STICHTING

MATHEMATISCH CENTRUM

2e BOERHAAVESTRAAT 49
AMSTERDAM

REKENAFDELING

ALGOL Bulietin
Supplement nr. 10

ALGOL-60 Translation

by

Dr. EW. Dijkstra

November 1981

*)

An ALGOL 60 Translator for the X1

Introduction
An ALGOL 60 Translator for the X1 has been working in the

Computation Department of the Mathematical Centre in Amsterdam
since June 1960. This is naturally not the result of our first
attempt. While the problem was yet new to us we began a few
times by treating relatively simple tasks, but every solution
we then found turned out lster to be inadequate in more compli-
cated cases. When the few times were past us we attacked the
whole problem from the cother side and subsequently subjected our
new approach teo, and tested it against, the meost difficult situa-
tions imaginsble. The basic form of this approach has not changed
since, although its working out gave rise to various improvements.
For example, the method of reference to ancnymous intermedlate
results, which we had taken over directly from the old projects,
now turned out on closer consideration tco require too much stora-
ge space for the object program. It was clear how we had to im-
prove this, and the mecdification could be carried out within two
weeks, We got the idea of this modification during a discussion
which our group had in Copenhagen with Messrs. J.Jensen,
P. Mondrup and P. Naur of "Regnecentralen", Copenhagen.

We naturally chose this way of approaching the problem in the
hope that, once a really satisfactory soclution had been found
for fundamentally complicated tasks, the working out in detail

would no longer prepare unpleasant surprises for us, and in each
case an elegant solution would present itself as 1f automatically.
This hope has been fulfilled beyond all expectations: thus 1t
turned out to our great joy and surprise that the translator

would deal with certain existing extensions of ALGOL 60 without
more ado. And it is this experience which promgtsus to publish
something about our project; it is also relevant that our solu-
tion is not only valid for the X1: it can be carried through

with any good computer.

*) Published in German in two parts
MIW,2, 1961, pp 54-56 and MTW, 3, 1961, pp 125-119

Presuppecsitions and Intentions

Our solution is for "good computing machines", where by "good"
we want to mean that we are completely free to determine how the
computer should be used, this in contrast with machines for)
which considerations of efficliency force us in practice to a
special manner of use, that is, force us to take account of
specifle properties and peculiarities of the machine.

We shall therefore suppose that a sufficlently large homoge-
neous store is available, Thus we shall not be concerned with the
problems that arise as soon as we want to inake efficient use of
a machine with a fast store of restricted extent together with
a large but slower store, Indeed we undertake to subdivide the
store, for whose cells we presuppose constant access time, as
advantageously as possible.

We further suppose that the arithmetic unit is so fast that
we may permit curselves to use well-chosen subroutines to carry’
out the required arithmetic, logical and organisational operati-
cns from which the cobject program is c¢onstructed., Thus all the
special possibilities of the order code hardly find any expres-
slon in the structure of the sbject program: they should neverthe-
less be fully utilised in the complex of subroutines which 1is
"played" by the object program,

We are fully aware that we only attain a profitable use of the
store and an extraordinary flexibility of the object program at
the expense of a certaln prolongation of the calculating time,
and we can imagine that for some computer which is still in use
today one cannot accept this delay. There are twofold reasons
why we nevertheless made this cholce, one of principle and one
practical.

The reason of principle is that as a scientific Institute we
would rather devote our time to the development of a programming
technique which we expect to be realised in the near future than
2 ftechniqgue for which this 1s not so.

On the one hand we have good reason to suppose that the percen-
tage of machines for which our technigue is suitable will grow,
and one can more easily permit oneself to pay the price of a
certaln delay., On the other hand we anticipate that increased
flexibllity and the release from all kinds of restrictions of

secondary importance which have normally tc be cbserved while
programming will come more

and more to be appreclated as wvaluable. This last could well be
of decisive significance for the question of whether in the
coming years one wWill be in & position actually to make full use
of the rapidly increasing calculation capacity.

The practical reason is that the machine of the Computation
Department of the Mathematical Centre, i.e. an X1 {provided by
N.V. Electrologica of Amsterdam), fully satisfies the require-
ments which were made by our appreoach. Since the order code of
the X1 only includes fixed point operations the floating point
operations have in each case to be carried out by subroutines.
This anyway makes the relative delay, compared with other solu-
tions, considerably smaller. Besides this, thanks to the rapid
subroutine mechanism, we can introduce duite short subroutines
into the complex, a fact of which good use can be made,

Considerations of this kind have led us to ftry for a complete
ALGOL 60 translator, We have become so consistent in this respect
that we occeslonally seemed to require of our translator that
it should be able to cope even with situations for which it 1s
guesiionable whether théy were fcreseen durilng the compilation
of the "Report on the algorithmic language ALGOL 60": in the
ALGQOL 60 to be processed here we became accustomed "to allowing
in principle everything which is not explicitly forbidden"
{naturally on the condition that it has a clear unambiguous
meaning). Thus in the first place it is our conviction that as
soon as ALGOL 60 becomes accepted refined programmers will
explolt the possibilities of ALGOL 60 in just the same way as
they do now with machine codes. Besides this we are afraid that
mutual interchangeability of ALGOL programs will soon become an
1llusion if everyone who makes z translator allows himself the
option of leaving out everything from the langusge that does not
suit him personally. Ve have however at one point not remained
frue to this principle. The declaration own cannot be applied
unrestriciedly: it cannot be used during recursive use of 2
procedure and for array declarations the use of own dynamic upper
and lower bounds for the indices is excluded (see [1], 5.2.2.,
example 2).

Arithmetic

7iith regard tc arithmetic the structure of the object program’
is rather conventional: algebraic expressions are evaluated with
the help of &n accumulator stack (see e.g. [2]). In the following
we use the symbol: {X} for stating the contents of the storage
cell with address X, and the inverse symbol: }x{ for stating the
address in which the guantity x is found. We denote the accumula-
tors in the stack by Vs Vas Voseoo etc.

