robots, making it essentially a software
competition. All the teams used identical humanoid
robots from Aldebaran called the Nao2, shown in Fig-
ure 1.

Our team is UT Austin Villa3, from the Depart-
ment of Computer Sciences at the University of Texas
at Austin. Our team is made up of Professor Pe-
ter Stone, PhD student Todd Hester, and postdoc
Michael Quinlan, all veterans of past RoboCup com-
petitions. We started the codebase for our Nao team
from scratch in December of 2007. Our previous work
on Aibo teams [12, 13, 14] provided us with a good

background for the development of our Nao team. We developed the archi-
tecture of the code in the early months of development, then worked on the
robots in simulation, and finally developed code on the physical robots starting
in March of 2008. Our team competed in the RoboCup competition in Suzhou,
China in July of 2008.

This report describes all facets of our development of the Nao team codebase.
Section 2 describes our software architecture that allows for easy extendability
and debugability. Our approaches to vision and localization are similar to what
we have done in the past [14] and are described in sections 3 and 4 respectively.
One of the biggest changes from the Aibo league was moving from a four-legged
robot to a two-legged robot. We developed a motion engine for the Nao to
address this challenge, which is described in section 5. Section 6 briefly describes
the behaviors we developed on the robot. Section 7 presents our results from
the competition and section 8 concludes the report.

2 Software Architecture

The introduction of the Nao allowed us to redesign the software architecture
without having to support legacy code. Previous RoboCup efforts had taught us
that the software should be flexible to allow quick changes but most importantly
it needs to be debugable.

1http://www.tzi.de/spl/
2http://www.aldebaran.com/
3http://www.cs.utexas.edu/˜AustinVilla

2



The key element of our design was to enforce that the environment interface,
the agent’s memory and its logic were kept distinct (Figure 2). In this case logic
encompasses the expected vision, localization, behavior and motion modules.
Figure 3 provides a more in-depth view of how data from those modules interact
with the system.

Figure 2: Overview of the 2008 UT Austin Villa software architecture.

The design advantages of our architecture are:

Consistency The core system remains identical irrespective of whether the
code is run on the robot, in the simulator or inside our debug tool. As a
result, we can test and debug code in any of the 3 environments without
fear of code discrepancies. The robot, simulator and tools each have their
own interface class which is responsible for populating memory.

The robot interface talks to NaoQi (and related modules) to populate the
perceptions and then reads from memory to give commands to ALMotion.
Since July the simulation interface also communicates with NaoQi; previ-
ously it communicated via the older Webots/Nao API. The tool interface
can populate memory from either a saved log file or over a network stream.

Flexibility The internal memory design is show in Figure 3. We can easily plug
& play modules into our system by allowing each module to maintain its
own local memory and communicate to other modules using the common
memory area. By forcing communication through these defined channels
we prevent ’spaghetti code’ that often couples modules together. For
example, a Kalman Filter localization module would read the output of
vision from common memory, work in its own local memory and then
write object locations back to common memory. The memory module
will take care of the saving and loading of the new local memory, so the
developer of a new module does not have to be concerned with the low
level saving/loading details associated with debugging the code.

Debugability At every time step only the contents of current memory is re-
quired to make the logic decisions. We can therefore save a “snapshot” of
the current memory to a log file (or send it over the network) and then
examine the log in our debug tool and discover any problems. The debug
tool not only has the ability to read and display the logs, it also has the
ability to take logs and process them through the logic modules. As a

3



result we can modify code and watch the full impact of that change in our
debug tool before testing it on the robot or in the simulator. The log file
can contain any subset of the saved modules, for example saving only per-
cepts (i.e. the image and sensor readings) is enough for us to regenerate
the rest of the log file by passing through all the logic modules (assuming
no changes have been made to the logic code).

It would be remiss not to the mention the main disadvantage of this de-
sign. We implicitly have to “trust“ other modules to not corrupt data stored in
memory. There is no hard constraint blocking one module writing data into a
location it shouldn’t, for example localization could overwrite a part of common
memory that should only be written to by vision. We could overcome this draw-
back by introducing read/write permissions on memory, but this would come
with performance overheads that we deem unnecessary.

