TECHNISCHE HOGESCHOOL EINDHOVEN TECHNOLOGICAL UNIVERSITY EINDHOVEN
NEDERLAND THE NETHERLANDS
ONDERAFDELING DER WISKUNDE DEPARIMENT OF MATHEMATICS

NOTES ON STRUCTURED PROGRAMMING
by

Prof.dr. Edsger W. Dijkstra

T.H.-Report 70-WSK-03

Second edition April 1970



EWD249

NOTES DN STRUCTURED PRCGRAMMING

by

praof.dr.Edsger W.Dijkstra

August 1969



Table of

EWD249

contents,

15
19
21

30
35
50
53
57
64
75

Ta

On

On
An
On
On
On

my reader.

our inability to dao much.

the reliakility of mechanisms.

our mental aids.

example of a carrectness proof.

the validity of proofs versus the validity of implementations.
understanding pragrams.

caomparing programs.

A first example of step-wise program composition.

an
On
0n

program families.
trading storage space for computation speed.

a program model.

A second example of step-wise program composition.

0On
On

what we have achieved.

grocuping and segquencing.



EwDz24% - O

Ta my reader.

These notss have the status of "Lelters written to myself": I wrote them
down because, without doing so, I found myself repeating the same arguments over

and over again. When reading what I had written, I was not always too satisfied.

For ane thing, I felt that they suffered fram a marked verbosity. Yei I do
not try to condense them (now), firstly because that would introduce another
delay and I would like to "think on", secandly because earlier experiences have
made me afraid of heing misunderstood: many a programmer tends to see his
(sometimes rather specific) difficulties as the core of the subject and as a

result there are widely divergent opinions as to what programming is really about.

For anuther.thing, a5 a document this is very incomplete: I am only too
aware of the fact that it ends in mid-air. Yet I have decided to have these
notes duplicated, besides same practical considerations mainly to show what
I have thought to those who expressed interest in it or to those whose comments

I would welcome.
I hope that, despite its defects, you will enjoy at least parts of it. If

these notes proye to be a source of inspiration or to give you a new appreciation

of the programmer's trade, some af my goals will have been reached.

Edsger W.Dijkstra



EWN249 - 1

On our inasbility to do much.

I am faced with a basic problem of presentation. What I am really concerned
about is the composition of large pregrams, the text of which may be, say, of the
same size as the whole text of this booklet. Also I have to includs examples to
illustrate the various techniques. For practical reasons, the demonstration
programs must be small, many times smaller than the "iife-size programs" I have in
mind. My basic problem is that precisely this difference in scale is ane of the

major sources of our difficulties in programming!

It would he very nice if I could illustrate the various techniques with
small demonstration programs and could conclude with "... and when faced with a
program a thousand times as large, you compose it in the same way." This common
educational device, however, would be self-defeating as one of my central thsmes
will be that any two things that differ in some respect by a factor of already a

hundred or more, are utterly incomparable.

History has shown that this truth is very hard to believe. Apparently we are
too much trained to disregard differences in scale, to treat them as "gradual
differences that are not essential". We tell ourselves that what we can do once,
we can also do twice and by induction we fool ourselves into helieving that we can
do it as many times as needed, but this is just not true! A factor of a thousand

is already far beyond our powers of imaginatian!

Let me give you two examples to rub this in. A one-year old child will crawl
on all fours with a speed of, say, one mile per hour. But a speed of a thousand
miles per hour is that of a supersonic jet. Considered as objects with moving
ability the child and the jet are incomparable, far whatever ome can do the other
cannot and vice versa. Also: one can close one's eyes and imagine how it feels to
be standing ir an open place, a prairie or a sea shore, while far away a big,
reinless horse is approaching at a gallap, one can "see" it approaching and nassing.
To do the same with a phalanx of a thousand of these big beasts is mentally im—

possible: your heart would miss a number of beats by pure panic, if you could!

To complicate matters still further, problems of size da not only cause me

problems of presentation, but they lie at the heart of the subject: widespread



EwD24G - 2

underestimation of the specific difficulties of size seems one of the major under-
lying rcauses af the current software failure. To all this I can see only one
answer, viz. to treat problems of size as explicitly as possible. Hence the title

of this section.

To start with, we have the "size" of the computation, i.e. the amount of
information and the number of aperations involved in it. It is essential that this
gize 1s large, for if it were really small, it would be easier not to use the
computer at all and to do it by hand. The automatic computer owes it right to
exist, its usefulness, precisely to its ability to perform large caomputations
where we humars cannot. We want the computer to do what we could never do ourseives
and the power of present—day machinery is such that even small computations are by

their very size already far beyand the powers of our unaided imagination,

Yet we must organize the computations in such a way that our limited powers
are sufficient to guarantee that the computation will establish the desired effect.
This organizing includes the composition of the program and here we arg faced with
the next problem of size, viz. the length of the program text, and we should give
this problem also explicit recognition. We should remain aware of the fact that the
extent to which we can read or write a text is very much dependent an its size. In
my country the entries in the telephone directory are grouped by town or village
and within each such group the subscribers are listed by name in alphabetical
order. I myself live in a small village and given a telephone number 1 hava anly
to scan a few columns to find out to whom the telephone number belongs, but to do

the same in a large city would be 2 major data processing task!

It is in the same mood that I should like to draw the reader's attention to
the fact that "clarity" has pronounced quantitative aspects, a fact many matha-
maticians, curicusly enough, seem to be unaware af. A theorem stating the validity
of a conclusion when ten pages full of conditions are satisfied is hardly a con-
venient tool, as all conditions have to be verified whenever the theorem is
appealed to. In Euclidean geometry, Pythagoras' Theorem holds for any three points
A, B and C such that through A and C a straight line can be drawn orthogonal to a
straight line through B and C. How many mathematicians appreciate that the theorem
remains applicable when some or all of the points A, B and C coincide? Yet this

seems largely responsible for the convenience with which Pythagoras Thearem can be



EwD249 - 3

used.

Summarizing: as a slow-witted human being I have a very small head and I had
better learn to live with it and to respect my limitations and give them full
credit, rather than to try to ignore them, for the latter vain effort will be

punished by failure.



EWD249 - 4

On the reliasbility of mechanisms,

Being a programmer by trade, pragrams are what I am talking about and the
true subject of this section really is the reliability of programs. That, never—
theless, [ have wmentioned "mechanisms" in its title is because I regard programs
as specific instances of mechanisms, and that I wanted to express, at least once,
my strong feeling that many of my considerations concerning saftware are, mutatis

mutandis, just as relevant for hardware design.

Fresent-day camputers are amazing pieces of equipment, but most amazing of
all are the uncertain grounds on account of which we attach any validity to their

output. It starts already with our belief that the hardware functions properly.

Let us restrict, for a moment, aur attention to the hardware and let us
wonder to what extent one can convince oneself of its being properly constructed.
Some years ago a machine was installed on the premises of my University; in its
documentation it was stated that it contained, among many other things, circuitry
for the fixed-point multiplication of two 27-bit integers. A legitimate guestion
seems to be: "Is this multiplier correct, is it performing according to the

specifications?",

The naive answer to.this is: "Well, the number of different multiplications

54

this multiplier is claimed to perfarm correctly is finite, viz. 27, se let us
try them all." But, reascnable as this answer may seem, it is not, for althaugh

a single multiplicatior took only some tens of microseconds, the total time
neaded for this finite set of multiplications would add up to more than 10 000
years! We must conclude that exhaustive testing, even of a single component such
as a multiplier, is entirely out of the guestion. (Testing a complete computer on

the same basis would imply the established correct processing of all possible

programs!)

A first consequence of the 10 000 years is that during its life~time the
multiplier will be asked to perform only a negligeable fraction of the vast number
of all possible multiplicatiors it could do: practically nane of them! Funnily
enough, we still require that it would do any multiplication correctly when ordersd

to do so. The reason underlying this fantastic quality requirement is that we do



EWD249 - 5

rot know in advance, which are the negligeably few multiplications it will be

asked to perform, In our reasoning about our programs we talk about "the praduct®
and have abstracted from the specific values of the factors: we do not know them,

we do not wish to know them, it is not our business to know them, it is our
business not to know them! Our wish ta think in terms of the concept "the product",
abstracted from the specific instances occurring in a computation is granted, but
the price paid for this is precisely the reliability requirement that any multi-
plication of the vast set will be performed correctly. So much for the Justification

of our desire for a correct multiplier.

But how is the correctness established in a convincing manner? As long as
the multiplier is considered as a black box, the only thing we can do is "testing
by sampling", i.e. offering to the multiplier a feasible amount of factor pairs
and checking the result. But in view of the 10 00C years, it is clear that we can
anly test a negligeable fraction of the possible multiplications. Whole classes
of in some serse "critical” multiplications may remain untested and in view of the
reliability justly desired, our guality control is still most unsatisfactory.

Therefare it is not done that way.

The straightforward conclusion is the following: a convincing demonstration
of correctness being impossible as long as the mechanism is regarded as a hlack
box, our only hope lies in nat regarding the mechanism as a black bax. I shall

call this "taking the structure of the mechanism into account!.

From now onwards the type of mechanisms we are going to deal with are programs.
(In many respects, programs are mechanisms much easier to deal with than circuitry.
which is really an analogue device and subject to wear and tear.) And also with
programs it is fairly bopeless to establish the correctness beyond even the mildest
doubt by testing without taking their structure imto account. In other words, we
remark that the extent to which the program correctness can be established is not

purely a function of the pragram's external specifications and behaviaur but

depends critically upan its internal structure.

Recalling that our true concern is with really large programs, we observe as
an aside that the size itself requires a high confidence level for the individual

program components. If the chance of correctness of an individual component equals



EWD249 - &

p, the chance of correctness of a whole program, composed of M such components, is

something like
Pzp .

As N will be very large, p should be very, very close to 1 if we degsire P to differ

significantly from zero!

When we now take the position that it is not only the programmer's task to
praduce a correct program hut also to demonstrate its correctness in a convincing
manner, then the above remarks have a profound influence on the programmer's

activity: the object he has to produce must be usefully structured,

The remaining part of this monograph will mainly be an exploration of what
program structure can be used to good advantage. In what follows it will become
apparent that program correctness is not my only concern, program adaptability or
manageability will be another. This stress an program manageability is my deliberate

choice, a choice that, therefore, I should like to justify.

While in the past the growth in power of the generally available equipment
has mitigated the urgency of the efficiency requirements, this very same growth has
created its new difficulties. Once ore has a powerful machine at one's disposal one
tries to use it and the size of the problems one tackles adjusts itself to the
scope of the guipment: no one thinks about programming an algorithm that would
take twenty years to execute. With processing power increased by a factor of a
thousand over the last ten to fifteen years, Man has become considerably more
ambitious in selecting problems that now should be "technically feasible". Size,
complexity and sophistication of programs ane should like to make have exploded
and over the past years it has become patently clear that on the whole our

programming ability has not kept pace with these exploding demands made on it.

The power of available eguipment will continue to grow: we can expect
manufacturers to develop still faster machines and even without that deveiopment
we shall witness that the type of machine that is presently considered as except—
ionally fast will become more and more commorn., The things we should like to do
with these machines will grow in propartion and it is on this extrapolation that

I have formed my picture of the programmer's task.



EwD249 - 7

My conclusion is that it is becoming most urgent to stop to consider
programming primarily as the minimization of a cost/performance ratio. We should
recognize that already now programming is much more an intellectual challenge: the
art of programming is the art of organizing complexity, of mastering multitude and

avoiding its bastard chans as effectively as possible.

My refusal to regard efficiency considerations as the programmer's prime
cancern is not meant to imply that I disregard them. On the contrary, efficiency
considerations are recognized as one of the main incentives to modifying a
logically correct program. My point, however, is that we can only afford to
optimize (whatever that may be) pravided that the program remains sufficiently

manageable.

Let me end this section with a final aside on the significance of computers.
Camputers are extremely flexible and powerful tools and many feel that their
application is chenging the face of the earth. I would venture the opinion that
as long as we regard them primarily as tools, we might grossly underestimate their
significance. Their influence as tools might turn out to be but a ripple on the
surface of our culture, whereas I expect them to have a much more profound influence

in their capacity of intellectual challenge!

Corollary of the first part of this section:
Program testing can be used tc show the presence of bugs, but never to show
their absence!



EwWD249 - 8

On our mental aids.

In the previous section we have stated that the programmer's duty is to make
his product "usefully structured" and we mentioned the program structure in con-

rection with a convincing demonstration of the correctness of the program,

But how do we convince? And how do we convince ourselves? What are the
typical patterns af thought enabling ourselves to understand? It is to a bropad
survey of such questions that the current section is devoted. [t is written with
my sincerest apologies to the professional psychologist, because it will be
amateurishly superficial, Yet I hope (and trust) that it will be sufficient to

give us a yardstick by which ta measure the usefulness of a proposed structuring.

Among the mental aids available to understand a program {(or a proof of its
correctness) there are three that I should like to mention explicitly:
1) Enumeration
2) Mathematical inducticn

3) Abstraction.

On_enumeratian,

I regard as an appeal to enumeration the effort to verify a property of the
computations that can be evoked by an enumerated set of statements performed in
sequence, including conditional clauses distinguishing between two aor more cases.

Let me give a simple example of what I call "enumerative reasaning".

It is asked to establish that the successive execution of the following two
statements
"dd:= dd / 2;

if dd < r do ri= r - dgd"
operating on the variables "r" and "dd" leaves the relations
0<r<dd (1)

invariant. One just "follows" the little piece of program assuming that (1) is

satisfied to start with. After the execution of the first statement, which halves



EwWD249 ~ 9

the value of dd, but ieaves r unchanged, the relations
O0<r<2*dd (2)

will hold. Now we distinguish two mutually exclusive cases.

1) dd < r, Tagether with (2) this leads to the relations
dd ST <2*dd (3)

In this case the statement following do will be executed, ordering a decrease of

r by dd, so that from {(3) it follows that eventually
O0<r <dd R

i.e. (1) will be satisfied.

2) non dd < r (i.e. dd > r). In this case the statement following do will be
skipped and therefore also r has its final value. In this case "dd > r" together
with (2), which is valid after the execution of the first statement leads

immediately to
O<r<dd

so that also in the second case (1) will be satisfied.

Thus we have completed our proaf of the invariance of relations (1), we have

also completed our example of enumerative reasoning, conditional clauses included.

Dn_mathematical induction.

I have mentioned mathematical induction explicitly because it is the anly
pattern of reasoning that I am aware of that eventually enables us to cope with
loops (such as can be expressed by repetition clauses) and recursive procedures.

I shouid like to give an example.

Let us consider the sequence of values

dgr 9y 4o d3,..... (1)
given by
for i = O d, =D (2a)
far 1 > 0 d, = f(d. ) {2b)



EwD249 - 10

where D is a given value and f a given (computable) function. It is asked ta make

the value of the variable "d" equal ta the first value d, in the sequence that

k
satisfies a given {computable) condition “prop". It is given that such a value
exists for finite k. A more formal definition of the requirement is to establish

the relation d = dk (3)

where k is given by the (truth of the) expressions

prop{d, ) . {4)
and non prop(di) for all i satisfying 0 <1 <k (5.

We now consider the following program part:
"d:= DI;
while non prop(d) do d:= f(d)" (6)
in which the first line represents the initialization and the second one the loop,
controlled by the (hopefully self-explanatory) repetition clause while...da. (In

terms of the conditional clause if...do, used in gur previous example, a more

formal definition of the semantics of the repetition clause is by stating that
"whiie B do S"
is semantically equivalent with

"if B do

begin S; while B do 5 end"

expressing that "ngn B" is the necessary and sufficiernt condition for the repetition

to terminate.)

