EWD273 - O

EWD273.html

The Programming task Considered as an Intellectual Challenge

Edsger W.Dijkstra

In contrast to my original intention to address you without the
use of written notes, I have decided to read the text to you verbatim
as it now lies before my very eyes. The chosen procedure often leads
to a less lively, if not even soporific, performance; I can only express
my hope that the duller presentation of my talk is somewhat compensated
for by its contents in one way or another. I feel it my duty and
pleasure to warn ¥you that this time I shall make full use of the tradi-
tional prerogative of the speaker, viz. to say what he wants to say,
rather than to tell what his audience might want to hear. I am well
aware of the fact that in consequence of this decision I might never be
invited again, but if that would be for the loss or benefit of our

confession is not for me to judge e....

Let me now mention and describe to ¥ou the experience which led
to my decision to address you in the manner just announced. It was the
second "Conference on Software Engineering", sponsered by the NATO
Science Committee ana held in Rome during the last week of October 1969.
Had I been brought up in the tradition of the British understatement,

I would probably have described that conference as "not completely
successful'; now, however, the first expressions coming into my mind to

describe it, are rather "an utterly miserable affair" or "a wet mess".

In one respect, I am afraid, it was an honest conference: its
sorry state may have been a true reflection of the present state of the
art of software engineering as generally understoocd and practised. But
before trying to trace possible origins of this sorry state of affairs,
let me tell you what happened at the last day of the conference. After
that, you can judge for yourself. The incident has been witnessed by

some ten or twenty people.

Around five. o'clock, just before the closing of the conference,

I saw a pile of reproduced notes written by one of the participants,

http://userweb.cs.utexas.edu/users/EWD/transcriptions/EWD02xx/EWD273.html

EWD273 - 1

who handed a copy to me when he saw that I showed some signs of interest.
Standing next to him I started to scan his notes, only to see to ny
horror that also this document, alas, contained nothing more meaning-
ful than the pompous, superficial bla-bla-bla that we had been exposed

to all through the week, My disgust got the better of me, I was seduced
to rudeness and after one and a half page I put the paper back on the
pile and turned myself, without any further comments, away from its

author. End of the first act of this drama.

When the curtain rises for the second act it is four hours later,
nine o'clock in the evening. Guilt about my rude behaviour is gnawing
at my mlnd and to relieve it I pick the paper up again to reread it;
this time I start at the end, planning to read it backwards. Ther, at
last, my eyes are opened: the paper has carefully worked towards s
climax and this last sentence is glorious and supertb nonsense, I suddenly
discover that I had nearly been fooled by an elaborate leg pull: it was
a parody, it was satire, produced by a kindred spirit! Pull of excitement
I show the document (that very few had seen) to the remaining partici-
rants that were still in the hotel; then people are reading it, smiling,
chuckling or roaring with langhter, according to their temperament.
But some don't laugh at all because they don't believe that it is
satirical. In the argument that follows, the question "Is this a joke
or is this serious?'" remains unanswered and leaves the group divided

into two camps, End of second act.

In the third act the author, who had been absent during the secong
act, returns and tells that this document had not been written as a
parody, that he had recorded the conference as he had seen it. End of

drama.

My conclusion is that when a number of people who are recognized
as knowledgeable in the field cannot settle among themselves whether an
apparently professional paper is serious or not, that this is alarming,

that the present state of the art is indeed a sorry state of the art.

EWDz273 - 2

Another unmistakable symptom of the conference's misery was that
some people, in reaction to it, changed their air line reservations
and left before the conference had run to completion. I myself would
have done so, if such a change of schedule would not have caused
inconveniences to some other private arrangements I happened to have

made.

I hope that the above will be accepted as a proper documentation
for establishing, even beyond the mildest doubts, the existence of the
misery. If I left it at that, I would indeed do a poor job, so my next
step will be a somewhat closer scrutiny of the symptoms of the illness

in order to see whether we can find at least some of its causes.