Figure 3: Design of the Memory module. The gray boxes indicated memory
blocks that are accessed by multiple logic modules. Dotted lines show connec-
tions that are either read or write only (percepts are read only, commands are
write only).

,

2.1 Languages

The code incorporates both C++ and Lua. Lua is a scripting language that
interfaces nicely with C++ and it allows us to change code without having to
recompile (and restart the binary on the robot). In general most of vision,
localization and motion are written in C++ for performance reasons, but all
control decisions are made in Lua as this gives us the ability to turn on/off
sections at runtime. Additionally the Lua area of the code has access to all the

4



objects and variable stored in C++ and therefore can be used to prototype code
in any module.

3 Vision

In 2008 we used the 160×120 pixel image primarily because the early version
of the simulator and robot only provided this image size. Since the number of
pixels was relatively low we were able to use same image processing techniques
that were applied by most AIBO teams [14, 9].

First, the YUV image is segmented into known colors. Second, blobs of
continuous colors are formed and finally, these blobs are examined to see if they
contain an object (ball, goal, goal post). Additionally a line detection algorithm
is run over the segmented image to detected field lines and intersections (L’s or
T’s).

Figure 4 gives an example of a typical vision frame. From left-to-right we
see the raw YUV image, the segmented image and the objects detected. In this
image the robot identified an unknown blue post (blue rectangle), an unknown L
intersection (yellow circle), an unknown T intersection (blue circle), and three
unknown lines.

Figure 4: Example of the vision system. Left-to-Right: The raw YUV image,
the segmented image and the observed objects

A key element to gaining more accurate distances to the ball is circle fitting.
We apply a least squared circle fit based upon the work of Seysener et al [10].
Figure 5 presents example images of the ball. In the first case the robot is
“bending over” to see a ball at its own feet. The orange rectangle indicates the
bounding box of the observed blob, while the pink circle is the output of the
circle fit. For reference we show a similar image gathered from the simulator.
The final image shows a ball that is occluded, in this case it extends off the
edge of the image. In this situation a circle fit is the only method of accurately
determining the distance to the ball.

3.1 Field Lines and Intersections

The line detection system returns lines in the form of ax + by + c = 0 in the
image plane. These lines are constructed by taking the observed line segments
(the bold white lines in the lower right image of Figure 6) and forming the
general equation that describes the infinite extension of this line (shown by the
thin white lines). However, localization currently requires a distance and angle
to the closest point on the line after it has been projected to the ground plane.

5



Figure 5: Example of circle fitting applied to the ball. The first two images a
examples of a ball when the robot is preparing to kick (an image is presented
from the robot and from the simulator). The third image shows a ball where
circle fitting is required to get an accurate estimate of distance.

To find the closest point on the line, we take two arbitrary points on the
image line (in our case we use the ends of the observed segments) and translate
each point to the ground plane using method described in Section 3.1.1. We
can then obtain the equation of the line in the ground plane by forming the
line that connects to these two points. Since this projected line is relative to
the robot (i.e. the robot is positioned at the origin), the distance and bearing
to the closest point can be obtained by simple geometry. The output of the
translations can be seen in Figure 6.

Figure 6: Example of transforming lines for use in localization. The images
on the left show the segmented image and the results of object recognition, in
this case two lines and an L intersection. The image on the right shows these
objects after they have been transformed to the ground plane. The two black
lines indicate the observed line segments, the white circles show the closest
points to the infinite extension of each line and the pink circle indicates the
observed location of the L intersection.

6



3.1.1 Calculating distance, bearing and elevation to a point in an

image

Given a pixel (xp, yp) in the image we can calculate the bearing (θb) and elevation
(θe) relative to the camera by:

θb = tan−1

„

w/2 − xp

w/(2 · tan(FOVx/xp))

«

, θe = tan−1

„

h/2 − yp

h/(2 · tan(FOVy/yp))

«

where w and h are the image width and height and FOV is the field of view of
the camera.