Calling in the construction "while B do S" the statement S "the repeated
statement" we shal prove that in program (6):
after the n~th execution of the repeated statement will hold (for n >0)
d=d (7a)
and nan prap(di) for all i satisfying 0 <1 <In . (7b)

The above statement holds for n = O (by enumerative reasoning); we have to
prave (by enumerative reasoning) that when it holds far n = N (N;i 0), it will

also hold forn = N + 1,



EwD249 - 11

After the N-th execution of the repeated statement relations (Ta) and (Tb)
are satisfied for n = N. For the N+1st execution to take place, the necessary and

sufficient condition is the truth af

non prop(d)

which, thanks to (7a) for n = N (i.e. d = dN) mEans

nan prap(dN)

leading to condition (7b) being satisfied for n = N + 1. Furthermore, d = dN and

(2b) leads to
f(d) = SN

so that the net effect of the N+1st execution of the repeated statement
"d = f(d)"

established the relation
d=d

i,e. relation (7a) for N = N + 1 and thus the induction step (7) has been proved.

Now we shall show that the repetition terminates after the k—th execution
of the repeated statement. The n—th execution cannot take place for n > k for

(on account of 7b) this would imply

nor prup(dk)

thereby violating {4). When the regpetition terminates after the n—-th execution of

the repeated statement, the necessary and sufficient condition far termination,

viz. naon (non pIDP{d))

becomes, thanks ta (7a)

prop(d_) . (8)
This excludes termination for n < k, as this would violate (5). As a result the
repetition will terminate with n = k, so that (3} follows from (7a), (4) follows
from (8) and {5) follows fram {7b). Which terminates our progf.

Before turning our attention away from this example illustrating tbe use of
mathematical induction as a pattern of reasoning, I should like to add some remarks,
because I have the uneasy feeling that by now some of wy readers —in particular

experienced and competent programmers— will be terribly irritated, viz. those



EWD249 ~ 12

readers for whom program (6) is so obviously correct that they wonder what all the
fuss is abaout: "Why his pampous restatement of the problem as in (%), (4) and (5),
because anyone knows what is meant by the first value in the sequence, satisfying
a condition? Certainly he does not expect us, who have work to do, to supply

such lengthy proofs, with all the mathematical dressing, whemsver we use such a

simple loop as that?" Etc.

To tell the barmest truth: the pomp and length of the above proof infuriate
me as well! But at present I canngt do much better if I really try to prove the
correctness of this program. But it sometimes fills me with the same kind of anger
as years ago the crazy proofs of the first simple theorems in plane geometry did,

proving things of the same degree of "obviouspess" as Euclid's axioms themselves.

0f course I would not dare to suggest (at least at presenti) that it is the
programmer's duty to supply such a proof whenever he writes a simple leap inm his
program. If so, he could never write a program of any size at all! It wauld be as
impractical as reducing each proof in plane geometry explicitly and in extenso to

Fuclid's axioms. (Cf. Section "On our inability to do much.")

My moral is threefold. Firstiy, when a programmer considers a construction
like (&) as obviously correct, he can do so because he is familiar with the
construction. I prefer to regard his bebaviour as an unconscious appeal to a
theorem he krows, although perhaps he has never bothered to formulate it; and once
in his life he has convinced himself of its truth, althaugh he has probably forgotten
in which way he did it and although the way was (probably) unfit for print. But we
could call our assertions about program (6), say, "The Linear Search Thearem" and

knowing such a name it is much easier (and more natural) to appeal to it consciously.

Secondly, to the best of my knowledge, there is no set of theaorems of the
type illustrated above, whose usefulness has been generally accepted. But we should
not be amazed about that, for the absence of such a set of theorems is a direct
consequence of the fact that the type of object —i.e. programs— has not settled
down. The kind of object the programmer is dealing with, viz. programs, is much
less well-established than the kind of object that is dealt with in plane geometry.
In the mean time the intuitively competent programmer is probably the one who

confines himself, whenever acceptable, to program structures with which he is very



EwD249 - 13

familiar, while becoming very alert and careful whenever he constructs something
unusual (fur him). For an established style of programming, huwever,-it might be

a useful activity to look for a body of theorems pertinent to such programs.

Thirdly, the length of the proof we needed in our last example is a warning
that should not be ignored. There is of course the possibility that a better
mathematician will do a much shorter and more elegant jeb than I have done.
Personally I am inclined to canclude from this length that programming is more
difficult than is commonly assumed: let us be honestly humble and interpret the
length of the proof as an urgent advice to restrict ourselves to simple structures
whenever possible and to avoid in all intellectual modesty "clever constructions"

like the plague.

On_abstraction,

At this stage I find it hard to be very explicit about the role of abstraction,
partly because it permeates the wholz subject. Consider an algorithm and all possible
computations it can evoke: starting from the computations the algorithm is what
remains when one abstracts from the specific values manipulated this time. The
concept of "a variakle" represents an abstiraction from its current value. It has
been remarked to me (to my great regret ! cannot remember by wham and so I am
unable to give credit where it seems due) that once a person has understood the
way in which variables are used in programming, he has understood the quintessence
of programming. We can find a confirmation for this remark when we return to our
use of mathematical induction with regard to the repetition: on the one hand it is
by abstraction that the concepts are introduced in terms of which the induction
step can be formulated; on the other hand it is the repetition that really calls
for the concept of "a variable". (Without repetition one can restrict oneself
to "quantities" the value of which has to be defined at most once but never has

to be redefined as in the case of a variable.)

There is also an abstraction involved in naming an operation and using it
on account of "what it does" while completely disregarding "how it works". (In the
same way one should state that a programming manual describes an abstract machine:

the specific piece of hardware delivered by the manufacturer is nothing but a



EwD249 ~ 14

—usually imperfect!= mechanical model of this abstract machine.) There is a strong
analogy between using a named operation in a program regardless of "how it works"
and using a theorem regardless of how it has been proved. Even if its proof is

highly intricate, it may be a very convenient theorem to use!

Here, again, I refer to our inability to do much. Enumerative reasoning is
all right as far as it goes, but as we are rather slow-witted it does not go very
far. Enumerative reasoning is only an adequate mental tool under the severs baund-
ary candition that we use it only very moderately. We should appreciate abstraction

as ocur main mental technique to reduce the demands mada upan enumerative reasoning.

(Here Mike Woodger, MNational Physical Laboratory, Teddington, England, made
the following remark, which T insert in gratitude: "There is a parallel analogy
between the unanalyzed terms in which an axiom or theorem is expressed and the

unanalyzed aperands upon which a named cperation is expected to act.")



EWD249 - 15

An example of g correctness proof.

Let us consider the following program section, where the integer constants

a and d satisfy the relatians

a>0 and d>0 .

"integer r, dd;
ri= a; ddi= d;
while dd < r do dd:= 2 * dd;
while dd £ d do
begin dd:= dd / 2;
ifdd<rdo ri=r - dd

To apply the Linear Search Theorem (see Section "Dn our mental aids", sub-

section "On mathematical induction") we consider the sequence of values given by

for i = O dd., = d
1
far 1 > O dd, = 2 * dd.
i i-1
fram which ddn =d ¥ 2n (1)

can be derived by normel mathematical techniques, which also tell us that {because
d¢ > 0) for finite r

ddk3> r

will bald far some finite k, thus ensuring that the first repetition terminates

with dd = d * 2° .
Soiving the relation
d. = 2 * d,
i i-1
for d i
or d._, gives d,‘1 - di/ 5

and the Linear Search Theorem then tells us, that the second repetition will also
terminate. (As a matter of fact the second repeated statement will be executed

exactly the same number of times as the first one.)

At the termination of the first repetition,



EwD249 - 16

dd = d

d dk
and therefore, 0<r<dd (2)
holds. As shown eariier (Section "On our mental aids.", subsection "On enumeratign")

the repeated statement of the second clause leaves this relation invariant. After

termination (on account of "while dd £ d do") we can conclude
dd = d
which itogetber with (2) gives

0<r<d . (3)

Furthermare we prove that after the initialisation

dd = O mod(d) (4)
holds; this follows, for instance, from the fact that the possible values of dd

are —see (1)- d*2i for 0<i<k,

Our next step is to verify, that after the initial assignment to r the

relation

a=r mod(d) (5)

holds.

1) It holds after the initial assignments.

2) The repeated statement of the first clause ("dd:= 2 * dd") maintains the
invariance of (5) and therefore the whole first repetition maintains the validity

of (5).

3) The second repeated statement consists of two statements. The first ("dd:: dd/2“)
leaves (5) invariant, the second one also leaves (5) invariant for either it leaves

r untouched or it decreases r by the current value of dd, an ocperation which on

account of (4} also maintains the validity of (5). Therefare the whole secand

repeated statement leaves (5) invariant and therefore the whale repetition leaves

(5) invariant. Combinin %) and (5 y the final value therefore satisfies
g
O0<r=<d and a=r mod(d)

i.e. v is the smalles non-negative remainder of the division of a by d.

Remark 1. The program



EwD249 - 17

“"integer r, dd, g;
T:= a; dd:i= d; q:= Q;
MddSrﬁgdd:E*dd;
while dd # d do
begin dd:=dd / 2; qi= 2 * g;
Af dd < r do begin ri= r = dd; qi= q + 1 end

end

assigns to g the value of the corresponding quotient. The proof can be established

by observing the invariance af the relation

a=0q*dd +r .

(I owe this exampla to my colleague N.G.de Bruijn.)

Remark 2. In the subsection "On mathematical induction." we have proved the
Linear Search Theorem. In the previous proof we have used another thearem about
repetitions (a theorem that, obviously, can only be proved by mathematical
induction, but the proof is so simple that we leave it as an exercise to the
reader),viz. that if prior to entry aof a repetition a certain relation P holds,
whose truth is not destroyed by a single execution of the repeated statement,
then relation P will still hold after termination of the repetition, This is

a very useful theorem, often allowing us to bypass an explicit appeal to maths-

matical induction. (We can state the theorem a little bit sharper;in the repetition
"while B do S"

one has to show that S is such that the truth of
F and B

prior to the execution of S implies the truth of
P

after its executinn.)

‘Remark 3. As an exercise (for which acknawledgement is due to James Kin cMu,
9y

Pittsburgh, USA) for the reader, prove that with integer A, B, x, y and z and

A>=0 and B> 0

after the execution af the program section



EwDz249 - 18

"xi= A; yi= B; z:= 1;
while y # O do
begin if odd(y) do begin yi= y ~ 1; z:= z * x Eend;
vi= y / 25 xi= x * x

end"

finally z = AB will hold.

The proof has to show that (in spite of "yi= vy / 2") all variables keep

integer values; the method shows the invariance aof

x >0 and y > 0 and AB =z ¥ xy .



EwWD249 - 19

On the validity of proofs versus the validity of implementations.

In the previous section I have assumed "perfect arithmetic" and in my
experience the validity of such proofs aften gets guestioned by people who.argue
that in practice one never has perfect arithmetic at ornes disposal: admissible
integer values usually have an absolute upper bound, real numbers are only

represented to a finite accuracy etc. So what is the validity of such proofs?

The answer to this guestion seems to be the following. If gne proves the
correctness of a program assuming an idealized, perfect world, one should not be
amazed if something goes wrong when this ideal program gets executed by an "imperfect"
implementation. Obviously! Thersfore, if we wish to prove program correctness in a
more realistic world, the thing to do is to acknowledge right at the start that
all aoperations appealed to in the program (in particular all arithmetic operatinns)
need not be perfect, provided we state —rather axiomatically- the properties they
have to satisfy for the praper execution of the pragram, i.e. the properties aon
which the correctness procf relies. (In the example of the previous section this

requirement is simply exact integer arithmetie in the range [O, Za].)

When writing a program operating on real numbers with rounded operations,

one must be aware of the assumptions one makes, such as

b >0 implies a + b > &
a*h="0b*a

-(a *b) = (-a) * b
O* x=0

0+ x = x

1 % 5 = x etc.etc.

Very often the validity of such relations is essential to the iogic of the
program. for the sake of compatibility, the programmer would be wise to be as
undemanding as possible, whereas a good implementation should satisfy as many

reascnable requirements as possible.

This is the place to confess one of my blunders. In implementing ALGOL &0
we decided that "x = y" would deliver the value true not anly in the case of exact

equality, but also when the two values differed only in the least significant



EwD249 ~ 20

digit represented, because otherwise it was so very improbahle that the value true
would ever be computed. We were thinking of converging iteratisns that could
oscillate within rounding accuracy. While we had been generous {(with the best of
intentions!) in regarding real numbers as equal, it guickly turned out that the
chosen operation was so weak as to be hardly of any use at all. What it boiled
down to was that the estabiished truth of a=band b =c¢ did not allow the
programmer to conclude the truth of a=1c¢ . The decision was quickly changed.
It is since that experience that I knaw that the programmer can orly use his

tool by virtue of {a rumber of) its properties; corversely, the programmer must be
able to state which properties he requires, (Usually programmers don't do so
because, for lack af tradition as to what properties can be taken for granted,
this would require more explicitness than is otherwise desirable. The proliferation
of machines with lousy floating-point hardware ~together with the misapprehension
that the automatic computer is primarily the tool of the numerical analyst- has

done much harm to the profession!)



EWD249 - 21

On understanding pragrams.

In my life I have seen many programming courses that were essentially like
the usual kind of driving lessons, in which ons is taught how to handle a car

instead of how to use a cer to reach one's destipatian,

My point is that a program is never a goal in itself; the purpose of a
program is to evoke camputations and the purpose of the computatiaons is to estahlish
a desired effect. Although the program is the final product made by the programmer,
the possible camputations evoked by it —the "making" of which is left to the
machine!- are the trus subject matter of his trade. For instance, whenever a
programmer states that his program is correct, he really makes an assertion about

the computations it may evoke.

The fact that the last stage of the total activity, viz. the transition from
the {static) program text to the (dynamic) computation, is esseniially left to the
machine is an added complication. In a sense the making of a program is therefore
more difficult than the making of a mathematical theory: both program and theory
are structured, timeless objects. But while the mathematical theory makes sense as

it stands, the program only makes sense via its executian.

In the remaining part of this section I sﬁall restrict myself to programs
written for & sequential machine and I shall explore same aof the conseguences of
our duty to use our understanding of a program tc make assertions about the ensuing
cemputations. It is my {unproven) claim that the ease and reliability with which we
can do this depends critically upon the simplicity of the relatiaon between the two,
in particular upon the nature of sequencing control. In vague terms we may state
the desirability that the structure of the program text reflects the structure of
the computation. Or, in other terms, "What can we do to sharten the conceptual gap
between the static program text (spread out in "text space") and the corresponding

computations (evolving in time)?"

It is the purpose of the computation to establish a certain desired effect.

When it starts at a discrete moment tO it will be completed at a later discrete

moment t1 and we assume that its effect can be described by comparing “the state

at to" with "the state at ti“. If no intermediate states are taken into consideration



EwD249 - 22

the effect is regarded as heing established by a primitive action,

wWhen we do take a number of intermediate states into consideration this
means that we have parsed the happening in time., We regard it as a sequential
computation, i.e. the time—succession af & number of subactions and we have to
convince ourselves that the cumulative effect of this time~succession of subactions

indeed equals the desired net effect of the total computation.