Thus the evaluation of the assignment statement x :=a-bx(c+d)+e
takes place in the elementary steps:

v, o i® } x{ 3

v, = a;

Vo o i bs

vy o= cj

vy o= d;

Voo 3¥ VotV

Vy = Vo)

Vg o PT VqTVRS

vy 1= e

Vqooi= Vs
{vo} = Va3

Each accumulator v, occuples a number (in our case 4) of
consecutive storage cells. &n accumuliator contains either 2
number or an address, Together with a declaration as fo which one
of the two. Secondly each accumulator contains & real-integer
Indication, which in the first case refers tc the number in the
accumulator itself, and in the second case o the content of the

storage cell whose address is contained in the sccumulator. (An

explicitly named variable of type Beolean or integer occupies one
storage cell, but one of type real occupies two.) All arithmetic
operations start by investigating the real-integer indications of
the two operands: if they differ, the real representation of the
number in integer representation is first formed. The inverse

transformation (including rounding) is introduced when a value

_5..

which 1s formed from arithmetlic in real representation 1s
asslgned to a variable of type integer, e.g. in:
" integer n; ni=a/b",

The system of the accumulator stack is clear: if a new number
is called up from the store it is transferred to the first free
accumulator and the number k of filled accumulators is increased
by one, An arithmetlc operation is always carried out on the
numbers in the two last filled accumulators, and the number k
thereby reduced by cne, If the changes of kK were done by the
translator the current value of k would have to be represented
in the object program in the specification of every action; at
the cost of a negligible loss of time we could store the cbject
program much more compactly 1if we left the appropriate changes
of K to the arithmetic subroutines. The object program then
takes the following form (assuming suitable declarations):

Numhers of orders change of k
2 TRAx TAKE REAL ADDRESS +1
2 TRRa TAKE REAL RESULT +4
2 TIRb TAKE INTEGER RESULT +1
2 TRRc TAKE REAL RESULT +1
2 TFRd TAKE FORMAL RESULT +1
1 ATD ADD -1
1 MUL MULTIPLY -1
1 SUB SUBTRACT -1
2 TRRe TAKE REAL RESULT +1
17 ADD ADD -1
1 87T STORE -2

17 Total 0

In our organisation the "addressless" operations AERD, MUL, SUR,
ST (and the others, LIV etey require one crder (a subroutine jump)
in the object program, the "addressed" operations like TRA and
TRR require two orders, In congideration of this we have alsc
introduced the addressed versions of the comnonest operations
(+, -, »x ané /) to shorten the object program, and the form of
the objeci program now runs as follows:

Numbers of orders change of k
2 TRA x TAKE REAL ADDRESS +4
2 TRR a TAKE REAL RESULT +1
2 TIR b TAKE INTEGER RESULT +1
2 TRR ¢ TAKE REAL RESULT +1
2 ADF 4 ADD FORMAL +0
1 MUL MULTIPLY -1
1 SUB SUBTRACT -1
2 ADR e ADD REAL +C
1 ST STORE -2

15 Total 0

One might imagine that the number of accumulators used and
the number of orders could be reduced by referring to the
variables in a different order. Thus in order to carry out the

component operation Vo 3= bx({c+d) one might suggest:
2 TRR ¢ TAKE REAL RESULT +1
2 ADF 4 ADD FCRMAL +0
2 MUI » MULTIPLY INTEGER +0
& Total +1

In this way & orders suffice, whereas our solution requires
7. The translator does not carry out this abbreviation since it
is not in general allowed. During the evaluation of the formal
variable d a procedure might be performed which as a subsldiary
function altered some non-local variables, including possibly
value of b. In the above abbreviation the new value of b would
then be used, although ALGOL 60 requires that the old value of
b should be used in the evaluation of x, because expressions
have to be worked out from left to right.

For the same reason the operation STCRE is perforwmed without
an address. In this connection cne should note that the ALGOL
program:

";0:=5; x[i] =1 :=7;"
leaves the arrey element x [7] unaltered, but performs the
assignment x [5] := 7.

Ar’rays..

The reference to the cells in which the parameters of the
storage mapping function are stored functicns as the "address of
an array"; the operation TRA in the next example is, as its name
already indicates, carried out by the same subroutine that also
puts the address of an unsuffixed variable of type real into the
next adcumulator. If x is the designation of an array of type
real with two indices, then a reference to the array element
x {1, jtk] in the object program (assuming suitable declarations)
is cogded as follows.

Number of orders change of k
2 TRA x TAKE REAL ADDRESS - +1
2 TFR i1 TAKE FORMAL RESULT +1
2 TIR j TAXE INTEGER RESULT +1
-2 . ADR k ADD REAL . +0
1. IND INDEXER in-this case: -2
9 Total) * +1

The operation IND (INDEXER) is addressless and takes a sub-
routiné jump in the object progrem. In this process the succes-
‘sive scoumulators, beginning with the last filled; are tested to
see if they confain a number. If so then dependitig on the real-
integer indicatlon the transfer to integer may be introduced:
all index values are essentially inﬁegral.;In passing, the number
of index values we find is counted: this pfocess_terminates as
soon as an accumulator is found which.contains an sddress (in our
case the address }x{). With the help of this éddpess the required
storage mapping function can now be found 2nd in this sccumulator
the address cf the required array element is left by IND; the
index k i1s reduced in such a way that this accumulstor now becomes
the last filled. The net result of the above program 1s thus:

My a= } x {1, j+k] {5 ko i= k415"
If we are only interested in the address of the array element
- €.g. when it appesrs on the left of a becomes-sign ":=" in the
ALGOL text - we let 1t stay here. If on the other hand we are

interested In the value of the array element there follows also
the sddressless operastion TAR (TAKE RESULT), which is (and may

-8 -

only be) called if the lest filled accumulstor v __, contains an
address.
The effect of TAR is fthus given by:

]

. H
Yieeq = | Vk—1}

It is c¢lear that in this way indices are zllowed %o be
arbitrarily complicated expressions,
Simultaneous Assignments

The operation ST {STORE) was described above; it is given by:

EEACTY BEL R TR

The index k is here decressed by two because the contents of
two accumulators are finally procesgsed. In the go-called simulta-
neous assignment we wish to assign & result once formed to several
variables. To this end the operation 3TA (STORE ALS0) is intro-

duced, given by:
n ‘= . . . e lr_Aal
{Vk-z}' = Vet Vi T Vaqd KOS TS

The operation 3TA begins to werk with the twe last filled
‘accumulators like ST; then the result is pushed back by one accu-
malator and k is only reduced by one, so that the result still
remains in the last filled accumulator. Thus e.g.

"x 1=y [k [j]] := h = q;" gives:
Number of orders

2 TIA x TA¥XE INTEGER ADDRESS +%
2 TIA w TAXE INTEGER ADDRESS +1
2 TRA k¥ TAKE REAL ADDRESS +1
2 TFR J TAKE FORMAL RESULT +1
T IKD INDEXER in this case: -1
1 TAR TAKE RESULT +0
1 IND INDEXER in this case: -1
2 TIA h TAZE INTEGER ADDRESS +1
2 TRR g TAKE HEAL RESULT +1
1 STA - STORE ALSO -1
1 STA STORE ALSO -1
1 i STCRE -z

17 Total e}

Procedures and Blocks

Every procedure has the properties of a block; conversely
every block which according to the ALGOL text is not a proce-
dure can be considered as a (parameterless) procedure which is
bﬁly calied at bne place, Since our translator'does this we shall
use tne words "procedure” and "bplock" interchengeably without
‘Gistinction in what follows. |

We have described sbove how the srithmetic is determined in
the object program. It is of interest to note here that not only
are the individual accumalators not mentioned explleitly but it
is also nowhere expllcitly specified where the accumulator stack
is to be found in the store.