Typically for an object (goal, ball, etc.) we would have an estimated distance
(d) based on blob size. We can now use the pose of the robot to translate d,
θb, θe into that object’s location (x, y, z), where (x, y, z) is relative to a fixed
point on the robot. In our case this location is between the hips. We define
(x, y, z) = transformPoint(d, θb, θe) as:

=

0

B

B

@

1 0 0 0

0 1 0 0

0 0 1 d

0 0 0 1

1

C

C

A

0

B

B

@

cosθb 0 sinθb 0

0 1 0 0

−sinθb 0 cosθb 0

0 0 0 1

1

C

C

A

0

B

B

@

1 0 0 0

0 cosθe sinθe 0

0 −sinθe cosθe 0

0 0 0 1

1

C

C

A

0

B

B

@

1 0 0 0

0 1 0 70

0 0 1 50

0 0 0 1

1

C

C

A

0

B

B

@

1 0 0 0

0 cosφp −sinφp 0

0 sinφp cosφp 0

0 0 0 1

1

C

C

A

0

B

B

@

cosφy 0 sinφy 0

0 1 0 0

−sinφy 0 cosφy 0

0 0 0 1

1

C

C

A

0

B

B

@

1 0 0 0

0 1 0 211.5

0 0 1 0

0 0 0 1

1

C

C

A

0

B

B

@

1 0 0 0

0 cosθp −sinθp 0

0 sinθp cosθp 0

0 0 0 1

1

C

C

A

where φp and φy are angle of the head pitch and head yaw joints. θp is the body
pitch as calculated in Section 5.3 and the constants are the camera offset from
the neck joint (70mm and 50mm) and the distance from the neck joint to our
body origin (211.5mm).

For a point on a line we do not have this initial distance estimate and instead
need an alternate method for calculating the relative position. The approach
we use is to solve the above translation for two distances, one very short and
one very long. We then form a line (ℓ) between the two possible locations in
3D space. Since a field line must lie on the ground, the relative location can
be found at the point where ℓ crosses the ground plane (Eq 1). We can then
calculate the true distance, bearing and elevation to the point (Eq 2).

(x1, y1, z1) = transformPoint(200, θb, θe)

(x2, y2, z2) = transformPoint(20000, θb, θe)

y = −height , x = x1 + (x2 − x1) ·

„

y − y1

y2 − y1

«

, z = z1 + (z2 − z1) ·

„

y − y1

y2 − y1

«

(1)

dtrue =
p

x2 + y2 + z2 , θbtrue = tan−1

“x

z

”

, θetrue = tan−1

„

y
√

x2 + z2

«

(2)

where height is the calculated height of the hip from the ground.

4 Localization

We used Monte Carlo localization (MCL) to localize the robot. Our approach is
described in [11, 1]. In MCL, the robot’s belief of its current pose is represented
by a set of particles, each of which is a hypothesis of a possible pose of the robot.
Each particle is represented by 〈h, p〉 where h = (x, y, θ) is the particle’s pose

7



and p represents the probability that the particle’s pose is the actual pose of
the robot. The weighted distribution of the particle poses represents the overall
belief of the robot’s pose.

At each time step, the particles are updated based on the robot’s actions
and perceptions. The pose of each particle is moved according to odometry
estimates of how far the robot has moved since the last update. The odometry
updates take the form of m = (x′, y′, θ′), where x′ and y′ are the distances the
robot moved in the x and y directions in its own frame of reference and θ′ is the
angle that the robot has turned since the last time step.

After the odometry update, the probability of each particle is updated using
the robot’s perceptions. The probability of the particle is set to be p(O|h), which
is the likelihood of the robot obtaining the observations that it did if it were
in the pose represented by that particle. The robot’s observations at each time
step are defined as a set O of observations o = (l, d, θ) to different landmarks,
where l is the landmark that was seen, and d and θ are the the observed distance
and angle to the landmark. For each observation o that the robot makes, the
likelihood of the observation based on the particle’s pose is calculated based on
its similarity to the expected observation ô = (l̂, d̂, θ̂), where d̂ and θ̂ are the the
expected distance and angle to the landmark based on the particle’s pose. The
likelihood p(O|h) is calculated as the product of the similarities of the observed
and expected measurements using the following equations:

rd = d− d̂ (3)

sd = e−r2

d/σ2

d (4)

rθ = θ − θ̂ (5)

sθ = e−r2

θ/σ2

θ (6)

p(O|h) = sd · sθ (7)