The simplest case is a parsing, a decomposition, into a fixed number of

subactions that can be enumerated. In flowchart form this can be represented as

fallows. J*

31

r
}
f
|
|
|
I
I
|
|
)
)

e e e e e

I_
|
!
r
<
|
| .
|

The validity of this decomposition has to be established by enumerative
reasoning. In this case, shortening of the conceptual gap between program and
computation can be achieved by requiring that a linear piece of program text
contains names or descriptions of the subactions in the order in which they have

to take place. In our earlier example (invariance of 0<r <dd)

"dd:= dd / 2;
ifdd<rdo ri= r - da"
this condition is satisfied. The primary decompasition of the computaticn is into

a time-succession of two actions; in the program text we recognize this structure

"halve dd;

reduce r modulo dd!

We are considering all initial states satisfying 0 <r<dd and in all

computations ther considered, the given parsing into two subactions is applicable.



EwD249 - 23

50 far, sc good.

The program, however, is written under the assumption that "reduce r modulo
dd" is not a primitive action, while "decrease r by dd" is. Viewing all possible
happenings during "reduce r modulo dd" it becomes then relevant to distinguish that
in some cases "decrease r by dd" takes place, while in the other cases r remains

unchanged. By writing
"if dd < r do decrease r by dd"

we have represented that at the given level of detail the action "reduce r modulo

dd" can take one of two mutually exclusive forms and we have also given the criterion
on account of which the choice between them is made. I¥ we regard "if dd < r do"

as a canditional clause attached to "decrease r by do" it is matural that the
conditional clause is placed in frant of the conditioned statement. (In this sense

the alternative clause
"if condition then statement 1 else statement 2

is "over~ordered" with respect ta "statement 1" and "statement 2'": they are just

two alternatives that cannot be expressed simultaneously on a linear mEdium.)

The alternative clause has been generalized by C.A.R.Hoare whose "case-of"
construction provides a choice between more than two possibilities. In flaowchart

form they can be represented as follows.

|
|
i
|
| 51
I
|
|

Aif ? do S1 if 7 then S1 else 52



EwD249 - 24

case i of(S1; 525 .....; Sn)

These flowcharts share the property that they have a single entry at the top
and a single exit at the bottom: as indicated by the dotte block they can again be
interpreted (by disregarding what is inside the dotted lines) as a single action
in a sequential computatian, To be a little bit more precise: we are dealing with
a great number of possible computatiorns, primarily decomposed into the same time-—
succession of subactions and it is only on closer inspection -i.e. by looking
inside the dotted block~ that is revealed that over the coliection of possihle
computations such a subaction may take one of an enumerated set of distinguished

forms.

The above is sufficiert ta consider a class of computations that are primarily
decompased into the same set of enumerated subactiens; they are insufficient to
consider & class of computations that are primarily decomposed into a varying
number of subactions (i.e, varying over the class of computations cunsidered). It
is bere that the usefulness of the repetition clauses becomes apparent, We mention
"while condition do statement" and "repeat statement until condition" that may be

represented in flowchart form as follows.



EWD249 - 25

while 7 do § repeat 5 until ?

These flowcharts also share the property of a single entry at the top and a
single exit at the bottom. They enable us to express that the action represented
by the dotted block is on closer inspection a time-successipn of "a sufficient

number” of subactions of a certain type,

We have naw seen three types of decomposition; we could call them "concatenation”,
"selection" and "repetition" respectively. The first twe are understood by enumerative

reasoning, the last cne by mathematical induction.

The programs that cen be written using the selection c¢lauses and the
repetition clauses as anly means for sequencing control, permit straightforward
translation into a programming language that is identical but for the fact that
sequencing control has to be expressed by jumps to labelled points. The caonverse
is not true. Alternatively: restricting ourselves to the three mentioned types of
decomposition leads to flowcharts of a restricted topology compared with the
flowcharts one can make when arrows can be drawn from any hlock leading into any
other, fompared with that greater freedom, to restrict oneself to the clauses

presents itself as a sequencing discipline.
Why do I propose to adhere to this sequencing discipline? The justification
for this decision can be presented in many ways and let me try a number of them in

the hope. that at least one of them will appeal to my readers.

Eventually, one of our aims is to make such well-structured programs that the



EWD249 - 26

intellectual effort (measured in some loose sense) needed to understand them is
praportional to program length (measured in some equally loose sense). In particular
we have to guard against an exploding appeal to enumerative reasoning, a task that
forces upon us some application of the old adage "Divide and Rule", and that is the

reason why we propose the step=wise decompositions of the computations.

We can understand a decomposition by concatenation via enumerative reasoning.
(We can do so, provided that the number of subactions into which the computation
is primarily parsed, is sufficiently small and that the specification of their net
effect is sufficiently concise. 1 shall return to these requirements at a later
stage, at present we assume the conditiaons met.) It is then feasible to make
assertions about the computations on account of the program text, thanks to the
triviality of the relation betwesen the progress through the computations and the
progress through the program text. In particular: if on closer inspection ane of
the subactions transpires to be contrelled by a selective clause or a repetitian
clause, this fact does not impase any burden on the understandability of the

primary decaomposition, because there only the subaction's net effect plays a role.

As a corollary: if on closer inspection & subaction is controlled by a
selective clause the specific path taken is always irrelevant at the primary level
(the only thing that matters is that the correct path has been taken). And also:
if on closer inspection & subaction is controlled by a repetitive clause, the
number of times the repeatéd statement has been executed is, as such, irrelevant

(the anly thing that matters is that it has been repeated the correct number of

times).

We can also understand the selective clauses as such, viz. by enumerative
reasoning; we can also understand the repetition clause, viz. by mathematical
induction. For all three types of decomposition —and this seems to me a great

help— we knaw the appropriate pattern of reasoning.

There is a further benefit to be derived from the proposed sequencing
discipline. In understanding programs we establish relations. In our example on
enumerative reasoning we established that the program part

"dd:= dd / 2;
if dd<r do ri= r - dd"



EwD249 = 27

leaves the relation
0 <r<dd

invariant. Yet, even if we can ensure that these relations bold before execution
of the guoted program part, we cannot conclude that they always hold, viz. not
necessarily between the execution of the two guoted statements. In other words:
the validity of such relations is dependent on the progress of the computation,

and this seems typical for a sequential process.

Similarly, we attach meanings to variables: a variasble may count the number
af times an event of & given type has occurred, say the number of lines that has
been printed an the current page. Transition to the next page will be followed
immediately by a reset to zero, printing a line will be followed immediately by
an increase by 1. Again, just before resetting or increasing this count, the
interpretation "number of lines printed on the current page" is non—-valid. To
assign such a meaning to a variable, again, can only be dane relative to the
progress of the camputation. This observation raises the following gquestion: "How

do we characterize the progress of a computation?"

In short, we are looking for a co—ordinate system in terms af which the
discrete points of computation progress can be identified, and we want this ca-
ordinate systgm to be indeperdent of the variables operated upon under program
control: if we need values of such variables to describe progress of the computation
we are begging the guestion, for it is precisely in relation to this progress that

we want to interpret the meaning of these variables.

(A still more stringent reason not to rely upon the values of variables is
presented by a program containing a non-ending loop, cycling through a finite
points of progress the same state prevails. But then the state is clearly incapable

of distinguishing between these two different points of progress!)

We can state our problem im another way. Given a program in action and
suppose that before completion of the computation the latter is stopped at one of
the discrete points of progress. How can we identify the point of interruption,

for instance if we want to redo the computation up to the very same point? Or alsa:



EwWD249 - 28

if stopping was due to some kind of dynamic errar, how can we identify the point of

progress short of a complete memory dump?

For the sake of simplicity we assume our program text spread out in (linear)
text space and assume an identifying mechanism for the program points correspording
to the discrete points of computation progress; let us call this identifying
mechanism "the textual index". (If the discrete points of computation progress are
situated in between successive statement executions, the textual index identifies,
say, semicolons.) The textual index is a kind of generalized order counter, its

value paints toc a place in the text,

If we restrict ourselves to decomposition by concatenation and selection, a
single textual index is sufficient to identify the progress of the computation.
With the inclusion of repetition clauses textual indices are no longer sufficient
to describe the progress of the computation. With each entry into a repetition
clauses, however, the system could introduce a so-called "dynamic index", inexorably
counting the ordinal number of the correspanding current repetition; at termination
of the repetition the system should again rewave the corresponding dynamic index.
As repetition clauses may occur nested inside each other, the appropriate mechanism
is a stack (i.e. a last—in~first—out-mamury). Initially the stack is empty; at
entry af a repetition clause a new dynamic index (set to zero or one) is added on
the top of the stack; whsnever it is decided that the repetiticn is not terminated
the top element of this stack is increased by 1; whenever it is decided that a
repetition is terminated, the top element of the stack is removed. {This arrangement
reflects very clearlv that after termination of a repetition the numbef of times,

even the fact that it was a repetition, is no longer relsvant.)

As soon as the programming language admits procedures, then a single textual
index is no longer sufficient. In the case that a textual index points to the
interior of a procedure body, the dynamic progress of the computation is anly
characterized when we also describe to which call of the procedure we refer, but
this can be done by giving the textual index pointing to the place of the call.
With the inclusior of the procedure the textual index must be generalized to a
stack of textual indices, increased by one element at procedure call and decreased

by one slement at procedure return.



EWD249 -~ 29

The main point is that the values of these indices are outside the programmer's
cantrol; they are defined (either by the write-up of his program or by the dynamic
evolution of the current computation) whether he likes it ar not. They provide
independent co~ordinates in which to describe the progress of the computation, a
"variable~independent" frame of reference in which meanings to variables can be

assigned.

There is, of course, even with the free use of jumps, a programmer independent
co-ordinate system in terms of which the progress of a sequential computation can
be described uniquely, viz., a kind of normalized clock that counts the number of
"discrete points of computation progress" passed since program start. It is unique,
but utterly unhelpful, because the textual index is no longer a constituent

component of such a co—ardinate system.

The moral of the story is that when we acknowledge our duty to control the
computations (intallectually!) via the program text ewvoking them, that then we
should restrict ourselves in all humility to the most systematic sequencing
mechanisms, ensuring that "pragress through the computation" is mapped on "progress

through the text" in the most straightforward manner.



EwWD249 ~- 30

On comparing programs.

It is a programmer's everyday experience that for a given problem to be
solved by a given algorithm, the program for a given machine. is far from uriquely
determined. In the course of the design process he has to select between alternatives;
once he has a correct program, he will aften be called to modify it, for instance
because it is felt that an alternative program would be more attractive as far as
the demands that the computations make upon the available equipmernt resources are

concaerned.

These circumstances have raised the gquestion of the equivalence of programs:
given two programs, do they evoke computations establishing the same net effect?
After suitable farmalization (of the way in which the programs are given, af the
machine that performs the computations evoked by them and of the "net effect" of
the computations) this can presumably be made into a well-posed problem asppealing
to certain mathematical minds, But ] do not intend to tackle it in this general
form. On the contrary: instead of starting with two arbitrarily given programs
(say: independently conceived by twa different authDrE) 1 am concerned with
alternative programs that camn be considered as products of the same mind and then
the questian becomes: how can we conceive {and structure) those two alternative

programs s0 as to ease the job of comparing the twao?

I have done many experiments and my basic experience gained by them can be
summed up as follows. Two programs evoking computations that establish the same
wish to compare programs in order to compare their corresponding computations, the
basic experience is that it is impossible (or fruitless, unattractive, or terribly
hard or what you wish) to do so when on the level of camparison the sequencing
through the two programs differs. To be a little bit more explicit: it is only
attractive to compare two programs and the computations they may possibly evoke,
when paired computations can be parsed into a time-succession of actions that can
be mapped on each other and the corresponding program texts can be equally parsed

into instructions, each corresponding to such an action.

This is a very strong condition. Let me give a first example.



EWD249 - 31

Excluding side-effects of the boolean inspections and assuming the value
"B2" canstant (i.e. unaffected by the execution of either "51" or “52"), wWg tan

establish the equivalence of the following two programs:

"if B2 then

begin while Bl do 51 end

else
begin while B1 do 52 end" (1)
and
Mwhile B1 do
begir if B2 then 51 else S2 end® . (2)

The first-construction is primarily one in which sequencing is controlled
by a selective clause, the second construction is primarily ane in which sequencing
is controlled by a repetitive clause. I can establish the equivalence of the output
of the computations, but I cannot regard them as equivalent in any other useful
sense. [ had to force myself to the conclusion that (1) and {2) are "hard to com—
pare™. Originally this conclusiaon annoyed my very much. In the meantime I have
grown to regard this incomparability as one of the facts of life and, therefore,
as one of the major reasons why I regard the choice between (1) and (2) as a
relevant design decision, that should not be taken without careful consideratieon.
It is precisely its apparent triviality that has made me sensitive to the conside-
rations that should influence such a choice. They fall cutside the scope af the

present section but [ hope ta return to them later.
Let me give a second example of incomparibility that is slightly more subtle.

Given two arrays X[1:N] and Y[1:N] and a boolean variable "egqual", make a
program that assigns to the boolean variable "equal"™ the value: "the twa arrays

are squal element-wise". Empty arrays (i.e. N = O) are regarded as being equal.

Introducing a variable j and giving to "equal" the meaning "among the first

1 pairs no difference has been detected", we can write the following two programs.
"ji= O; equal:= true;
while j £ N do

begin j:= j + 1; equal:= equal and (X[j] = Y[j]) end" (3)



EwD249 - 32

and
"j:i= 0; equal:= trus;
while j # & and equal do

begin ji= j + 1; equal:= (X[j] = Y[j]) end" o (4)

Program (4) differs from program (3) in that repetition is terminated as
soan as a pair-wise difference has been detected. For the same input the number of
repetitions may differ in the two programs and therefore the programs are only
comparable in our sense as long as the last two lines of the programs are regarded
as describing a single action, not subdivided into subactions. But what is their
relation when we do wish to take into account that they both end with a repetition?

To find this out, we shall prove the correctness of the programs.

On the arrays X and Y we can define of 0 < j <N the N + 1 functions EQUALJ,
as follaws:

true ,

FQUAL, , =nd (x(i] =YD : (5)

for j =0 EQUALj

1

far >0 EQUALj

In terms ef these functions it is required to establish the net effect

equal = EQUALN

Both programs maintain the relation
equal = EQUALj (6)

for increasing values af j, starting with j = O.

It is tempting to regard both programs (3) and (4) as alternative refinements

of the same (abstract) program (7):

"j:= 0; equal:= EQUALO;
while "perhaps still: equal £ EQUAL, " do

begin j:= j + 1; Mequal:= EQUALj" end" (7)

in which "perhaps still: equal # EQUALN" stands for some sort of still open
primitive. When this is evaluated

equal = EQUALj

will hold and the programs (%) and (4) differ in that they guarentee an different



EWD249 ~ 33

criteria that "equal" will have its final value EQUALN.

In program (3) the criterion is very naive, wvi:.
i = N.
At the beginning of the repeated statement
equal = EQUALj
still holds. After the execution of "j:= j + 1" therefore
equal = EQUALj_

1

baolds and thes assignment statement

"equal:= equal and (X[i] = YLi)m

is now a straightforward transcription of the recurrence relation (5).