For this there is good reason: it means that the object program
has elsewhere the responsibility to decide in the firs{ plsace
wnere the stack is to be localised. It has in fact not only the
respensibility but alsc the freedom to alter this decision.
during the running of the program. It will exploit this freedom

80 a3 to use the store as advantagecusly as possible and so as
to make it possible for procédures to call each other or themsel-
ves a number of times. Note that this number can only be deter-
mined dynamically and is thus essentially unknown during trans-
lation. This decision'mechanism comesd into action each time a
procedure i$ called, and it 1s this mechanism that we shall now
déscribe, _ : _

Thé arithmetic complex is contrclied.by four administrative
"state quantities" which are neld in four stores reserved for
this purpose. These are:

ACCUMULATOR POINTER

AP =

WP = WORKING SPACE POINTER
:PP = PARAMETER POINTER

BN = BLCCIK NUMBER

The quantity AF plays the role of the sbove-nsmed index k
of the V)3 that is, AP is the starting address of the'first free
accumulator. Since each accumulztor occupies L storage places,
the increaSe "k := k+1" given above {during the filling of the
next accumulator) corresponds in the subroutine complex to the

operatlion "AP := AP+U",

As the examples show, all acumulators which zre filled
during the execution of a statement are again freed during the
course of this execution, in other werds, after the lapse of the
statement AP has again the same value as at the beglnning., Thus
in a serles of statemenis of one and the same block the guantity
AP assumes a constant value in between the statements: this con-
stant value 1s moreover held in the gquantity WP, which thus
specifles the "beginning of the working store" during the execu-
tion of a block,

The processing of algebraic expressions is organised in
such a way that when a compllcated subexovression is to be calcu-
lated the value of this subexpression, however compllcated it
may be, is always finally written into that accumulator which
initizlly wasg the filrst free one, In the meantime a2 number of
the next accumulators are used femporarily for the evaluation
of The subexpression,

The idea ocecured of applying the same technigue to cases where

a part of an expression iz given by a (function) procedure, The
latter 1s baslcally llkewilse z "complicated subexpression": the
single difference is that the calculaticn procedure for this
subexpression is defined elsewhere {and with greater freedom),
namely in the procedure declaration. In other words, each proce-
dure should be constructed in such a way that it works in that
part of the stack which begins with the ¢ell indicated by the
value of AP at the moment of the ¢all, This value is held in the
quantity PP: the PARAMETER POINTER thus continually specifies
the place in the stack where the currently active block began to
work, {(The PP value which corresponds tc the single activation”
of the main program ls unimportant.) Like the guantity WP, PP

1s also constant during a {particular) execution of a block.

This hcolds also to a greater degree for the last administra-
tive quantity BN: in fact for a given block BY alsways assumes
the same value., Fo. each block the corresponding value of BN is
determined once and for all on purely lexicographical grounds
during the translation: BN specifies namely for each block by
how many blocks it is (lexiccographically) enclosed.

Consequently BN is zero for the main program. At the (single)
entry to each block the translator inserts instructions into the

object program which give to EN the value corresponding to the
bilccle., The guantity BN plays s part in the process of reference
to non-local varizbles (see below).

Suppose that block & centsains &n expression in which a
(function) procedure is called. Let the procedure body be block
b, end let this belexicograpnically directly enclosed by block c.
In other words, the activation (funciion designator) of block b
lies within block a znd the definition (procedure declaration)
of block b lies in block ¢. {Note thaet a = b or & = ¢ is allowed;
b = ¢ is of course excluded). e dencte the values of the state
quantitvies current at the moment tnat block b is called in block
8 vy AFa, "Pa, Prez and BNa. e now give a plcture of the stack
when the oassege frem block a fo Llock b has Just been completed,
and on the assumption that block b is a procedure with twe for-

mal parameters.

Lra = (| First free sccumuletor st the moment
ol cail;
1 the procedure h musi leave 118 result
here.
Enl
o
A
)—

4 APz Indication of whether a resuylt is
required, and if 50, Where,

PPk = 5 PPc
& Pks
7 Return address to block g _ link
3 FPPa : ; l_' date
9 2BNa _ J
10 } dynemic CharBCLEIlSBolon (so callﬁd
11 of the Tirst actuel parameter.
42 dynamic characte?isétion_{so—Calleﬁ
_ 13] | of the second actual parametegéRD
AFb, WFb = Ak |

Above 18 given the stacl nicture which is generated by the
call mechanism ETMR (EXTRANSMARX RESULT). This first increases
AP by 4 to reserve an accumulator. for the result of the proce-
dure and the DEglﬂulﬂg address of this reserved accumulator is

stored 1in the next cell,

Now ALGUL 50 2lsc allows the call of this procedure to
occur outside of an expression, that 18 28 sn independent proce-
dure statement. In this case the calling prcgram has no interest
in the value which the procedure will essign to its own identi-
fier; the increasse of AP by 4 1is suppfessed and to indicate this
situation the next cell is filled with a negative number (= -0).
This takes place in the procedure activation mechanism ETMP
(EXTRANSMARK FROCEDURE) which evokes the following occupation
of the next cells in the stack:

APa =5 =0 Indication that a possible result
1s not reguired
FIb = Prec
WPa

Refurn address to block g

etc.

[T I = WS T |5 B S

(ETMF and ETMR are two different entries to the same acti-
vation program ETM: after a few orders they run together.) For
assigning the value to the procedure identifier itself (see [1],
5.4.4) the object program has at its disposal the special sub-
routine STP (STORE PROCEDURE VALUE) ~ or the analogous subrouti-
ne STAP (STCRE AL3C PROCEDURE VALUE)}. In this case the mechanism
STP examines the content of the cell PPb-1; if {PPb-ﬂ} 1s posi-
tive, then {PPb~1} specifies the beginning address of the accu-
mulator reserved for this result and the content of the most
recently filled accumulator is itransferred there; if however
{PPb-1} = -0, then this transfer is suppressed, since the pro-
cedure b has evidently been called by ETMP. (The fact that ALGOL
60 permits a function procedure tc be activated by ETMP we have
found to be perticularly useful for Boolean procedures.) The
next cell, which is reserved for PPc, is left blank by ETM; this
cell is filled by the mechanism SCC (see belcw) 2t the start of
the procedure. The next four cells sre filled with data which
relate to block a2, the block which we are temporarily leaving;
these datz are at this moment immedistely available, they make
it possible correctly to continue the calculetion in block a on
completion of the procedure b. Further, the static characterisa-

- 43 -

tions (sc-celled PORD's), as they appesr in the program text of
block 3, 3re translated intc dynamic chzrscterisations (sc-cal-
led PARD's). (If en actual psrameter is & simple variable, the
PARD contains the physical address of the variable. If an actu-
2l parameler is &n expressich, this 1s expressed in the form

of a subroutine and the corresponding PARL will contsin the
beginning address of this subroutine. An actusl parsmeter can
primarily be given as an address (1f it is en "output psrameter",
i,e. a8 2 possibly suffixed variable) or 88 2 numerical or logi-
cal value'(expression); these and other data which may change
from csll to call are expressed by EIM in the PARD's). Each PARD
occupies two cells in the stack and ETM increases AP and WP up
to the first free place.