Here sd is the similarity of the measured and observed distances and sθ is the
similarity of the measured and observed angles. The likelihood p(O|h) is de-
fined as the product of sd and sθ. Measurements are assumed to have Gaussian
error and σ2 represents the standard deviation of the measurement. The mea-
surement variance affects how similar the observed and expected measurement
must be to produce a high likelihood. For example, σ2 is higher for distance
measurements than angle measurements when using vision-based observations,
which results in angles needing to be more similar than distances to achieve a
similar likelihood. The measurement variance also differs depending on the type
of landmark observed.

For observations of ambiguous landmarks, the specific landmark being seen
must be determined to calculate the expected observation ô = (l̂, d̂, θ̂) for its
likelihood calculations. With a set of ambiguous landmarks, the likelihood of
each possible landmark is calculated and the landmark with the highest like-
lihood is assumed to be the seen landmark. The particle probability is then
updated using this assumption.

Next the algorithm re-samples the particles. Re-sampling replaces lower
probability particles with copies of particles with higher probabilities. The
expected number of copies that a particle i will have after re-sampling is

n×
pi∑n

j=1 pj
(8)

8



where n is the number of particles and pi is the probability of particle i. This
step changes the distribution of the particles to increase the number of particles
at the likely pose of the robot.

After re-sampling, new particles are injected into the algorithm through the
use of re-seeding. Histories of landmark observations are kept and averaged
over the last three seconds. When two or more landmarks observations exist in
the history, likely poses of the robot are calculated using triangulation. Lower
probability particles are replaced by new particles that are created with these
poses [7].

The pose of each particle is then updated using a random walk where the
magnitude of the particle’s adjustment is inversely proportional to its probabil-
ity. Each particle’s pose h is updated by adding w = (i, j, k) where (i, j, k) are
defined as:

i = max-distance · (1 − p) · random(1) (9)

j = max-distance · (1 − p) · random(1) (10)

k = max-angle · (1 − p) · random(1) (11)

The max-distance and max-angle are parameters that are used to set the
maximum distance and angle that the particle can be moved during a random
walk and random(1) is a random real number between 0 and 1. This process
provides another way for particles to converge to the correct pose without re-
sampling.

Finally, the localization algorithm returns an estimate of the pose of the
robot based on an average of the particle poses weighted by their probabil-
ity. Figure 7 shows an example of the robot pose and the particle locations.
The algorithm also returns the standard deviation of the particle poses. The
robot may take actions to improve its localization estimate when the standard
deviation of the particle poses is high.

In addition to the standard use of MCL, in [1], we introduced enhancements
incorporating negative information and line information. Negative information
is used when an observation is expected but does not occur. If the robot is
not seeing something that it expects to, then it is likely not where it thinks it
is. When starting from a situation where particles are scattered widely, many
particles can be eliminated even when no observations are seen because they
expect to see a landmark. For each observation that is expected but not seen,
the particle is updated based on the probability of not seeing a landmark that
is within the robot’s field of view. It is important to note that the robot can
also miss observations that are within its view for reasons such as image blur-
ring or occlusions, and these situations need to be considered when updating
a particle’s probability based on negative information. Our work on negative
information is based on work by Hoffmann et al [2, 3]. We update particles
from line observations by finding the nearest point on the observed line and the
expected line. Then we do a normal observation update on the distance and
heading to these points.

We used a 4 state Kalman filter to track the location of the ball. The Kalman
filter tracked the location and velocity of the ball relative to the robot. Using
our localization estimate we could then translate the ball’s relative coordinates
back to global coordinates. Our Kalman Filter was based on the 7 state Kalman
filter tracking both the ball and the robot’s pose used in [9].