To come to program (4) some analysis has to be applied to the recurrence
relation (5}, from which can be derived (by mathematical induction again)} that

EL]UALj = false implies EQUALN = false, and therefore EQUALj = false implies

il

EQUAL , EQUALN. If this situation arises, the equality "equal = EQUALN" can alsa
J

be guarantesd and this leads to program (4). The set of (sub)computatimns the

repeated statement has to cope with in program {4) is restricted ta those with

the initial state "egual = true" and therefore in program (4) the assignment

"equal:= EQUAL " can be abbreviated to
J

"equal:= (X[j] = Y[i])"

And nmow it is clear why the introduction of (7) as an abstraction of (3)
and (4) was misleading. With "perhaps still; equal # EQUALN“ we have stated the
meaning of truth and falsity of a boolean expression without stating the expression
itself and that was very tricky. We have tried to interpret (7) as a program in
which part of the sequencing at its own level was undefined and varying over its
refinements. As a result we have tried to view the last lines of (7} as a model
for the last lines of both (%) and (4), but this was misleading because the

computations to be evoked by them cannat be brought into a one-to-one correspondence.

S0 much about programs that we consider as incomparable. Examples of camparable

programs will be encountered in the follewimg sections. A final remark: we have stated



EwD249 - 34

that "paired computations can be parsed into a time—succession of actions that
can be mapped on each other". We have nat required that actions so paired should
have the same net effect! We may compare alternative programs for the same job

but also different programs for similar jobs.



EwD249 - 35

A first example of step-wise program composition.

In the section "On understanding programs." I have stressed the need for
Systematic sefquencing 53 that the structure of the computations could he reflected
in the structure of our program: in this way we can speak of the joint structuring
of program and camputations. In the curremt section I shall now try to give a
little bit more content to the still rather vague notior of structuring computations.
It will be a first effort to exploit our powers af abstraction to reduce the appeal
made to enumerative reasoning; it will be a consequent application of the decompo=

siticns mentioned in the section "On understanding programs.".

Instead of presenting (as a ready-made product) what 1 would call a well~
structured program [ am going toc describe in very great detail the compasition
pracess af such a program, I do this because programs are not there; on the
contrary, they have to be made, and the kind of programs I am particularly
interested in are those which I feel to be reasonably well suited to our powers

of construction and conception.

The task is to instruct & computer to print a table of the first thousand

prime numbers, 2 being considered as the first prime number.

Mote 1., This example has been chosen because on the one hand it is sufficiently
difficult to serve as a model for scme of the problems encountersd in programming,
and on the cther hand its mathematical background is =o simpie and familiar that

our attentian is not wsurped by the problem.

Note 2. I do not claim that my final program will be "the best one", measured by
whatever yardstick any of my readers might care to choose. At least two readers

of a previous version of this presentation -in which remainders were computed via

a divide operation— reacted quite vehemently to it: "But everyonme knows that the
most efficient way to generate prime numbers is by using the Sieve of Eratosthenes.”

thereby blocking their ability to read any further!

The basic pattern of my approach will be %o compose the program in minute
steps, deciding sach time as little as possible. As the problem analysis praceeds,

so does the further refinement af my program.



EwD249 - 36

When an algorithm has to be made, the desired camputation bhas to be composed

from actions corresponding to a well-understood instruction repertoire,

The simplest form of the program is

description Q:

begin "print first thousand prime numbers" end

and when "print first thousand prime numbers" refers ta an instruction fram the
weli-understood repertoire, then description O salves the problem. For the sake

of argument we assume that this instruction does Dot oceur in the well-understaod
repertoire. Therefore we have to conceive a computation composed from "more primi-
tive" actions that establishes the desired net effect. Our first proposal is to

separate the gemeration of the prime numhers and their printing, and we propose

description 1:

begin variable"table p";

"#1ll table p with first thousand prime numbers";
"print table p"

end,

describing that our computation consists of a time-succsession of two actions and
takes place in a state space containing a single variable, called "table p". The
first action assigns a value to this variable, the second action is controlled by

the (then current) value of this variable.

Again, when "fill table p with first thousand prime numbers" and. "print
table p" occur in the well-understood repertaire (and "table p" occurs amang the
implicitly available resources) then our problem is solved. Again, for the sake of
argument, we assume this not to be the case. This means that in our next refinement
we have to express bow the effect of these two actions can be established by two
further {sub)computatians. Apart from that we have to decide, how the information
to be contained in the intermediate value of the still rather undefined object

"table p" is to be represented,

Before going on, I wauld like to stress how littls we have decided upon when
writing down description 1, and how little of our original problem statement has
been taken into account. We have assumed that the availability of a resource "table p"

(in some form or other) wauld permit us to compute the first thousand prime numbers



EWD249 - 37

before printing starts, and under this assumption we have exploited that the
computatian of the primes can be conceived independently of the printing. Of our
original problem statement we have not tasken into account very much more than that
at least a thousand differesnt prime numbers do exist (we had to assume this for

the problem statement to make sense). At this stage it is still fairly immaterial
what the corcept "prime number" really mears. Also:; we have not committed ourselves
in the least as regards the specific layout requirements of the print-oput to be
produced. Apparently it is the strength of our approach that the consequences aof
these two rather independent aspects of our original problem statement seem toc have
been allocated in the respeetive refinements of our two constituent actions. It
suggests that we have been more or less suyccessful in our effaort to apply the

golden principle "divide and rule".

Resuming pur discussion, haowever, we have to ask ourselves, to what extent
the two subcomputations can now be conceived independently af each other. To be
more precise "Have we now reached the stage that the design of the twe subalgorithms
(that have to evoke the two subcomputations) can be conceived by two programmers,

working independently of each other?".

When the twe actidns can no longer be regarded as invoked by imstructions
from the well-understood repertoire, neither can the variable "table p" any longer
be regarded as an implicitly available resource. And in a way similar to the ane
in which we in which we have to decompose the actions into subcomputations, we
have to choose how the variable "tahle p" will be composed, viz. what data
structure we select to represent the information to be banded over via."table p'
fram the first action to the second. At some point this has to be decided and the

questions are "when?" and "how?",

In principle, there seem to be two ways out of this. The first one is to try
to postpone the decision on how to structure "table p" into (more neutral, less
problem—bound) components. If we postpone the decision on how to structure "table p",
the next thing to do is to refine one of the actions ar both. We can do so, assuming
a proper set of operations on the still mysterious object "table p"; finally we
collect these operations and irn view of their demands we design the most attractive

structure of "table p".



EwWD249 - 38

Alternatively, we can try to decide, here and now, upon the structure of
"table p", Once it has been decided how the table of the first thousand primes
will be represented, the refinements of both actions can be dane fairly independently

of sach other.

Both ways are equally tricky, for what will be an attractive algorithm for,
say, the first subcomputation will greatly depend on the ease and elegance with
which the assumed operations on "table p'" can be realized, and if one or more turn
out to be prahibitively clumsy, the whole edifice falls to pieces. Alternatively,
if we decide prematurely upon a structure for "table p" we may well discover that
then the subcomputations turn out to be awkward. There is no way around it: irn an
elegant program the structure of "table p" and the computations referring to it
must be well-matched. I think that the behaviour of the efficient programmer can
be described as trying to take the easiest decision first, that is the decision
that requires the minimum amount of investigatian (trial and error, iterative
mutual adjustment etc.) for the maximum justification aof the hope that he will

not regret it.

In order not to make this treatment unduly lengthy we assume that the pro-
grammer finds the courage to decide that naw the structure of "tahle p" is the
first thing to ke decided upon. Once this position has been taken, twa alternatives
immediately present themselves. On the one hand we can try to exploit that "a table
of the first 100C primes" is not just a table of a thousand numbers —as would be
a2 table of the monthly wages of 1000 emplyees in a factory— but that all these
numbers are different from each other. Using this we can arrange the information
with & linear boolean array {(with consecutive elements associatzsd with consecutive
natural numbers) indicating whether the natural number in question is a prime
number or not. Number theary gives us an estimation of the order of magnitude of
the thousandst prime number and thereby a boundary of the length of the array that
will suffice. If we arrange our material in that way we have prepared an easy
mechanism to answer the gquestion "is n (less than the maximum) prime or not?",
Alternmatively, we can choose an integer array in which the successive prime numbers
will be listed,. (Here the same estimate, obtained by means of number theory, will
be used, viz. when a maximum value of the integer array elements needs to be given
a priori.} In the latter form we create a mechanism suited to answer the guestion

"what is the value of the k-th prime number, for k < 1000 71,



EwWD249 - 39

W2 grant the programmer the courage to choose the latter representation. It
seems attractive in the printing operation in which it is reguested to print the
prime numbers and not to print natural numbers with an indication whether they
are prime or not. It alsc seems attractive for the computing stage, if we grant
the programmer the clairvayance that the analysis of whether a given natural
number is a prime number or not, will have something to do with the question of

whether prime factors of the number to be investigated can be found.

The nmext stage of our program refinement then becomes the careful statement
of a convention regarding the representation of the still mysterious object "table p"

and a redefinition of the two operations in terms of this convention.

The cenvention is that the information to be contained in “table p" will

be represented by the values of the elements of the "integer array p[1:1000]“,

such that for 1 <k <1000 p{k] will be equal to the k—th prime number, when
the prime numbers are arranged in order of increasing magnitude. (If a maximum
value of the integers is implicitly understnod, we assume that number theory

allows us to state that this is large enough.)

When we now want to describe this new refinement we are faced with a new
difficulty. Our description 1 had the form of a single program, thanks to the
fact that it was a refimement of the single action named "print the first
thousard prime numbers", refered to in description 0. (Im more canventional terms:
description 1! could have the form of a procedurs body.) This no longer holds for
our next level, in which we have to refine (simultanaously, in a sense) three
named entities, viz. "table p" and the two actions, and we should invent same

sort of identifying terminolagy indicating what refines what.

For the continuation of our discussion we make a very tentative proposal,
We say: description O is a valid text expressed in terms of a single named action

"print first thousand prime numbers"; let this be identified by the code Qa.

Descriptian 1 is called "1" because it is the next refinement of description
0; it contains a refinement of Oa -the only term in which description O is expressed-
and is itself expressed in terms of three named entities to which we attach the

codes:



EwD249 - 40

"table p" 1a
"fill table p with first thousand prime numbers” 1b
"print table p" Tc

code numbers, starting with 1, because description 1 is expressed in terms of

them, and "a", "b" and "c" being attached for the purpose of distinction.

Now we have to descfibe our convention chosen for the representation of
the information to be contained in "table p", but this convention pertains to
all three elements la, 1b and 1c. Therefore we call this description 2; it should
contain the descriptions of the three separate elements (I use the equality sign

as separator)

description 2:

1a = "integer array p[1:1000]“

b

"make for k fram 1 through 1000 p[k] equal to the k—th prime number"

I

1c "print plk | far k from 1 through 1000" |

Description 2 is expressed in terms of three named entities to which we
give (in the obvious order) the codes 2a, 2b and 2c. (In code numbers, description
2 is very meagre: it just states that for 1a, 1h and 1c, we have chosen the

refinements 2a, 2b and Z2c respe:tively.)

Remark. In the representation of the information to be contained in "table
p", we have chosen not to explait the fact that each of the values to be printed
vccurs only once, nor that they accur in the order of increasing magnifude.
Conversely, this implies that the action that has to take place under the name of
2c 1s regarded as a specific instarce of printing any set of thousand integer
values (it could be a table of monthly wages of thousand numbered employees!).
The net effect of the printing actior in this example is as uniguely defined as
the first thousand prime numbers are: we conceive it, however, as a specific
instance of a larger class of occurrences. In the further refimement of 2c we
deal with this whole class, the specific instance in this class being defined by
the values of the elements of the array p. When people talk about "defining an
interface" I often get the feeling that they overlook the presupposed generalization,

the conception of the class of "possible" actians.

When 2b and 2c occur among the well-understood repertoire of instructiens



EWD249 - 41

{and therefore 2a among the resaurces implicitly available) our whole problem is
solved. For the sake of argument we again assume this not to be the case, and so

we find ourselves faced with the task of conceiving subcomputations for the actions
2b and 2c. But now, thanks to the introduction of level 2, the respective refine-

ments of 2b and 2c can be designed independently.

The refinement of 2b: "make for k from 1 through 1000 pfk] egual to the

k—th prime number".

We are looking for description 2bt, i.e. the first refinement of 2b. We
introduce a fresh numbering after 2b (rather than calling our mext description
"3 something”") in order to indicate the mutual independence of the refinements of

2b ang 2c respectively.

In description 2b1 we have to give an algorithm describirg how the elements
of the array p will get their values. This implies that we have to descrike, for
instance, in what order this will happen. In our first refinement we shall describe
Just that and preferably nothing more. An ohvious, but ridiculous version starts

as follows {with "version number" enclosed within parentheses ):

2b1(1):
begin p[1]:: 2; p[2]:: 3 p[3]:= 5; D[4]:: s P[E]:: Mieeesnnaes end

implying that the programmer's knowledge includes that of a table of the first
thousand primes. We shall not pursue this version as it would imply that the

programmer hardly needed the machine at all.,

The first prime number being given (= 2), the thousandst being assumed
unknown to the programmer, the most natural order in which to fill the elements
of the array p seems to be in the order of increasing subscript value, and if we

express just that we arrive (for instance) at

ob1(2):

begin integer k,j; k:= 0; j:= 1;

while k < 1000 do begin "increase j until next prime number";

ki= k + 15 plk]:= j end



EwD249 - 42

By identifying k as the number of primes found and by verifying that our
our first prime number (= 2) is indeed the smallest prime number larger than 1
(= the initial value of i), the correctness of 26t (2) is easily proved by

mathematical induction {assuming the existence of a sufficient number of primes).

Description 2b1(2) is a perfect program when the operation described by
"increase j until next prime number" -call it 2b1(2)a— occurs among the reper—
toire, but let us suppose that it does not. In that case we have to EXpress in
a next refinement how j is increased (and, again, preferably nothing more). We

arrive at a descriptian of level 2b2(2)

2b1(2)a =

begin boolean jprime;

repeat j:; it 1;
"give to jprime the meaning: j is a prime number"

until jprime

Remark. Here we use the repeat—until clause in order to indicate that i

has always to be increased at least once.

Again its correctness can hardly be subject to doubt. If, however, we
assume that the programmer knows that, apart from 2, all further prime numbers
are odd, then we may expact him to be dissatisfied with the above version because
of its inefficiency. The price ta be paid far this "lack.of clairvoyance" is a
revision of version 2b1({2). The prime number 2 will be dealt with separately,

after which the cycle can deal with odd primes only. Instead of 2b1(2) we come to
2b1(3):
begin integer k,j; p[1]:= 2; ki= 13 ji= 1

while k < 1000 do

begin "increase odd j until next odd prime number";
k= k + 15 plk]i=

end

where the analogous refinement of the operation between quotes —"2b1(3)a" say=—

leads to the description on level 2b2(3):



EwD249 - 43

261(3)a =

begin boolean jprime;

repeat ji= j + 2;

"give for gdd j to jprime the meaning: j is & prime number";

until jprime

The above oscillation between two levels of description is in fact nothing
else but adjusting to our convenience the interface between the overall structure
and the primitive operation that has to fit into this structure. This oscillatian,
this form of trial and error, is definitely not attractive, but with a sufficient
lack of clairvayance and being forced to take our decisions in sequence, I see no
other way: we can regard our efforts as experiments to explore (at a rather low

cast!) where the interface can probably be most conveniently chosen.

Remark. Bath 2b1(2) and 2b1{3) can be loosely described as

begin "set table p and j at irmitial value";
while "table p not full" do
begin "increase j until next prime number to be added";

"add j to table p"

end

but we shall not do this as the sequencing in the two versions differs and —see
"On comparing programs"~ we regard them as "incomparable". By choasing 2b1(3%)
we decide that our trial 2b1(2) -as 2b1(1)- is na longer applicable and therefore

rejected.