The most obvious symptom of the misery was that most of the
discussion was dragged into the vulgar, but nonetheless rather fruitless
controversy between "theory" and "practice", I know, and of course all
of us know, that the qualifications "Theoretical" and "Practical with
exclusion of the other are applicable to quite a large percentage of
the workers in the field. There are people who refuse to have anything
to do with practical applications. There is the story of the man who
was preparing his PhD Thesis under Hardy and the subject had to do with
Fourier integrals; one day he was so reckless as to mention to Hardy
that some people really used Fourier integrals, upon which Hardy answered
that under those circumstances the man had to lock for another subject.
At the other side of the deplorable fence we have those that have given
up hope of ever finding anything useful in the work of their more theore-
tically inclined colleagues; and of course, quite a lot of it is utterly
useless. Although the distinction between "theoreticall and "practical”
people may be applicable to, say, 95 percent of the workers in the field
and the distinction can therefore be regarded as statisticelly signifi-
cant, yet I call it fruitless, because it leaves no room for exploring
what benefits could be derived from the remaining five percent, i.e,
those pecple and those activities for which neither the qualification

"untheoretical" nor the qualification "unpractical" can be justified.

EWD273 -~ 3

To ignore those five percents is a simplification of though which
throws away the child with the bathwater, and that is why I call the

distinction vulgar and fruitless.

To attack the fence in another way: I am employed by a Technological
University and educational product of my department gets the title of
"Mathematical Engineer". I have often observed that many, in particular
Americans, start laughing when they hear that title: it strikes them as
a contradictio in terminis, for by definition they regard the engineer
as useful and the mathematician as useless. I speak from another cultural
tradition - otherwise I would not have undertaken my job., This implies
that I get extremely suspicious when the engineer justifies adhoccery
by an appeal to the presumed law of nature, summarized by "quick and
dirty", for from my experience and from my understanding I feel that
"quick and elegant" is a much more likely combination. I get suspicious
when the mathematician regards the formality of approach as a holy goal
all by itself, rather than as a profane means which might be useful
(angd occasionally even vitally effective). Roughly speaking, a formal
treatment is related to my power of understanding as an attorney's act

to my sense of justice.

From now onwards I refuse to make that vulgar distinction, I hope
that I have made my porision quite clear and that I have given everyone
his equal share and, by the way, I am vaguely wondering whether I have

turned the 95 percent into my friends or my foes
OK, that was my introduction. Let me now start the lecture proper.

The starting point of my considerations is to be found at the
"software failure", One or two Years ago the wide-spread existence of
this regrettable phenomenon has been established beyond doubt; as far
as my information tells me, the software failure is still there as
vigourous as ever and its effects are sufficiently alarming to justify

our concern and attention. What, however, is it?

Depending on the specific instance of failure one chooses, it

can be described in many, many ways. One of the most common forms starts

EWD273 ~ &4

with an exciting software project, but as it proceeds, deadlines are
violated and what started as a fascinating thriller slowly turns into

a drama, to be played by an ever~increasing number of actors, the

majority of which know perhaps their own part but have certainly lost
their grasp on the meaning of the performance as a whole. At last the
curtain falls, only because it is too late to g0 on any more, but not
because an&thing has really been completed, for the final piece of
software is still full of bugs and will remain so for the rest of its days.
There are other forms, but they all have in common, that it turns out

to be very, very difficult to get the whole program working with an

acceptable degree of reliability.

When we try to explain the present as the natural outcome of the recent
past, we get a better understanding of what has happened. In the past ten,
fifteen years, the power of commonly available computers has increased
by a factor of a thousand. The ambition of society to apply these
wonderful pieces of equipment has grown in proportion and the poor
programmer, with his duties in this field of tension between equipment
and goals, finds his task exploded in size, scope and sophistication.

And the poor programmer just has not caught up. Looking backwards, we
must conclude that the difficulty of the tasks ahead have been grossly
underestimated in the past. Extrapolations concerning the numbers and
power of computers to be installed have been made, but society's prepa-
ration for this oncoming wave of machinery has been the call for more
and more programmers, rather than for more capable ones, who could
derive their greater capability from a better understanding of the

nature of the programming task.