9



Figure 7: Example of Robot Pose Estimate and Particles

Our combined system of Monte Carlo localization for the robot and a Kalman
filter to track the ball worked well and was robust to bad observations from
vision. A video showing the performance of the localization algorithm while the
keeper was standing in its goal is available at:
http://www.cs.utexas.edu/users/AustinVilla/legged/teamReport08/naoParticleFilter.avi.

5 Motion

We developed our own motion engine for the Nao, based on the state-based
method of Yin et al [15]. In their approach, they create a simple finite state
machine. Each state represents some stage of the motion with a set of target
angles for the joints. Between states, motors are driven with proportional-
derivative (PD) controllers to drive the motors to the desired angles. Transitions
between states can occur based on time or foot contact with the ground. In
addition, they dynamically balance the robot during the walk by leaving the
swing hip angle free. The desired target for this angle is calculated based on the
current and desired torso and opposite hip angles. This enables the walk engine
to change the swing hip angle to dynamically balance the robot. We used their
approach as the basis for both our walking and kicking motions.

5.1 Walking

While we eventually decided on using the Aldebaran motion engine for the
RoboCup competition, we developed our own walk engine for the Nao, which
is described below. Our walk engine was a four state finite state machine,
demonstrated in Figure 8. In the first state, the robot shifts its weight to its
stance leg and lifts its swing leg up and forward. In the next state, it brings the

10



Figure 8: This figures shows the states in our walk engine. In the first state, the
robot shifts its weight to its left leg and lifts its right leg. In the second state,
it rebalances its weight and brings the right leg forward and down. In states 3
and 4, the robot repeats this motion with the legs reversed.

Target Type

Swing Leg Forward mm
Swing Leg Side mm
Swing Leg Up mm
Stance Leg Forward mm
Stance Leg Side mm
Stance Leg Up mm

Swing Shoulder Rad
Stance Shoulder Rad

Table 1: State Targets

swing leg forward and down. These two states are then repeated with the legs
switched. Each state is characterized by the targets listed in Table 1. The first
six targets are used to calculate desired angles for all of the leg joints, while the
last two targets are used directly as the targets for the arm joints.

In our walk engine, the target parameters for the swing and stance legs are
described by the relative distances of each foot from the center of the hips.
The distances down, forward, and sideways from the hip center to each foot are
set in millimeters. We then use inverse kinematics to calculate the desired hip
pitch, hip roll, and knee pitch angles from these targets. The ankle roll and
ankle pitch angles are calculated to keep the ankles parallel to the ground at all
times. The ankle pitch angles are also used to maintain the robot’s torso at a
desired angle for dynamic balancing. When turning, the hip yaw pitch angle is
set to turn the robot’s legs. In addition, the robot’s shoulder joints are moved
to help balance the robot during walking.

A walk in our walk engine is characterized by the parameters in Table 2,
which also shows the best parameters that we found for our walk engine through
machine learning in simulation and trial and error on the physical robot. Table 3
shows how these 10 parameters are used to determine the target parameters for
each state.

11



Parameter Type Value

Step Time Seconds 1.5
Foot Forward mm -10
Step Length mm 65
Walk Height mm 160
Step Height mm 15
Shift mm 40
Torso Angle Rad 15
Leg Lengthen Ratio % 15

Shoulder Forward Rad 60
Shoulder Back Rad 110

Table 2: Walk Parameters

Target State 1 State 2

SwingLegForward FootForward FootForward - StepLength / 2.0
SwingLegUp WalkHeight - (1 - LegLengthenRatio) * StepHeight WalkHeight
SwingLegSide Shift Shift
StanceLegForward FootForward FootForward + StepLength / 2.0
StanceLegUp WalkHeight + LegLengthenRatio * StepHeight WalkHeight
StanceLegSide Shift Shift
SwingShoulder (ShoulderForward + ShoulderBack) / 2.0 ShoulderBack
StanceShoulder (ShoulderForward + ShoulderBack) / 2.0 ShoulderForward

Table 3: Walk Equations

At standing, the feet will be FootForward in front of the hips andWalkHeight
below the hips. During the walk, the feet will slide Shift to the side from the
hips to move the weight onto the stance leg. The robot takes steps of length
StepLength with the hips exactly halfway between the forward and back feet.
When stepping, the swing foot will be StepHeight millimeters above the stance
foot. The step height is created both by straightening the stance and shortening
the swing leg. The stance leg is lengthened by LegLengthenRatio of the step
height and the swing leg is shortened by the remaining amount.