Thne conftrol of the X1 jumps after comdletion of ETM to the
beginning address of block b, since ths nexv sctions sre depen-
dent cn the pérticular procedure witich 18 new sctivated, If 1o-
cel quantities are declared in this block, the next cells in
the stack ere reserved for them. As soon as the procedure is
called it is known how much sfore these local quantities regulre
cen this cccasien, and the procedure starts by increasing APb and
WPb by this smount, before the arithmetic proper begins. But this
means that the local quentities of block b in the text of the
object program can only be (and are) localised with respect to
the current value of PPL. ' _

Before the increase of AP znd WP described sbove the action
SCC (Short Circuit) is first performed, uader control of the
value BNb of the block number, which the translator. has gilven
to the block b. The action SCC makes the state quentity BN -
equal to the given number {(s0 in our cese BN 1= BNb), and.
records in the still empty cell specified by the current value
of PP (in ocur case PPb) the PP value belonging to the first
block which lexicographically encloses hlock b (8o in our case
the value PPc is put in the stack). The action SCC is sble to
find the value PFc since the block number of block ¢ is known
to it: in fact BNe = BNp-1.

The required value PFc can be found with the help of BNe in the
so-called DISPLAY (see below); the action 2CC is necessary in
order later to be able to guarantee that the Display can be
adjusted at every block transfer,

14 -

Tie Display.
During the traénslation 8ll locsl veriakles which are to be
stored-anywhere at a1l in the stagk sre locslised with respect
to the ?P velue of the block in which they are declared. The
value of this PP cannof be known duriﬁg translation, since it is
determined snew at each activation of the block during the cal-
culation. On the other hand the block number certainly is known
during translation. Hence each local variable is characterised
during'translation and 1n the text of the object program by 1ts
positidn b with respect to PP and the block number n, both belon-
ging to the Dbleock in which the veriable is declared. During the
execution of a block the grithmetic complex of subroutines, in
order to be able to find the local and non-local variables in
the stack, must have access to the FP velues of the most recent
as yet incomplete activation of the block itself, and of the
blocks which enclese this block lexicographically, respectively.
Now these FFP values appesr in crder of block number in the so-
called Display; this is & series of storege cells which play the
part of index registers. To determine the physical address of 2
variable 1t is necespgary to refer to the Display: if the varisble
is characterised by position p and block number o {see shove),
then the required address is found by 2dding to p the content
of position n of the Display. For each block the non-local
quantities are declared in lexicographically enclosing blocks,
whose block numbers are therefore lower. It 18 thus in genersl
necessary, for the correct execution of a block, that the
Display is correctiy filled up to and including the cell specil-
fied by the current value of the hlock number. Every time that
the .correct filling of the Display becomes uncertain the Display
is adjusted_up to the current block number by the action UDD
(MDMEDBEMH.

We can now understend that the action 3CC is always possi-
tle for non-formal procedure statements: when 2 procedure is
called, 211 its non-local variables are declared in blocks which
enclose not only the procedure declarstion but also the procedure
statement. In other words, when in the above case block b is
activatéd the action 5CC can find the required value PPe in the
Display, in fact at the location BNb-1; secondly the newly intro-
duced value PPb is written into the Display at the locetion BNb.

-3

The action SCC 1s necessary in order later to be able o
cerry out the sction UDD, wnich among cthers forms a part of the
RETURN mechaniSm at the end cf & procedure. The contrel then
returns to a blocik and obtains from the link data the informs-
tion about PP and ﬁN OL the DlOG{ to wnich it reuurns, BN then
gspecifies where in the Dlsplay this PF value ig to be introduced.
With this PP value 88 initial velue of x, by repeated executlon

x 1= { X },

x takes on the PP values which heve to be introduced into the
Display in decreasing order of hleoct number. ;)

Now tThe variables which occur in the calculation may be
localised in two ways: statically or dynamically. '

A1l cuantities which are declared in fhe main program are
localised staticslly; likewise "own' varizbles sre localised
statically. Ststic localisestion mesns that the translator detérf
mines the physical sddresses where these varisbles sre stored,
and that in consegquence egach reference to such s-wariasble in the
text of the object program containg the associated dddress . (The
static localisaticn of own variables is the origin of the res-
trictions of our translstor menticned earlier, It is by the way
not sufficiently clearly described in thé ALGOL Report ”[1]
what the consequences of the concept own should be in the case
of recursive use)

Dynamlc localisetion is the lecalisetion described above .
of variebles In the stack with respect to the PP value gssocla-
ted with the block.. -“ ..‘ R ST AT PP .
| Th;s has the consequence that the operations that need- an
”addressA of 2 variable arise in fivefold manner-ih- the arith-
metic complex. Thus for example-for the operation TAKE RESULT
- wh¢ch puts a8 new number in.the next accumulator. we have . the -

folloW1ng ¢1ve versions:

TﬁhD ~ TAXE REAL RESULT DYNAMIC
TRRS TAKE REAL RESULT STATIC
TIRD TAKE INTEGER RESULT DYNAMIC
TIRS TAKE INTEGER R#ESULT STATIC
TFR TAKE FORMAL RESULT

As shown, the operstion TFR only occurs once; the distinc-

- 16 -

tion between static and dynamic is dropped since the PARD of a
formal parameter always lies in the stack and is thus dynamically
localised. Nelither do we distinguish here between real and inte-
ger: this last is determined by the object program at the moment
that the actual perameter is transmitted (see below).

dctual and Formal Parameters

The establishment of an actual parameter in the text of the
object program is done where possible in one word. This word
(called a FORD) consists of three parts, a {15 bits),t {2 bits)
and Q (2 bits).