How little the general programmer's attitude towards his work
has changed during this period can be demonstrated in a variety of
ways. During that NATO conference in Rome a number of debugging aids
were discussed; it was then remarked by one of the participants that
all the techniques mentioned were already known and used fifteen years

ago, a statement that no one did deny! Secondly, the advent of higher

EWD273 - 5

level languages has been hailed as a tremendous step forward. OK,

but is it sufficient? It enables us perhaps to cope with a factor 10

in scope, but not with a factor 1000. In the old days, programs of

one or two thousand assembly code instructions were horrors, but in

the mean time higher level language programmers produce - admittedly -
larger programs of exactly the same degree of unreadability and un-
reliability, in which the role of the old machine-code tricks has been
taken over by cunning higher level language tricks. Truly, I cannot

see the difference The conclusion is that, in spite of the factor
thousand in scope, present day programming tries to solve its problems
essentially with the same old methods. And therefore, if we want to
improve ﬁatters, we should make it our serious business to minimize

the usage of what is now by far our scarcest resource, viz. brainpower.
The burning question is "Can we get a better understanding of the
nature of the programming task, s¢ that by virtue of this better under-
standing, programming becomes an order of magnitude easier, so that our
ability to compose reliable programs is increased by a simjilar order

of magnitude?"

The fact that program reliability becomes a key issue is not only
shown to us by the evidence around us, it is also quite easy to see
why. A very large program is, by necessity, composed from a large number,
say N, individual components and the fact that N is large implies that
the individual program components must be produced with a very high
confidence level. If, for each individual component the probability of
being right equals p, for the whole program the probability P of being
right will satisfy

P < PN

and if we want P to differ appreciably from zero, p must be very close

to one, hecause N is so large.

A common approach to get a program correct is called "debugging"
and when the most patent bugs have been found and removed one tries

to raise the confidence level further by subjecting the piece of program

EWD27% -~ 6

to numerous test cases. From the failures around us we can derive ample
evidence that this approach is inadegquate. Believe it or not, but it
has been suggested (at that very NATO conference in Rome) that what

we really need now are "automatic test case generators" by which pieces
of program to be validated can be exercised still more extensively.

But will this really help? I don't think so.

When faced with a mechanism - be it hardware or software ~ one
can ask oneself '"How can I convince myself of its being correct?"
As long as we regard the mechanism as a black box, the only thing we
can do is to subject the mechanism to all possible inputs, all the time
checking whether it produces the correct outputs. But for the kind of
mechanisms we are considering this is absolutely out of the question,
even for the fastest and simplest mechanisms. At my University we have
& machine with a fixed point multiplier taking considerably less than
100 microseconds per multiplication. The total time taken by all possible
multiplication, however, will exceed 30000 years. And that is only a
multiplier! The number of cases one can try in practice is a negligeable
fraction of the total number of possible cases and whole classes of in
some critical cases can be missed. The first moral of this story is that
program testing can be used very effectively to show the presence of

bugs, but never to show their absence.

But as long as we regard the mechanism as a black box, testing
is the only thing we can do. The conclusion is that we cannot afford
to regard the mechanism as a black box, i.e. we have to take its internal
structure into account. One studies its internal structure and on
account of this analysis one convinces oneself that if such and such
cases work "all others must work as well'. That is, the internal
structure is exploited to reduce the number of 8till necessary testcases,
for all the other ones (the vast majority) one tries to convince oneself
by reasoning, the only problem being that the necessary amount of

reasoning often bhecomes excessive,

EWD273 - 7

This function of the mechanism's internal structure opens a
new way to attack the reliability problem. Once we have seen that
the confidence level can only be reached by virtue of the structure
of the program, that the extent to which the program correctness can
be established is not purely a function of its external specifications
and behaviour, but depends critically upon its internal structure, then
we can invert the question and ask ourselves "What forms of program
structuring can we find, what elements of programming style and what
forms of discipline, all for the benefit of the confidence level of our

final product?"