We performed machine learning on the simulated robot in the Webots sim-
ulator4 to learn the best parameters for our walk engine, based on the walk
learning approach used on the Aibo by Kohl and Stone [6, 5]. We then used
these learned parameters as a starting point to find a good walk on the physi-
cal robot. We used the Downhill Simplex algorithm [8] to learn the best walk
parameters. On each trial, the robot’s walk engine was initialized with the pa-
rameters given to it by the algorithm to be tested. The robot was placed 1.8
meters from the ball in the simulator. It then tried to walk for 1200 frames
or until it fell or came within 800 centimeters of the ball (based on vision es-
timates). The evaluated walk was given a value of 2000 −NumFrames if the
robot fell and NumFrames/(1800 −mmTraveled) otherwise. This evaluation
function gave lower values for walks that went farther and high values for trials
were the robot fell. The Downhill Simplex algorithm tried to find the parameters
that minimized this function.

Our walk engine was preferable in many respects to the walk provided by
Aldebaran. The direction and speed of the walk could be modified dynamically,
while the Aldebaran walk engine required the user to provide a target distance or

4http://www.cyberbotics.com/

12



Figure 9: This figure shows a model of a robot in Webots kicking the ball. State
2, where the robot brings its leg back, is shown on the left. State 3, where the
robot swings its leg forward, is on the right.

turn angle and wait for the robot to complete it. Our walk engine’s parameters
could also be adjusted on the fly. One useful example of this is its ability to
increase the angle of the torso as the robot approached the ball so that the robot
could continue to see it. In spite of these benefits, we chose to use the Aldebaran
walk engine because it was much more stable than our own walk engine. Our
walk was less stable than the Aldebaran walk because of inherent jerkiness in
the robot’s motion caused by using the ALMotion interface instead of DCM.
We believe with a few modifications our walk engine will be more stable and we
expect to use it in the 2009 RoboCup competition.

5.2 Kicking

We approached the problem of kicking the ball in a similar manner to our walk.
Once again, we created a state machine for the robot to kick. In the first state,
the robot shifts it weight to the stance leg. Figure 9 shows the second state and
third states of the kick engine. In the second state, the robot lifts the kicking leg
and brings it back. In the third state, the robot kicks the ball by swinging the
kicking leg forward through the ball. In the final state, the robot brings the legs
even again and balances its weight back onto them. This kick was characterized

13



Parameter Type Value

Body Height mm 190
Feet Forward mm 19
Shift mm 50
Kick Height mm 35
Swing Back mm 32
Swing Fwd mm 85
Torso Angle Rad 8

Table 4: Kick Parameters

by the parameters shown in Table 4. Once again, the target x, y, z coordinates
of the feet relative of the hips were used to calculate the desired joint angles for
the legs. In each state, the leg angles were driven to these target angles using
PD controllers.

We used the Downhill Simplex algorithm [8] to learn the best kick parameters
in simulation, similar to our approach for learning the walk parameters. In each
trial, the robot’s kick engine was initialized with the parameters to be tested
from the algorithm. The robot was started with the ball near its right foot.
Then the robot executed its kick based on the given parameters. The trial
continued until the robot fell or 300 frames had passed. The kick was given a
value of 2000 −NumFrames if the robot fell, 1000 if it could not see the ball,
and (6000 − BallDistance)/6 + BallBearing otherwise. This function gives
the lowest value for a ball that was kicked very far and very straight. The
parameters that were learned are shown in Table 4. These parameters appeared
to be the best parameters on the physical robot as well, as the robot was able
to kick the ball several meters.