The change from 2b1(2) ta 2b1(3) is justified by the efficiency gain at the
levels of higher refinement. This efficiency gain is sarned at level 282, ' ause
now j can be increased by 2 at a time., It will also manifest itself in the still
open primitive at level 2h2(3) where the algorithm for "give for odd j to jprime
the meaning: j is a prime number" has only to cater for the analysis of odd values

of j.

Again: in 2h2(3) we have refined 2b1(3) with an algorithm which saolves our



EWD249 - 44

problem when "give for odd j to jprime the meaning: j is a prime number" -call it
"2h2(3)a"- accurs among the well-understoad repertoire. We now assume that it
does not, in other words we have to evoke a computation deciding whether a given
odd value of j has a factor. It is only at this stage that the algebra really
enters the picture. Here we make use of our knowledge that we only need to try
prime factors: furthermore we shall use the fact that the prime numbers to be

tried can already be found in the filled portion of the array p.

We use the facts that
1) j being an odd value, the smailest potential factor to be tried is p[2],
i.e. the smallest prime number larger than 2
2) the largest prime number to be tried is p[ard-1] when p[mrd] is the smallest

prima number whose square exceeds j

(Kere 1 have a]so'used the fact that the smallest prime number whose square
exceeds j can already be found in the table p. In all humility I quote Don Knuth's
comment on an earlier version of this program, where I took this fact for granted:

"Mers you are gquilty of a sericus omission! Your program makes use af a

deep result of number theory, namely that if P denotes the n-th prime

number we always have

n+1 n
Peccavi. )

If this set is not empty, we have a chance of finding a factor, and as soon
as a factor has been found, the investigation of this particular j valﬁe can he
stopped. We have to decide in which order the prime numbers from the set will be
tried, and we shall do so in order of increasing magnitude, because the smaller

a prime number the larger the probability of its peing a factor of j,.

When the value of ord is known we can give far "give for cdd j to Jjprime

the meaning: j is a prime number" the following description on level 2b3(3):

2b2(%3)a =

begin integer n; n:i= 2; jprime:= trus;

while n < ord and jprime da

begin "give to jprime the mearing: pln| is not a factor of j"; ni=n + 1 end
Zeqan g P g




EWD249 - 45

But the above version is written on the assumption that the value of ord,

a function of j, is known. We could have started this refinement with

begin integer n, ord;

ord:= 1; while plord] 1 2 < j do ord:= ord + 1;

t e aensu

i.e. recomputing the value of "ord" afresh, whenever it is needed. Here scme
trading of storage space for computation time seems indicated: instead of recom-
puting this function whenever we need it, we introduce an additional variable
ord for its current value: it has to bs set when j is set, it has to be adjusted

when j is changed.

This, alas, forces upon us some reprogramming. One approach would he to
introduce, together with j, an integer variable ord and to scan the programs in
grder to insert the proper operstions on ord, whenever j is operated upon. I do
not like this because at the lsvel at which j is introduced and has a meaning,
the function “erd" is immasterial. We shall therefore try to introduce ord only

at its appropriate level and we shall he very careful.

For 2b: "make for k from 1 through 1000 plk] equal to the k=th prime

number" we write {analogous to level 2b1(3))

level 2b1(4):

begin integer k, j; p[1J:: 2; ki= 1;

"set j to one";
while k << 1000 do
begin "increase odd j until next add prime number";

kKi= k + 1; p[k]:: A

expressed in terms of
2bi(4)a "increase odd j until next odd prime number"

2b1(4 )b "set j to ane".

In our rext level we only introduce the subcomputation for 2b1(4) a, the

other is handed down.



EWD249 ~ 46

level 2b2(4):
2b1{4)a =

begin bgolean jprime;

repeat "increase j with two";
"give for odd J to jprime the meaning: j is a prime number"
until jprime
end;

ob1{(4)b = 2b2{4)b

expressed in terms of

2b2l4 )b still meaning "set j to ane"
2b2{4 )c "increase j with twa"
2244 )d "give for odd j to jprime the meaning: j is a prime number"

It is only at the next level that we need to talk about grd. Therefore we

Nnow write

level 2b%(4): integer ord;

2b2(4)b =

begin j:= 1; "set ord initial" end;
2b2{4)ec =

begin j:= j + 2; "adjust ord" end;
2b2(4)d =

begin integer n; n:= 2; jprime:= true;

while n < ord and jprime do
begin "give to jprime the meaning: p[n} is not a factor of j";

ni=n + 1

end

expressed in terms of

2b3{4)a "set ord initial"
2h3(4)b "adjust ard"
2b3{4 )c "give to jprime the meaning: p[n] is not a factor of j".

In our next level we give two independent refinements. (Note. We could have
given them in successive levels, but then we should have tc introduce an arbitrary

ordering to these two levels. We could also try to treat the refinements separately



EWD249 - 47

—i.e. as separately as 2b and 2c-, but we feel that it is a little premature for
this drastic decision.) We are going to express

1) that, ord being a ndm*decreasing function of j and j only increasing in
value, adjustment of ord implies a conditional increase;

2) that, whether p[n] is a Tactor of j is given by the guestion whether the

remainder equal zero.

This leads to

level 2b4(4):

2b3{4)a = 204(4)a

2b3(4)h =

begin while "ord too small" do "increase ord by cne end;
ae3(4)e =

begin integer r;

"make r efual to remainder of j over p[ﬂ]";

jprimes= {r £ O)

and

expressed in terms aof

2b4(4)a still meaning "set ord initial"

2b4(4)b "ord too small"

2h4{4)c "increase ard by one"

2b4(4)d "make r equal to remainder of j over p[n]"

If we have a built-in division, the implementation of "make r equal to the
remainder of j aover p[n}" can be assumed to be an easy matter. The case that the
refinement of 2b4{4)d can be treated independently is now left to the interested
reader. To give the algorithm an unexpected turn we shall assume the absence of

a convenient remainder computation. In that case the algorithm
"ri= j; while r > 0 do ri= v - p[n]"

would lead to the (noﬂ-positive) remainder but it wopuld be most unattractive from
the point of view of computation time. Again this asks for the introduction of same

additional tabulated material (similar to the way in which "ord" has been introduced).

We want tc know whether a givern value of j is a multiple of p[n] for n < prd.

In order to assist us in this analysis we introduce a second array in the elements



EwD249 - 48

of which we can store multiples of the successive prime numbers, as close to j as
is canvenient. In order to be able to give the size of the array we should like
to know an upper bound for the value of ord; of course, 1000 would be safe, but

number theory gives us 30 as a safe upper bound. We therefore introduce

integer array mult[1:30]

and introduce the convention that for n < ard, mult[n] will be a multiple of p[n]

and will satisfy the relation
mult[nj'< i+ p[n]

a relation that remains invariantly true under increase of j. Whenever we wish
to investigate, whether p[n] is a factor of j, we increase mult[n] by p[n] as

lang as mult[n] <3i .

After this increase mult[n] = j is the necessary and sufficient condition for

i to be a multiple of g[n].

The low maximum value of ord has another consegquence: the inspection

"ord too small" can be expressad by
"plord] 1 2 < j"

but this inspection has to be performed many times for the same value of ord. We
may assume that we can speed up matters by introducing a variable (called "square“)

whose value equals plord] t 2 .

S0 we come to our final
level 2b5(4):
integer square; integer array mult[1:30];

2b4(4)a =
beqin ord:= 1; square:= 4 end;
2b4{4)b =
(square < j);
204(4)c =

begin mult[ord}:: square; ord:= ord + 1; square:= p[ord] 1 2 end;

2b4{4)d =

begin while mult[n} << j do mult[n]:: mult[n] + p[n]; ri= j - mult[n] end
which has made our computation close to an implementation of the Sieve of

Eratosthenas!



EwD249 - 49

Note. In the refinement of 2b4(4)d, when mult[n] is compared with the current
value of j, mult[n] is increased as much as possible; this could have been done

in steps af 2 * p[n], because we only submit odd values of J and therefore are
only interested in odd multiples of p[n]. {The value of mult[1] remains, once set,

equal to 4.)

The refinement of 2c "print p[k] for k from 1 through 1000" is left to the
reader. 1 suggest that the table should be printed on five lages, each page con—

tairing four columns with fifty consecutive prime numbers.

Here I have completed what I announced at the beginning of this section, viz.
"to describe in very great detail the composition process of such a [well—structured]

program". I would like to end this section with some comments.,

The most striking observation is that our treatment of a very simple program
has become very long, too long indeed to my taste and wishes, even if I take into
account that essentially we did two things: we made a program and we discussed
extensively the kind of considerations leading to it. It is not so much the length
of the latter part that bothers me (writers fill whole novels with the description
of buman behavicur); what bothers me is the length of the texts at the various
levels. Therefore we may expect that notational technique will be ane of our

main concerns,

But we have also had encouraging experiences. Giving full recognition to
the fact that the poor programmer cannot decide all at once, we succeeded ta a
large extent in building up this program ane decisian at a time, and in our
example quite a lot of programming was already done inm its definite form while
major decisions were still left open: irrespective of whether the final decisions
are taken this way ar that way, the coding of the earlier levels remains wvalid. In

view of the requirement of program manageability, this is very encourageing.



EWD249 - 50

On program families.

In our previous section we have considered the design of a program for a
given task, but in doing so, we have considered our final program as an isolated
object, a structure standing all by itself and to be Jjudged an its private merits.
Its structure was the result of successive decompositions; the purpose aof this
structure was ta make a program in such a way that its caorrectness could be proved

without undue intellectual labour.

In this section I am going to explain why I prefer to regard a program not
s0 much as an isglated abject, but rather as a member of a family of "related
programs". In traditional terminology we can think about related praograms either

as alternative programs for the same task or as similar programs far similar tasks.

Why cannot the programmer confine his attention to the program he has to
make and why has he to take into account such a whole family as well? For one thing,
it is hard tec claim that you know what you are doing unless you can present your
act as a deliberate choice out of a possible set of things you could have done as
well. But if we want to give due recognition to the difficulties that are specific
to the construction of large complicated programs, there is a very practical jus-
tification. (And we have to recognize these specific difficulties: experience has
shawn that someone's proven ability to do an excellent job of a given scale is hy
no means a guarantee that, when faced with a much larger job, he will not make

a mess of it.)

Certainly, one of the properties of large programs is that they have ta he
modified in the course of their life—time. A very common reason is that the program,
although logically correct, turns out to esvoke unsatisfactory computations (for
instance unsetisfactory in ore or more quantitative aspects). A secand reason is
that, although the program is logically correc£ and even satisfactorily meeting
the original demands, it turns out to be a perfect solution for not quite the
right problem; one is faced with a restatement of the problem and adaptation of

the program,

The naive approach to this situation is that we must be able to madify an

existing program (and for this the curious tarm "program maintenance" has established



EWD249 - 51

itself.) The task is then viewed as ane of text manipulation; as an aside we may
recall that the need to do so has been used as an argument in favour of punched
cards as against paper tape as an input medium for program texts. The actual
modification of a program text, however, is a clerical matter, which can be dealt
with in many different ways; my point is that if we have our grip on the program
text primarily as on a linear sequence of symbols, the task to establish and to
describe what has to be modified tends to become prohibitively difficult when the

texts get longer and longer.

If a program has to exist in two different versions, 1 would rather not
regard (the text of) the one program as a modification of (the text of) the other
one. It would be much more attractive if the two different programs could, in
some sense or anather, be viewed as, say, differemt children from a common ancestor,
where the ancestor represents a more or less abstract pragram, embodying what the
two versions have in comman. Hopefully, this caommon ancestor can he readily

recagnized in the (prae—)documentation. The inténticns are

1) that the two versions share their respective correctness proofs as far as
possible;
2) that the two versions share (mechani:ally) as far as possible the common

{or “equal") cading;
3) that the regions affected by the modification are already well-isolated,
a condition which is not met when the transition requires "brain-made" modifications

scattered all over the text.

Well, this is a lofty goal. It has been inspired by the potential similarity
between the task of program modification and program composition: when a program
has been built up to an intermediate stage of refinement, what has then been written
down is in fact a suitable "common ancestor" for all possible programs produced by
further refinements. It is the similarity between "the decision ta be changed" and
"the decision still left open": in both cases we are left with what remains when

we abstract from such a decision.

There is a second source of inspiration to be found in our experience. In
the process of step~wise program composition roceeding from outside inwards
p p prog P v P g ’
going towards progressive refinements, we have in the earlier stages not only

postponed deciding how certain things would be done, but we have also postponed



EwWD249 - 52

committing ourselves as to exactly what had to be done: with progressing refine-
ment more detail about the actual problem stetament has been brought into the

picture. (Later examples will show this even more clearly than the problem of the
prime table.) As a result, gur first levels of refinement are equally appiicable

for the members of a whole class of problem statements.

In other words, in the step~wise approach it is suggested that even in the
case of 2 well-defined task, certain aspects of the given problem statement are
ignored at the beginning. That means that the programmer does not regard the given
task as an isolated thing to be done, but is invited to view the task as a member
of a whole family; he is invited to make the suitable generalizations of the given
problem statement. By successively adding more detail he eventually pins his

algorithm down to a solution for the given prablem.

All this is well-known, each competent programmer does so all the time. Yet
I stress it for a variety of reasons. If the given problem statement is an elaborate
affair, i.e. too much to be grasped in a single glance, he must approach (and dissect)
the problem statement in this way (see the section "Dn our inability to do much").
Secondly, if the given problem is perfectly defined, it is a wise precaution te
anticipate as many future changes in the problem statement as ane can foresee and
accommodate. This remark is not an invitation to make ane's program sc "general"
that it becomes, say, unacceptably inefficient,as might easily happen, when the
generalizations of the problem statement are ill-considered (which might easily
happen when they have been dictated by the Sales-DEpartmentl) But in my experience,
even in traditional programming, it is a very worth-while exercise tc look for
feasible generalizations of conceivable utility, because such considerations may
give clear guidance as to how the final program should be structured. But such
censiderations boil down to ..... conceiving (mare pr less explicitly) a whole

program family!

in an earlier section ("Dn the reliability of mechanisms.") the need for
careful program structuring has been put forward as a consequence of the requirement
that pragram correctness can be proved. In this section we are faced with another
reason: program structure should be such as to anticipate its adaptations and
modifications. Our program should not anly reflect (by structure) our understanding
of it, but it should also be clear from its structure what sart of adaptations can

be catered for smoothly. Thank goodness, the two requirements go hand in hand.



EwD249 - 53

On trading storage space'for computation speed.

In present-day sequential computers {spring 1969} we can distinguish two
main components, an active ane (the processor) and a passive ane (the store). The
active component has the specific function *to be fast, the passive one has the
specific function to be large. The following is written on the assumption that
this functional division is here to stay for a sufficient period of time to make

a study of its consequences relevant,

From the point of view of the programmer storage space and camputation tims
are then two distinct resources and I regard it as one of the responsibilities of
the programmer —rather than of the system to allocate them, i.e. to divide the
load between them. It is to the consequences of this responsibility that the
present section is devoted. This section is not devated to techniques of estimating
the various lpads, i.e. to give guantitative criteria by which to influence the
programmer's choice: it is devoted to the logical relation between the alternatives

between which the programmer may choose.

Note. It is not inconceivable that some of the choices can be left to the
system. In all but the most trivial cases, however, design and establishmernt of
the eguivalence seem to require mathematical inventian from the side of the
progremmer. All efforts to automate this problem—solving sctivity fall outside

the scope of this manograph.

In its most simple form we are faced with a camputation that regularly needs
the value of "FUN(arg)", where "FUN" is a given, computable function defined on
the current value of one or more stored varisbles, collectively called "arg".