The two bits of t specify whether the 15 bits of a must be
interpreted as 2 static or dynamic address, and in the latter
case further whether the actual parameter as it stands in the
procedure statement is slready formal (the "handing on'" of a
formal parameter). For a non-formal actual parameter @ has the

followlng meaning:

Q@ =0C : a is the address of a variable of type real

Q@ =1 : =z is the address of a variable of type integer
'@ =2 1 ais the beginning address of & procedure (a sub-
_ routine) with or without & numerical result.
Q=3 a ls the beginning address of an {implicit) sub-

routine with an address as result.

As soon 83 en actual parameter is too complicated to be
fully characterised as ebove by one word, this sactual parameter
glves rise to a so-called implicit subroutine in the object pro-
gram: the FPORD then contains the beginning address of this impli-
¢cit sﬁbroutine, together with the specification of whether the
result is an adrress. If the actual parameter is a suffixed
variable, then the corresponding formal parameter within the proce -
dure may perhaps stand on the left side of 2 becomes-sign; and for

this reason this impliecit subroutine which this actual parameter
defines yields the address and not the value of the variable. This

situation is indicated in the PORD by Q = 3; to any other impli-
¢lt subroutine corresponds a PORD with @ =

The PORDS are translated by the call mechanism (TRANSMARK)
-into so-called PARDS - thereby among other things dynamic addres-
ses are conveérted into physical ones. The PARDS, which occupy two

- A7 -

words each, are stored in the stack following the link data
{thus at the locations FF+5, FF+7 etc.). For procedures the
PARDS play the part of formsl parsmeters; if for example a proce -
dure wents toc use the second perameter thers will appear in the
text of the object program 2 reference To the PARD witn dynamic
address PP+7. The first word of 2 PARD is derived from the PCRD,
the second contains the PP value and the block number belonging
to the block in which the corresponding procedure statement is
given; only when the PORD specifies that » parameter which is
already formsl is transmitted are both words of the corresponding
PARD transported by TRANSMARK. The second PARD word has no
meaning in the cases € = 0 or 1; if ¢ = 2 or 3, then PP and BN
from the second PARD word are used as initizl values for the
process UDD on every occasion that the procedure requires the
execution of the subroutine. In order to be sble to guarantee
the evaluation of such 2 comnlicated parameter or 2 formal proce -
dure, the Displey must contazin the same FP vaiue for the lower
block numbers as at the moment of call; this adjustment of the
Display is carried ocut by UDD under control of the second PARD
word.

Analysis of a PARD takes place in each of the following
operations:

TFA TAKE FORMAL ADDEESS

TFR TAKE FORMAL RESULT

ADF ADD FCRMAL RESULT

SUF SUBTRACT FORMAL RESULT

MUF MULTIPLY FORMAL RESULT

DIF DIVIDE FORMAL RESULT

If this analysis finds that Q.= O or 11 it is soon finished,
If however tihe analysis finds & =2 or 3, then té obtein the
required result an expression or a procedure must be evaluated,
in principle of unrestricted generslity. Tut this mesns that

for the six sbove-r._med operstions recursive activation must be
possible., To the above six ere added two further mechanizms for'
the sctivetion of a formal procedure, namely FTMP (FORM TRANS -
MARK PROCEDURE) if no result is required, and FTMR (FORM TRANS -
MARX RESULT) if one is required. The nossible recursiveness of
these mechanisms requires three more ©vlaces in the stack than

- 8 -

ETMF and ETMR respectively,.

Concluding. Remarks
In the foregoing a survey 1s glven of the. structure of the

objeet program, or rather an overall impression of fthe operati-
ons with the help of which the translator has to formulate the
object program, The subroutine complieX which executer these
operations does not differ essentially with regard to storage
requirement and speed from a normal complex for floating point
operations. The structure of this complex l1s also in large part
conventlonal: only the problem of eccivaviag nzw blocks or
terminating their activity has given rise to program constituents
which are, at least by our present standards, ratler complicated,

The particulars given above are described in tne first place
for those readers who have concernzd ther relves rore or less
intensively with the construction of ¢ ‘ranslator, But 1t will
also be clear to the reader with more genercl interest that the
making of an ALGOL translator is a relatively simple job 1f the
translator may formulate the object program in cperations cut
out for the problem. It was possible therety for the translator,
which contains about 2500 orders, to be written in a faw months
by two people - namely by J.A. Zonneveld and tae autaor. I
would 1llke a few speclal properties of the translatof not to go
unmentioned.

In the first place the translator is to a. large degree
independent of the method chosen for the »eprerertation of the
ALGOL text (hardware representation). Each time the translator
requires the next ALGOL symbol. 1t Calla a subroutine whilch has
to provide the next ALGOL symbol in a flred internal represen-
tation. There have to be as many dif;erent verficns of this
subroutine as there are r'epr'esentatlcm'a to be p oceﬂqed Punched
tapes with 7 or 5 channels are availablﬂ R ' - '

'The code in which the object pf‘OU'l”cml it punched exhibits
the samé form of flexibility. All referencer to “he subroutine
complex which are to be at the'disposal of the o-jeet program
are ﬁumbered, and for these cases the trenslator only punches
the number, The punched tape'with the object pregram has to be
read in by a speclal simple read-program, which i1y provided
beforehand with the data which 1t has %o gubstitutz in place of
the numbers.

- g -

At present various subroutine complexes have heen developed,
working to various degrees of vrecision. It is intended to
develop further complexes which although working rather more
slowly will offer the possibility of sutomastic program testing.
A1l these complexes may be manipulated by the same cbject pro-
gram tdpe: one has only to specify the required complex when
the object program is read in. '

Perhaps the most important point of our method of trans-
lation 1s that we do not discriminate on the combinztion of two
consecutive delimiters (es descrived e.g. in [2) but on each
individual delimiter. The fsct that we do not have so-czlled
transition metrix but a discrimination vector has probably
contributed not inconsidersbly to the reduction of the size of
the translator.

The name list is corgenised as a stack. At the beginning
of a block its lcesl names sre added to the neme list, and as
soon as the translation of the block is complete these nemes
are again struck off the name list (by suitable lowering of a
pointer). Thanks to %the complete bracket of the ALGOL language
it is morecver not necesssry to introduce more than one stack.
Algebreic expressions, bracketed conditional expressions and/or
statemenis, bracketed for -statemeunts and procedure declarations
can all be translated with the sbove universal stack. The pro-
cessing of the for-statement, which 1s admifted without any
restriction, is made much easier by considering the domain of
the for-statement as a block (it is forbidden e.g. for a goto-
statement to lead into it from cutside.)

The various lists which the trenslator bullds up during
1ts work are laid one after another in the working stores: if
one of the earlier lists grows too much the following 1ists are
shifted up. The translstion cnly stops through lack of storage
when the entire extent of the working store would not suffice.
Thus the translator slso, 25 well a8 the object program, uses
the store as appropriately ss possible.