5.3 Kinematics

To determine the pose of the robot we used the accelerometers to estimate the
roll (φ), pitch (θ) and yaw (ψ) of the torso. As expected the accelerometers were
fairly noisy; to overcome this we used a Kalman Filter to produce a smoother
set of values (φf , θf , ψf ). The forward kinematics were then calculated by using
the modified Denavit and Hartenberg parameters with the XYZ axes rotated to
reflect φf ,θf and ψf . Figure 10 shows the filtered versus unfiltered estimates of
the robots pose during a typical walking cycle. A video can also found at:
http://www.cs.utexas.edu/users/AustinVilla/legged/teamReport08/naoKinematics.avi.

6 Behavior

Our behavior module is made up of a hierarchy of task calls. We call a PlaySoc-

cer task which then calls a task based on the mode of the robot {ready, set,
playing, penalized, finished}. These tasks then call sub-tasks such as Chase-

Ball or GoToPosition.
Our task hierarchy is designed for easy use and debugging. Each task main-

tains a set of state variables, including the sub-task that it called in the previous
frame. In each frame, a task can call a new sub-task or continue running its

14



Figure 10: Estimations of the robots pose while walking forwards. The blue
robot is the unfiltered pose while the white robot is the filtered pose.

previous one. If it does not explicitly return a new sub-task, its previous sub-
task will be run by default. Tasks at the bottom of the hierarchy are typically
the ones that send motor commands to the robot; for example telling it to walk,
kick, or move its head.

Tasks in our system can also call multiple tasks in parallel. This ability is
used mainly to allow separate tasks to run for vision and motion on the robot.
While the robot is running a vision behavior such as a head scan or looking at
an object, the body can be controlled by a separate behavior such as kicking or
walking towards the ball.

One of the benefits of our task hierarchy is its debugability. In addition to
the logs of memory that the robot creates, it also creates a text log that displays
the entire tree of tasks that were called each frame along with all their state
variables. Figure 11 shows an example of one frame of output of the behavior
log in the tool. The information provided in the text log is enough to determine
why the robot chose each particular behavior, making it easy to debug. In
addition, this text log is synchronized with the memory log in the tool, allowing
us to correlate the robot’s behaviors with information from vision, localization,
and motion.

The behaviors that were used in the RoboCup competition were fairly simple.
In its most basic form, the robot tried to walk to the ball and kick it towards
the goal. Kicking the ball was somewhat complicated, as the robot could not
see the ball near its feet due to the limited field of view of its camera. Our

15



Figure 11: Example Behavior Log, showing the trace of task calls and their
state variables.

kicking behavior consisted of walking up to the ball, adjusting to face the goal,
leaning over to see if the ball was there, aligning to the ball, and then kicking.
A video of this behavior is available online at:
http://www.cs.utexas.edu/users/AustinVilla/legged/teamReport08/naoBehavior.avi

7 Competition

The 12th International Robot Soccer Competition (RoboCup) was held in July
2008 in Suzhou, China5. 15 teams entered the competition. Games were played
with two robots on a team. The first round consisted of a round robin with three
groups of four teams and one group of three teams. Each team played each of
the other teams in its group. The top two teams from each group advanced to
the quarterfinals. From the quarterfinals on, the winner of each game advanced
to the next round.

UT Austin Villa was in round robin group D with Northern Bites and Zadeat.
In the round robin, games that ended on a tie were decided by which team

5http://robocup-cn.org/

16



displayed more skills (ability to walk, ability to kick, ability to play soccer).
Based on these criteria, UT Austin Villa was deemed to be the best team in
the group and moved on to the quarterfinals. In the quarterfinals, UT Austin
Villa played Kouretes. The game ended in a tie, and Kouretes won the game in
overtime on penalty kicks. Although we did not perform as well as we hoped,
we were happy with the progress that was made in the short time we had the
robots before the competition.

8 Conclusion

This report described the technical work done by the UT Austin Villa team
for its Nao entry in the Standard Platform League. Our team developed a
new codebase, with a new software architecture at its core. The architecture
consisted of many modules communicating through a shared memory system.
This setup allowed for easy debugability, as the shared memory could be saved
to a file and replayed later for debugging purposes. The Nao code included
vision and localization modules based on previous work. The team developed
new algorithms for motion and kinematics on a two-legged robot. Finally, we
developed new behaviors for use on the Nao.