In version A of the program, only the value of arg is stored and the value of
FUN{arg) is computed whenever needed, In version B, an additional variable, "fun"
say, 1is introduced, whose sole purpose is to record the value of "FUN(arg)"

corregsponding to the current value of arg.

Where version A has
L FE L I € -0 assignment to arg)

version B will have



EWD249 - 54

Marg:=.....; fun:= FUN(arg)”
thereby maintaining the relation
fun = FuUN(arg) .

As a result of the validity of this relation, wherever version A calls for the
gvaluation of FUN(arg), version B will call for the current value of the variable

fun.

There are two possible reasons to prefer version B to version A. When the
value of FUN(aIg) is more frequently requested than assignments to arg take place,
version B could require less computation time, IF necessary the technique can be
refined by the introduction of a further (bnolean) variable "fun up to date",
indicating whether the relation "fun = FUN(arg)" is assumed to hold. Assignment

to arg is then associated with
"fun up to date:= false"

whenever the value of FUN(arg) is needed, inspection of this boolean variable
will tell, whether FUN(arg) has ta be computed afresh; if so, the computed value
will be assigned to fum and in accordance with its meaning "fun up to date" will
be set to true. Let us call the last program version C. It is clear that these
three programs, only differing where version A assigns to arg or uses the value
of FUN(arg) are equivalent as far as their output is concerned; it is certainly
not inconceivable that version B or C is derived from version A by mechanical

means.

But quite often the situation is not as simple as that and now we come to
the second reascn for introducing such a variable "fun", Often it is very
unattractive to compute FUN(arg) from scratch for arbitrary values of arg, while
it is much easier to compute how the value of FUN(arg) changes when the value
of arg is changed. In that case, the adjustment of the value of "fun" is moxre

intimitely linked with the nature of the functional dependence than is suggested

by "argi=.......; fun:s FUN(arg)".

Uften this possibility is not only intimately linksd to the nature of the
functional dependence, but also to the "history of the variable arg" as the

computation proceeds! We have seen a very striking example in the program far the



EWD249 - 55

prime table (see Section "A first example of step~wise program compositiun")
with the introduction of "ord", which is functionally dependent on "j", viz.

"ord" is the minimum value satisfying
plora] 1t 2> j

where the adjustment of "ord" was a very attractive operation thanks to the fact

that "j" was monotonically increasing in time.

In my understanding of programs I want such additional variasbles that store
redundant information, to be clearly recognized as such, esven if it is a somewhat
undefined functional relationship as in the case of the table "mult" fram the same
example. | am strongly inclined to view such programs as, say, bptimizing refine-
ments of a more. abstract pragram, even when the optimization effected by the
additional variables is essential when we want to make a program with a realistic
performance. Fram the psoint of view aof efficiency such an additionsl variable may
be so vital that it may strike one as irresponsible daydreaming to conceive a level
in which its presence has been abstiacted from. The way in which such an additicnal
variable is manipulated is often experienced as the body of the algorithm: it is
often there that we harvest the fruits of our mathematical ingenuity. The point
is that, although the possibility of at least one such optimizing refimement is
essential for making something with a realistic performancs, on closer inspection
ane often discovers that such an optimizing refinement is far from unique, even

an its coarsest level.

Note. I remember one program in which the additianal information was so
redundant that not only the value of "fun" could be derived from that of "arg" but
also the other way round. Suddenly the relation between "fun" and "arg" became
symmetric and I have been seriously bothered by the guestion what did entitle me
to treat them so asymmetrically. The program in question generated all the
solutions of a combinatorial puzzle. On closer inspection it turned out that there
was a second combinatorial puzzle, where it could be proved that there existed a
one-to—ane corresponderce between the solutions 6F the two problems. If I had solved
the second combinatorial problem I would have found the role of "fur" and "arg"
interchanged! In traditional programming, where such functional dependencies are
not explicitly shown, the two puzzies would probably be solved hy identical

programs, whereas I made two differently structured programs. And I think rightly



EwWD249 - 56

sa, for the single program for the two puzzles needed a different proof for its
correctness, depending on which puzzle it was supposed to solve and this seems
somewhat unfair when we also wish that our understanding of the computations be

reflected in the structure of our programs!



EwWD249 - 57

On a program model.

Before we have & program we must have composed it; after we have a program
—if there was any sense in making it— we shall have 1t executed, In this section
I shall not stress the activities of program composition and of program execution
taoo much and I shall try to view the program as a static object., We want to view
it as a highly structured object and our main gquestion is: what kind of structures
do we envisage and why? Our hope is that eventually we shall arrive at a program
structure that is both nice to compose and nice to execute. Mentally, of course,
I am unable to ignore these processes, but at present I do not want to discuss
them; in particular: I do not want to discuss a design methodology (whether to
work "from outside inwards" or the other way round), nor do I want to discuss
implementation eonsequences now. Again, in order not to complicate matters too

much, [ shall restrict myself io sequential programs.

If I judge a program by itself, my central theme, I think, is that I want
the program written down as I can understand it, I want it written down as I would
like to explain it to somegne. But without further qualification these are just

motherhood statements, so let me try and see whether I can be more specific.

Let us consider a very simple computation, in which three distinct actions
can be distinguished to take place in succession, say: input of data, manipulation
(i.e. the computation proper) and the output of the results. One way of representing

the program is as a long string of statements:

begin

A next form sdds some labels for explanatory purposes:



EWD243 - 58

begin of input;: ettt eerieannerea
begin of maripulation: :::::::::::::::::
begin of output: :::::::::::::::::

. Ses st erens

suggesting to us, when we resad the text , what is going to happen next.

5till better, we write:

begin
input: begin veviirrnennnnns

O = 1= I

maripulation:begin v ieeeerianenna.

tiseasssraess BNd;

output: begin ceevsniirinnaas
tressiesiaaaa.s £Nd

end

where the labels are considered less as markers of points in the program text
than as names of regions —as indicated by the bracket pairs "begin - end"- that
follow the label, or as names of the three actions in which the computation has
been decomposed. But if we take this point of view, the three "lahels" are still
comments, i.e. explanatory noise for the benefit of the interested (human) reader,
whereas I would like to caonsider them as an integral part of the program. I want
my program text to reflect somewhere the fact that the computation has been
decomposed into a time-succession of the three actions, whatever form these might
take upon closer inspection. A way of doing this is to write somewhere the

(textual) succession af the three (abstract) statements
"input; manipulation; autput®

on the understanding that the time-succession of these three actions will indeed
be controlled fraom the above textual succession, whereas the further refinements
of these three actions will be given "somewhere else", perhaps separately, but

certainly without relative ordering.



EwD249 -~ 59

Well, if closed subroutines had not been invented more than twenty years aga, this
would have been the time to do it! In other words: we are returning to familiar
grounds, to such an extent even that many of my readers will feel cheated! I don't,
because one should mever be ashamed of sticking to a proven method as long as it
is satisfactory. But we should get a clear picture of the benefits we should like
to derive from it, if necessary we should adjust it, and finally we should create

a discipline for using it. Let me therefore review the subroutine cancept, because

my appreciation for it has changed in the course of the last year.

I was introduced to the concept of the closed subroutine in copnection with
the EDSAC [1], where the subroutine concept served as the basis for a library of
standard routines. These were the days when the construction of hardware was a
great advanture.and many of the standard routines were means by which (scarce!)
memory and computation time could be traded for circuitry: as the order code did
not comprise a divide instruction, they had subroutines for division. Yet I do
not remember having appreciated subroutines as a means for "rebuilding" a given
machine into a mare suitable ome = curiously enough. Nor do I remember from those
days subroutines so much as objects to be conceived and constructed by the user
to reflect his analysis: they were more the standard routines to be used by the
user. Eventually I saw them mainly as a device for the reduction of program length.
But the whole program as such remained conceived as acting im a single hombgeneous
store, in an unstructured state space, the whole computation remained conceived as
a single sequential process performed by a single processar. In the following
years, in the many programming courses I gave, I have preached the gospel faith-
fully and I have often explained how the calling sequence handed over the return
address and how the subrautine would then begin by setting "the link" =i.e. the
return jump— at its own end. At present [ would rather view the main program as
having its own instruction counter that just continues "counting® upon the completion
of the subroutine execution and would certainly not regard the "sleeping value" as
a parameter handed over to the subroutine. (Still the old view has found its way
into the hardware of many machines. We have seen machines in which a subroutine
jump stored the link at "address zera" of the subroutine and ordered instructian
fetch to be resumed at "address one", an arrangement which makes re-entrant code
and recursive subroutines samewhat hard to implement. And even in this decade we
find machines which store at program interrupt the "program status" of the

interrupted program at a location associated with the interrupt rather than with



EWD249 - 60

the interrupted program!)

Ten years later, when ALGOL 60 emerged, the scene changed and we did not talk
any more about closed subroutines: we called them "prcedures" instead. They re-
mained to be appreciated by the programmer as a very handy means for shortening
the program text, and more and more programmers started te use them for the purpose
af structuring, so that‘prngram adaptation to foreseen changes in problem specifi-
cation could be confined to the replacement af one or mare procedure bodies, or to
a procedure call with some actual parameters changed. But the main navelty was the

concept of the local variables,

This was reflected in two important aspects. The first ane was the concept
of “scope", i.e: the idea that not all variables are homageneously accessible all
through the program: local variables of a procedure are inaccessible from outside
the procedure bady because outside it they are irrelevant. What local variables
a procedure needs to do its private task is its private cancern, is no concern
af the calling main pragram and the fact that the main program can (and must!) he
conceived independently of these local variables is judiciously reflected. We may
have some misgivings about the specific scope rules, as embodied in ALGOL 60, but

we should appreciate them as a very significant step in the right direction.

The second aspect of the novelty was given by the fact that procedures could
be used recursively, more precisely, that a procedure was allowed to call itself,
either directly or indirectly. The virtue of this facility has been thg subject
of many hot debates; as far as I can see the discussion has died down. The argument
against recursive procedures was always an efficiency argument: non-re-entrant
code could be executed so much more efficiently. But with the advent of multipro-
gramming another need for flexible storage allocation has emerged. And if there
are still machines in which non-re-entrant code can be executed much more
efficiently, i.e. in which the use of recursive routines is punished by too heavy
a penalty, then I would venture the epinion that the structure of such a machine
should now be called somewhat old-fashioned. The recursive procedure, however,
forced upon us the recegnition of the difference hetween its (static) text and
its (dynamic) activation —its "incarnation" as it bas been called. The procedurs
text is ane thing; the set of local variables it operates upon this time is quite

another matter.



EwD249 - 61

So far, so good, but now same of its shortcomings (and I don't care, whether
you call them linguistic or conceptual)}. Local variables are "created" upon
procedure entry, and are "annihilated" upon procedure exit. It is precisely this
automatic control over the 1life-time of variables pertaining to a procedure
incarnation that zllows us to implement the (recursive) procedures by means of a
stack {i.e. a last-in~first-out storage arrangement). The fact that local variables
pertaining to an incarnation only exist during the incarnation make it impossible
for the procedure to transmit information behind the scenss from orne incarnation
to the next. To overcome this the concept "own" has been introduced, but this is
no solution to the prablem: what own variables are really good for becomes very
unclear in the case of recursion and, secondly, it is impossible to write a set
of procedures sharing a number of own variables. (We can simulate this by declaring
them in an outer blaock, embracing the procedure declarations, but then the scope
rules make them too germerally accessible: they can then na longer be regarded as
"behind the scenes".) Dur conclusian -by no means new and by no means only mine!-
is that the concept "own" as intraduced in ALGOL 60 must be regarded as ill-consi-
dered, and that we must look for new ways to control and describe life~time,

accessibility and identity of local variables.

But I have still another complaint about the procedure concept, and that is
that it is still primarily regarded as a means for shortening the program text
(although it may be a text of unknown length as in the case of recursion). The
semantics of the procedure call are described in terms of the famous "copy rule':
the procedure call is to be understood as a short-hand, because, semantically
speaking, we should replace it with a copy af the text of the proceduré body
(with suitable adjustments of idermtifiers and substitutions for parameters)
wheredpon the thus modified text will be executed by the same machine as the one
executing the main program. It remains (a representation for) a single program
text to be executed by a singie sequential machine, And it is precisely this

picture of a single machine that does not satisfy me eny longer.

I want to view the main program as executed by its own, dedicated machine,
equipped with the adequate intruction repertoire operating on the adequate
variables and sequenced under control of its own imstruction counter, in order
that my main program would solve my problem if I had such a machine., I want to

view it that way, because it stresses the fact that the correctrness of the main



EWD249 - 62

program can be discussed and established regardless of the availability of this
(probahly still virtual) machine: I don't need to have it, I only need ta have
its specifications as far as relevant for the proper execution of the main

program under consideraticn.

For me, the conception of this virtual machine is an embodiment of my
powers of abstraction, not unlike the way in which I can understand a program
written in a so-called higher level language, without knowing how all kirds aof
operations (such as multiplication and subscription) are implemented and without
knowing such irrelevant details as the number system used in the hardware that

is eventually responsible for the program execution.

In actual practice, of course, this ideal machine will turm out not to
exist, 50 our next task -structurally similar to the original one- is to program
the simuiation of the "upper" machine. In programming this simulation we have to
decide upon data structures to provide for the state space of the uppper machine;
furthermore we have to make a bunch of algorithms, each of them providing an
implementation aof an instruction assumed for the order code of the upper machine,
Finally, the "lower" machine may have a set of private variables, introduced for
its own berefit and completely outside the realm and scope of the upper machine.
But this bunch of programs is written for a machine that on all probability will
not exist, so our next job will be to simulate it in terms of pragrams for a
next-lower machine, etc. until finally we have a program that can be executed by

our hardware.

If we succeed in building up our pragram along the lines just given, we
have arranged our program in layers, Each program layer is to be understood all
by itself, under the assumptiom of a suitable machine to execute it, while the
function of each layer is to simulate the machine that is assumed ta be available

an the level immediately above it.

Why this model? What are the benefits we hope to derive from it? Let me try
to list them.
1) OQur experience as recorded in "A first example of step-wise program composition"
strongly suggests that the arrangement of variaus layers, corresponding to different

levels of abstraction, is an attractive vehicle for program composition,



EwWD249 - 63

2) It is not vain to hope that many a program modification cam now be presented
as replacement of one (virutal) machine by a compatible one.

3) We may hope that the model will give us a better grip on the problems that
arise when a program has %0 be modified while it is im action. If a machine at a
given level is stopped between two of its instructions, all lower machines are
completely passive and can be replaced, while all higher machines must be regarded
as engaged in the middle of an instruction: their state must be considered as
being in transition. In a sequential machine the state can only be interpreted
inbetwsen instruction executions and the picture of this hierarchy of machires,
each having its gwn instruction couter —~"counting its instructions"- seems mare
profitable if we wish to decide at any given moment, what interpretatians are
valid. In the usual programming language in which computational progress is
measured i1n a homogeneous measure ~say "the grain" of one statement— I feel somewhat
helpless when faced with the questian of which interpretations are valid when.

4) We may hope that the model will even assist us in recovery problems —total
or partiasl- whern some malfunctiening has been detected. (Re:ently I have been
invalved in the design and construction of a multiprogramming system, but ane

of the most annoying things was our total inability to estimate (mechanically)

the scope of the disaster when a memary cell gave a parity alarm. The only safe
reaction we could implement was instantaneous machine stop, hardiy a solution to
be proud of!)