S0 as to let the translation proceed as fast as possible
the interrupt facility is fully used and input and output take
place in parallel with the translation: data transfer from the
input to the translator and from the translator to the output
occurs through cyclically arranged buffers which absorb the

- 20 -

variations in the gpeeds of processing and production,

I owe the greatest thanks firstly to my colleague
Mr. J.A. Zonneveld, who made the intensive cooperation from first
to last a fruitiul pleasure, and secondly to Professor yan
Wijngaazrden, who made many constructive contributions in the
first months, when we three had to determine the tactics to be
“fbilowéd. A further word of great gratitude is due to alhést-
all the staff of the Computation Department of the "Mathematisch

Centrum" for their extensive and accurate work.

Translation by M.Woodger,

Qetober 1961,

References :
4 "Report on the Algorithmic language ALGOL 60",
J.W., Backus et. al,.
2 "Sequentlielle Formeluthersetzung, _
K. Samelson, F.L. Bauer, Elektronische Rechenanlagen -

(1959), Vol 4.

- 1
i

-

“)

Making a Translator for ALGOL 60,

I do net feel myself entitled to give complete prescriptlons
how to make a translator for ALGOL 60, for the problem of translator
construction has two aspects. On the one hand we are faced with
ALGOL 60, on the cther hand we are usually confronted with a parti-
cular machine that hag to perform the computaticns described by the
ALGOL program. (And as a rule thls same machine has to perform the
translation,) As certaln machine properties may present specifice
difficulties in bfidging the gap between-a process description in
ALGOL 60 and its actual execution, I do not claim to be able to
treat the subject in its entirety. In principle I shall restrict
myself to my actual experience, 1.e. making an ALGCL 60 translator
for the X1, thes computer of the Matheinatical Centre at Amsterdam,
As a result I shall not touch the problems that arise as soon as a
machine with a tweo-level store has to be used efficiently. I shall
point out alternative golutions as they present themselves and
include the improvements we discovered after our translatcor had
been finished, 7

Before one can start making a translator which is fed with an
ALGOL program and has to procduce the zo-called “"object program',
oneé has to decide what the structure of the object program will be,
becausgse only thep,the task of the translator becomes well defined.
What I call the "ocbject program", has also been deéescribed as "an
egulvalent program in machine language', but I prefer not to use
the last descripticn, not being convinced that machine language
will be the most appropriate language. I therefore ask you to
consider the object program as an eaquivalent descrlption of the
process, more adapted to the requirements of the machine which
has to do the actual computation, than the source description in
ALGOL 60. - .

The cobject program is built up from a {(limited) number of
well chosen operatlions, each explicitly supplled with the appro-
priate number of parameters (may be equal tc zerc). Whether these
cperations will be written cut in full in the object program or
whether they will be denoted by a code number or a subroutine jump
depegds largely on the structure of the order code of the machine
1tself and the amount of storage space one 1g willing to provide
for the storing of the object program, As the X71.1s a fast fixed
point computer, nearly all standard operations in the object
program are denoted by subroutine jumps in our case,

g Published in the APIZ-Bulletin no 7, HMay 12351.

)

Furthermore we must be willing to face the desirablility (and
to act accordingly) of including in the object program certain
operations, which do not correspond tc something, explicitly
prescribed in the ALGOL program, The ALGOL program, for instance,
does not say a word absut storage allocation for the varlables.

The declarations announce, which identifiers will be used for
variables of all types, but 1t is left to the organisaticn that
realizes this computation, to decide where the variables are to be
stored, This 1s what is meant by storage allocation, Part of this
Job can be done during tranglation but for the sake of economy

as regards the using of the working store, it may be desirable that
the object program does some part of the allocation job at run time,
adapting the actual allccation to the conditions every time they
change.

CBPut if the object program is not necessarily written in machine
language and, furthermore, certain implicit tasks, such as storage
allocation, may be postponed until execution time, one might well
raigse the guestion, whether the preceding paragraphs did not
reduce the task of the translatcr to next to nothing. To remove
this doubt we should direct our attention to those functions that
certainly do belong to the fask of the translator.

We have, for instance, the so-called '"priority rules". In the
statement '

, : X:=a + b * ¢;
the execution of the multiplication must precede that of the
additlon., Another way of specifying this order of execution 1is

x:=(a +(b # ¢));
and we may regard the priority rules as a convenient mechanism
for reducing the number of brackets needed. But the translator must
evidently be aware of the priority rules and follow all their
consequences, But for every ALGOL program thiz analysis needs ohly
to be done once and is therefore regarded as one of the tasks of
the translator.

The next point we —alse 1s the analysis of the bracket struc-
ture, The function of a bracket pair may be regarded as "shlelding
an expression from its surroundings'. 3y putting an arbitrarily
complicated expresslon between brackets, 1t may play the role of
a simple variable in a (larger) expression; on the other hand, an
expression between brackets can be evaluated as such, independent

of the way the result will be used. If we start to scarn the formula

x % (a {1 +3)/{1-y) - sig)
from left te right, we find an x, which is the first factor of a
product, The seccnd factor starts with an opening bracket., The
maltiplication must be postponed and, what 1s more, we can tempor-
arily forget about the multiplication until we have found the corres-
pondlng closing bracket. It is oovicusly essential for the correct .
evaluation of such a formula to findhthe implicitly given one to
one correspondence between opening bracket and “"compensating" closing
bracket. The determination which brackets form pairs, a job that
implies some form of counting, can be done once and for all and is
therefore a successful candlidate for the translation stage.

There 1s another point: which opening bracket belongs to which
closing bracket 1s defined by the lexicographical order, and before
we can go on, we have to explain‘what we mean by the térm_”lexico-
graphical”, -

An ALGOL program is a linear sequence of symbols, fed to the
translator in a well defined order ("from left to Pight”); This
order is called "the 1exicographical'order” in contrast to the
dynamic order, i.,e. the order in which cperatiocns are to be performed:
when the program is sxecuted, | |

The lexlcographical and dynamic order are ¢loszly related to
one another because in brinciple expressiocns are evaluated from left
to right and statements are performed in the order in whilch they are
written, But the language includes a number of mechanisms for
ioosening the clase cohnection between the twe orders: priority.
rules,-brackets,'conditionél expressions and statements, for state-
ments, ‘go_ to statements ete, '

Let us

ncw rconsider a piece of ALGCL pfbgram of the fcecllowing
structure: "If B1 then begin S7: if B2 then g¢ to A else 57; 32 end

else pegin S3: S§ end;
3
T

L

[0

[¥2]
Oy 0

consistingiprimarily of 4 conditional statement followed by the

two statement£ 85 ard S6, the last one being labeled with the label -
A, DYnamiCélly,_the evaluation <f the Boolean expression .m#y have one
of two successors;ﬁeifher the statements following the following
then or the statement following the corresponding else. But finding -
the corrzspording else lmplies, because the first alternative is a

- L.

compound statement, finding the symbol end corresponding to the
symbol begin, that immediately follows "if B4 then".