The work presented in this report gives our team a good foundation on which
to build better modules and behaviors for future competitions. In particular,
our modular software architecture provides us with the ability to easily swap in
new modules to replace current ones, while still maintaining easy debugability.
While we were disappointed in our result at RoboCup 2008, we believe this
work gives us a good start towards competing successfully in future RoboCup
competitions.

References

[1] T. Hester and P. Stone. Negative information and line observations for
Monte Carlo localization. In IEEE International Conference on Robotics
and Automation (ICRA), May 2008.

[2] J. Hoffmann, M. Spranger, D. Göhring, and M. Jüngel. Exploiting the un-
expected: Negative evidence modeling and proprioceptive motion modeling
for improved markov localization. In RoboCup, pages 24–35, 2005.

[3] J. Hoffmann, M. Spranger, D. Göhring, and M. Jüngel. Making use of what
you don’t see: Negative information in markov localization. In IEEE/RSJ
International Conference of Intelligent Robots and Systems, 2005.

[4] H. Kitano, M. Asada, Y. Kuniyoshi, I. Noda, and E. Osawa. RoboCup:
The robot world cup initiative. In Proceedings of The First International
Conference on Autonomous Agents. ACM Press, 1997.

[5] N. Kohl and P. Stone. Machine learning for fast quadrupedal locomotion.
In The Nineteenth National Conference on Artificial Intelligence, pages
611–616, July 2004.

17



[6] N. Kohl and P. Stone. Policy gradient reinforcement learning for fast
quadrupedal locomotion. In Proceedings of the IEEE International Con-
ference on Robotics and Automation, May 2004.

[7] S. Lenser and M. Veloso. Sensor resetting localization for poorly mod-
elled mobile robots. In IEEE International Conference on Robotics and
Automation (ICRA), 2000.

[8] W. Press, S. Teukolsky, W. Vetterling, and B. Flannery. Numerical Recipes
in C. Cambridge University Press, Cambridge, UK, 2nd edition, 1992.

[9] M. J. Quinlan, S. P. Nicklin, N. Henderson, R. Fisher, F. Knorn, S. K.
Chalup, R. H. Middleton, and R. King. The 2006 NUbots Team Report.
Technical report, School of Electrical Engineering & Computer Science
Technical Report, The University of Newcastle, Australia, 2007.

[10] C. J. Seysener, C. L. Murch, and R. H. Middleton. Extensions to object
recognition in the four-legged league. In D. Nardi, M. Riedmiller, and
C. Sammut, editors, Proceedings of the RoboCup 2004 Symposium, LNCS.
Springer, 2004.

[11] M. Sridharan, G. Kuhlmann, and P. Stone. Practical vision-based monte
carlo localization on a legged robot. In IEEE International Conference on
Robotics and Automation, April 2005.

[12] P. Stone, K. Dresner, P. Fidelman, N. K. Jong, N. Kohl, G. Kuhlmann,
M. Sridharan, and D. Stronger. The UT Austin Villa 2004 RoboCup four-
legged team: Coming of age. Technical Report UT-AI-TR-04-313, The
University of Texas at Austin, Department of Computer Sciences, AI Lab-
oratory, October 2004.

[13] P. Stone, K. Dresner, P. Fidelman, N. Kohl, G. Kuhlmann, M. Sridharan,
and D. Stronger. The UT Austin Villa 2005 RoboCup four-legged team.
Technical Report UT-AI-TR-05-325, The University of Texas at Austin,
Department of Computer Sciences, AI Laboratory, November 2005.

[14] P. Stone, P. Fidelman, N. Kohl, G. Kuhlmann, T. Mericli, M. Sridharan,
and S. en Yu. The UT Austin Villa 2006 RoboCup four-legged team.
Technical Report UT-AI-TR-06-337, The University of Texas at Austin,
Department of Computer Sciences, AI Laboratory, December 2006.

[15] K. Yin, K. Loken, and M. van de Panne. Simbicon: Simple biped locomo-
tion control. ACM Trans. Graph., 26(3):Article 105, 2007.

18