Instead of trying to devise methods to establish the correctness
of arbitrary, given programs, 1 am now looking for the subclass of
"intellectually manageable programs", which can be understood and for
which we can justify our belief in their proper operation under all
circumstances without excessive amounts of reasoning. This is done in
order to reduce the number of testcases needed; in the case of software
T see no reason at all, why this approach c¢ould not be so effective that
the number of testcases needed is eventually reduced to zero, i.e. that
correctness can be shown a priori. Already now, debugging strikes me
as putting the cart before the horse: instead of looking for more
elaborate debugging aids, I would rather try to identify and to remove

the more productive bug-generators!

In short, I suggest that the programmer should continue to under-
stand what he is doing, that his growing product firmly remains within
his intellectual grip. It is my sad experience that this suggestion
is repulsive to the average experienced ﬁrogrammer, who clearly derives
a major part of his professional excitement from not quite understanding
what he is doing. In this streamlined age, one of our most undernourished
psychological needs is the craving for Black Magic and apparently the
automatic computer can satisfy this need for the professional software

engineer, who is secretly enthralled by the gigantic risks he takes in

EWD273 ~ 8

his daring irresponsibility. For his frustrations I have no remedy

Looking for "intellectually manageable" program structures one
is immediately faced with the question "But how do we manage complex
structures intellectually? What mental aids do we have, what patterns
of thought are efficient? What are the intrinsic limitations of the
human mind that we had better respect?" Without knowledge and experience,/
such questions would be very hard to answer, but luckily enough our
culture harbours, with a tradition of centuries, an intellectual discipline
whose main purpose it is to apply efficient structuring to otherwise
intellectually ﬁnmanageable complexity. This discipline is called
"Mathemétics". If we take the existence of the impressive body of
Mathematics as the experimental evidence for the opinion that for the
human mind the mathematical method is indeed, the most effective way
to come to grips with complexity, we have no choice any longer: we
should reshape our field of programming in such a way that their methods
of understanding become equally applicable, for there are no other means.
As an aside, I would like to point out that you cannot put aside my
recommendation by saying "Oh gosh, yet another mathematician trying to
sell the importance and universal applicability of his subject," because
I happer not to be trained as a mathematician; I consider myself to be
& programmer But I have been asking myself for, say, the last two
years, what kind of programs I would care to produce if I wanted to
exploit my powers of abstraction for the purpose of undérstanding as
effectively as is done in any other field of mathematics. In particular
I have been investigating how one can use one's power of abstraction
and one's ability to introduce concepts in order to achieve that the
number of cases between which is to be distinguished in one's reasoning,
combine additively rather than multiplicatively. T would like to use
the next part of my lecture to give you in bird's eye view a BuUrvey

of my conclusions.

1) When programming, one should constantly bear in mind that although

the program text is the last thing that leaves the programmer's hands,

EWD273 ~ 9

the true subject matter of his trade consists of the pssible computations
that may be evoked by his programs, the computations, the "making'" of
which he delegates to the machine. When we say, sloppily, that a
progrem is OK, we mean that the corresponding computations satisfy

the requirements. In other words, we should regard the programmer's
activity not as "producing programs", but rather as "designing a large
class of computations". The cbligation to keep our intellectual grip

on what may happen in time, while the static program text is the last
thing we can lay our hands upon, the obligation to understand the compu-
taticne as they evolve in time via the tangible program text, yields an
urgent plea to keep the sequencing rules, i.w. the mapping between the
progresé through the program text and the progress through the compu-
tation, as strzightforward as possible., As a result I decided to abstain
in sequential programming from the goto statement and to perform all
sequencing control by conditional, alternative and repetitive clauses
and the subroutine mechanisms. In view of our obligation to bridge
mentally the conceptual gap between the static program text and the
dynamic computations, I came identify the goto statement as one of

the combinatorial complexity generators I was looking for.