This example shows that the dynamic successor to the evaluation
of B1 1s defined in a rather implicit way in the case in which the
logical value of B1 turns out to be false. A useful task for the
franslator is to provide the object program with a more direct 1link
(read: a jump order) to the second alternasive.

To stress the fact that the definition of "corresponding" opening
and closing parentheses is a purely lexicographical matter, we
included a go to statement leading out of the first compound state-

ment. If both B1 and B2 are true, we "enter” - dynamically speaking -
the first compound statement through its begin but we never "pass"
its end.

Closely related to the nested structure of ALGOL 60 - i.e.
bracket pairs occurring inside bracket pairs - is the multiple use of
the same symbol in different meanings, 1et us confine our attention
to those parts of the ALGOL program in which the statements cceur,
i1.e. we disregard the declarations and the procedure headings for the
sake of simplicity. %We consider three different bracket pairs:

1) the square brackets enclosing the subscripts of 2 subscripted
variable

2) the parentheses enclosing the actual parameters of a procedure
statement or a function designator

3) the symbols for and do, enclosing the "for 1list elements'’,

If the translator encounters as part of a statement the symbol
"," this comma must be enclosed lexinographically by at least one of
the bracket pairs mentioned and its interpretation depends on the
type of the innsrmost enclosing bracket pair. -

It is quite probable that the system that will realize the com=-
putation as described'by ttie ALGOL program will have to make a
distinctlion between these different commas., If so, this distinction
can be made during translation because it can be done once and for
all and, furthermore, 1s defined by the lexicographical structure
of the text to be translzted. We shall show how the translator can
make the distinction easily, provided we introduce a four-valued trans-
lator variable, specifying the '"state of comma interpretation".
Calling this state variable CI, we have say,

CI = 0, everywhere, where no comma may occur
CI = 1, comma separates subscripts

-5 -

Cl
cl

1l

2, comma separates actual parameters

3, comma sSeparates for list elements.

A last typical translator function is connected with the
ldentifiers, As stated explicitly in the Report, identifiers

have no innerent meaning, i1.e., they could be replaced by something
else. We had better make use of this freedom by substituting for
the names used in the ALGOL program other names, but more suitably
chosen,

If an ldentifier oceurs somewhere in a statement, this
identifler has a meaning, but only thanks to the fact that the
same ldentifler has been declared to have this meaning. If one
wants to find the relevant declaraticon, one has to scan the
declarations at the beginning of the block in which the
statement occurs, Elther we find a declaration concerned with the
identifler in questicn, or not. In the first case we have found
the declaration we wanted, in the second case we scan the declara-
tions at the beginning of the next lexicographically enclosing
block, ete. {If we scan the deeclarations at the outermost block
and still do not find a declaration for this identifier, then we
may assume the identifier to be declared in the "universe” in
which every program 1s embedded: the use of this identifier
presumes some a priorl knowledge. This is the case fr the standard
functione sin, cos, arctan, etc.)

- It 1s clear from the above that finding the corresponding
declaration may be a rather time consuming process, involving a
lot of scanning. However this correspondence 1is unique the
translator .could do a useful JOb by establishing this correspondence
in a more direct way. B

Before I can give a sketch of the translation, I must “choose”
a structure for the object program, I must ¢hoose a machine and
its order code. This we can always do, because if cur specifie »
machine does not have the reguired features built in, we can use
1t to simulate our chosen machine. We presume that cur object
machine performs 1ts arithmetic in what is called a stack, a push
down llst or a nesting store. It allows us to write down the
computaticn ¢f

AHB~-C)w# D+ E
in the followlng form:

TAKE A vO:i= A
TAKE B v71:= B
TAKE C : v2:i= (
SUBTRACT vii= vl - ve
TAKE D v2:= D
MULTIPLY vli= vl w v2
ADD v0:i= v0 + v1
TAKE E vii= E
ADD vOi= v0 + v

In this description we use two kinds of orders: the order
TAKE (with the "address" of a variable) that fills a new v, and
the arithmetic operations (without address), that always operate
on the two "youngest" v's, leave the result 1n the oldest of the
two and leave the youngest one free. All these operations work under
control of an impliclt administrative variable (a2 sco-called "stack
pointer"), which points to the next free v, The operatlon Take
Implies an increase of the stack polnter, the other coperations imply
a corresponding decrease of the pointer, This process desoription
- the reverse Polish notation - gives rise to a straightforward
scheme for storing and using the .anconymous intermediate results that
oceur during the evaiuation of an algebralc expressicn, It demands
the presence of a stack (for the v's) at run time,

Once this form of object program has been chosen, the task of
the translator becomes a little bilt more defined, at least as far
as the translatlion of expresslons is concerned. We shall show how the
translation of expressions written in ALGOL 60 intc the reverse
Polish notation can be performed by a2 translator and even by a
translator which has to operate under rather severe restrictions
as regards working space available during translatlon. e

We aim at what I should like to call "immedlate- translatisn ",
l.e. a translation process that reads the ALGOL”pfogram from begin
to end, simultaneously producing - say, punching ouf - the correspon-
ding object program. In other words, we do not assume thé' presence of
a memory large enough to store the complete ALGOL 60 program nor
the complete object program, In the {irst case we sghould be able to
do all kinds of scanning of the ALGOL text, in the second case
we should have the possibillity of making correctlons in a plece
of object program produced a certaln time ago. The translation process
to be described is much less demanding as regards worklng space: in

-.T_

fact it only stores Information as long as 1t may be needed during
translation., The storage requirements >f this translation PYOCEsSs
are not strongly dependent on the length of the program to be
translated; they are more a measure of its intricacy.

To describe the rules of precedence we assign priority numbers
to the delimiters, e.g.

0 begin [(if for
1?—@])%?&:3

2 =

3 =

4 >

5 v

& A

7 1

8<$=‘2:"i‘

g + -

10 neg w/ {'"meg" represents the so-called unary"-"operation)
11t

The translation process shows much resemblance to shunting at
a three way railroad junction of the following form

Qutput Input
—as [—— L er——

Y

Translator stack.

At he right the symbols of the ALGOL text come in in order from left
to right, at the left the successive orders of the object program
are produced, The rule is that Incoming ldentifiers are sent to the
output in the form of a TAKE order ("TAKE address of" 1f the identifier
occurs to the left of the ":=" symbol, otherwise "TAKE value of')
Incoming operators receive their'prior;ty numbers and are then sent
to the translator stack, but before the latter happens, operators in
the translator stack are transported from it to the 2utput as long
as thelr priority number is greater then or equal to the proirity
number cf the new operator. For instance, at a certain stage of
translation

"begin x:=a +bwxc td- e;"
gives the fcllowing pieture:
TAKE x (i.e. TAKE address of X in the next v)
TAKE a

TAKE b
TAKE c
TAKE a - e ;
N7
10 *
9 +
2 =
G begin

Identifiers are transported to the object program and operators,
with their priority numbers attached toc them, are dumped in the stack.
We now consider the minus sign with priority number =9, Before this
is entered in the stack, 1+ , * and + are removed in thls order, giving
rigse to the orders "TO TEE BPOWER", "MULTIPLY" and "ADD". Then follows
the order "TAKE e" and when the ":" with priority number = 1 has been
read, the two final orders "SUBTRACT" and "STORE" appear. The
semicolon, being only a separator, need not be stored in the trans-
lator stack. _

Up till now the priority numbers in the translator stack increa-
sed monotonically. The function of brackets is to interfupt this
monotony., If an opening bracket "("is encountered in the ALGCL text,
no emptying of the translator stack takes place, but the opening
bracket is put or top of the translator stack with a priority number
= {J, thus shielding all postponed opérations untll the corresponding
closing bracket has been encountered. When a clesing bracket is read
from the ALGOL text, a priority number = 1 is assigned to 1t and the
transport of operators from the translator stack to the object
program takes place under control of the "new" proirity number 1.
When thls process stops, we must find the corresponding opening
bracket {with priority nuaber = Q) on top of the stack. Now the
closing bracket, however, is not put into the stack like the other
operatori: the correspoending opening bracket 1s removed from it
instead and translation goes on,

Thig is illustrod by the example

"begin x:=(z + b) % c;"
which gilves rise tc the following picture

(S
t

TAKE }x{
TAXE a
TAKE b } % ¢

and after the processing of the closing bracket

TAKE }x{

TAKE a

TAKE b

ADD e c_:
an -~ s

begin

This way of prccessing brackets 1s perfectly sound. For its

Qo

Justification I should like to refer to a remark made earller, that
the function of a bracket pair is to shield its contents from its
surroundings. 7

Now we shall show that "forgetilng the surroundings, when an
opening bracket is encountered" can be extended to include besides
postponed operations, states of the translator as well, id-expres*
slons we have three kinds of opening brackets:

1) "{"as arithmetic opening bracket
2) "("as opening bracket, arnouncing an actual parameter
3) . "["as opening bracket, anncuncing a subseript

The translator can easily detect whether the cpening bracket
"(" is algebralc or not. It is =a parameter bracket, if it follows
immedlately upon an identifier; otherwise it is an algebrale bracket.
On account of an opening bracket, the state variable CI (Comma
Interpretation, see above) 1is redefined: it becomes = O for an
algebraic opening bracket, = 1 for a square opening bracket and
= 2 for the opening parameter bracket. But the previous value of
CI, pertaining to the surrcundings of the bracket palr, is to be
preserved, becausge CI must be restored to it, when the corresponding
closing bracket is processed, The obvious rlace to store 1t 1s in
the translater stack: as soon as an opening bracket is foﬁnd, a
number cf state varilables (CI and others, left unmentioned) can be

- 40 -

dumped in the translator stack, belore the opening oracket is
put on top of them and then the stzte variables are redefined,
As these state variables are stored in the translator stack in
a fixed order, restoration at the processing of the closing
bracket is a well defined process.

Theredefinition CI:= O at the occurrence of an slgebraic opening
bracket removes the ambiguity when 2z closing bracket "}" is met:
if CI = G, then it is an algebraic closing bracket, otherwise

CI = 2 and 1t marks the end of a last actual parameter. If if is
desired to count the numbers of actual parameters or the number
of subscripts, & counter value can be stored, set and restored
in the same manner as the state variable CI. Note that one coun-
ter is sufficient: one counts either subscripts or parameters,'
but never both at the szme time.

The transletion of for statements and conditional statements,
which can both be nested, uses the translator stack in an analo-
gous way to store all the information that may exist simultane-
ously in as many incarnations as such statements occur inside
one another. If we consider the statement (labels are included
for the purpose of description):

"if B1 then A1: begin if B2 then A2: S1 else A3: 52 end
else Ad: if B3 then A5: S3 else A6: Sh; 7
AT "
then the object program starts to evaluate the 1ogical value B4,

Then a8 conditional jump order to the point labeled Al must be
given: where in the object program this peoint will be is unknown
at that time. Here we meet the problem of the so-called "Puture
reference”. The only thing we can do is to leave the address
part of this condifional jump order undefined for the time bheing.
" But the translator msies a note of the aédress, where this
undefined jump order in the object program has been prdduced.
This note will be used, when trenslation hes reached the'point
with label A4, Then a control combinaticn, containing the address
of the undefined jump order, can be inserted on the output'tape,
and for the read program that reads in the cbject program it is
an easy matter fo fill in the address digiis of the conditlonal
jump order. o

But this note, specifying the adiress of the incomplete con-
ditionsl jump order, originates when the symbol then 1ls enccuntersd

- 11 -

and must be kept until the translsior nss reached the corres-
ponding else. In this range, however, another conditionszl siste-
ment may occur - as in our exsmple - and this i3 the reason why
such a note is stored in the translator stack. Just vefore the
point of eéntry labeled A% an uncouditional Jump to A7 must be
produced. This second forward reference can be treated along
exactly the same lines, A slight improvement of the abpove
technique is to fill the address portions of these forward refe-
reénce jump orders with 3 special, recognizable marker and we
shall now give the reason for this.

Up till now we had forwsrd reference Jumps To peoints in the
program which were (in principle) snonymous. But the problem of
a8 forward reference also erises if we have & number of goto
statements to 2 label that is still to come. The first time that
a forward reference to such a lszbel occurs, we produce a jump
order with the chosen marker as its address digits and the address
of this unspecified jump order is storeg by the translsztor
coupled To the label. At the next forward reference to that Same
label, we produce an undefined jump order but use its address
digits to specify the place of the previous forward reference
Jump to that same label. And coupled to the lezbel the translator
only keeps a record of the address of the last forward reference
to it. When the translation of the labeled statement actually
starts, the control combination described sbove is inserted on
the output tape. The reacticon of the input program for the object
tape fo this directive becomes a little bit more complicated.

The directive specifies an address where "the present place of
storing” must be substituted. Before filling this in one checks
whether the marker occupies these Lits. If So, the process stops;
if not, we Iind & new address where the present place of storing
must be substituted, and so on.

In the case of a backward reference the translator can pro-
duce the definite jump order at once.