5) The picture of a layered hierarchy of machines provides a counter poison to
one of the dangers evoked by ruthless application of the principle "Divide and
Rule", viz. that different components are programmed so independently of each
other that duplication of work (or warse) takes place. The fact that a layer
contains "a bunch of programs" to be executed by some conceptual machine stresses
the fact that the programs of this bunch are invited to share the same primitives.
Sseparation of tasks is a good thing, on the other hand we have to tie the loose

ends together again!

[1] "The Preparation - ° Programs for an Electronic Digital Computer; with
Special Reference tc the £DSAC and the use of a Library of Subroutines",
M.V.Wilkes, D.J.Wheeler and S.Gill, Addison—Wesley Press, 1951



EwD249 ~ 64

A second example of step-wise program composition.

With a picture of program structure as a layered hierarchy of machines
emerging, my fingers are itching to play with it, i.e. to make anather program.
The nptational techniques employed should not be regarded as a well-considered
proposal: they have been chosen to suit my fancy and should be regarded as part

of the experiment.

The problem is the following one. There is given a line printer which is
contralled by two commands "NLCR" (New Line Carriage Return) which defines the
utmost left position of the next line as the "ecurrently printable position", and
the command "PRSYM{n )" which prints a character identified by the value of the
integer parameter n on the currently printable position and defines the position
immediately to the right of the printed position as the new currently printable
position. (For our discussion we can regard lines of infinite length as permissible.)
We shall only make use of two specific values of n, called "space" and "mark"
respectively. "PRSYM(space}" causes the currently printable position to remain
blank, "PRSYM(mark)" will print a given, visible character, some sort of asterisk

say.

Furthermore two integer function of an integer argument arxe given,

satisfying

for O <i <1000 0 < fx(i) <100 and O< fy(i) <50 .

Now we have to make a program printing 50 lines, numbered from top to bottom
by a y-co—ordinate running from 49 through O, the positions on a line being
numbered from left to right by an x—co-ordinate running from O through 99. On the

thousand positions (or less in the case of coincidence) given by
x = fx(i) and v = fy(i} for some i satisfying O < i < 1000

a mark has to be printed; all other positions on the paper have to remain blank,
In other words: a curve is given in a discrete parameter representatiaon and we

wish to use the line printer as a digital plotter.

I have used this problem extensively in viva voce examinations and the

majority of the students quickly discover that, due ta the absence of DLCR (Uld



EWD249 - 65

Line Carriage Return) and of a "backspace", the order in which the printable
positions have to be served is dictated by the printing commands and, secondly,
that this order has nothing to do with the order of the marks if we number them,
say, in the order of increasing i. As a result they quickly conclude that the use
of storage seems indicated: first the thousand i-values should be scanned, i.e.
the page image should be stored in a convenient manner, while afterwards, under
control of the stored image, the page should be printed. (To be more precise; we
assume that the caomputer has sufficient store for this purpose and that the
computation of the function values "fx(i)" and "fy(i)" may be so time—consuming

that we wish to have them computed only ance for each i-value.)

We now document this design decision, and I propose the following piece of
text:

COMPF IRST

draw: {build; print];

var image;

instr build(image), print(image)

end

The above piece of documentation, which is considered as an integral part

of the final program, should be interpreted as follows.

It refers to a machine called "LCOMPFIRST" (we use capitals for machine

names and try to express the type of decision reflected in the program made for

fhem).

The next line gives a named algorithm: its name is "draw" {this being
assumed to be the name of the total program to be made, that has tao "draw" a
curve), the algorithm expresses the desired time-succession of twa actions,
building the image in store, followed by printing paper under control of the

stored value.

In the -last two lines we give the declarations (or declaration headings),
naming the components of the machine for which the above algorithm is intended.

The first line describes that the name "image" will be used for the data structure



EWD249 - 66

that has to accommodate the page image; the variable "image" is the only component
of the state space of this machine. I[ts instruction code comprises two instructions,

named "build" and "print" respectively.

Before proceeding, it should be noted that we have used some abbreviations
of which I don't know yet whether they are very wise or very foolish. They have

both to do with the fact that the variable "image" is a unique variable of this

type.

If the state space should have contained two images, I would have written

"type image;

image var imagel, image2"

expressing that the state space comprises two variables (called "imagel" and
"image2" respectively), with the same set of possible values, this set being
characterized by their type, called "image". In a later step the type image would
enjoy further detailing and this would apply to both variables. As the set of
variables of this type caontains only one element, I have ventured not to distinguish
between the set (called "image") and its only element {also called "image" ).

When descriptions in COMPFIRST (such as "build{image)") refer to "image", they

refer to the variable; when later structuring detail is given, it refers to the

type image.

The last line contains the code of instructions which are like the procedure
heading. In general they cantain the type of the parameters, where the call contains
the variables as actual parameters. Again this seems foolish if the parameter is
uniguely given by its type and for this reason we have mentioned the actual
parameter in the declaration, and have omitted the mentioning of "image" in the
code describing the algorithm "draw". Thus we can reserve the explicitly menticned

actual parameters for the case where this combinatorial freedom is actually used.

Before proceeding, I would like to stress that our little algorithm named
"draw" can and should be regarded as a pragram writtsn for a machine. We should
write the manual for this machinme; in it we have to state
1) that the operation "build" assigns a value to the variable “image" specifying

the image to be printed on paper as given by the functions fx and fy.



EWD249 -~ 67

2 that the operation "print" prints the picture an aper as specified by the
P P p

current value of the variable "image".

The fact that it can really be regarded as an algorithm for a machine is

perhaps most easily seen when we consider alternative algorithms for "draw" e.g.
draw: {print; build}

is wrong, hecause now the action "print" is undefined;
draw: {build; build; print

is correct but unnecessarily time-consuming, because the second action "build"

assigns to "image" the value it already has;
draw: {build; print; print}

would make sense: it would print the picture twice.

We now resume our programming task. If we had machine "COMPFIRST" at our
disposal, the little program named "draw" to be executed by it would do the job.
For the sake of argument and in order to be realistic we now assume that we do
rot have at our disposal such a machine tailored to our needs, and therefore our

next task (similar ta the previaus one!) is to make such a machina.

There are three named entities assumed, viz. "build", "primt" and "image",
where the first two refer to the latter one. As 3 consequence, a further detailing
of the latter one will affact the two first ores; also, it is very hard to give
any further detailing of the action "print" without any further commitments as to
the structure of "image". The action "build", however, admits a further detailing
al by itself. And it is for that reason that we take "build" as our first

candidate for further refinement.

We have to describe, how the variable "image" will get its value corresponding
to the proper positioning of the thousand marks. As a total operation, it assigns
a value to a variable, whase earlier value was undefined: anticipating that the
marks will be added "one at a time", we see, that addition of a next mark will
turn out to be an action operating on an already defined value of the variable
"image". It therefore seems attractive to view the whole setting of the marks as
operating on an already defined value, viz, the one corresponding to the blank

page. This decision leads to



EwWD249 - 68

CLEARFIRST
build: {clear; setmarks};
irmstr clear(image), setmarks{image)

end

where the action "clear" assigns to image the value corresponding to a picture of
fifty blank lines, where the action "setmarks" adjusts the initial value of image

to the one in which the thousand (ar less) marks of the curve have been added.

Again, CLEARFIRST'is a machine for which alternative programs could have

been written, e.g.
build: {Clear}
would make sense, but would produce fifty blank lines as output;
build: {setmarks; clear}
would contain an undefined operation;
build: {clear; clear; setmarks}
wauld contain a superfluous operation, just as
build: {clear; setmarks; setmarks}

would, because the second action "setmarks" would only add marks to the picture

that would already be there and therefore would not change the value of "image".

(Note on notation used. The algorithm explaining "“build" in terms of "clear"
and "setmarks" does so without explicitly mentioning "image", because we do not
wish to use the actual parameter notation in algorithms unless its actual combina-
torigl freedom is in fact used in this machine.

Furthermore, "build" being a one-parameter operation no separate identifier
for its formal parameter has been introduced. Also this abbreviatior on my part

could turn out to be very unwise.)

The next step in the design of the computation -because it can be made
withaut any further commitments— is to describe how the thousand marks of the
curve will be dealt with in turn. For the time being I propose the following

write—up:



EWD249 - 69

ISCANNER

begin integer 1i;

setmarks: {i:: O; while i < 1000 dg {add mark; i plus 1}};
instr add mark(i, image)

end

This algorithm is to be understood in a machine whose instruction repertoire
comprises "add mark(i, image)" which will change the value of "image" in accordance
with the additian of the i-th mark. It describes the order im which the marks are

dealt with; it shows that all marks will be dealt with exactly once.

But this is not all: a new variable {viz. "i%) has been introduced, the
algorithm appeals to a set of actions refering to this variable ("i:= O%, "i < 1000"
and "i plus 1"} and if [ were completely consistent, it seems that I should list
them at the bottom, as possibly requiring further clarification at a later stage,
just as "add mark". I have not done so (I have treated them alang the same lines
as the while-do clause). From the point of view of language semantics this
separate treatment of an implcitly understoad type integer does not seem attractive,
and it seems hard to justify, why the type integer is treated differently from the

type "image": both are implicitly understood in this machine.

Yet I have done it. All the time I design pragrams for non—existing machines
and add: "if we now had & machine comprising the primitives here assumed, then the
job is done", This is, logically speaking, correct; in practice it is a joke,
because we know very well that we canrot assume a general purpose machine to be
available whose instruction code is so very well tailored to our needs. We should
not close our eyes -nor feign to do so!- to our responsibility to provide such
primitives in a later stage of the design. When I now appeal to a well-understood
type "integer" and the operations defined on variables of such a type in this
exceptianal manner, I do so with the irntention of expressing that -although these
facilities héve to be provided in some form or another— providing these facilities
falls outside the scope of the programmer's responsibility and also that the

programmer will accept any reasonable implementation of them.

Again we are left with a primitive that admits further refinement without

commitments regarding the other primitives. We have to describe how dealing with



EwD249 - 70

mark no.i can be expressed in terms of dealing with a position on the page: we

create the machine dealing with the computation of this position.

COMPPOS

begin integer x,y;

add mark: {x:: Fx(i); yi= fy(i); mark pus};
instr mark pos (x, y, image)

end

where "mark pos" will change the current value of the variable "image" in accordance
with the addition of a mark with the co—ordinates "x" and "y" on the picture to be

printed.

(Nate. In the last refinement it is explicitly assumed that the functions
fx(i) and fy(i) can be evaluated in any order af their argument values., If these
two thousand function values were to be read from an input stream, pair wise in a
prescribed order of i-values, then the last two machines would have to be merged

into a single one.)

By now I see no possibility of further refimement without comnitting myself
to the structure of the still rather vague type "image". How do we propose that
this value will be stored? We have to structure the variables of type "image", or,
what amounts to exactly the same thing, we have to choose a representation for its

possible values.

While lecturing at various places I have described versions of this program
to different audiences, and it may be worth-while ta point out that at least twice
part of my audience was deeply troubled by the time I had reached this stage. They
felt for instance, that I could not claim that my program, as far as developed,

was correct; they objected to my remark that
draw: fbuild; print; print}

would produce the same picture twice, for how did I know, that "print" did not

(by means of saome side-effect) thange the value of "image" before I had made the
primitive "print"? The answer to this, of course, is that "print" has to do what

has been stated and should net do what has not been stated. But then more objections
came: I bad failed to show that the representation was unique, perhaps it was such,

that "print" was only a partial function, undefined for some possible values af



EWD249 - 71

"image", etc. The answer to this seems ta be the following: legitimate as such
concerns are, they should be dealt with at the right moment, i.e. not before we
are committing ourselves to a representation. It is apparently the strength of our
appraach that sa much of the program could be written dpown independently of the
representation to be chosen for the values of the type "image". What we have done
so far seems indeed a judicious exploitation of our power of abstraction (here
abstraction of the particular Tepresentation to be chosen for the data structure

"image").

But even if we now come ta the conclusion that the time has come to decide
upon the dates structure for the type "image" we still don't need to commit ourselves
completely. Faced with the question how to structure our variable now, we can take
our decisions step-wise, just as we have done with the algorithmic refinements

encountered sc far.

We recall that the origin of the problem was to be found in the circumstance
that the printing primitives "PRSYM" and “NLCR" forced the computation to produce
the picture line after line going from top to bottem. Let us try to give recognition
to that fact by regarding the image as composed af an array of lines. I then come

tc the following next level.

LINER

begin integer j;

image: {array line{0 : 49]};

print: {j:= 49; while j > O do {lineprint(line[j]); ; minus 1}};
clear: {j:= 49; while j 2 0 do {lireclear(line[]); j mirus 1}1;
mark pas: {linemark(line[y])};

type line;

Anstr lineprint(lire), lineclear{line), linemark(x, line)

end

In the last line but one we have introduced a type called "line"; a type,
I recall, is regarded as a collection of distinguishable values and a variable of
such a type can, at any moment, have one of this collection as its value, The first
line of code expresses that the type "image" is composed of an array of 50 elements

of type "line", numbered fram O through 49, and, being the anly type composed from



EwWD249 - 72

this type, again we abstain from introducing a new identifier (wisely or nat).

Then, "print", "clear", and "mark pos", being operations that were under~
stood as operating on an “image" are translated in algorithms expressed in .terms
of aperations on a line. In the code af these algorithms, the (true) actual parameter
specifies which line; at the end of the description we give the instruction list,
indicating that the actions operate on "a line"; we have given the type, but not

the parameter.

This level introduces some new features. To start with (as in explaining
"image") we treat the structural refinement of a data type on a footing very
similar to the algorithmic refinements (as applied to "print", "clear" and "mark
pos"). Before this level, our approach could have been regarded as an effort to
establish a discipline for "subroutinization" -if the reader will excuse this
horrible term!-, now we observe that that characterization of our effort covers
only half of what we are trying to do, as we are trying to apply a similar techrique
to data structures as well. Secondly, our previous machine explained just one
entity (instruction or data type) in. contrast to "LINER", which explains a whole
bunch of them. The peint is that we try to associate with each level a separate
design decisian; the decision take here is to understand the image from now onwards
in terms if lines, and therefore all operations dealing with an image as such have
to be translated in terms of operations dealing with its lines. The image has been
"explained away", the only unusual type we still have to deal with is the type
"line" and that is what we are going to do now. I draw your attention to the fact
that in the level to come, we have to deal with lines: that lines are Qsed to

compose images from is no longer relevant!

To represent a line we have many different possihilities, e.g. a list aof
the x—-co—ordinates of ihe positions where a mark should be printed (passibly sorted
in prder of increasing x-value), a boolean array af 100 elements, each element
indicating whether the corresponding position on the line of the picture shauld he
marked, or an integer array of 100 elements, each element having the value "mark"
or “space" of the PRSYM-parameter for the corresponding printabhle position., The
last representation caters for extension when different curves (with different
marks) have to printed in the same picture; therefere we select the last one.

This leads to



EWD249 - T3

LONGREP

begin integer k;

line: {integer array sym[O : 99]};

lineprint: {k:= 0; while k <100 do {PRSYM(sym{k]); k plus 1}; NLCR};
lineclear: {k:= Q; while k < 100 da {sym[k]:: space; k plus 1[};
linemark: %sym[x]:: mark}

end

This however leads to an implementation filling out the line with spaces at
the righthand side of the rightmost mark: it is like banging the space bar until
the beli rings when we want to effect the transition to a new paragraph while

writing a letter!

The next version suppresses superflugus PRSYM—commands and even leaves those
elements of the variable of type "line" undefined that do not reed to be defined.
With each line a counter "f" is associated, giving the number of PRSYM~commands -

to be given for that line. Clearing a line now shrinks inta setting "f" to zero!

SHORTREP

begin integer k;

line: {integer f; integer array sym[O : 99]};
0; while k < f do {PRSYM{sym[k]); k plus 1}; NLCR};
0};

lineprint: {k:

lineclear: {f:

Il

linemark: {sym[x]:: mark ; . .
if f < x do gk:: f; while k < x gg_fsym[k]:= space; k plus 1};
'F:: x + 1}}

Note added later.

The above program is essentially the program as I have shown it to at least
five different audiences. Now, two manths later, while thinking at leisure about
correctness proafs, I suddenly realize that the given algarithm for "linemark"
betrays my past, for it is a piece of lousy coding, compared with the following

alternative:



EWD249 - 74

linemark: {while f < x do {sym[f]:: space; T plus 1};

sym[x]:: mark]

a version which guarantees that whenever “sym[x]:: mark" is executed, the relation
"x < f" will always be satisfied: it is precisely the function of the first line

to see to this. The reader is invited to try to understand both versions of linemark
and to compare both reasonings. He will then agree with my judgement that the

origival version is lousy.

The second version jumped into my mind on account of the following ocbservation.

The conditional clause "if B dg S

is used in programs in two different ways. On the ane hand we have the applications,
in which the exscution of the statement 5 does not invalidate the truth of B, on

the ather hand we have the situations in which the execution of the statement S is
guaranteed to invalidate the truth of B. In the latter case, it is the function aof
the conditional statement to ensure that after its execution B will net hold. It

is then, essentially, a shortcut for
"while B dg 5",

which has the property of invalidating the truth aof B {provided that it stops), but
the justification of the shortcut requires a separate proof that the repeated statement
will be executed at most orce., (In "A first example of step-wise program composition®

we did not bother to introduce this shortcut on level 2b4(4) where we wrate
"while "ard too small" dg "increase ard by one" ;

here a conditional clause would have done the job!)



EWD249 - 75

Un what we have achieved.

One of the metaphors in which I find myself thinking about the program
structure envisaged regards the program as a necklace, strung from individual

pearls.

We have described the program in terms of levels and each level contained
"refinements" of antities that were assumed available in higher levels. These
refinements were either dynamic refinements (algorithms) or static refinements
(data structures) to be understood by an appropriate machine. I use the term

"pearl" for such a machine, refinements included,

Qur previdus program consists of a necklace of six pearls, im order either
COMPFIRST
CLEARFIRST
ISCANNER
COMPPCS
LINER
LONGREP

or
COMPF IRST
CLEARFIRST
ISCANNER
COMPPCS
LINER
SHORTREF .

LONGREP and SHORTREP are two different pearls, they explain the same
concepts (frmm the "upper face") into the same concept (of the "lower face"); only
the particular refinements differ: they are as alternative programs for the same

Job and the same machine.

Changing a program will be treated as replacing one or more pearls of the
original necklace by one or more other pearls. The pearl is the individual unit
from which programs are composed. Making a program (as a member of a class of

related programs) is now regarded as a two-stage process: making pearls (more than



EWD249 - 76

strictly necessary) and then stringing a fitting necklace out of (a selection of)

them.

The reasons fpr this two—stage approach are many. In designing a program we
have to consider many, many alternative programs and ance our program is finished,
we will have to change it (into ore of the alternative anes). As long as programs
are regarded as linear strings of basic symbols af a programming language and,
accardingly, program modification is treated as text manipulation on that level,
then each program modification must be understood in the universe of all programs
(right or wrongl) that can be written in that programming language. No wonder that
program modification is then a most risky operation! The basic symbol is too small
and meaningless a unit in terms of which to describe this. The pearl, embodying
the independent design decision or, as the case may be, an isolated aspect of

the original problem statement, is meant to be the natural unit for such modifications.

To rephrase the same argument: with the birth of ALGOL 60, syntax was
discovered as a powerful means for expressing structure in a program text. (Syntax
became so glorified that many workers in the field identified Computing Science
with Syntactic Analysis!) It was slightly overlobked, however, that by expressing
structure via syntax, this structure is only given very indirectly, i.e. to be
derived by means of a parsing algorithm to be applied to a linear sequence of
basic symbols. This hurts if we realize that many a program modification leaves
large portians of the structure unaffected, so that after painful re-parsing of
the modified text the same structure re—emerges! I have a strong feeling that the
adequacy of context-free methods for the representation of structure hés been
grossly overestimated. {In my immediate environment the following program bug in
an ALGOL 60 program was brought to my attention. A program produced erroneous
putput with a completely checking implementation which in addition to the program
text requires a final "progend" after the last "end"; this additional character
is refused evrywhere else so that a correct "begin ~ end" bracketing can be
established. It turned out that
1) somewhere in the program a closing string guote was omitted;

2) somewhere further down in the program text an opening string quote was omitted;
3) the "begin - end" structure of the resulting program was syntactically correct;
4) the identifiers declared between the two omissions were only used between the

two omissions, so that even context-dependent checks were unable to give alarm.



EWD249 - 77

Having already my doubt as to the adequacy of context-free methods for expressing

macroscopic structure, I was delighted when this bug was shown to me!)

The more I think about pearls, the more I feel that something like them
is the only way out of it, if we recognize our responsibility to take (for a large
program) say a thousand (possible) versions into cansideration. You canngt expect
the programmer to make all these thousand versions from scratch, independent of
each other. The only way 1 see to produce such a potential variety is by a combi-
natarial technique, i.e. by making more pearls (say 250) than needed for a single
necklace (say 200) and stringing & necklace from a particular selection. 1 see no
other feasible way. The other mechanism to achieve great variety by comhinatorial
means is permutation, but this is denied to us because the final recklace must be
a fitting necklace and, given the pearls, the order in which they have to be strung
on the thread to produce a fitting necklace is pretty well defined. And also: if

it is not, the permissible change of order is pretty irrelevant!

Also, the pearl gives a clear status to an "incomplete" program, consisting
af the top half of a necklace: it can be regarded as a complete program to be
executed by a suitable machine (DF which the bottom half af the necklace gives a
feasible implementation). As such, the correctness of the upper half of the necklace
can be established regardless the choice af the bottom half, Between two successive
pearls we can make a “cué" which is a manual for a machine, provided by the part
af the necklace below the cut and used by the program represented by the part of
the necklace above the cut. This manual serves as an interface between the two
parts of the necklace. We feel this form of interface more helpful than regarding
data-representation as an interface between operations, in particular more helpful
towards ensuring the combinatorial freedom required when a program has to be

adapted.

Another remark concerns the range of validity of cancepts along the necklace.
Far instance, the cancept "image" is introduced in our tap pearl "COMPFIRST" and
is explained away in our bottom pearl but one, viz. "LINER"., If we now come to
the conclusion that the program as envisaged is too demanding on storage space so
that we cannot afford to introduce the variable "image", we are faced with a
major program revision and we have to replace the tap five pearls by other ones,

because that is the range of validity of the cancept "image"! The bottom pearl



EwWD249 - 78

(either "LONGREP" or "SHORTREP"), however, can be retained. (I mention this as

an example of the fact that pearl exchange is by no means restricted to exchange

of the bottom pearl.)

With respect to the validity range of concepts alang the necklace I would
like to ask your attention for an gbservation which thrilled me the first time
I made it. (In retrospection it is pretty obvious and that is exactly why it may
be worth-while to be explicit about it.) With each pearl we associate "an independent
design decision" and the ardering of the pearls along the necklace therefore implies
an gordering of the design decisions. Can we change this order? Yes, we can, although
we then have different pearls. By way of experiment I have followed the well—known
advice: if you are faced with two primitives -in our case "build" and "printﬁ~
decide immediately upon their interface -in our example "image"=- so that the two
primitives can now be refined independently of each other. So I did, and I came

to the follﬁwing form of necklace

COMPFIRSTY
LINER®
CLEARFIRST!
ISCANNER !
COMPPQS!
SHORTREFP

(the four middle pearls being primed to indicate that they refer to different
pearls, although they embody the same decisions as the anes in the original set.)

The resulting program is much messier. Why?

Along the necklace we can indicate for each concept its range of validity:
of course they overlap and we can view them as the individual threads from which
the whole explanation is twined, as a kind of "logical rope". The messy versian
has a logical rope twined from more and sometimes longer individual threads: its
logical rope is thicker, the whole construction is more tightly interconnected.
The observation thrilled me because it gave a very convincing demonstration {at
least for me!) that elegance, clarity and the like have indeed marked guantitative
aspects (as Mozart knew: many if his compositions that make ane catch one's breath

are misleadingly simple, they seem to be made just out of practically nothing!).



EwD249 - 79

We can phrase the observation in more technical terms. The primed version is
messy because the image is explained away in terms of lines at tos early a stage,
thereby forcing us to explain "CLEARFIRST", "ISCANNER" and "COMPPOSM in terms of
lines, while they could still be explained in terms of the image, i.e. independent
of the representation to be chosen for it. Or, in other words, in the original
version we have made a mare judicious exploitation of our power of abstraction
than in the primed one. The larger the number of pearls independent of the parti-
cular representation, the more adaptable one's pragram and the more easily under-
standable -because that set of pearls can be understood at a higher level of
abstraction. The experience seems ta indicate that the goals of adaptability and
clarity have been given some suhstance and (what is more) go by their very nature

hand in hand. This is very encouraging (although nat surprising).

It alsoc gives -me at least= a somewhat clearer picture of the scops of my
present efforts. Whatever I shall develop, it will not be a General Problem Solver,
not a mechanical ane, not even one written for the benefit of the human prablem
solver. But it may give the human some appreciation for the various aspects of
"elegance” of a solution when he succeeds in finding one. And as such it may give

him a guide line.



EWD249 - 80

On grouping and sequencing.

While we are considering a programming tool in which explicit recognition
has been given to the hierarchy of levels of abstraction, the present section is
alsp applicable to programming in programming languages as they are understood
today, viz. on a constant semantic level. (And there is a fair chance that the
current section has its morals outside the restricted field of programming, for

it seems to be concerned with problem solving in general.)

I shall illustrate my point with two examples, both of which, again, I have

used in viva voce examinatioens, I owe the first example to Niklaus Wirth.

The prablem is to construct a program generating non—empty sequences of O's,
1's and 2's without non-empty, element-wise equal, adjoining subsegquences, generating
these sequences in alphabetical order until a sequence of length 100 (i.e. of 100
digits) has heen generated. The programmer may make use of the knowledge that a
sequence of length 100 and satisfying the conditions actually exists. The start

af the list of seguences to be generated is:

0

o1

010
0102
01020
10201
0102010
0102012

Each solution (apart from the first Dne) is an extension {by ane digit)
of an earlier solution and the algorithm is therefore a straightforward backtracking

Oone.

We are looking for the "good" sequences, we assume a primitive available
for the investigation of whether a trial sequence is good. If it is good, the trial
sequence is printed and extended with a zero to give the next trial sequence:; if

the trial sequence is no good, we perform on it the operation "increase" to get



EwWD249 - 81

the next trial sequence, i.e., final digits = 2 are removed and then the last
remaining digit is increased by 1. (The operations "extend with zero" and "increase"
guarantee that trial sequences are generatsd in alphabetical order, the solutions,
being a selection from them, will then be printed in alphabetical order as well.)
The algorithm will start investigating the feollowing trial sequernces, those marked
by an asterisk will be rejected as "no good":

0
* 00

Ot

010
* 0100
* 0101

o102

01020
* 10200

010201

0102010
* 01020100
* 01020101
* 01020102
* 0102011

0102012

I found the majority of my students inclined to make a program with the

following structure:

"set trial seguence to single zero;
repeat if good then
begin print trial sequence; extend trial sequence with zero end
else
increase trial sequence

until length = 101"

Althaugh a program along these lines produces the correet output, objections
can —and ta my taste: should- be made against it. The first objections regards the

stopping criterion: when a solution of lengfh 100 has been printed, we (knawing the



Ewnz249 - 82

algorithm) can deduce that after that for the first time the trial sequence will
have length = 101 and this is now the criterion to stop, but this is a rather
indirect and tortuous way to establish the stapping criterion. (How tortuous it is
was clearly demonstrated by those students who did not see that an unnecessary
trial sequence was generated and declared for the trial sequence an array of 100
elements instead of 101.) The second pbjection is that the operation "increase
trial sequence" never increases its length: after rejection of a trial sequence a
superfluous test on the length is performed. (When I used this example for student
examination examinations I had not stressed very explicitly in my lectures any
problem solving principles, so wy disappointment was not too severe. In a sense

I am glad to have observed these exeminations, for it was for me an incentive to

stress problem solving principles as far as I could find, formulate and teach them.)

The program to which the abave agbjections do not apply treats the empty
Sequence as a virtual solution, not to be printed. It has ~to the same level of

detail- the following structure:

"set trial sequence empty;

repeat extend trial sequence with ZBIO;
while no good do increase trial sequence;
print trial sequence

until length = 100"

Here length is the length of the solution printed (if any), thus avoiding
the tortuous reasoning for the stopping criterion. Also no superfluous . last trial
seEquence (never to be inueétigated) will be generated, thanks to the fact that
we have two loops inside each other, superfluous length testing no longer occurs.
Those for whom efficiency is the main criterion will prabably be most convinced
by the last observation. I myself, who attach considerable importance to understand-
ability, am attracted to the latter program because I c -nterpret it as a further

refinement of the program structure

"set sequence empty;
repeat transform sequence to next solution;
print sequence

until length = 100"

This {more abstract) program is only concerned with sequences that are solutions:



EWD249 - 83

an this level of description one can ignore that the transitiom from one solution

to the next takes place via a seguence of trial solutions that turn out to be

failures.

I owe to Joe Weizenbaum the second example. Make a program that, for given
positive integer n, determines the smallest number s that can be decomposed into
the sum of two n—th powers in at least two non=trivially different Ways.

1 1 1 1

(for n = 1 s=2=0 +2 =1 +1
no=2 s =25 =0° +5° = 3° 4 42
n=73 s.=1?29:13+123=93+1o3
n =4 s = 635518657 = 597 + 158% = 133t + 1t )

When I first used this example in an oral examination, it took the student
twenty minutes to get somewhat familiar with the problem and he then sketched a
searching algorithm which =when patched up~ could indeed find a number that
allowed multiple decompositions into sums of two n—th powers, but he could not
prove that when his algorithm produced a value s that it would be the minimum value.

(As a matter of fact he had, up till then, ignored that part of the problem statement. )

He then regrouped his forces and made a program of the following form:

"integer s, k;

repeat si= s + 1;

-
i

"the number of ways in which s can be decomposed as the sum
af twa n-th powers"

until k = 1

thus arriving at a hopelessly inefficient algorithm. The error he made was the
decision at too early a stage to investigate the natural numbers in succession, the
overwhelming majority of which are nat decomposable at all, Reasoning that the

value we are looking for is the smallest decomposable number satisfying an additional

property, one comes to an algorithm whose first sketch could he



EWD249 - &4

"integer k, s, t;

ti= 1 (aﬁd further initialization);

repeat s:= "smallest decomposable value larger than t';
k:= "the number of ways the above minimum is obtained"
ti= s

until k > 1"

By storing a collection of triples (number pairs with their corresponding
s-value), among which each time the pair(s) with minimum s—-value exceeding t will
occur and adjusting this collection each time t is increased, a program emerges
that is orders of magnitude more efficient, t jumping from decomposable value
to the next decomposable value, Programming {or problem soclving in general?) as

the judicious postponement of decisions and commitments!