2) Another conclusion especially related to sequencing is the
following. Whenever a construction is composed by means of a sequencing
clause, encapsule it and find a description of its net effect in which
the fact that it contains a clause is no longer transparent. If to-write
"if X <« O then x:i= - x"
this means "replace X by its absolute value'"and the latter description
is equally applicable to both cases. And if you have not a ready-made
function (such as the absolute value) at your disposal in terms of which
to describe the net effect of such a compound statement, invent this
function and be sure that its properties are nice and also the ones you
want. If you cannet find such a function, don't ignore that warning,
for then you are on the verge of messing things up. To give you an
analogy: when programming in machine code you can appeal to the add-~
instruction but in doing so it is immaterial for you whether the hard-

ware invoked has a serial or a parallel adder.

EWD273 - 10

3) The above encapsulation of the internal structure of a program
component i& a specific instance of a more general principle, that we
find applied in the structure of any mathematical theory: whenever a
piece of mathematical reasoning appeals to a theorem, the only thing
that matters on that level is what the theorem asserts and on that level
it is equally immaterial how that theorem has been proved (elsewhere).
An appeal to a theorem is not an abbreviation for a specific one of its
possible proofs, the existence of the theorem as such allows the user

to forget about its proof, We can - and should - apply the same principle
in program composition, where it is rewarding to separate for each
program component clearly "what it does" and "how it works". With the
possiblé exception of the recursive routine, the level in which a
component is used on account of what it does is always disjoint from

the level which is concerned with how it works. These two sides of the
same coin are very well known in the relation between main program and
the subroutines it calls; our vision of this relation, however, becomes
blurred as soon as we regard the calling sequence as an abbreviation

of the body and as a result, try to understand the total activity at

the same, homogeneous semantic level: one has then mentally destroyed

a useful structure. This wide-spread confusion, I am sorry to say, seems
to have been promoted arnd to be kept alive by Programming Linguistics,

as inspired by Automata Theory.

) Was the previous point that it is unwise to take the internal
structure of a program component into account on the level where it is
used on account of what it does, this point makes the same statement

with respect to' compound data structures, which are ultimately represen-
ted by aggregates of variables of more primitive types. The levels in
which only the collection of the possible values matter is quite distinct
from the level which is concerned with the question how these composite
values can be represented by aggregates of values of simpler types. One

of the most common sources of program errors seems to be that an operation
on & variable is inadvertently coded in terms of components of a specific

representation. To give again a very simple example: for a binary

EWD273 - 11

machine one may be tempted to replace the question "is this integer
even?" by "is its least significant digit zero?". Later, going with
the program from one binary machine to another one discovers that
this translation is not valid when hegative numbers are represented
by 1's-complements.

Wifh the subroutine we have the two sides of the operational
coin, viz. "what does it for you" versus "how does it"; with abstract
data types we have the two sides of the representational coin. viz.
"what values can it take" versus "how are these values represented’,
Most currect programming languages cater via the subroutine mechanism
reasonably well for the operational abstraction but their mechani sns
for repfesentational abstraction, if any, are less convincing. The
possibility to have representational abstraction reflected in the pro-

gram code seems, however, egually essential.

5) A programehould be regarded rot as an object all by itself

but as a member of a class of related programs, containing both alter-
native programs for the same job and similar programs for similar jobs..
We wish to regard transition from one member of this class to another
member of this class as replacing one or more program modules by one

or more alternative program modules. Hereby insisting that the correct-
ness proof for the unaffected modules and their interrelationship
remains unaffected as well. The analysis of the latter requirement

gave me a very much clearer understanding of how differeéent levels of
abstraction can be distinguished in a large program and how the
distinction between these various levels of abstraction can be used to
good advantage, and it enabled me to give a reasonably specific contents
to the goal of "program modularity", which is often hardly more than a
motherhood statement. Specific consequences of this analysis have been
5a) & proper module is in general more than a subroutine: in its
general form it reflects - or "documents", of youw wish - all consequences
of a locally independent design decision, in general involding a set of

Joint representational and operatiocnal refinements;

EWD273 - 12

5b) the adequacy of context-free methods for representing program

structure seems to have been over-estimated.

