STICHTING MATHEMATISCH CENTRUM 2e BOERHAAVESTRAAT 49 AMSTERDAM

ZW 1957-002

Voordracht in de serie "Actualiteiten"

E.W. Dijkstra

Zaterdag 26 januari 1957

A method to investigate primality

1957

Voordracht in de serie "Actualiteiten"

door

E.W. Dijkstra

op

Zaterdag 26 Januari 1957

A method to investigate primality

The method determines the smallest odd prime factor of a number N by testing the remainders left after division by the successive odd numbers 3,5, ... f_m -2, f_m ; here f_m is the largest odd number not exceeding N^2 . If none of these remainders vanishes, N is a prime number.

Let f be one of the odd divisors or odd trial divisors. Remainder r_0 and quotient q_0 are defined by the relations

$$N = r_0 + f.q_0, \quad 0 \le r_0 \le f.$$

Now q_0 is divided by f + 2, giving

$$q_0 = r_1 + (f + 2).q_1, 0 \le r_1 < f + 2.$$

Then \mathbf{q}_1 is divided by $(\mathbf{f}+4)$ etc. and this process is continued till a quotient $(\mathbf{q}_n$ say) equal to zero is found; \mathbf{r}_n is the last remainder in the sequence unequal to zero. After elimination of the \mathbf{q}_1 we get the relations

$$N = r_0 + f \cdot r_1 + f \cdot (f+2)r_2 + f \cdot (f+2) \cdot (f+4)r_3 + \dots + f \cdot (f+2) \cdot \dots$$

$$\dots (f+2n-2) \cdot r_n$$

and

$$0 \leqslant r_{1} \leqslant f + 2i \tag{2}$$

Once the sequence r_1 is known for a given value of f, it is easy to compute the corresponding sequence r_1^* , defined by the relations (1) and (2) with respect to $f^* = f + 2$, as they are expressed in terms of the r_i by the recurrence relations

$$b_0 = 0$$
, $r_i^* = r_i - 2(i+1)r_{i+1} - b_i + (f^*+2i)b_{i+1}(i = 0,1,...,n)$ (3)

The relation corresponding to (1) is satisfied for arbitrary values of the numbers b_i with $i \ge 1$; they are fixed, however, by the relations corresponding to (2)

$$0 \leqslant r_i^* \leqslant f^* \div 2i$$
 (2th)

On account of the inequalities (2) and (2^{*}) - and $b_0 = 0$ - the b_i satisfy the inequalities

$$0 \le b_1 \le 2i . \tag{4}$$

We have chosen $b_0 = 0$. Then the relations (3) and $(2^{\frac{1}{2}})$ with i = 0 determine $r_0^{\frac{1}{2}}$ and b_1 ; once b_1 is known, (3) and $(2^{\frac{1}{2}})$ with i = 1 determine $r_1^{\frac{1}{2}}$ and b_2 , etc. The process is easily programmed.

0, and the inequalities $(2^{\frac{1}{2}})$ with i = n are always satisfied with $b_{n+1} = 0$, the process terminates with

$$r_n^* = r_n - b_n$$

As soon as $r_n^* = 0$ is found - in that case it can be proved, that $r_{n-1}^* \neq 0$ - the index n, marking the last $r_i \neq 0$ in the sequence, is lowered by 1.

In order to find the smallest odd prime factor of N, the r_1 definity (2) and (3) and f = 3 are computed. Here the only divisions in the process are carried out. At the same time the initial value of n is found. If N is large, this value may be considerable: for instance n = 11 is found for $N \approx 10^{-13}$. The amount of work involved in each step is roughly proportional to n^2 . Fortunately large initial values of n decrease very rapidly. As soon as f.(f + 2).(f + 4) > N, n takes the value 2. This is its minimum value: when $r_n^* = 0$ with n = 2 is found $(f^* + 2)^2 > N$ holds and N is a prime number. (If not, we should have found a $r_0 = 0$ earlier a should have stopped there.)

The process still may be speeded up. Let b_n^+ be the minimum of b_n^- for fixed n up till a certain moment: then it can be shown that the next b_n^- satisfies

$$b_n \leqslant b_n' + 1$$
.

Let us apply this to the last stage n=2. According to (4) b_2 satisfies $0 \le b_2 \le 4$. According to (5), however, the only possible values for b_2 are 0 and 1 as soon as a value $b_2=0$ once has been found. This is bound to happen for f ranging (roughly) from $\frac{1}{(4N)^{\frac{1}{3}}} \text{ till } (8N)^{\frac{1}{3}}.$ In the case $b_2=0$ it is apparently unnecessary to test whether $r_2=0$ is reached. (If N>144, the case $b_n=0$ with n=2 occurs, before $r_n^{\frac{1}{3}}=0$ with n=2 is found: prime numbers are then always detected in this last stage.)

The less efficient steps of the process for large n (i.e. small f) could be avoided by carrying out divisions for small values of f. (Cf. the method suggested by G.G. Alway, MTAC v. $6,_1$ p. 59-60, where one seems to be obliged to do this for f up to (8N)3.) However, we strongly advise not to do this.

If the process described above is started at f=3, the whole computation can be checked at the end by inserting the final values of f and r_i into (1). As all the intermediate results are used in the computation, this check seems satisfactory.

If a double length number N is to be investigated, another argumer can be added: division of N by small f may give a double length quotient, i.e. two divisions (and two multiplications to check) are needed for each f. In our case even only part of the initial n divisions are double length divisions.

If some consecutive odd numbers are to be investigated, the initial divisions are only necessary for the first number N; it is easy to compute the sequence of initial remainders r_i "representing N + d at f = 3" from the corresponding sequence for N at f = 3, if d is small.

The process described above has been programmed for the ARMAC (Automatische Rekenmachine van het MAthematisch Centrum). The speed of this machine is about 2400 operations per second. A twelve decimal number was identified as the square of a prime in less then 23 minutes.