So far for the survey of the conclusions I reached when I tried
tc reshape our pfogramming activity into one which is better adapted
to our mental capacities and limitations. I could only give you a bird's
eye view of them; yet I hope that you have grasped some of their flavour
and, poesibly even, some concrete guidance. The survey is by no means
complete, other insights will follow, perhaps as the fruits of my own

activity but hopefully they will be gained by others as well.

Although I have done my best to be as clear as possible, 'I fear
that I must have failed to reach anyone in my audience - if any - who,
on account of his current environment, identifies the task of program-
ming with the task of writing programs in FORTRAN - a programming tool
which, indeed, was a great step forward when it was conceived some
fifteen years ago but which, by now, should be regarded as a lower level
language, as a low grade coding device. If he sticks to that conception
of his task, he will fail to understand me, as one of my morals is
that in the mean time his programming tool and the thinking habits
induced by, have grown hopelessly inadequate. This fear of being mis-
understood is, alas, supported by many a disappointing experience. As
a teacher it is my job to help programmers in clearing up their own
thinking. Often this is a highly rewarding activity, equally delightful
and instructive for both parties. But when talking to the produce as
grown in what is getting known as "the pure FORTRAN environment", I am
usually baffled, for unsuspeéted depths of misunderstanding open them-
selves before my very eyes. It is well known that we don't gain auto-
matically from every experience, on the contrary, that the wrong
experience may easily corrupt the soundness of our judgement. In the
case of FORTRAN, it is my impression that it's intellectually degrading
influence is not commonly recognized, that too few people realize that
the sooner we can forget that it ever existed, the better, as it is now
too inadequate, too difficult, and therefore too expensive and too risky

to use.

EWD273 - 13

In connection to the preceding paragraph about FORTRAN I wculd like

to give a short explanation of my silence about COBOL. The peint is
that I have neither first-hand nor second-hand experience with COBOL's
influence on its users. But the Preceding paragraph was misunderstood
by one of my colleagues who came from the mixed FORTRAN - COROL
environment: he was terribly puzzled, saying "Why attack FORTRAN's
influence? For COBOL's influence is an order of magnitude worge!™

End of explanation.

Meine verehrte Horer und Horerinnen - this had to be said in
German as my English does not cater for this! - let me come to my
final conclusions. Automatic computers are with us for twenty years
and in the course of that period of time they have proved to be
extremely flexible and powerful tools, the usage of which seems to
be changing the face of the earth (and the moon, for that matter!).
In spite of their tremendous influence on nearly every activity,
whenever they are called to assist, it is my considered opinion that
we underestimate the computer's significance for our culture as long
as we only view them in their capacity of tools that can be used. In
the long run that may turn out to be but a ripple on the surface of
our culture. They have taught us much more: they have taught us that
programming any non~-trivial performance is really very difficult and
I expect a much nmore profound influence grom the advent of the auto-
matic computer in its capacity of a formidable intellectual challenge
which is unequalled in the history of mankind. This opinion is meant
&s a very practical remark, for it means that unless the scope of this
challenge is realized, unless we admit that the tasks ahead are so
difficult that even the best of tools and methods will be hardly
sufficient, the software failure will remain with us. We may continue
to think that programming is not essentially difficult, that it can
be done by accurate morons, provided ¥ou have enough of them, but then
we continue to fool ocurselves and no one can do so for a long time

ubpunished.

EWD273 - 14

Finally: from my words some of you may have concluded that I
am just spiteful and bitter. Let me reassure you: I am neither
spiteful, nor bitter. Not yet although I must admit that the
ma jor part of computing Science (or perhaps more accurately:
Programming Folklore) often strikes me as unchallenged prejudices,
repeated over and over again as articles of faith. But in my intro-
duction I have announced that I should say what I wanted to say.

I know that I have used strong language and harsh words - but the
time to be gentle has passed: the situation is much too sericus to

be covered by politeness.

The floor is now open for discussion and I thank you for your

patience.

Eindhoven, dec, 1969.

	EWD273:

