EwD287 ~ O

EWD287.html

Praface,

The market is already so heavily overloaded with introductory texts on computers
and computer programming that one wust have rather specific ressons to justify
the investmert nf ore's fime and eneray or the writing of yet anpother "Short
Irtroduction into the Art of Programming", The sole fact that one likes to write
is, all by itee!f, an incufficient juctification. Before undertaking such a task
I should thervefore acsk myself "Why am T going to do 67" and also "what do I

expect Lo he the distinguishing features of this little monagraph?™.

There i o cimple, practical reason. At my University I teach, mainly for
future Mathenatical Engineers, an introduction into the art of pragramming and my
studentn would welcome some underlying material, Besides tbat, without some form
of lecture noten, my colleagues have very little. idea of what 1 am really trying
to tecchl The contentn of this course show signs of settling down =1 have now given
it three dioes- and therefore this ceems the appropriate mament ta produce a

document that can serve as lecture notes.

Thee ure purely loce! circumstarces and as far as they are concerred, a
notma’ walb of lecture notes —in Dutch, say— would do, The fact that I have not chosen
this form meacns that T am aiming at a larger audience. Such an act is always
comewhiot prosumptuauns and the usual author's trick to save the image of his modesty
is to tell thot fram various sides be has been urged to produce his manuscript — a
trick that I could spply in this case without lying. But I don't think that I shall
resort to that trick because I really believe that a larger audienmce than just my

students can bhenefit from 1t, or even enjov 1t.
7 o

The fact Io that over the last years I have addressed myself ta the question
whether 11 was concelvable to increase our prng{amming ability by an order of
magritude and what techniques (mental, arganizational or mechanical) should then
ne applied in the proces of progrom compositicn. Persomally, 1 felt these investigations
very rewarding: I gaired a much deeper Qnderstan&ing of the nature of the difficulty
af the programming task, [vecame wmuch more CDﬂéCiDUS about my"programming style",
which improved congiderably and, in general, found myself, when programming, in
much better contrel of what I was doing than I had ever been before. Needless to

say that my teaching was teavily influenced my these experiences,

The purpose of this little moncgraph is to assist the programming reader in

cleaning up his own thinking, to transmit to him sawe mental disciplines by sticking

http://www.cs.utexas.edu/users/EWD/transcriptions/EWD02xx/EWD287.html

EWn287 - 1

to which he can avoid making his joh unnecessarily difficult. It is born out of
dissatisfaction with the usual kind of programming course, which now strikes me as
the type of driving lessons in which one is taught how to handle a car instead of
how to use s car to reach one's intended destinatiaon, This monpgraph is intended as
a complement to such courses: I shall try to present programming = to quote N.Wirth—
"as a discipline on ils own merits, as a methodology of constructive reasaning

applicable tn any problem capable of algorithmic salution."

[expect the distinguishing feature of this little monagraph to be its

incompleteness, incompleteness in many, many respects.

It will not he self-contained in the sense that 1 assume my readers somewhat
Familior with o decent higher level programming language. (This assumption is a
direct concequence of the lacal circumstance that my students have had a modest

prior expo-ure ta the cluaner aspects of ALGOL 6Q.)

For thase readers who identify the programmer's competence with a thorough
knowledge of the idiosyncrasies of one or more of the baroque tools inte which
modern programming languayges and systems have degenerated, the book will also be
very incamplete, because 1 won't describe any programming language -not even the
ome 1 use— to that level of detail. 1 shall use same sort of programming language,
say, a3 "a communication language", but not for the communication of algorithms,

but for the communication of ways of thinking, as a vehicle for programming style.

In wet another respect, this little monograph will be very incompiete. As
said sbave, T shall try to present programming "as a discipline on its own merits,
as a melhodalogy of constructive reasoning, applicable to any prablem capable of
algorithmic solution®. At present, such a methodology does not yet exist in the full
sense of the word, only elements of it have became apparent, others are just lurking
he?ind vur mental horizen. This, of course, is not very satisfactory, but it is a
Lrue reflection of the current, still rather poor state of the art., It is a consolation
that no piece af scholarship ever reaches the state of perfection and I am telling
myself that the convicitor that there is more to come i1s no justification for

witholding what we have got.

L will also be incomplete as o result of the choice of the examples and the
choice of the cormsiderations, By necessity, the examples will be "small” programs,

while the need for a disciplime only becomes vital in the case of "large" programs.

Ewnz2e7 - 2

Dealing with small examples in an ad~hoc fashion gives the student not the slightest
clue as how to keep the construction of a large program under his intellectual
cantrol, I hope to deal with the small examples in such a fashion, illustrating

how we can avnid uninastered complexity, that methodelogical extrapolation ta

larger tasks— which, alas, fall putuide the scope of this little document— is
feasible. The choice of considerations is also kept to a strict minimum: we restrict
ourselves to programming for purely sequential machines and whem we have to consider
a trade—off question, we shall usually present this in the form of a trade—off
between computation time versus sture requirements. In this respect the daocuament

may strike the reader as very strongly dated, perhaps even out—dated by the time it
appears in print. If so, I hope thet I can justify my defense, that such a reader
has failed to read betwsen the lines: it is not so much the particular trade-off
question chosen that matters, ﬁs.the fact that the problem has been approached in
such a Fashion that we huve made a conceptual framework in which such specific
trade~off guestiors can bo postponed until the appropriate moment. The only thing

[con do at this stage is to urge my readers to read between the lines as much as
possible. {If ane tries to transmit ideas or methods, ane can talk about them but
that alone is insufficient, one must show examples illustrating them. When lecturing,
it is my =ad experience that after having dealt with a specific example, I find the
attention nf kalf my audierce completely usurped by this example: they have forgotten
that the example wias only brought to their attention to illustrate something more
general. This ic a sad experience and no amount of prior warning that this misunder-—
standing in bound to kappen if they are not careful, has ever snabled me to avoid
it!) To put it in another way: it is my purpase to tranmsmit the impartanrce of good
taste and otyle in programming, the specific elements of astyle presantea serve only
to ilTustrate what benefite mon he derive from "style® in general, In this respect

[feul akin to the teacher of composition at a conservatory: he does not teach his
puplils how to compose a particular symphony, he must help his pupils to find their
own style and must explain to them what 1o implied by this. (It has been this

analogy that made me talk about "The Art of Programming'.)

There is o further class of potential readers that will find this subject
matter very incompletely dealt with, viz, those who identify the programmer's tack
wilth writing programs in, say, FORTRAN of PL/I. One of my implicit morals will he
that suchk programming langusges, each in their own way, are vehicles inadequate
ta guide our thoughts, If FORTRAN has been called an infantile disorder, PL/1

wruct be olaseified as o fatel diseacse.

EwWD287 - 3

Althaugh T would love to do it, it is impossible to give a true acknowledgement,
listing all.prEUﬂH whnse relevant influence on my thinking I gratefully remember
or skould remember. With my apelogies to all persons unmertioned I would like to
make 2 few exceptions eid list in alphabetic order: my mother mrs.B.C.Dijkstra -
Kluyver, R.W.Floyd, C.A.R.Haare, P.Maur, B.Randell, D.T.Ross, N.Wirth and M.Woodgerz.
None of Lhe pessons listed. however, should in any way be held responsible for the
view. pgpresued (with the pocsible exception of my mother who is in some sense

responsible for omy uxiutenca).

EWn2g7 - 4

Same fundanental naotions,

In this sectian a number of notions will be introcduced, because they are
fundamental to the whole activity of programming. They are so fundamertal that they
will not be dissected into more primitive concep£5. As a result this section will
be a very informal onge, analogy, metaphor and natural language (poetry, if I were

able!) beirg the only availazhle vohicles to convey their contents and connotations.,

It is not urugual —although a mistake— to consider the programmer's task to
be the production of programs. (One finds terms as "software manufacturing", proposals
to measure programmer productivity by the number of lines of code produced per month
etc., alttough I have never seen the suggestion to measure composer productivity by
the number of notes, morthly scribbled onhis score!) This mistake may he at the heart
of the manageomnnt Failure which is g apparent in many large software efforts. [t
is & mislake, hecause the true subject matter of the programmer's activity is not
the program he compase:s, but the class of possible computations that may be evoked
by it, the "productinon® of which he delegates to the machine. It seems more fruitful
to describe the programmer's acts .. by, instead of "making a program”,as "designing
a class of computations™, In this commection it should be borne in mind that the
more relevant assertions about programs —e.g. about their correctness or their
resource demands—~ indeed pertain to the computations, rather than to the last thing
that leavec the programmer's hands, viz, the program text. It is for this reason
that, when introducing the fundamental notions, I will start at the side of the

computations, with the "happenings in time".

Thke first notion is that of an action. An action is a happening, taking
place in a finite pericd of Lime and establishing a well-defined, intended net
effect. I this description, we have included the requirement that the action's
net effuct should be "intended", thereby stressing the purpasefulness. If we are
interented in Lhe acbion at all, it will be by virtue of our interest in its net

effect.

The requirement that the action should take place in a finite period of time
is most essential: it implies that we can talk ahout the moment TO, when the action
begins, and the later moment T1, when the action ends. We assume that the net effect
of the action can be dencribed by comparing “the state at moment TO" with "the state

at moment, T1™,

EwD287 - §

An example of an action would be a housewife peeling the potatoes for the
evening dinner, The net effect is that the potatoes for the evening dinner are
at moment TO =till unpeeled, say in the potato hasket in the cellar, while at

moment 71 they will he peeled and, say, in the pan to be cooked in.

When we dissect such a happening as a time sequence of (sub)actions, the
cumulative offect of which then eguals the net effect of the total happening, then

we say that we regavrd the happening as a gegquential process, or process for short.

YWhenever such a diuuéction is permissible, we can regard the same happening
elther as an action, or as a sequential pracess. When our interest is confined to
the net effuct, te the states "before and after™, then we regard it as an action.
If, however, we gre interested in one or moreintermediate states as well, then we
regard 1t as a pracess. In the latter case the moment TO coincides with the begin
of the first subaction, the end of each subaction coincides with the begin of the
next ore, with the exception of the last subactien, whose end coincides with T1,

the end of the whole happening.

I must siress, that whether some happening is regarded as an action or as a
process 15 nat 5o much an inherent praperty of the happening, it expresses our mood,
the way in which we prefer to look at it. (Why we should want to lock at it in
different ways, will he left for later discussian.) Similarly, if we have chasen
to vegard the happening as a process, the way in which it has been dissected is also
not =a much an inherent property of the happening, it expresses which of its dis—
tinguishahle intermediate states (for some reason or another) we wish to take into

conzideratinn.,

The: happening of the potate peeling housewife could for instance be described

by the time-cuczession of the following four subaclions of the housewife:

"fetches the basket from the cellar;
fetches the pan from the cupboard;
peels the potatoes;

returns the basket to the cellar®

Here the total happening bas heen described as a time—succession of four
subactions. In order to stress that we bave given the description of a happening
we have phrased it in the form of an eye-witness account, Note, that if the eye-

witheasn did not bother to describe that the basket was fetched from the cellar before

EWD287 - 6

the pan was Tetched from the cupboard, the first two lines would have been condensed
into a gingle subaclion "fetches the basket from the cellar and the pan from the

cuphoard",

We postulate that in each happening we can recognize a patiern of behavipur

or pattern for shert; the bappening cccurs when this pattern is followed. The ret
effect of the happening is fully determined by the pattern and (possibly) the
initial state (i.e. the stote at moment 7O}, Different happenings may follow the
same pattern, 1if these happenings establish different net effects, the net effect
must have beer dependent on the initial state as well and the corresponding initial

states must have been different.

How we can. recognize the same pattern in different happenings falls ocutside
the scope nf this text, Tf we meet a friend, we can recognize hig face, no matter
what facial expression he schows, it may be an expression we have never seen on his
face bufore! Somehow we manage to abstract from the current exprension, we recognize
the came friend. Simitarly with different happenings: we recognize the same pattern,

ahotracting from the pos=ibly different initial states and nel effects.

Heoseturn far e moment to the housewife. On a certain day she has peeled
the potatnes for the cvening dinner and we have an eye-witress account of this

T

happering. Yhe next day, again, she peels the potatoes for the evening dinner and
the secand happening gives rise to an eye-witness accaunt equal ta the grevious

one. G we say, without further ado "Obviously, the two accounts are equal to

wach othber for an Loth occasions she has dore exactly the same thing."?,

How correct or incorrect this last statement is depends on what we mean by
"duing the aoame thing”, We must be careful not to make the mistake of the journalist
wha, covering a marriage ceremony, told that the four bridesmaids wore the same dress,
What he meant to say wes that the four dressec were made from material of the same

decign and ~apart from pocoible differences in size= according to the same pattern.

The two actions of the bousewife are as different axxkkexdx from esach other
as lhe drecses are: they have, as happenings, at least a different identity, one
took place yenterday, one today. Ag zach potato can only be peeled once, the potatoes
invelved ir the two happenings have different identities as well, the first time the
banket may have been fuller than the second time, the number of potatoes peeled may

differ etc.,

EwD2&7 - 7

Yet the two heppenings are so similar that the same eye—witness account is
accepted as adequate for both occasions and that we are willing to apply the same

name to both action: (e.g. "peeling the potatoes for the evening dinner®).

An algorithm is the description of s pattern of behaviour, expressed in

terms of a well-understood, finite repertoirs of named HEXKM (sn-called
”primitiva") actions of which it is assumed a priocri that they can be done

(i.e. can be caused to happan).

In writing down an algorithm, we start by considering the happening to
take place as a process, dissected into a sequence of subactions to be done
in succession. If such & subaction occurs in the well-undarstocd, finite
repertoire of named actions, the algorithm refers to it by its ﬁamgﬂ. If such
a subaction does not occur in the finite repertoire,the algorithm eventually
refers to it by means of a subalgorithm, in which the subaction, in its turn,
is regarded as a process, etc, until at the end all has been KXNXBKKNM rediced

to actions from the well-understood, finite repertoire.

The notion of an algorithm, an executimble precept for the“establishing
of a certain net effect, is very well known from daily life: knitting patterns,
directions for use, recipes and musical scores are all algorithms, And i@ one
asks in an unfamiliar town for the way to the railway station, one asks essentially
for an algorithm, for the description of a pattern of behaviour which, when

followed, will lead to the desired goal.

In our description of an algorithm we have stressed that the primitive
actions should be executeble, that they could be done. "Go to the other side
of the sguare.”" is perfectly 0K, "Go to hell", hpwever, is not an algorithm

but a2 curse, because it cannot be done.

Besides that we have stressed that the repertoire should be well-understood:
between the one who composed the algorithm and the cne who intends to follow it,
there should be no misunderstanding about this repertoire. (In this respect
knitting patterns are, as a rule, excellent, recipes are of moderate quality
while the instructions one gets when asking the way are usually incredibly bad?)
How essential this lack of misunderstanding is may perhaps best be demonstirated
by @ recipe for jugger hare as it occurs in an old Dutch cookery-book; translated
into English the recipe runs as follows: *One taketh a hare and prepareth jugged

hare from it." The recipe is not exactly wrong, but it is hardly helpful!

EwWD287 —- B

Let us now contrast the eye-witness account of the potato peeling session:

"fetches the basket from the cellar;
fetches the pan from the cupboard;
peels the putatoes;

returns the basket to the cellar"

with the corresponding algorithm —the set of instructions, say, the housewife might

give to a new maid-:

Yfetch the basket from the cellar;
fetch the pan from the cupboard;
peel the potatoes;

return the basket to the cellar"

Comparing the two, we may well ask what we have gained, for it seems a
roundabout way of doing: describing a pattern of behaviour which, when followed,
will evoke the happening, while in the eye~witness account we had an excellent way

of describing the happening itself.

What have we gained? Well, nothing, as long as we restrict ourselves to
algorithms that can be given -as in our example~ hy a concatenation of names of
actions, to be done in the given order. Under that restriction an eye-witness
account of the actions "as they take place" is equally good. But the behaviour
of the housewife (or the maid) could be a little bit more complicated: let us
suppose that after the pan has been fetched, she puts on an apron if necessary,
i.e. when she wears a light-coloured skirt and that on one day she uses.the apran

while an the other day she doesn't.

On & rather abstract level -i.e. without explicit mentioning of the apron
and the condition under which it is used, a uniform eye-witness account would

still do (in some fashion) for both sessions, B.g.:

"fetches the basket from the cellar;
fetches the pan from tee cupboard;

takes preparation as regards to clothing;
peels the potatoes;

returns the basket to the cellar"

with the implcit understanding that "takes preparation as regards to clothing”
covers the empty action when her skirt is not light-coloured and covers putting on

an apron when her skirt is light—coloured.

EWD28T7 - 9

If, however, we want to go into more detail and want to mention the apron
explicitly, then “takes preparation as regards to clothing" has to be replaced

in the eye-witness account of the one day's session hy
"sees that her skirt is light=-coloured and therefore puts on an apron®
and in the other day's session by

"sees that her skirt is not light—coloured and therefore omits putting on

an apron" .,

The trouble is, that the eye-witness account cannot contain the single
sentence:

“puts on an apron if her skirt is light-coloured"

for then the audience justly asks "does she do it or not?.In other words: in that
degree of detail we cannot cover the two happenings by the same eye—witness account

for in that degree of detail the two happenings differ!

It is here that the potential power of the algorithm becomes apparent, for
we can recognize the same pattern of behavicur in the two happenings and by
describing that pattern of behaviour we give something that is applicable under
both circumstances, light— as well as dark-coloured skirt. This is possible thanks
to the fact that what actually happens when s certain pattern of behaviour is
followed may be co—-determined by the state of affairs which is current when the

action begins.

We see KAXMXMXY¥ two things: the inspection whether the skirt is light-coloured
and, depending on the outcome of this inspection, the action "put on an apron' is
to take place or not. In order to express this conditional execution we need in our
algorithm another connective besides the semicolon. In cur example of the algorithm
(I refer to the imstructions to the new maid) the semicolon had a double function:
in the text it separates one action name from the mext action name but besides that
it implied for the happening a certain amount of what is technically called
"sequencing control", i,e. it was meant to imply that the end moment of the preceding
action should co-incide with the begin of the following action., We now need anather
connective, indicating whether or not the inspection should be followed by the

. M
next action in the text. FREEXXKEXEMEEANN We write for instancey e g;-i\uwm}

G-LCJC — }'L A

EWD287 - 10

"fetch the basket from the cellar;

fetch the pan from the cupbvard;

Af skirt is light—-coloured do put on an apron;
peel the potatoes;

return the basket to the cellar" .

(For historical reasons the so-called conditional connective "if ... do" is

split into two symbols "if"™ and "do", enclosing the inspectinn.)

The conditional connective connects two actions, the first of which must be
an so-called "inspection”, This inspection describes a state of affairs, which
may be true or false ("false“ is the technical term for "not true"). The happening

which is to take place corresponding the conditional compound
"if inspection do action®

may take one of two mutually exclusive forms: either the inspection gives the result
true and it is followed by the action, or the inspection delivers the result false
and thereby the whole compound action has been completed. The algorithm derives its
superiority over the eye—witness account from the fact that it may contain
connectives (such as the conditional connective) that imply a more elaborate

sequencing control than the semicolon,

We need a further connective before we can see the full superiority of the

algorithm over the eye-witness account, viz. a repetitive connective.

Suppose that we want to express that "peeling the potatoes" is in itself a
process that deals with one potato at a time and that, correspondingly, our primitive
action is named "peel a next potato". If the number of potatoes to be peeled is a
fixed constant, say always 25, then we can replace "peel the potatoes" by 25 times
"peel the next potato", separated from each other by in toto 24 semicolons. But we
now assume that the number of potetoes to be peeled may differ from one day to the
next; yet we want to recognize in each peeling session the same pattern of behaviour,
We suppose the housewife capable of looking into the pan and judging whether the

amount of peeled potatoes is sufficient.

If we know a priori that in the worst case {(i.e. many guests and very small
potatnes) she will never have to peel more than 500 potatoes we can give a general
algorithm describing the actual peeling by repeating in the text of our algorithm

500 times (separated by in toto 499 semicolons) the. conditional compound:

EwD287 - 11

"if number of peeled potatbes is insufficient do pesel a next potato"

Several objections can be made against this solution, There is the practical
objection that it would reduce the construction of algorithms to doing lines. Further—
more we had to make the fundamental assumption that we knew in advance a maximum
rumber. Often it is very hard to give such an upper bound a priori and if it can
be given, such an upper bound is usually many times larger than the average value.
And if in actual fact 25 potatoes have to be peeled, the 26th inspaction "numﬁer of
peeled potatoes is insufficient" —~i,e. the first one to deliver the result "false"-
gives fresh information, the following 474 inspections (which are prescribed by the
algorithm as suggested) give no new information. Once the housewife has established
that the number of peeled potatoes is no longer insufficient, she should not be
forced to look NANXMMXXKXEXAXAMEEXEK into the pen another 474 timee in order to

convince herself!

In order to meet these objections, we introduce a repetitive connective
which, again for histoitical reasons, is written in twa parts "while +ea do".

Using this connective we can write the algorithm:

"fetch the basket from the cellar;

fetch the pan from the cupboard;

Af skirt is light-coloured do put on an apron;

while number of peeled potatoes is insufficient do
peel a next potato;

return the basket to the cellar" .

The process correspanding to
"while inspection do action™
consists of one or more executions of the conditional compound
*if inspection do action®,

viz, up to including the first time that the inspection gives the result "false".

EwD287 - 12

We can also describe the semmntics of the repetitive connective in terms of

the conditional one recursively:
"while inspection do action®
is semantically equivalent with

"if inspection do

begin action; while inspection do action end" .

Here the symbols "hegin" and "end" are used as oﬁﬁing and closing brecket zespectively;
they are a syntactical device to indicate to indicate that the conditional
connective connects the inspection {from the first line) to the whole of the
second line: the value delivered by the first inspection decides whether what
is described on the second line (from begin until ggg) will be done in its entirety
or will be skipped in its entirety.
Vo Soe. o, R ot
As a finél exercise | shall give the algorithm describing the pattern of
behaviour of a housewife who —for some obscure reason— is so conditioned that she

can only peel an even number of potatoes for the evening dinner:

"fetch the hésket from the cellar;

fetch the pan from the cupboard;

Aif skirt is light-coloured do put on an apron;

while number of peeled potatoes is insufficient do
begin peel a next potato; peel a next potato end;

return the basket to the cellar",

This example is included to show that the same set of primitive actions allows

different patterns of behaviour.

The notion of an algorithm is a very powerful one, for a single algorithm
"extracts" what a possibly large number of different happenings may have in common.
And it does not do so by "abstraction", i.e. by ignoring the detailed differences
as would become apparent in the different eye~witness accounts, no, it can describe
the single pattern of behaviour to exactly the same degree of detail (i.e. in terms
of the same primitive actions). The possibly large number of different corresponding
happenings is generated by the different ways of sequencing as might be controlled

by the conditional, repetitive (and similar, see later) connectives.

Un the one hand we have the algorithm, a finite text, a static, timeless

concept; on the aother hand we have the corresponding happenings that may be evoked

EWD287 - 12a

Note. In the above I have approached the idea of an algorithm starting my
considerations from the class of happenings in which we wanted to discern
the same pattern of behaviour., This led besides the semicolon as connective
in the text of the algorithm to other connectives such as the conditional

"if...do" and the repetitive connective "while...do". It is

connective
not unusual that the relation between algorithm and computetions is approached
from the side of the algorithm; such an approach leads already in a very

early stage to syntactical considerations as a result of which the connectives

are introduced in a somewhat different terminology. Inatead of
"if inspection do action®

pecple write "if condition do statement",

The part of the text denoted by "if condition do" is then described as
"a conditional clause™, which is regarded as a prefix that is attached to the
"statement", The statement prefixed by the conditional clause can be called

"a conditional statement". Similarly, in
"while condition do statement”

"while condition do" is called "a repetitive clause” and the statement is
called "the repeatable statement". This terminolagy is so widely used that
-in spite of its syntactical origin- I shall not rafrain from using it whanever

1 sse fit to do so.

EwD287 - 13

by it, dynamic concepts, happenings evolving in time, Tha intimate relation between
the two —to which we refer by the term "sequencing®— lies at the heart of the
algorithmic notion. (It is to this intimate relation to which 1 refer whenever I
stress that the programmer's true activity is "the design of classes of computations.)
The notion of an algorithm is admittedly a very powerful one; before going on,
however, I shall allow myself a little detour in order to indicate what "price" we

have paid for its introduction.

We have stated that we restrict ourselves to happenings taking place in a finite
perind of time. Whenever an algorithm is followed, a happening is taking place,
eventually as a time—succession of primitive actions. It is only realistic to
postulate that each primitive action will take & finite period of time, unequal
to zera: no actipn will take place "infinitely fast", This implies that we confine
our attention to happenings that are taking place as a time-succession of a finite

number of primitive actians,

And now we are beginning to see the price: it is very easy to write down a
text that looks like an algoritbm but that is not an algorithm in our sense of

the word, because the effeort to follow it turns out to be a never ending task, e.g.
"while skirt is light—coloured do peel a next potato" .

When we assume that the peeling of a next potato does not influence the colour of
the skirt, we have just two cases: either the skirt is not light-coloured and the
only action taking place is the inspection establishing this fact, or the skirt
is light-coloured and will remain so and what the pattern suggests to describe is
the peeling of an infinite. number of next potatoes. This is usually called "an

improper algorithm".

The question, whether a text that looks like an algorithm, is indeed a proper
algorithm or not, is far from trivial. As a matter of fact Alan M,Turing has proved
that wmexesxmatxmxit we cannot write an algorithm capable of inspecting any text and

establishing whether it is a proper algorithm or not.

The assumption of the existence of such en algorithm leeds to a contradiction

which will be sketched below. Suppose that we have such an algorithm, an inspection
"proper(L)"

which delivers the result true when the text named L is a proper algorithm and the

result false when it is improper.

EWD287 - 14

Consider now the following text, named L
L: "while proper(L) do whistle once"

(in which *whistle once" is assumed to be an available primitive). If we start to
follow this algorithm, how many times will be whistled? The assumption that."proper(L)“
delivers the result true will cause the algorithm to be improper and vice versal

The conclusion is that no algorithm for the inspection “proper" can exist. (Marvin
MIKK¥ Minsky concludes in “"Computation, Finite and Infinite Machines", Prentice Hall
1967 & formal treatment of this proof with the sentence "We have only the deepest
sympathy for those readers who have not encountered this type of simple yet mind-

boggling argument before.™)

The moral of this story is that it is an intrinsic part of the duty of
everﬁyone who professes to compos¢ algorithms, to supply a proof that his text

indeed represents a proper algorithm.

Our next fundamental notion is a machine (br "a computer®). A machine is
a mechanism capable of causing actions to take place following a pattern of
behaviour as can be described by algorithms expressed in terms of a repertoire of

primitive actions that belong to this machine,

Above, we have given two algorithms for peeling potatoes, one for a natural
number of potatoes and one for only even numbers of potatoes. Bath algorithms have
been expressed in the same repertoire of primitive actions. They were introduced
in the realm of "observing happenings™, the one could describe the pattern of
behaviour of my left-hand neighbour, the ather the one of my right~hand neighbour.
Suppose now that my own wife
1) is also capable of performing those primitive actions
2) will accept from me algorithms expressed in these primitives and will
follow such an algorithm obediently.

Then I can make her peel either as my left-hand néighbnur or as my right-hand
neighbour, depanding on the algorithm I have supplied to her. Then she is an

example of a machine.

A mechanism that can only do one thing {such as one of the most widely-spread
automata, the toilet flusher) is not celled a machine. Essentiasl for us is the
associated repertoire of actions, the shility to accept patterns of behaviour

and to behave accordingly.

EwWD287 - 15

Machines are mechanical algorithm followerg., The fact that in~the last
decennia increasingly powerful machines have becoms available to mankind is
directly responsible for the increased importance of and interest in algorithms

and their composition.

Note. It is & trivial matter to compose an algorithm for the fastest machine

in the world, & proper algorithm in the theoretical sense of the word but somewhat
impractical, as it would take the machine a million years to carry the corresponding
process to completion. The claim that "the machine is capable of causing the process
to tske place" is then somewhat subject to doubt: in actusl fact in cannot. In what
follows we shalln't be bothered by the distinction between "theoretically possible"
and "practically feasible", Not because we are iﬁpractical, on the contrary! The
point is that in the mean time computers are so powerful that the claess of
practically feasible computations is by now sufficiently large =to put it mildly!-
to make machines very useful and intriguing pieces of aquipment, fully worthy of

our attention.

We call an algorithm intended to control the behaviour of a machine, a program.
In other words, we reserve the name program for those algorithms that are intended
for mechanical execution. In the general notion of algorithm we have only required
that the repertoire should be "well-understood", without bothering how this
understanding is established: if a composer indicates "Andante" (= “going")
for a compésition in three-four time, he may do so, because, remarkably enough,
we may expect this indication to be somehow meaningful for the player. In the case
of a machine, the situatian is drastically different for a machine is a finite piece
of equipment which by its very construction has associated with it a finite,
very well defined repertoire and whenevr it is fed with a program it shall behave

exactly as prescribed.,

The fact that machines are fully obedient slaves has caused complaints from
many beginning programmers. Their obedience, they felt, makes programmingKX¥KXX¥
cruelly difficult, for a trivial mistake in the program is sure to lead to entirely
unintended bebaviour. KKEXKXMXKZXEXMXEROCHMMEXXKROCHRAMMAN XK KPKMIOKMN X KB R E XX ANN MY
EMXUMM R FCEREE X MME Mo XK XM R X ENA A XA AMEANEY The programmer's inasbility to appeal
to "comman sense of the machine" has been experienced as one of its major shortcomings.
The more experienced programmer learns to appreciate its servile, strict obediences
thanks to it we can instroct it to do something "uncommon"! And this is something
you cannot do with a servant who "rounds off" his instructions towards the nearest

probable interpretation,

EWD287 - 16

In the preceding paragraphs I have introduced programming ass an impaortant
activity because now we have machines that can be controlled by programs and for
which we have to compose programs when we want to use them, when we want to convert
them into the tool solving ocur problem. But this is not the whole story. A computer
is & manywsided thing. For its manufacturer it is primarily a praduct that he can
(hupefully) produce and sell with profit., For many insitutional buyerstha computer
is probably primarily a status symbol. For many users it is either a source of
endless worries or, as the case may be, a highly useful tool. In University
surroundings, the view of the computer as a tool to be used tends to be the
predominant one. And there is no denying it: in their capacity of tools the
computers are changing the face of the earth (and of the moon as well!l), Yet 1
am comvinced that we underestimate the computer's significance if we confine our
appreciation of it to the aspects mentioned. They may cause shocks to the basis
of our society, but [believe that in the longer run these will turn out to be
but ripples on the surface of our culture. I expect a much more profound influence
from the advent of the modern computer and that will in its quality of a gigantic

intellectual challenge, unprecedented in the history of mankind,

The computer as piece of equipment presents us with an entirely new combination
of simplicity and power, which makes the programming task a unique challenge. When
the electronic engineers have done their job properly, they present to the programmer
a mathematically trivial piece of equipment. Its instruction code (its "repertoire")
can be described perfectly well on a modest number of pages, everything is finite
and discrete, there is just no place for makxhematizamkx conceptually difficult
mathematical notions, such as continuity, infinity, limits, irrational numbers
and whatnots., The mathematical basis of programming is just very, very simple,

80 simple thet programming should be easys.it should be easy to conceive programs,

it should be easy to convince oneself that a program is correct and that the

machine working under control of it will indeed produce the desired result. From its
basic simplicity one derives the intuitive feeling that it should be & trivial matter
to keep the happening evoked by one's programs firmly within one's intellectual

grip.

But its basic simplicity is anly one side of the coin: the other side presents
the extreme power (both as regards capacity and speed) of currently available
computers., As a result of its extreme power, buth the amount of information playing

@ role in the computations as well as the number of operations performed in the

course of a computation, escape our unaided imagination by several orders of magnitude.

EwD287 - 17

Due to the limited size of our skull we are absalutely unable to visualize to any
appreciable degree of detail what we are going to set in motion and programming
thereby becomes an activity facing us with conceptual problems that have risen far,

far above the original level of triviality.

It is the possibility to consider realistically effective solutions of
any degree of sophistication, combined with our complete intellectual grip on
what we are considering, which will deeply influence our ways of thinking and our
appreciation of our own thought processes. It has no precedent, ﬂ@ﬂ whenever in
the past we were faced with something powerful (a storm or an army) we never had
effective control over it. (This, for a long time, used to be the definition of

"powerful®™, viz. that we were "powerless" in the face of it!)

Ewbeg? - 18

Programming | anguages and their Implementation,

The activity of compésing programs is called "programming"., In the preceding
section we have introduced programs as algorithms intended to control the behaviour
of machines and by virtue of the actual existence of such machines, programming is
a very practical activity. It is one of the youngest branches of applied mathematics
(in the broad sense of the word, i.e, not confined to mathematical physics or
numerical analysis), it is as important as the applications in question, it is
practical in the sense that it is the programmer's intention that a machine will
actually display the behaviour as prescribed by the algorithm. Far that reason
@ conscious programmer should respect the limitations of the (finite) machine.
Alternative programs causing a machine to establish the same net result and therefore
in that respect equivalent, may differ greatly in what is usually called "efficiency",
in the demands they make upon the machine's resources. For many years, efficiency
has been used as the sole yard-stick along which to compare the relative guality
of alternative programs for the same task. In the mean time programming has turned
out to be so difficult, that other gquality aspects have gained relative importance,
such as the ease with which we can understand a program, can convince ourselves of
its correctness or can modify it, etc. Yet, efficiency comcerns cannot be ignored
and in order to give the reader some feeling for the nature of the limitations
he should respect, we shall give in this section an overall view of computing machines

and the way in which the execute programs.

In this little monograph we shall confine our attention to segquential
algorithms, i,e. algorithms describing what actions should happen in sdccession,
one after the other. Such algorithms have a property for which they have been blamed
(and not entirely without justification), viz. that they are often"overspecific"
as regards the order in which things have to happen. If twe actions, say "A" and "B"

have to be dome both, & purely sequential algorithm will prescribe
either "A; 8" ar "B; A"

viz. action A in time followed by action B or the other way round., It will not
edpress that the order is immaterial and possibly more serious, it will not
express that the two actions are so “ncnvintarfefing“ with each other that they may

take place concurrently, or -to use the jargon~ may be done in parallel.

For various reasons I decided to restrict my attention to purely sequential .
programs, The most obvious reason is to be found in the structure of the machines

that are currently aveilable or can be expected to hecome available in the next

Ewo2s87 - 19

. ; o
years. One or two decades ago, machines used to be purel%seq*ential. In the mean time

we have got equipment allowing for a limited amount of parslleliem (dugl processor

machines, independent communication channels etc.) but such pieces of equipment are

at best an aggregate of a small number of individual sequential components. In such

machines the potential patallelism of activities is exploited by standard contral

programs {so-called “operating 5y3tema"), while the individual user still works in
/

a strictly séuential environment, And it is to the individual user that this little

monograph addresses itself.

With the advent of what is called "la#&é}scale integration" (being & term from
the computer field, its acronym "LSI" is better known!)} it seems to become technically
feasible to build machines more like "clouds of arithmetic units" with information
processing activities going on simultaneously all over the place, for shorter periods
of time even undependently of each other. Programming for such mechines will pose
completely different trade-off problems: one will be willing to invest potentially
useful computing activity before its actual usefulness has been established, all
for the sake of sﬁ%eding up the whole computation. But although I know that such
machines may be coming, [shall not touch these problems for the following reasons,
First, as far as general purpose applications are concerned, I have my doubts about
the effectiveness with which such forms of parallelism can ever be exploited. Second
-and that is the most important consideration- parallel programming is an order of
magnitude more difficult than sequential programming. (This statement will be doubted
but I have enough experience in multiprogramming to feel myself entitled to say so.
The point is that with parallelism a great variety of happenings may take place
under control of the same program(s). On account of undefined speed rafios a
set of parallel programs is written for a partly non-deterministic machine and
special care is required to ensure that, on a higher level of abstraction, its
total behaviour can again be regarded as uniquely determined by the program(a).)
Third, I am not over-impressed by the complaints that sequential programs specify
a more stringent time-succession than logically necessary: I have often the somewhat
uneasy feeling that these complaints find their origin in the mathematical tradition
aof the pre-computer age. In classiqﬂg mathematics the notion of an algorithm has been
neglected; mind you, I am not blaming the previocus mathemsticians for this, because
before the actual existence of automatic computers, algorithms were hardly & relevant
subject. But we should qat close our eyes é:: the fact that the course of history
has caused mathematics to be more tuned to timeless problems, to static relations,
to functional dependence. (The existence of classical mechanics does not contradict

this observation: renaming the independent variable in the differential equations

EwWD287 - 20

"k", say, instead of the usual "t" does not influence the mathematics involved.)
Some of the efforts to remove the overspecification of the time-succession -they
rely heavily on functional dependenee- strike me as tackling the programming problem
with classical concepts that have been developed for other purposes. Sa mugh for my

decision to restrict my considerations to sequential machines.

To get some feeling for the demands made upon the maodern automatic computer,
let us focus ouf attention for a moment upon an average sizeable computation, for
instance the computation of (a gond approximation uf) the inverse of a given matrix
of, say, 100 by 100 elements. Such a job has two markedly quantitative aspects:

a) a8 vast amount of numbers is involved: poéing the problem implies the specifi-
cation of 10,000 numbers, the answer is also given by 10,000 numbers (each
of which is, in genersl, a function of all 10.000 elements of the given
matrix)

b) a vast amount of computation has to be done+ if it is done by elimination,
the number of operations (i.e. multiplications and additions) is of the

order of magnitude of 1,000.000.

The construction of machines able to cope (reliably!) with these two very
different aspects of "multitude" is one of the greater triumphs of electronics,
It has been achieved by applying the old and well-known principle "Oivide and Rule.",
In modern computers one can distinguish two vital components, each of which has the

specific task to cope with one of the forms of multitude.

a) the store (called "memory" in American); this is the component able to
receive, store and return vast amounts of information; its primary function
is to be large, to be able to contain very much information

b) the arithmetic unit or processor; this is the component in which the actual
work -—adding, subtracting, multiplying, comparing, chosing etc.- is done;
its primary function is to be very fast so that it may do very much in a

limited period of time.

It is not the function of the arithmetic unit to be large in the sense that
it should contain large amounts of information. On the contrary® while nearly all
the information, relevant for the computation at large, lies "sleeping" in the
store, at any '‘moment of time only the tiny fraction actually involved in the
information processing activity, QE found (copied) in the arithmetic unit, which is

only capable of dealing with a few numbers at a time, say the twn numbers to be

EWD2ET - 21

added and the sum formed by the act of addition. Whenever two numbers (in stare)
ere to be added, they are transoorted from the store to the arithmetic unit, where
the sum will be formed; once formed the sum will either be kept in the arithmetic
unit for immediate further processing or it will be sent back to store for later
processing. Microscopicly, the store acts as the icebox in which all infnrmﬁtion
is kept which is not involved in the current activity of the arithmetic unit. If
small letters indicate variables in store and R indicates a register in the

arithmetic unit, the computation
"y := (8 + b)*(c + d)"

might be evoked by the following ssquence of instructions:

R:= a;

Ri= R + b

ti= R

R:= c;

R:= R + d;

R:= t * R;

xi= R .

The first instruction fetches the value of a from store into the register R,
the next one increases (the contents of) R by the value of b (from store). At this
stage one of the two factors to be multiplied has been computed. Before the
multiplication can take place, the second factorg has to have been computed as
well; in a machine with a.single register R for arithmetic results, this sscond
addition implies again the use of the register R. In order to meke this register
available for this purpose, the third instruction sends the value of the firast
factor -8 so-called "intermediate result"- back to store, assigning it to a variable
here named "t": the first sum is sent back to store for later usage. The fourth end
the fifth instruction compute the second factor the value of which is left in R,
ready for multiplication by the temporarily sored value called "t". The last instruction
stores the product, now formed in R, so that it can be retrieved under the name "x"

for later usagm.

The above example illustrates many things., It shows how
"yx:= (a + b)*(c + d)"

which on one level of interest can be regarded as & single action, on closer
inspection turns out to be a sequential process taking place ss a time-succession

of seven more primitive sub-actions ("program steps"). It also shows that at any

Ewoz2ge7T - 22

moment of time only & tiny portion of the algorithm is in active control of what
actually happens+ while the first or the second addition are performed, the fact
that the two sums will have to be multiplied is still "dormant". (If the total

action would have been
"%i= (a + b)/(ec + d)"

the only modification necessary would have been the replacement of the sixth

ingtruction by
"Ri= t / R ,

the first five instructions would have been insensitive to this change. That is
what I menat by “dormant”",)
as
It also demonstrates that, just at any moment of time, only & tiny fraction of
the nuqﬁbrical information is involved in actual processing, also only a tine fraction

af the program exercises control, viz. the instruction currently executed.

It also demonstrates that it is no good just to divide the machine into two
components, store and arithmetic unit, one must also provide for a (dense) information
traffic between the two: this is provided for by what connects the two together,

the so-called "selection"..

We have said that the store should be able to strore information, it muat, for
instance, be able to store "numbers", e.g. the intermediate result called "t".
Obviously, these numbers cennot be kept in store like balls in an urni when the

instruction "R.z ¢ * R"

has to be executed, the store must return not just any number, but quite definitely
it must return the value sent to it two instructions before. For that reason the
numbers in store are not arranged as balls in an urn, on the contrery! Store is
arranged as a number of so-called "storage cells", each capable of holding the value
of one number at a time, Eéch storage cell is identified by its so-called "address",
each time contact with the store is required -either to receive or to return infor-
mation- this request is accompanied by a atatement of the address of the storags
cell involved. If the store is to receive information -this is called "writing inte
store"- the value to be stored and the address of the storage location involved (plus
a "write request") are sent to store and selection respectively; as a result of the
writing operation the original contents of the storage cell, which get: lost, are

replaced by the new value, If the store is to return information -this is called

EwDe87 - 23

"reading from store"- the address of th- , *orage cell involved (plus a "read
request") is sent to the selection; as & result the contents of the storage cell are
returned from store (and kept in the storage cell as well for later reading if
desired). As far as destruction, reception and reproduction of the information
contained in a storage cell are concerned, the situation shows great analogy to

a tape in a tape recorder. You can use the tape to record as many pieces of music

as you want, but only one at the same time: whenever you record a new piecé of music
on an cld tape, its previoue contents are wiped out; the piece of music currently
recorded, however, can be played back as many times as you wish, (To make the
analogy a true one, we must restrict ourselves to pieces of music of equal duration,

just matched to the length of the tape, matched to its (finite} information capacity.)

Storage cells can store information by virtue of the fact that they can be in
a finite number of distinct states. In practically all computers they are composed
from elementary components, each of which can be in one of two possible states. (The
most common form is & little ring of ferromagnatic material that will be circularly
magnetized in one of the two possible directions.) One such component can be in 2
different states (say "North" and “59uth"), two such components can be together
in 4 different total states ("North-North", "North-South", "South-North" and "South-
South"), N such components together can be in 2N mutually different states. The
number of elementary components associsted with each atorage cell is 8 characteristic
conatant of the machine's store and is called “tﬁe word length". If the word length
is 32, the KEAXXNXYXMALEXEXMMXXMX number of different possible total states per word
is 232, i.e, slightly over 4*109; the arithmetic unit will associate with each
state a numerical value, in terms of these numerical values a storage cell can then

9 9

hold, for instance, any integer value ranging from {roughly) =2#107 to +2#10°.

The fipite capecity of the storage cell is something the user must be aware of:
it is matched to the abilities of the arithmetic unit, i.e. if the latter deals with
integer values it is geared to operations up to a certain maximum value, if it deals
with (approximations of) real numbers, it is geared to dealing with them in a certain
precision, maximum absolute value and precision respectively being chosen such that
the numerical values to be distinguished hetween can be stored in one {or possibly
two successive) storage cells., If greater integers or reals in higher precision have

to be manipulated, special measures have to be taken which will be more expensive.

In the mean time we have explained enough about the general machine structure

to mention two aspects of the "costs" involved in the execution of a program. One

EwWD287 - 24

of them is computation time. We have seen that the arithmetic unit performs one
operation after the other, and the more operations & program prescribes, the longer
the total amount of time the arithmetic unit will have to spend to carry the compu-
tation to completion. The ather one is storage usage., If a thousand values have to

be computed in order to be added toge.ner, we may compare the following two algorithms.
The first one first computes all thousand values and stores them, after which they

are added, the second algorithm immediately adds each number to the partial sum

as soon as it has been computed, With regard to storage usage the first algorithm

is more demanding: at some stage of the computation it requires & sufficient amount

of store to hold all thousand values, an amount of store which in the second algorithm

remains available for other (pnssibly more useful) purposes,

5o much for the finite capacity of each storage cell and the fact that a store
contains only & finite numbar of such cells, Let us return to their addressea: a
while ago we have hinted that each storage cell is identified by an "address" and
that each reference to store takes place under control of the address of the storage
cell concerned, but up till now we have not been very explicit about what MXXEM¥KNM
an address really is, Well, this is very simple: the storage cells are numbered:

0, 1,2, 3, 4, 5, up ta M=1 if the store comprises Mdifferent storage cells
(M between 16.000 and 1.000.000 being typical figures), and the ordinal number of
each storage cell is used as "its address" (like houses in a street!). This implies
that the storage cells have a natural order, viz. the order of increasing address.
Given the address of a storage cell, the address of the next storage cell can be

computed by adding 1 to the given address of the preceding one.

This natural oredring of storage cells is heavily exploited. If a vector,
i.e. a sequence of numbers ao, 31, vea an has to be stored, its elements

can be stored in successive storage cells. If the address of the element ao is
known, the address of slement ai can then be computed, viz. by adding {(the value

of) i to the address of the element ao.

The natural order of the storage cells is also exploited in the program
representation, Mind you, we have postulated that a machine could "accept" a
program and that, once the program had been sccepted, the machine could execute
the program (i.e, cause the happening as prescribed by the program to take place).
In other words, when the machine is executing the program, this program -i.e."the
information describing how to behave"- must be somewhere in the machine! Where?
Well, in the store, the store being specifically the machine component able to

hold information. In other words, the store is used for two different purposes:

EWD287 - 25

it holds the numerical information to be manipulated, but it also holds - in
some other part of it- the program, i.e. the information describing what

manipulations have to be performed.

To sketch briefly how this can be done, we return to our previous example

where "xi= (a + b)*(c + d)"

was decomposed into the sequence of seven inetructions denoted by

"Ri= a;
R:= R + h;
t:i= R;
R:i= C;
R:= R + d;
R:= t * R;
x:= R"

and the question is: by means of what conventions do we represent the above
information in a store capsble of holding numbers? This is achieved by a two-
stage convention, one for XKk reprisaniing:single instructions and one for

representing a sequence.

The first convention is to chose for each instruction a unique number
code. In the above notation we have denoted variables (ur: the addresses of
the storage cells associated with the variables and containing their current
value) with small letters (a, b, ¢, d, t and x); but addresses are. numbers and
that component therefore is already numerical. Using "s" for "any address",
we see that in the above example, we can distinguish instructions of four

different types:

1) R:= s
2) Ri= R + s
%) R:= 8 * R
4} ‘s:= R

The second part of the convention associates with each type of instruction a
number (e.g. the numbers 1, 2, T and 4 to the types shown above; it should be
mentioned that in actual machines the number of instruction types is considerably
larger than 4). By concatenating the digits describing the instruction type
number with those giving the address we have a number code for eech}fpossible
instruction and we assume that the word {ength of the storage cell is sufficient

to contein such a number., The first convention as just described, reduces the

EWD287 - 26

problem of storing s sequence of ire structione to storing a sequence of
numbers. Now the second convention is that the sequence as such is represented
by storing these number in successive storage cellps, i.e. storage cells with

successive addresses. And this completes (roughly) the trick.

(Note: This is by no means the only way to rspresent programs inside the
machine's store; in so-called "stack machines" other conventions are chosen,
The above elaboration is only shawn by way of example, demonstrating the

pasaibility.)

The dual role of the store -storege of instructions and storage of
variables~ implies another way in which a program can be expensive to execute:
if the program.text is very long, by XKEXMEENXKEEXXEMEEXEKEEXNEEMRXKEXTXNEN
EXNEMEXXMOCEXREXIX MUK EX A XKNAMEXUUMAME that very fact the program text will make
a8 heavy demand on storage capacity. If we have two alternative programs for
the seme job, one requiring 5000 instructions to describe it and the other
requiring 10000 instructions to describe it, then -all other things being

equal- the first alternative will be cheaper.

The above concludes our bird's eye view of the so-called hardware machine,
i.e. the physical piece of slectronic equipment as it is delivered by the
manufacturer: & machine that can accept and then execute programs written as
long sequences of instructions from an instruction repertcire that is specific
for this particular machine (and its copies). Until the late fifties programmers
indeed produced their programs as long sequences of such instructibns, but when
machines became faster and when more came on the market, this %ENXMX short-

comings of this way of working became more and more apparent.

Because the programmer expressed his program in terms of the instruction
repertoire of that particular machine, he was fafced to tailor his program to
that machine. He needei a thorough and ready knowledge of all the detsils of
the instruction repertoire of that machine -which for the more intricate
machines was no mean task- and worse: once his program was written, it could
only be executed by that particular machine. Exchange of programs between
institutes equipped with different machines was impossible; furthermore,
whenever an institute replaced its old machine by a new and different one,
all programs for the old machine beceme obsolete. From that paint of view

it was clear that tailoring one's programs so closely to the idiosyncrasies

-

EwD287 - 27

of a specific piece of hardware was not & very wise investment of the intellectual

energy of one's programmers.

But even without the problem of transferring programs from one hardware
machine to another, this way of programming, expressing programs as & mono-
tonous stream of machine instructions, showed great drawbacks. One serious
drawback was that this close contact between programmer and physical machine
structure did not only enable the programmer to lard his program with all
sorts of coding tricks, it actually invited him to do so, For many a programmer
this temptation became irresistible, there even has bsen a time when it was
generally believed that one of the most vital assets of a virtuosoc programmer
was that he ﬁ; "puzzle-minded", and it was only slaowly recognized that a
clear and sgstumatic mind was more essential! When "tricky programming® was
en vogue, programming was not only very sxpensive -it took too much time-
it also turned out to be too difficult to get a program correct. Looking
backwards, the period of tricky programming now strikes us as a generation
of programmers walking on & tight-rope, in full confidence because they
were unaware of the abysmal depth benesth it! The modesrn competent programmer

is more humble and svoids clever tricks like the plaguas,

It was not only the preponderance of coding tricks that mede programming

"in machine code" as it is called nowadays, too difficult and too risky.

Firstly, a program in machine code contains very little redundance and
as a result it is very sensitive to even small writing errore -errors of

the level of "spelling mistakes" or "printing errore".

Secondly, the programmer who thinks in terms of variables has to denote
these variables in his program text by the addresses of the storage cells
dedicated (by him) to hold their values. As a result the programmer has the

burden of storage layout and all the clerical work implied by this.

Thirdly ~and this is the mejor reason- machine code is an improps:
vehicle to represent "structure™: it is just a single, monotonous segquence
of machine instructions, incapble of expressing in a direct and useful form kﬂ
the structure of the algorithm. In what follows it will become abundantly
clear that when we wish to compose programs insa reliable fashion, we can only

do so by structuring the happenings we intend tu evoke and are in urgent need

EWD287 - 28

of a descriptive vehicle such that in the program text itself the structure

of the happenings -i.e. of the computations- can be adequately reflected.

The above shortcomings lsdvto the design of so-called "(h{ﬁéﬁr level)
pragramming languages”. A programming language can be regarded as the machine
code for a fictitious, idealized machine. Whereas the old machine codes were
tailored to the needs of the hardware -i.e. the equipment electronic engineers
could make- programming languages are more tailored to the intellectual needs

and conceptual difficulties of the programmer who has to design the computations.

The problem now is that on the one hand we have the hardware machine A,
that can be built but for which we don't like to program because it is too
cumbersome, on the other hand we have "dreamsd up" the fictitious machine B,
for which we would love to program but which the engineers cannot build.

How do we bridge that gap?

The gap is bridged by "software": given machine A, we can make, once and
for all, a program (in the machine. code for machirne A) which prescribes to
machine A the pattern of behaviour it should follow if it is to simulate
machine B. Such a prograﬁ is called "software for machine A", Given hardware
A, loaded with this software, we have a mechanism -partly "“hard", partly "soft"-

that is able to execute programs written for the fictitious machine B.

HEXMEXXNEEXERMEXMEXKBNXHXXKAEUXXENUX ENXXKNEK Usually this combination
of hard- and software processes such a program in two stages. In tﬁe first stage
(the "translation stage") the program written in the programming language B is
subjected to a translation process. In this process a storage layout is decided,
the necessary bookkeeping is carried out and an equivalent program -but now
expressed in machine code A- is produced. In the second stage (the "execution
stage") the output of the first one is interpreted by machine A as a program

and the intended computation is evoked.

The standard software that goes with the machine shields the user off
from idiosyncrasies of the specific machine; apart from that it invokes
~behind the user's back, so to say- standard ways of dealing with the tougher
properties of the hardwsre, such as the possible parallellism (i.e. concurrencs
in time) of computation proper and information transfers from and to peripheral

devices and multilevel stores. Up till now we have described the hardware as if

EwWD287 -~ 29

all storage cells were emqually well accessible for the arithmetic unit. In
practice this is seldom the case, two storage levels being guite common:
primary store K}errita cores usually) and secondary store (magnetic drums
usually). The cells in primary store are the only ones that are directly

and immediately accessible for the arithmetic unit; the informtaion in
secondary store (which in capacity is an order of megnitude larger than
primary store) is not directly accessible for the arithmetic unit, but the
possibility of bulk transfers between primary and secondary store is aveilable
instead. In such machines, the software may move the information around
between the two stores, all the time keeping track of where everything is to
be found at any moment and trying to keep in primary store all "currently

relevant” information. (This is called “the implementation of a virtual stote.)

We have mentioned the concept of the virtual store because it is related
to an efficiency aspect over which the programmer has some control and in
regard to which the programmer therefors has some responsibility., This is
called "vagrancy". A program has a small degree of vagrance whenever for
larger periods of time accesses ere confined to a small, dense subset of the
total amount of information; in that case the hope is justified that during
that period of time, this dense subset will be kept in primary store ant that
therefore the computation can go on at full speed. In computations with high
vagrancy, the probability of information needed being in secondary store is
much larger and the transport facilities between the storage levels then
tend to become the bottle-neck, Therefore, if possible, high vagrancy should

be avoided.

EwWD287 - 30

Variables and relations between their values.

When introducing the basic notions we have said that different happenings
could take place following the same pattern of behaviour. And as the happening.
is fully determined by the KEXXXYM¥XMXX¥X confrontation of the pattern of
behaviour with the initial state, it follows that the same pattern of behaviour
can only evoke different happenings at different accasions when at thess
different occésiuns the initial states differ from each other. In this section
we shall show how so-called variables are used for the description of the
{(initial and final) states. We find the typical use of variables when the
same pattern of bebhaviour is followed repeatedly, i.e, when sequencing is

repetitively controlled.

We begin with a very simple program: given two positive integer values
A and B, a program has to be made that will compute (i.e. can cause a conputer
to compute) the Greatest Common Divisor of A and B. Let us use the notation

GCD{A, B} for that value.

{Remark. We have restricted ourselves to positive numbers in order to
make life somewhat easier. Zero is divisible by any positive integer d

(for O = O * d}, and there would be no objection, with B> 0, to
GCD(Q, B) = B .

But admitting zero as arqument is asking for trouble, because GCD(0, 0} is
clearly undefined! In order to avoid these complications, we restrict our-

selves to positive arguments.)

For the sake of argument we request an algorithm in which no arithmetic
operations other than addition and subtraction will be used. How do we find

such an slgorithm?

Well, there seem:in this case two ways to attack the problem. The first
one is more or less a direct application of the definition. One could construct
a table of divisors aof A (including 1) and a table of divisors of B (also
including 1); as both A and B are finite and different from zero, both tables
contain only a finite number of numbers, From these two tables of divisors
one can construct a third table of common divisors, i.e. containing all the
numbers occurring in both of them. This third table is non-~empty (because it

contains the number 1) and it is finite (because it camnot be longer than any

EwD287 ~ 31

of the original tables). From this non—-empty, finite table we can select the
greatest number and that will, by virtue of the way in which it has been found

re the Greatest Common Divisor.

We could do it along the lines just sketched {or at least use it as a
source af inspiration). In the current example, however, there is a second
way of attack necause the GCD is a well-known mathematical function, well-
known meaning that a number of its properties are known. If we can think of
s0 méy of its properties that they define the GCD -i.e. that the GCD is the
only function satisfying them~ we might try to HKK determine GCD(A, B) by
exploiting these properties. What properties can we think of?

1) 6CD{a, b) = GCD(b, a)

2) GCD(a, b

e
[

GCD{a + b, b) = GCD(a, a + b)

3.1} if a>b: GCD(a, b) = GCD(a - b, b) = GCD(a, a - b)
3.,2) ifa=b: GED{a, b) = a=b
3.3) if a<b: GCD(e, b) = GCD(a, b - &) = GCD(b - &, b)

(We can think of other properties such as

4) for n > 0 GCD(an, bn) = GCD(a, b)n
5) for ¢ >0 GED(c * a, ¢ * b} = ¢ * GCD(a, b)

but they look less promising as they involve multiplication and we have to

restrict ocurselves to the arithmetic operations of addition and subtraction.}

The first property states that GCD is a symmetric function. The second
one states that the GCD of two numbers is equal to the GCD of one of them and
the sum, while the third property states this for the difference. Because we
want to restrict ourselves to posit! = numbers, we have dealt with the cases
a<b and a > b separately, The case a = b, however, is very special: it is

the only case in which the value of the GCD is given directly!

Relations 2, 3.1 and 3.3 tell us that the GCD of a pair of numbers is
equal to the GLD of another pair of numbers. This suggests that we use the
"current state" to fix such a number pair; the algorithm can then try ta change
these numbers in such a way that

firstly: the GCD remains constant

EwD287 - 32

secondly: until eventually the two numbers are egual and rule 3,2 can be

applied.

With the second requirement in mind, rule 2 does not loock to promising:
given two positive numbers, one of them can never be equal to their sum. On the
other hand, given two (differentl) positive numbers, one of them, viz. the
smallest, can be equal to their difference. This suggests that from 3.1 a.d 3.3

we use;

3.1' if a>b: GCD{s, b) = GCD(a — b, b)

GtD(a, b - a) .

Ui

3.3' if a<b: GCD(a, b)

Now the moment has come to consider our first version of the program:

program 1;

begin integer a, b, gcd;

a:= A; b:= H;
while a # b do .
if a > b then at= a - b
else b:i= b *.a;
gcd:= a;

print{A); print(B); print(gcd)

(In this program we have used the well-known slternative connective

"if...then...else", The construction
"if inspection then actionl else actiqn2"

ceuses one of the two actions, either action 1 or action 2 to take place. If
the inspection delivers the value true, action! will take place (and action?
will be skipped) if the inspection delivers the value false {actionl will be
skipped and) action? will take place. We can describe the conditionel connective

in terms of it:

"if inspection do action" is equivalent with "if inspection then action else nothing"”.)

When we try to understand this prugram we should bear the following in

mind:

EWD287 - 33

While the typical use of variables manifests itself with the
program loop, the way to understsnd such a program implies
looking for the relations between their values which remain

invariant during the repetition,

In this example the invariant relation P is

Ps a>0and b >0 and GCD(a, b) = GCD(A, B) .

The relation P holds after initialization {for the a = A and b = B; from

A>0 and B> 0, relation P then follows).

The repsatable statement will only be executed under the additional
condition a ¥ b; i.e. either a <b or a > b, If & > b, then the new value of
a, viz., a = b, will again be positive and GCD{a, b) will remain unchanged on
account of 3.,1'; if a < b, then the rnew value of b will again be positive
and GCD{a, b) will remain unchanged on account of 3.3', The invariance of

relation P is therefore established.

When the loop terminates, a = b is guaranteed to hold, GCD(A, B) = GCD(a, b) =
GCD(a, a) and on account of 3.2 the assignment "gcd:= a" will establish the net

effect “gcd:= GCD(A, B)".

To complete the proof we must demonstrate that the repetition will indeed
terminate. Whenever the repeatable statement is executed the largest of the
two (different!) values is decreased by the value of the other which is positive;
as a result

max(a, b)__ > max{a, b)

TO T)
We also know that before the repetition max(a, b) = max(A, B) is finite,
from the invariance of relation P (a> 0 and b > Q) we conclude that
max(a, b) > O
will continue to hold. All values being integer, the maximum number of times
the repeatable statement can be executed must be less than max{A, B} and therefore

the repetition must terminate after a finite number of repetitions. And this

completes the proof,.

Once we have this program, it is not difficult to think of others.
Reading XMK program | we observe that each subtraction is preceded in time by

two test; first a = b and then a > b; this seems somewhat wasteful as the truth

EWD287 - 34

of a > b already implies the truth of a # b, What happens in time is that a
number of times a will be decreased by b, then b will be decreased a number
of times by a, and so on. A program in which (in general) the number of tests

will be smaller is

program 2:

begin integer a, b, gecd;

a:= A; bi= B;

while a £ b da

begin while a > b do ai= a - b;
while b > a do bi= b - a

end ; gcdi= aj; print{A); print(B); print(gcd)

Exercise Prove the correctness of program 2.
Exercise Rewrite program 2 such that the cuter repeatable statement contains

only one loop instead of two.Prove its correctness.

Before gaoing on, it is desirable to give a more formal description of
the kind of theorems which we use. (In the following I shall make use of a

formalism introduced by C.A.R.Hoare.)

Let P, P1, P2, stand for predicates stating a relation between
values of variables. Let S, 51, 52, ... stand for pieces of program text,
in general affecting values of variables, i.e. changing the current state.
Let B, B!, B2, ... stand for either predicates stating a relation between
values of variables or for pieces of program text evaluating such a

predicate, i.e, delivering one of the values true of false without further

affecting values of variables, i.e. without changing the current state.

Then P1{sip2

means: "the truth of Pl immediately prior to the execution of 5 implies the
truth of P2 immediately after that execution of §", In terms of this
formalism we write down the following theorems. (Some readers would prefer to
call some of them rather "axioms", but at present I don't particularly care

about that difference.)

EWD287 - 35

Theorem 1:

Given: P1{51}P2
P2{s2ip3
Conclusion: P1{51; 52}P3

(This theorem gives the semantic consequences of the semicolan as connective.)

Thearem 2:

Given: B{S}nanB
Ao
Canclusion: truefif B YEn SinanB

(Here "true" is the condition which is satiafied per definition, i.e. the
conclusion that after the execution of the conditienal statement "ronB" will

hold, is independent of any assumptions about the initial state.)

Theorem 3:

Given: (P and B){s} P
Conclusion; P {if B do S} P

Theorem 4:
Given: (P1 and B){st} P2
(P1 and nan B){s2} P2

Canclusion Pt {if B then S1 else 52} P2

.-

Theorem 5:

Given: (P and B){S} P
Canclusion: P {while B do S}(P and nan B)

Remark: This theorem only applies to the case that the repetition terminates,

otherwise it is void.

Theorem 5 is one of the most useful theorems when dealing with loops. The
appropriate reasoning mechanism to deal in detail with loops is mathematical
‘induction, but often the use of Theorem 5 —which itself can only be proved by

mathematical induction— avoids a direct use of mathematical induction.

We used Theorem 5 when proving the correctness of program 1, Here was

P a>0 and b > 0 and GCD{a, b) = GCD(A, B) and
B: afgb .

EWD287 - 36

We draw attention to the fact that we could not show *"P {S} P" but only
"(P_Qgg B){Sl P": for a and b to remain positive it was necessary to know that
initially they were different. (How is this with program 2?) We also draw
attention to the fact that after termination when we wished to show that.

a = GCD(A, B} we did not only use the mild conclusion "P {while B do S} Pt
but the strong conclusion "P {while B do S}{P and non B}": we needed the

knowledge "a = b" in order to justify the application of 3,2,

With respect ¥X to termintation ane often uses a somewhat stronger

theorem, the formulation of which falls outside the strict Hosre formalism:

Theorem 6:

Given: (P and B){S; P
Conclusion: in P {while B do S} will (P and B) hold immediately after

each execution of the repeatable statement which is not the
the last one,
This theorem usually plays a role when deriving a contrediction from the

assumption that the looap will not terminate.

* *

There is an alternative form of repetition control which might be

represented by "repeat 5 until B"

(other suthors write "do 5 until B"); it is semantically equivalent to
"S; while non B da S ,

(Instead of describing its semantics in terms of the other repetitive connective,

we could also have given a recursive definition in terms of itself, viz,

"S; Af non B do repeat S until B" ,)

The differences with the while-clause are
1) the termination condition has been inverted

2) the repeatable statement is executed at least once.

Sometimes the repeat-clause comes in really handy and gains the text in
clarity when it is used. It should be used with great precaution, a precaution

which is shown by the pertinent

EWD28BT - 37

Theorem 7T:

Giveng P1 !S} P2
{P2 and non B){s} P2
Conclusion: P1 {repeat S until B}(P2 and B)

Remark: This theorem only applies to the case that the repetition terminates,

ptherwise it is wvoid,

The greater complexity of the assumptions about B and S which have to be

verfied, reflect the additional care required in the use of the repeat—clause,

Exercise, We knuw give three tentative alternative programs (3, 4 and 5) for
the computation of GCD{A, B). Discover which of them are correct and which are
faulty by trying to prove their correctness., If the program is incorrect,

construct an A,B-pair for which it fails.

program 5

begin integer a, b, gcd;

a:= A; b:= B;

repeat if @ > b then ai= a - b
else bi= b - a

until a = b;

gcd:= a;

print{A); print(B); print(ged)

end

program 4:
begin integer a, b, ged;
ai= A; bi= B;
repeat while a > b do a:= a = b;
while b>a do bi= b - a
until a = bj '
gcdi= aj

print(A); print(B); print(gcd)

EWD287 - 38

program 5:

begin integer a, b, gcd, x;

ai= A; b:= B

-

while & # b do

begin if a << b do begin x:= a; af= b; bi= x end;
repeat a:= a — b until a<b

end;
gcdi= aj
print(A}; print(B); print{gcd)

end

(Note. If any of the above programs is correct, its occurrence in this exercise

is not to be interpreted as & recommendatiocn of its styls!)

Exercise. Prove thet the following program will print in additian to the
greatest common divisor of A and B the amallest common multiple of A and B

Vs
(being defined as their productm divided by the greatest common divisor).

beqin inteqer a, b, c, d, gcd, scm;

at= A; bt= B; c:= B; di= O;

while 8 £ b do

a

begin while 8 > b do begin ai= a — b; di= d + ¢ en

..

o

while b ~ & do begin bi= b - a; cit= c +d en

|

end;
gcd:= a; scmi= c + d;
print{A); print(B); print(gcd); print(scm)

end

Hint. Follow the value of the expression a * ¢ + b * d. (Courtesy Software

Sciences Holdings Limited, London)

* »*

for a meaningful loop controlled by a while-clause we can make the

following further observations. Let us consider the loop "while B do S".

Our first observation is that the execution of the repeatable statement
must change the state. Suppose that it does not. If then the repeatable statement
is executed once, the predicate B (that was true prior to its execution) will
still be true after its execution so that the statement 5 will be executed

still another time; then the argument can be repéated and the net result is

EWD287 - 39

that the repetition will not terminate. The only termination is when B is false
to begin with: then the statement S will be executed zeroc times, This we don't

call "a meaningful loop".

5o, execution of statement S changes the state: let us call "s" that part
of the total state that may be changed by the executicn of statement 5. Here "s"
can be regarded as the aggregate of variables whose values can be affected by
the execution of statement 5. Then our seond observation is that (one or more
variables of) s must be involved in the predicate B, If not, a single execution
of the repeatable statement would imply infinitely many {by the same argument
as used in our previous observation). Treating "s" as a generalized variable,
we can express this explicitly by rewriting the loop, using two functions of

the generclized argument s:
"while B(s) do s:= S(s)"

This is the basic form of every repetitjon which is controlled by a
while-clause. Reading it, it is obvious that its behaviour is undefined when
the initial value of s is completely undefined, In terms of programming this
leads to our third observation: |

Every repetition controlled by a while-clause requires a proper

initialization of the variables involved.

(Althaugh obvious, this rule is mentioned explicitly, because I have seen
many programmers forgetting to initialize properly. The rule is so rigid that
such an omission is not a mistake but a blunder,)

Let the initial state be denoted by s, and let the state immediately

0
after the i-th execution of the repeatab:e statement be denoted by s, let the
loop terminate after the k~th execution of the repeatable statement. Then the

following theorems are true.

Theorem 8:
Given 59 the remaining successive values of s are given by the recurrence

relation g = 5(5‘) for 0 < i < k.,
i i-1 -
Theorem Y:

In the sequence 50' 51, vaee sk no two values (with different subscripts)

are equal.

EWD287 - 40

Theorem 10:
B(si) for all i satisfying 0 < i <k and

J

B
non (sk
Theorem 8 is fairly obvious. It is mentioned, however, because it shows

that a repetition is an adequate tool for the evaluation of a recurrence relation.

Theorem 9 is mentioned because it is so obviously correct {although I see

no use for it).

Thearem 10 -also called "The Linear Search Theorem"-which is also fairly
obvigus, is a very important one, comparable in importance to Theorem 5. It
does not only assert that after termination the state s, will be such that non B
is valid, it asserts that in all previous states S5 with i <k (if any) B did
hold. This theorem is used in many searching algorithms looking for the
smallest number for which a predicate B is false:; by inspecting the numbers
in the order of increasing magnitude, the smallest becomes the first found.
Theorem 10 tells us that in that case & loop controlled by a while-clause is
a proper vehicle. {It,is not restricted to looking for a smallest number,

it can be applied to any {somehow) ordered set of values of some sort.)

Remark, We have called the last three theorems "obvious". This is not meant to
imply that giving a reasonably formal proof for them is trivial. I did it, but

the resulting proofs were surprisingly cumbersome and boring.

Finally., in Theorems 2, 3 and 5 NBLEEXEYQI;EEE]assumptions including

the truth of B prior to the execution of S. Clearly we are not interested in

the net effect of the execution of S after an initial state in which B is false.
As a matter of fact, with such initial states the net effect of an 5 will often
be undefined, (A similar remark can be made regarding Theorem 4.) In other

words: our statements 5 regarded as operatars are often not defined on the domain
of all possible states, they are "partial operators" and the predicates occurring
in the clauses ensure that they will not be evoked inappropriately. This
observation should temper our hope of increasing computation speed by introducing

more parallellism,

EWD287 — 41

Programs corresponding to recurrence relations.,

Theorem 8 (EWD?B? - 39) mentions successive states connected by a
recurrence relation. The meaning of this theorem is twofpld: it can be used
to prove assa;ions about & given program, but also —and this, I think, is
more impartant~ it suggests us, when faced with the task of making a program,
the use of a while—clause in the case of a problem that in its mathematical
formulation presents itself as the evaluation of a recurrence relation. We

are going to illustrate this by a number of examples.

Consider the sequence of pairs ai, ci given hy

far i = O ay = 1 (1)
%=1—b,wﬁh0<b<2ﬁ£.mﬂ%)<ﬂ

L _ *
for i >0 a. =(1 + ci*l) 8 (2)
c, = C2
i i~1 i
Then lim a, = 1/b
i a0

Exercise. Prove the last formula. (This has nothing to do with programming,
it is secondary school algebra, The clue of the proof is to be found in the
relatian 1 1 +c,
= i-1 -)
1 -e, 1 -c,
i

It is requested to use this recurrence relation to approximate the value
of 1/b; phviously we cannot compute infinitely many elements of the sequence
8y 2y a2, «ss but we can accept 8 as a sufficiently close (how close?)
approximation of 1/b when ©, is less than a given, small, positive tolerance
named "eps". (This Bx;mple is of historical interest; it is taken from the
subroutine library for EDSAC 1, the world's first stored program controlled
automatic computer. The order code of this computer did not comprise & divide

instruction and one of the methods used with this computer to compute quotients

was based on the above recurrence relatiun.) -

Theorem 8 talks about “a pEt, s, of the state space" and the loap Ve
while B(s) do s:= S(s)

and asserts that after the initial state s. the states si after the i=-th

0

execution of the repeatable statement will satisfy

s; = 5(s;_,) (3)

1

EWD2B7 ~ 42

Our recurrence relations (2) are exectly of the form (3) if we identify
the state S5 with the value pair 3.y ci. That is, we have to introduce, to
span the part s of the state space, two variables, for the purpose of this
discussion called A and C, and we shall denote their values after the i~th
execution of the repeatable statement by Ai and Ci respectively. We associate
the state s, (as given by the values Ai and Ci) with the value pair a.s ci

by the relations = a (4)

i i
Ci =c, .

(Mind you: in the left hand sides the subscript "i" means "the value of
the variable after the i-th execution of the repeatsble statement®, in the
right hand sides the subscript "i" refers to the recurrent sequences as given
by (1) and (2). It would have been usual to call the two variables "a" and "c®
instead of "A" and "C", i.e. not to distinguish between the quantities
defined in the mathematical formulation on the one hand and the associated
variables in the program on the other hand. As this association is the very
subject of this discussion, it would have been fatal not to distinguish

between them,)

Within the scope of a declaration "real A, C" it is now a straightforward
task to write the piece of program:

"At= 1; Ci= 1 = by .

while C Zepsda «bs(C)2 epn o

begin A:=(1 + C)* A; !"Aﬂmli“"'"mmh{“"j
C:=C *C e T |
end" . R |

The first line has to create the proper state SO and does so in accordance
with (4) and (1), the repeatable statement has the form, symbolically denoted
by "s:= S(s)" -gsee the Note below- in accordance with (4) and (2), and the

condition guarantees that after termination
(Akr.) A= ak

will hold with the proper value of k.

Exercise. Prove that the loop terminates.

EWD287 ~ 43

Note, The symbolic assignment "s:= 5{s)" has the form of two assignments

A= (1 + 0)* A;
C:=C * [.
With the initial condition A= a_q» C = c. the first assignment is
equivalent ta Aie (1 .)* s,
i-1 i-1

and after the first, but before the second assignment we have —on account of (2)-

Thanks to the explicit occurrence of the subscripts the order ef the two
relations composing (2) is immaterial, this in contrast to the two
assignment statements composing the repeatable statement, whose order is

vitall

Exercise. In the same EDSAC subroutine library the next scheme is used. Consider

the sequence of pairs a9 C; oy given by

for i = 0 BO = b
ca=1=-b with0<b<2 (i.e. abs(co) <1)
i > = * #*
for i 0 a; (; + .5 ci—1) ai_1 o
. * * ' -
°; = o (.75 + .25 * ci_1) . ‘ e : j;
Then lim a = b IS
. i A C
1 e -

Prove the last formula end make a program using it for the approximation of

the square root. The clue of the proof is to be found in the relatian
~-.B -5
- = + * * - .

Prove also the termintation of the repetition in the program made.

Exercise. In the same EDSAC subroutine library the next scheme is used.

Consider the sequence of triples inci, 8.0 X, given by

EWD287 ~ 44

for i = 0 inc0 = log 2
Sg = 0
x; = arg (with 1 < arg < 2)
for 1 >0
2
< i = .5 #* i
for X 2 inc, 5 1nci_1
S;L = 85_1
xl = xi-i
2
f‘
or xi—13> 2 inc, = .5 * inc,
- i i=i
S, = 5, + .5 * inc,
i i=1 > i-1
— *
T -5 Xi=1 .
Then ‘ lim s, = lug(arg)
i -

Prove this relation and make a program using it to approximate the logarithm
of a value arg im the interval stated. {In this program "log 2" may be regarded

as a known constant which, in fact, determines the base of the Yogarithm,)

The clue of the proof can be found in the invariance of the relation

. { *

Dur next example is very simple; it is so traditionel that we could call
it standard. (No'self—respecting programming course omits it, it is often the
very first example of a loop; Peter Naur uses it in his article "Proof of

algorithms by general snapshots", 1966, BIT, 6, pp 310-316.)

Given & sequence of values
a(1], a[2], a[3], ... , alN] (with N> 1)

and a variable called "max", Make a piece of program assigning to the variable
named "max" the maximum value occurring in the sequence., (As N > 1, the sequence
is not empty and therefore the task makes sense; it is not required that any

two values in the sequence differ from each other, the maximum value sought

may occur more than once in the sequence.) If he welcomes the experience the

reader is invited to try to make this piece of program himself before reading

EwWD287 - 45

an.,

How do we define the maximum value occufring in a sequence of length N
for general N > 17 If we call "maximumk" the maximum value occurring among the

first k elements a[1], ves 5 alk]

1) the ansewer sought is maximumN
2) the values maximumk are given
for k =1 by the base: maximum1 = a[1] (5)

—appealing to the knowledge that the maximum element in a
sequence of length 1 must be the anly element occurring in the
sequence

for k > 1 by the recurrence relation: maximum = MAX(maximumk_1, a[k]) (6)

k
—assuming the knowledge of the function MAX of two arguments.

The recurrence relation (6) presents us with an additional difficulty

because it is not of the form

s, = S(si_1)

because -via "a[k]"- the value k occurs at the right hand side not exclusively
in the subscript "k=1". To overcome this we use a trick that might be called

a method. If we call n the k-=th natural number, then n

K = k; the numbers nk

k
the obvious recurrence relation M = 1+ M=t ® We can now rewrite the definition
for the sequence of values maximumk in the form of a definition for the pairs

(nk, max1mumk):

for k=1 n, =1 (7)
maximum1 = 5[1]
> =
for k>1 n =1 +n (8)

maximumk = MAX(maximumk_1, a1 + nk_1])
and now the recurrence relations are of the form 5, = S(si_1), the
only —trivial- difference being that in Theorem 8 we started with i = Q and
here with k = 1. The trick we called & method shows that we need a second

(integer) variable; call it "m". Our state 55 will associate (with k = i + 1)

max., = maximum
i

k

The piece of program now becomes:

EWD287 - 46

max:= a[1]; m:= 1;

while m < N dg

begin m:=m + 1;
max:= MAX(max, a[m])

end .

Again the order of the two mssignment statements is essential.

We have given the above piece of reasoning and the explicit reference
to the recurrence relation of Theorem 8 because it shows a mechanism
leading the the conclusion that the part s of the~state space on which the
repetition operates needs to comprise an additional veriable. Even a moderately
trained programmer draws this conclusion "intuitively" and from now onwards
I shall assume my reader equipped with that intuition., Then ~and only then!l-
there is a much shorter path of reasoning that leads to the program we found,
It does not consider -"statically” so to speak- the sequence of values
SO' SI"" in the sense that it bothers about the values of the subscript i
in S, It appeals directly to Theorems S and 6 and works in terms of sssertions
valid (before or after} any execution of the repeatable statement. The price

to be paid for this is the duty to prove termination separately.

Given the base

k =1 maximum1 a[l]

1

and the step

1<k<N maximum = MAX(maximumk__1, alk])

the programmer "intuitively" introduces two variables which he calls "maximum"

and "k" for short and the relation to be kept invariant is
P: 1<k<N and maximym = man-:imumk .

(Here any use of "maximum" and "k" stands for the current value of the variable
thus named, while "maximumk" stands for the value as given by the recurrence
relation, This double use of the same names is tricky but programmers do it.

1 too.)

The program then consists of two parts: establishing relation P in
accordance with the base and repeatedly increasing k under invariance of

relation P, i.e. in accordance with the step.

EWD287 - 47

The initialization
*maximum:= a[‘l 1 k=t
establishes P (with k = 1), the repetition

"while k < N do
begin k:= k + 1;
maximumz= MAX(maximum, a[k])

end"

causes the repeatable statement to b%executad under the combined relation

"B and P" i,e.

k<N and 1 <k <N and maximum = maximumk

which reduces to

! Sk <N and maximum = maximum (9)

In order to show that the exscution of the repestable statement under
the initial condition (9) leaves relation P valid it is desirsble to distinguigh
between the values before and after its execution; now it would be confusing
to do so with subscripts (why?), therefore we distinguish the values after

execution by primes.

Initially we have relation (9); after the assignment k:= k + 1 we have
the relation k' =k + 1 and from the first part of (9), i.e. 1 <k <N, follows

2 =< k' <N, which implies
T<k'<N . (10)

The second assignment now becomes effectively wmaximum:= MAX(mximumk, a[k']),

resulting in the relation

maximum! = maximumk.

Relations (10) and (11) combine to a replica of P, but now for the primed

quantities,

Termination follows from the fact that each execution of the repeatéble
statement involves an effective increase of the integer values variable k.

After termination we have, according to Theorem 5, P and non B, i.e.

1 <k <N and maximum = maximumk and non k <N ;

EWD287 - 48

from the first and the last term we conclude k = N and then from the middle part
maximum = maximumk

which concludes the proof.

Exercise, Make a program effectively assigning "prod:i= X * Y" with integer X and
Y, satisfying X > 0, Y>0

a) using Dniy addition and subtraction

b) using in addition the boolean function “odd{x)", doubling and halving

of a number. {The so-called Egyptian multiplication.)

Exercise. Make a program effectively assigning "rem:= REM(X,Y)" with integer X
and Y, X >0, Y >0, where the function REM(X,Y} is the remainder after division
of X by Y

a) using only addition and subtraction

b) using in addition doubling and halving of a number, Modify both programs
such thatm in addition" “quot:= QUOT(X,Y)" will effectively take place. (The

so~called Chinese division,)

We conclude this section by an example of the (standard) circumstance in
which & recurrence relation should not be translated blindly into a loap. Given
two sequences of values

(1], «{2], <., x[n] and

vl11, vi2), .., yiN] with N> 0 ;
make a program assigning to the voolean variable named "eq" the value true if
x[i] = y[i] for all i satisfying ! < i < N and the value false if in that range
a valuye of i exists such that x[i] # y[i]. (Thg sequences may be empty, in that

case "eq" should get the value true.)

How do we define equality of sequences of length N for general N? Again

by means of a recurrence relation,

let eq. mean "no difference has been observed amang the first i pairs";
1

then the sequence aof values eqi is given by

for i = O eqy = true
for i >0 eq, = eq, and x[i] = y[i]

EWD2B7 - 49

The net effect of the program to be made should be

Eq:= eq, .

A blind translation into initialization followed by repetition would lead

t
° eq:= true; i:= Q;

while i <N do begin i:= i + 1; eq:= (eq and x[i] = y[i]) end .

Although the above program is correct, the following program, besides being

equally correct, is on the average much more efficient:

eq:= true; ii= Q;

while i <N and eq do begin ii= i + 1; eqi= (x[i] = y[i]) end

because it tefminates the repetition as soon as a difference has been found.

Exercise. Prove the correctness of the second program,

EwWD287 - 50

A first example of step-wise program compositian,

The little examples dealt with so far are not representative for the
programs that have to he made: they are several orders of magnitude too small.
.A trained programmer "sees™ thes at a glance, he can think about them without oy
pencil and paper. They are of the size of a paragraph, while we have to deal
with programs of the size of pages, chapters or books and eventually —to
quote A.Perlis— with programs that no longer fit into a single programmer's
skull! The composition of such very large programs falls outside the scape of
this little monograph, but the very least thing we can do is to show the
reader how to organize his thoughts when composing, say, page-size programs,

If in the follewing the reader thinks that I am too careful, he should bear

the chapter-size programs in mind. {(If he is still inconvinced he should

study a one-page program by a messy programmer: he will then discover that even
a single page has room enough for a disgusting and intellectually unhealthy

amount of unmastered complexity!)

Here we go. Consider sequences composed of 1's, 2's and 3's which contain
only pairs of different adjoining non-empty subsequences, Examples of good
Sequences are

1

12

12312

J212321 .

Examples of had sequences are

11

12323131

32132132132 .

In all probability the list of good sequences is infinite. I tell you that
there is as least one good sequence of length 100 (i.e. consisting of 100 digits)
and it is asked to make a program gsnerating in alphabetic order the beginning
of this list up tp and including the first sequence of length 100. (Alphabetic
order under the convention that the 1 precedes the 2 and the 2 precedes the 3;
the criterion can be translated into a numerical one by putting a decimal point
in front of the sequence and then interpreting the sequence as a decimal fraction.

With that convention alphabetic order is the order of increasing magnitude,)

EwD287 - 51

I have used this example extensively in aral examinations. After some initial
skirmishes, most students discovered for themselves
1) that a wrong sequence could never be made into a good one by extending it,
i.e. 8all good seguences are either a one-digit sequence of a one—digit extension
of a good sequence
2) if sequence B is a good one~digit extension of sequence A, sequence A
precedes sequence B in the alphabetic order, i.e. a good sequence is followed
by all its possible extensions
3) the alphabetic order requires that the good sequence A will first be followed
by the extensions starting with a 1 (if any), then by those starting with a 2
(if any) and then by those starting with a 3 (if any). .

These observations lead to the following rule:
a good sequence should be printed and be extended with a 1 as a next trial
sequence; from a bad sequence terminal 3's (if any) should be removed and the

final digit (now # 3) should be increased by 1, giving the next trial sequence,

The beginning of the list to be generated is
1
12
121
1213
12131
121312
1213121
1213123
by searching the following list of trial sequences (omitting the ones marked by *)
1
¥ 11
12
121
} 1211
} 1212
1213
12131
¥ 121311
121312

EwWD287 - 52

1213121
12131211
12131212
12131213
1213122
1213123

— e e —

Many of them suggested a program of the following structure.

pragram 1:
SET SEQUENCE TO ONE AND LENGTH TO DNE;
repeat if GOOD then begin PRINT; EXTEND WITH ONE end
| else ADJUST
until length > 100

in which the primitive "EXTEND WITH ONE" extends the given sequence with a 1 and
the primitive "ADJUST" increases the last digit by 1 after removal of terminal

3's if any. (For the operation "ADJUST" to be defined it is necessary that after
removal of terminal 3's the remaining sequence won't be empty; this follows from

the fact that the list to be produced is known to contain a sequence of length =

To a program along the lines sketched, & number of objections can be made.
One objection is that at the beginning of the execution of the repeatable stateme
its length will be < 100 and furthermore we knaw that the operation "ADJUST" will
never increase its length; nevertheless each adjustment is followed in time by
& test on the length and the first objection is therefore that these tests are
superfluous. A more severe objection is to be found in the tartuous reasoning
required to establish that the end condition is OK. Instead of stopping when
for the first time a solution of length 100 has been printed, it will stop when
the first trial sequence of length > 100 has been generated, It is clear that
the above program will never produce a solution larger than 100 because such a
long trial sequence will never be subjected to the test "GOOD". To show, however,
that it will stop after the production of the first solution of length = 100 is

much harder.

A much nicer program is based upon the observation that we can regard the

empty sequence as a virtual solution which doss not need to be printed,

100)

nt

EwD287 ~ 53

program 2:
SET SEQUENCE EMPTY AND LENGTH TO ZERD;
repeat EXTEND WITH ONE;
while non GOOD do ADJUST;
PRINT

until length = 100 .

The objections raised are no longer valid, The true reasan, however, why
the above program is so much more attractive, is to be found in the cbservation
that we can mentally combine the first two statements of the repesstable staetement

into a single one. The above version is a refinement of the more abstract

program 3:
SET SEQUENCE EMPTY AND LENGTH TO ZERD;
repeat TRANSFORM SEQUENCE INTO NEXT SOLUTION;
PRINT
until length = 100.

(Note. In programs 1, 2 and 3 the (outer) repetition could also have been
prog

controlled by a while—clause.)

This is much more preferable. Observe that here, in program 3,

we have a level of descriptiohfrom which the trial sequences have disappeared!
It is a level of descriptio“which can be understood in terms of solutions only.
By distinguishing, i.e. by mentally isolating the operator "TRANSFORM SEQUENCE
INTO NEXT SOLUTION" and postponing its refinement, we have separated the task
of formulating the correct criterion for termination fram how the transition
from one solution to the next will be performed via a number of trial sequences
which may be rejected. Remembering the limited size of the programmer's skull,
this separation is a vital achievement, as it enables us to deal with one thing

at a time,

To show that all this is not just idle playing with words we shall proceed
from program 3 as our starting point, refining from there onwards. By way of
surprise we shall arrive at a refinement differing from program 2,
again without essentially changing the algorithm. (Although
I had used this example extensively in examinations, the next version only
occurred to me when writing this very text! This is just to show, that such

abstract programs are vital stepping stones in our process of constructive

EwWD287 - 54

reasoning!)

To find this refinement we do a step backwards, asking ourselves what
enables us the transition from program 1 to program 2., It was the introduction
of the empty sequence as "virtual soclution". In praogram 1, the first solution
was given, the others were generated, in program 2 and 3, all solutions to be
printed are generated by the same operator "TRANSFORM SEQUENCE INTD NEXT
SOLUTION",

When refining tHis operator the trial sequences have to be generated and
in program 2 we find that the criterion "GOOD" has to be applied to trial
sequences generated in two different ways, either by “EXTEND WITH ONE" or by
"ADJUST". Can we clean up our refinement by insisting that all trial sequences
to be tested are generated by the same operator? Yes we can by slightly changing
the extension operator and slightly generalizing the opesrator "ADJUST", as in

the following refinement,

TRANSFORM SEQUENCE INTO NEXT SOLUTION:
EXTEND WITH ZERD;
repeat ADJUST until GOGD .

Here "GOOD" stands for a rather camplicated function; an alternative form
uses the boolean variable "good" and leaves us with the task of refining the

operator "SET GOOD",

TRANSFORM SEQUENCE INTO NEXT SOLUTION:
boolean good;
EXTEND WITH ZERD;

repeat ADJUST; SET GOOD until good .

{Note. In the above refinement the repetition is not to be controlled by a

while-clause, Why?)

Now the time has come to make & decision on the representation of "sequence”.
It has a property "lengtﬁ“, now satisfying the inequalities O < length < 100
and is an ordered sequence of length digits. The appropriate vehicle for representing
this sequence is (part of) a linear array of integer variables. We suggest to

declare an integer array d[1:100} and that at any moment the sequence will be

represented by

d1], d21, ..., d[length] .

EWD26T7 - 55

We draw attention to the fact that this is a well-motivated decisign. An

alternative representation would have been
d[101 - length], d[102 ~ length], ... , d[100]

but with the latter convention all operations changing the length of the sequence
would imply moving the values upwards or downwards, whereas with

the the suggested representation, the values being kept can "stay where they are".
When the chosen convention is made to apply to all sequences manipulated (i.e.

to solutions as well as to trisl sequences) the following four refinements

are fairly obvious. (As far as they are concerned, the chosen representation

is certainly adequate.)

SET SEQUENCE EMPTY AND LENGTH TQ ZERD:
length:= Q

EXTEND WITH ZERO:
length:= length + 1; d[langth]:z

ADJUST :
while d[length] = % do length:= length = 1;
d{ 1ength }:= d[length] + 1

PRINT:

it= Q; repeat i:= i + 1; printdigit(d[i]) until i = length; newline

where we have assumed the availability of the primitives "printdigit" and "newline"
for the transition to the beginning of the next line of output. The only

refinement which still can cause headaches is the operator "SET GOOD",

To investigate an arbitrary sequence is indeed & gruesome task, but it
becames much easier if we exploit the circumstance that the only seguences
subjected to the test are trial sequences and sach trial sequence is a one-digit
extension of an (earlier) good sequence. As a result it can only viclate the
conditian if its terminal element is included in one of the subsequences, i.e,
it has to be rejected as bad if there exists an m (satisfying 0 <2 * m < length)

such that the pair of adjoining "msequences"
dllength = 2*m + 1] ... d[length - m| and
d[length ~ m + 1] .., d[1length]
are esqual. Assuming the availability of the operator needed to compare the

msequences of this pair {for arbitrary, given m) our first refinement of "SET GOOD"

is

EwWD287 - 56

SET GOOD:
integer m;
good:= true; mi= 1;
while 2 * m < length and good do

begin GIVE GOOD THE MEANING. THAT THE MSEQUENCES DIFFER;

mi=m + 1

or (prnbably) better

SET GOOD:
integer m, mbound;
goad:= true; mi= 1; mbound:= length div 2;
while m < mbound and good do

begin GIVE GOOD THE MEANING THAT THE MSEQUENCES DIFFER;
me=m + 1

end

Here the operator div is the integer divide, rounding the quotient to the
nearest integer towards zero. The double condition for continuing the repetition
expressea that the investigation can be stopped as soon as an equal pair has
been found, as this is sufficient to establish its being bad. We have sesen this

construction st the end of the previous section, sse EWD287 - 49.

Question, An alternative form would have been
integer m;
good:= true; mi= length div 2;
while m > 0 and good do
begin GIVE GOOD THE MEANING THAT THE MSEQUENCES DIFFER;
m=m = 1

end .

Why do we propose to do the investigation in the order of increasing m?

Finally we refine the comparison of two masguences

GIVE GOOD THE MEANING THAT THE MSEQUENCES DIFFER:
integer firstend, k;
firstend:= length -lm; ki= O;
Xepeat good:= (d[firstand - k] # d[lsngth - k]);
ki= k + 1

until k = m or good

EWD287 -~ 57

again (see EWD2B7 - 49) expressing that the comparison of two msequences can be

terminated as soon as their difference somewhere has been established,

Collecting the declarations and inserting the refinements —keeping their
names as labels for explicetive purposes, we arrive at the complete program
as shown on EWD287 - 58. The succesive levels of detail have been indicated

k
by systematic use of indentation,

Exercise.

Given a linear array of 36 positions, make a program generating all
ways (if any) in which these'positinns can be filled with zeros and anes (one
digit per position) such that the 32 quintuples of five adjoining positions
present the 32 different patterns of five binary digits, restricting ourselves
to sequences starting with five zeros. C.Ligtmans has shown that any such
solution must end with four zeros, His argument is as follows. Each solution
must start with 000001... -because the pattern 00000 may only occur once.
Somewhere in the sequence the pattern 10000 must occur once; as this pattern
can only be followed by 2 O or a‘1, its "following"quintuple must be either
00000 or 00001, presented already by the first two quintuples, As a result the
pattern 10000 cannot occur in the interior of the linear sequence and therefore
it must be the rightmost pattern. From Ligtmans' observation it follows that
we can close the ring, making the last four zeros overlap with the four initial
anes. The 32 different patterns are then arranged in a cycle af 32 positions.

The patterns have to be generated in alphabetic order.

Discussion and same hints,

I take for granted that, given a sequence of 36 binary digits the boolean
function stating whether this sequence represents s solution is computable and
that we could write an algorithm computing it, In principle we could write a
program generating all 36-~digit sequences with five leading rzeros in agphabetic
order and subjecting all these sequences to the test just mentioned, thersby
selecting those satisfying the test. This gives a very unrealistic program and
we shall not pursue it; we only remark that generating the trial sequences in
alphabetic order will ensure that the solutions, when found, will be found in

alphabetic order as well,

The program to be made could be regarded as a derivation from the ridiculous
one sketched above, viz. by the introduction of some significant short-cuts. At

present we shall not stress this relation any further,

EwWD287 - 58

00l = y3buat TT3UNn

autTMau fyiBuat = T TTIUN ﬁmﬂgnuvﬁmﬂnvCﬂnn £ + T =:T Jesada1 ip =iT

-

i ININd

fpoob TT3un

I+ w =3
fpoob TIo w = 3 Fryum
L+ 4 =2
$([% - yabuatr]p # [% ~ puagsity]p) =ipooh JEadeT
0 =ty fw - yjbuaT =:puajsiTy
1434410 SIININDISW 3IHL LVHL ININVIN 3HL 0009 3AI9 UTbaq

6p poob PO® punoqu X w BTIUM

2 ATP L#@bﬂﬁ =ipunoqu ¢ =:w !3nI} =:poob
1009 135
‘1 + [y3buarlp =:[yrbuarlp
f1 - y3buar =:q3buat Op ¢ = [y3buarlp FTTYM
}15nray ¥esdax
0 =t[yzbuar]p ¢| 4+ yzbuay =:y3zbuat
10432 HLIM ON3LX3
:NOILNTOS LX3N OINI 3IN3INDIS WHOASNYHL Feadat
‘{0 =:y3zbuat
10437 0L HLON3IT ONV ALdW3 JININDIS L3S

fpusisity *x fpunogu ‘w ‘t ‘yzbuar Tsbajutr {poob ueaToCq

uﬁoown—un Reiie Iabajur uibaq

EWD287 ~ 59

Instead of generating all 36~digit seguences and selecting from this set,
we aim at generating only a much smaller set which is guaranteed to contain
all solutions. Let us define as "length of a sequence" the number of quintuples
it contains (i.e. length = number of digits - 4). Let us call a sequence
"acceptable" if no two different quintuples in it present the same digit pattern.
With these definitions the solutions are a subset of the set of acceptable

sequences, viz,. those with length = 32,

We do not know whether there are any solutions at all but we do know that
the set of acceptable sequences is non~empty (e.g. "O0000"}; we do not have a
ready-made criterion to recognize "the last solution" when we encounter it,
in our set of acceptable sequences, however, we can designate a virtual last
one (viz. "00001"); when that one is encountered we know that all acceptable
sequences with five leading zeros have been scanned and that no further solutions

will be found.

Summarizing, we know of the set of acceptable sequences
1) it is non-empty and finite
2) we know a first member ("O0000")
3) we know a virtual last member ("O0001")
4) we can transform am acceptable sequence into the next acceptable sequence
5) solutions are all acceptable sequences (Bxcluding the virtual one)
satisfying the further eundition length = 32,

6) no extension of & sequence that is not acceptable will be acceptable,

It is this latter property which mekes this problem mathematicaaly speaking

very much similar te the previous one.

Hint. The test for acceptability can be speeded up considerably by tabulating

which quintuples are to be found in the sequence.

Remark. This problem is difficult and it will take you hours to produce a

beautiful program. But these hours will be extremely well-spent.

EWD2B7 - 60

The shortest spanning subtree of a_graph.

I have chosen the following example for a variety of reasons. Firstly,
although the final program is rather short, the solution is far from trivial.
Secondly, our true subject matter is rather "structure" than streightforward
numerical material and as a result the decisions taken to represent the
information (using numerical values) are more manifest, Finally it presents

us with a type of decisions of strategy which are typical,

Two painfscan be connected by one point-to-point connection, three points
can be connected with each other by two paint-to-point connections, in general
N points can be fully interconnected by N-1 point~to~point connections. Such
a set of interconnections is called a "tree", the point—to-point connections
that HAXNXXXMMXAKKXXXMMXAEKXMNEXXMN constitute the tree are called "its branches".
Cayley has been the first to prove that the number of possible trees between

N points equals NN_2.

We now assume that for each possible branch the length has been given,
Defining the length of a tree as the sum of the length of its branches, we can
ask for the shortest tree between those N points. (For the time being we assume
that the given lengths afe such that the shortest tree is unique. From our
analysis it will follow that no two branches of equal length is a sufficiant

condition for this assumption,)

Note. The points don't need to lie in a Euclidean plane, the given distances

don't need to satisfy the triangle inequality.

An apparently straightforward solution would generate all trees between
the N points, compute their lengths and select the shortest cne, but Cayley's
theorem shows that that would become very expensive as N increases. The following
theorem enables us to find the shortest tree with considerably less work. Given
a subtree of the shortest tree, then the shortest branch that can be found
between one of the points touched by this tree and one of the points not touched

by this subtree will be part of the shortest tree between all N points.

This theorem is easily proved. Colour the branches of the subtree and
all points connected by it red; colour all the remaining points blue and colour
all branches leading from a red point to a blue ane violet., The theorem asserts

that the shortest violet branch is part of the shortest tree as well. Call this

EwWD287 - 61

shortest vinlet branch V and assume thaf it is not part of the shortest tree T;
we shall then construct a tree T' which is shorter than T, thus arriving

at a contradiction. Add to the tree T the violet branch V; in the resulting
graph the violet branch ¥V must be contained in a closed loop. As this violet
branch connects a red point with a blue one, it is clear that, going around the
loop we must find at least one other violet branch in this loop. Call this V'
and remove V'. The resulting graph has again N-1 branches, it interconnects all
N points (we have removed a branch from & loop) and therefore it is a tree

connecting all N points. Call it T'. From T a2 T+V =V follows:
length(T') = length(T) + length(V) ~ length(v') .

As V was the shortest violet branch, we have
length(V) < length(Vv'),

go that

length(T'} < length(T)

i,e, the tree T cannot have been the shortest one.

The above thearem tells us that a red subtree of the shortest tree T can
be extended with a point and the b&anch leading to it, viz. the shortest
violet branch and the blue point it leads to can be coloured red. As a result,
if we can find a red subtree to start with, we can let it grow with a branch
at a time. But it is very easy to start with a red subtree, viz. the red
subtree consisting of a single point (any point will do) and no branches.,
Starting from that subtree we can let it grow to the sortest tree T in N-1
stEps,ﬂéach step adding a new red branch and a new red point to it. We can

represent the framework of this algorithm as followst

COLOUR ONE PDINT RED AND THE REMAINING ONES BIUE;
while NUMBER OF RED POINTS < N do
begin SELECT SHORTEST VIOLET BRANCH;

COLOUR IT AND ITS BLUE ENDPOINT RED

end .

As it stands, the main task will be "SELECT SHORTEST VIOLET BRANCH",
because the number of violet branches may be quite large, viz. k *(N - k)
where k = NUMBER OF RED POINTS, If "SELECT SHORTEST VIOLET BRANCH" were
an isnlated operation, there is not much that could be done about it; in the
ahove program, however, the operation has to be performed N~1 times in succession

"and the successive sets of violet branches are strongly related: they are the

EwWD287 - 62

branches between red and blue points and each time only one point changes its
colour. We would like to exploit this with the aim of reducing the set of branches
from which each time the shortest branch should be selected: we are looking for

a useful subset of the violet branches. We still don't know if such a really
useful subset exists, but let us assume for the moment that it can be fourd

and let us call it the "ultraviolet" ones, If such a set exists {each time) it

is only helpful provided that we have a cheap way of constructing this subset

and our only hope is to be found in the past history of the computation, for
instance the set of ultraviclet branches used the preceding time, This suggest

a program of the following structure:

COLOUR ONE POINT RED AND THE REMAINING ONES BLUE;
CONSTRUCT THE SET OF ULTRAVIOLET BRANCHES;
while NUMBER OF RED POINTS < N do
begin SELECT SHORTEST ULTRAVIOLET BRANCH;
COLOUR IT AND ITS BLUE ENDPOINT RED;
ADJUST THE SET OF ULTRAVIOLET BRANCHES

where the set of ultraviolet branches should be defined in such a way that
1) it is guaranteed to contain the shortest violet branch
2) the set of ultraviolet branches is in general much smaller than the set
of the just violet anes
3) the operation "ADJUST THE SET OF ULTRAVIOLET BRANCHES" is chaap —otherwise

the profit we are trying to gain is laost.

Can we find such a definition of the concept "ultraviolet"? Well, for lack of

further knowledge I can only suggest that we try,

Considering that the set of vieolet branches leading from the k red points
to the N~k blue ones has k *(N-k) members and observing criterion 1, two obvious
possible subsets present themselves immediately:
1) Make for each red point the shortest violet branch ending in it ultraviolet,
In this case the set of ultravialet branches has k members.
2) Make for each blue point the shortest vialet branch ending in it ultraviolet,

In this case the set of ultraviolet branches has N~k members.

EwWD287 ~ 63

Our aim is to keep the ultraviolet subset small, but from their size we
won't get a clue: with the first choice the sizes will run from 1 through N-1,
with the second choice it will be the other way round, So, if there is any
thance of deciding we must find it int the price of the operator "ADJUST THE
S5ET OF ULTRAVIOLET BRANCHES",

Without trying the various adjustments of the ultraviolet sets, there is
one observation which suggests a preference for the second choice. In the first
choice k ultraviolet branches may lead from the red tree to the same blue point;
then we know a priori that ¥KX¥ at most one of them will be coloured red, while
with the second choice each blue point is connected in exactly one way to the
red tree (the sum of the number of red and ultraviclet branches is then
constantly = N=1} and it is possible that all ultraviolet branches at a certain
moment will eventually be coloured red —in which case the adjustment operator
was empty but for the removal of the one made red. Therefore, let us try the
second choice for the criterion ultraviolet. (The initial value of this set
are the N=1 branches leading from the one red point to the remaining N-1 blue

ones, so that presents no problem.)

Consider now that we have a red subtree R and that from the corresponding
set of ultraviolet branhches (according to the second choice -I:;-F&; longer
repeating that qualification) the shortest branch leading to the blue point P
and the blue point P have been coloured red, The number of ultraviolet branches
has been decreased by 1 as it should. Are they the good ones? For each blue
point they represent the shortest connection to the red tree R, they ahouid
represent the shortest possible connection to the new red tree R + P. But this
is for each blue point B a simple comparison: if the branch PB is shortar than
the ultraviolet branch connecting B to R the latter is to be replaced by the
branch PB -its colour is washed away and PB is meds ultraviolet instead- otherwiss
it is maintained, as the growth of the red tree R with the point P did not
provide a shorter way of connecting B with the red tree. As & result the
adjustment operator -which has to deal with N~k blue points~ is in price a
linear function af N and K {and not quadratic as k *(N~k)) and the introduction

of this concept of ultraviolet is indeed giving us the gain we were hoping faor,

Exercise. Convince yourself that the rejected choice of the concept "ultraviolet"

is not so helpful,

EWD287 - 64

Let us try to represent our algorithm in its current stage of refinement;

COLOUR ONE POINT RED AND THE REMAINING ONES BLUE;

CONSTRUCT THE SET OF ULTRAVIOLET BRANCHES;

while NUMBER OF RED POINTS < N do

begin SELECT SHORTEST ULTRAVIOLET BRANCH AND CALL ITS BLUE ENDPOINT P;
COLOUR IT AND POINT P RED;
ADJUST FOR EACH BLUE POINT B BY COMPARING WITH THE BRANCH BP

end .

By now the time has come to bother about the representation of the infor-
mation involved. We assume that N points being numbered from 1 through N, we

assume the length of the branches being given by a two-dimensional array
real array distance[1:N, 1:N] ,
such that for 1 < i,j <N

distance[i,j] = distance[j,i] = length of branch connecting the points i and j.

The answer asked is a tree of N-1 branches, each branch being identified
by the numbers of its endpoints; the answer is an (unordered) set of {unordered)

pairs of numbers. We can represent them by twa arrays

integer array from, to[l:N-1]

where for each h satisfying 1 < h < N-1 the pair "from[h], to[h]" gives
h i - b, i

xxuxkui (the numbers of) the endpoints of the h-th branc In our fl?al ‘

solution the branches will be numbered (by h), the only order that makes sense

is the order in which they have been coloured red. The observation made earlier

that the total number of branches (red and ultraviolet together) to be manipulated

remains constant suggests that we store them in the same array:

if k = NUMBER OF RED POINTS
from[h], to[h]| will be red for | = h<k
from[t], to[h] will be ultraviolet for k <h < N ,

The ultraviolet branches will be represented leading from a red point to a
blue one., The array "length" has been introduced in order to reduce the number

of subscriptions to be carried out:
length[h] = distance[from{ h], to[h]]

will hold (and will be restored immediately when temporarily invalid),

EWD2B7 - 65

Point N is chosen as the initisl point to be coloured red., SELECT SHORTEST
ULTRAVIOLET BRANCH is a straightforward search for a minimum value (see EWD287 - 46).
COLOUR IT AND POINT P RfD is done by an interchange in the three arrays (if
necessary), followed by an increase of k, In ADJUST FOR EACH BLUE POINT B BY
COMPARING WITH THE BRANCH BP, h scans the violet branches, to[h] will scann the
blue points and len is wsed to store the length of branch BP. The final program

is given on the next page.

Exercise.

Let distance[i,j] be the distance from point i to point j in that directipn.

As we may have one-way traffic, the relation

distanca[i,j] ¥ distance[j,i]
is then permissible, Mak; a program finding in the graph the shortest path
leading from point I to point J. This is & difficult exercise, therefore it

is worth trying!

EWD287 - 66

il
P
£

PUs | + y =ty ‘auttmsu {([y]o3)3urzd $([uluory)zurzd UTESG O N > Y STTym ¢}

"

")
C
L

.-

y fpus d =

pua { + Y = [4]mezy fuat =3[y]y3bust dmmmm.mm.ﬁcgz#mcmﬂ > ust Hﬂ.mﬁﬁcgov ‘dJasueystp =tuaT UTBaq

OP N>y 3TTYM

iy =1y
*dd HONVHH JHL HLiIM ONIWVAWOID AS € INIOJ 3N78 HOVY3 HOJ L50raV

fL o+ % =2y

0
=
7]

uar u"ﬁccﬂeucpm:mﬂ uﬁccﬁEuxpmcmH uhﬁxg;umCMﬁ “qucvmcm =:tuaT
.mz u“ﬁ::ﬂsuov mﬁc:ﬂsuna n"manp uﬁxunu =iy
ty =:[yutwuoxy [yurmwory =:[»Juoxy [H]uoxy =:y UTDaQ TP yutw # ¥ IT
‘034 4 INIOd GNV LI 403703
uhLCﬂEuou =3

‘Pua | 4+ y =iy {pud y =:yutw fuaT =:usTuTw UTDSq OP uSTUTW - uaT Hﬂ.mﬁxgc#mcmﬂ =iuaT ulbaq OGP N ~ Y BTIYM
Y1+ 0 =iy [y]yzbuar =tuatuTw fy =iyutw
‘d INIOHON3 3076 SL1I TV GNV HONVHE 1370IAVHLIN 1S3ILHOHS 133135 uTbag

Op N> A BLTym

PUd |+ y =iy f[y'N]acueysTp =:[yJuzbuatr fy =:{yJo3 N =:[yjuoxy GTBSQ Op N > y STIM {| =:y
SSIHONVHE 130IAVHLTN 40 L3S 3IHL LINHISNO3
Y =

#3071 S3IND ONINIVWIH 3HL ONY G3¥ INIOd 3NO ¥nOo703

fd *yutw *y *y Iabajut fuaTutw *uay TEax mmrrznwg yzbuat Rezzw Teax uﬁ—lzuwu o0} ‘wozj; Reliw Isbajutl UIbaq

EwWD287 ~ 67

The tawers of Hanpi.

Given three pegs, numbered 1, 2 and 3 and a set of N disks (N 2:1)
of decreasing diameter and a hole in their centre, At the beginning the N
disks are all on peg nr.l in order of decreasing diameter, i.e=, the largest
disk is at the bottom, the smallest is st the top side of the first peg. It
is requested to move this tower from the first peg to the third one in a
number of "moves", where a "move" is moving one disk from the top of a peg
to the top of another peg with the restriction that never a larger disk may
be placed on top of a swmaller one. Hereby the second peg may be used as

auxiliary "store" for pegs which are "in the way".

Now, if we can solve this game for any two pegs for N = No, we can also

solve it for N = NO+1. Call

movetower(m, A, B, C)

the set of maves that transports a tower of m disks from peg A (if necessary

via peg B) to peg C. The individual moves are of the farm
movedisk(A, B) .
The set of moves

movetower{N_+ 1, A, B, C)

0

is the same as that of the successive moves of

movetower(No, A, T, B)
movedisk (A, C)
mavetnwer(No, B, A, C) .

In words: first a tower of N, disks is moved from A to B, using C as

0

auxiliary peg, then the N_+ 1st disk is moved directly from A to C and

finally the tower of NO, Shat has been placed temporarily on peg B is moved

to its final destination C, using A as auxiliary peg. As the tower consists

of the NO smallest disks, the presence of larger disks will not cause violation
of the condition of decreasing disk diameter. Moving a one-disk tower (Noz 1)
presents no difficulty and as a result the puzzle has been solved, The

guestion posed to us, however, is to make a program generating the diskmoves

in the order in whizh they successively have to take place,

Note. It is rmot realistic te require the execution of this program for large

EwD287 - 68

N
values of N because the total number of moves required = 2 - 1.

The fact that a move with N> 1 is decomposed intoc three “smaller"
moves, suggests thét we keep a list of moves to be done. If the first one to
be done is simple, we do it, otherwise we replace it by its decomposition and
reconsider our obligations. In both cases, when we have & list of k moves,
only the first to be done needs consideration and while we process it, the

remaining K-1 moves remain as standing obligations, This suggests that we

introduce

move, , mo

K Vg3 sreses move,,, move 1

to be done in the order of decreasing subscript, in the order from left

to right. If move, is simple, it is done, leaving

k

rnovek' k_1,o.---., move move

1
(indicating with k' the new value of k, the length of the list of obligations)

2'

otherwise move is replaced by three others, leaving

' [‘ [
movek'=k+2, muvek'_1=k+1, move 1Dk ? movek'_3=k_1,.....m0ve2, move1 .

In both transformations the lower (i.e. later) k-1 maves have been

unaffected.

A move is given by four parameters, say

n = number of disks in the tower to be moved
from = number of source peg

via = number of auxiliary peg

to = number of destination peg.

We can store these moves in four arrays integer array n, from, via, to

[1: 2%*N-1], (Verify that the list of obligastions is never longer than 2%N-1

moves,)

The nan-simple move {with N >'1), given in tabular formby

n= from= via = to =

k: N . A B C

is to be replaced by the triple

EWD287 - 69

0 = Tr3un

pua

S+ =

f[e+d]eTn =1[x]o3 [+ Juozy =:[%]erA feen]or =:[xJuozy [gei]u =i[x]u

f{nJera =:[2+4]03 {[4]o3

{1]o3 =2 14+3%]oz mﬁxgEOQm H"ﬁ—+qu0Hm £ =2 43 u
=t[zen]ern {[xJuozy=s[enJuony) - [1]u =:{zen]u TESG

8514

L= =2
wﬁﬁxHU# .ﬁquDHmvxwﬁum>0E Uthag
uayy | = mxgc 3T Fesdax

tyo=my fg =i]on fg =3 y]eTa §) =3 | woxy N =1 |]u
_ﬁwlztmuwu 03 ‘era ‘woxry ‘u AEiie Iabajur ¢y Iabajut urbaq

EWD287 - 70

nt = from' = via' = to!' =
k'= 2 = k: N—-1 B A C
k'=1 = k+2: 1 A (8) C
k' = k+2: N=1 A C B

in which the top line replaces the original one, while the next two lines are
new, (In the middle line the slement "via" has been put between brackets, as
it is immaterial; the program on page EWD287 - 69 leaves that value
unaffected.)

Remark. In the program we have not described the details ov the operation
"movedisk({A, B)". If it prints the number pair A,B, the solution will be
printed; if the machine is coupled to a mechanical hand which really moves

pegs, the machine will play the game!

The reader is strongly invited to follow the above program himgelf
for small value of N (say: 4) so that he sees how the value of k goes up and

down.

The reader is' also invited to check carefully the "shd¥ing“ of the
values N(-1), A, B and L when & non—simple mave is decomposed into three
simpler ones. This check is & painful process, so painful that everyone who
has done it, will only be too willing to admit that the above program
is rather ugly. The above program has been included with the aim of méking
him more appreciative of the elegance of the so—called "recursive solution"

which now follows,

begin procedure movetower(integer value m, A, B, C);

begin if m = 1 then movedisk(A, C)
else
begin movetower(m-1, A, C, B);
movedisk(A, C)

movetower(m-1, B, A, C)

end;

muvetower(N, 1, 2, 3)

EwD287 - T1

It introduces an operator named "movetower" with four (integsr valued)
parameters, moving a tower of length "wm" from "A" via "B" to "C". In terms
if this operator the final program collapses into a single statement as given
in the last line, viz. "movetower (N, 1, 2, 3)", All that is given in frant of
it {lines 2 to 8) describes this operator in terms of a little program, little,
because the operator is allowed to invoke itself, The definition of the operator
~the so—called “procaﬂura body"— follows completely our original analysis of the
game (page EWD2B7 - 67). Recursive procedures ~i.e. procedures that are allowed
to invoke themselves— are such a powerful tocl in programming that we shall give

some more examples of them,

Remark. Some ot the more old-fashioned programming languages do not cater for
recursion, Programming courses based on such programming languages often contain
many exercises which are only difficult becsuse the recursive solution is denied

to the student.

Ewn287 ~ 72

The problem of the eight queens.

It is requested to make a program generating all configurations of
eight queens on a chess board of 8 * 8 fields, such that no queen can take
any of the others. This means that in the configurations sought no two queens

may be on the same row, on the same column or an the same diagonal.

We don't have an operator genersting all these configurations, this
operator is exactly what we have to make. Now the (very generall) way to attack
such a problem is as follows, Call the set of configurations to be generated
A; look for a greater set B of configurations with the following properties
1) set A is a subset of set B;

2) given an element of set B, it is not too difficult to decide whether it
belongs to set A as well;

3) we can make an operator generating the elements of set B,

With the aid of the generator (3) for the slements of set B, the elements
of set B can then be generated in turn, they will be subjected to the decision
criterion {2) which decides whether they have to be skipped or handed over, thus
generating elements of set A, Thanks to (1) this algorithm will produce all

elements of set A.

Three remailks are in order.
1)} If the whole approach makes sense, set B is not identical to set A and
as it must contain set A as a (true) subset, it must bs larger. Nevertheless,
it is advised to choose it ™as small as possible®:; the more elements it has,
the more elements of it have to be rejected on account of the decision
criterion (2).
2) We should look for a decision criterion that is cheap to apply, at least
the discovery that an element of B does not belong to A should (un the avsraga)
be cheap.
3) The assumption is that the generation of the elements of set B is easier
than a direct generation of the elements of set A. If, nevertheless, the generatibn
of the elements of set B still presents difficulties we repeat our pattern of
thinking, re-apply the trick and look for a still larger set C of configurations

that contain B as subset, etc.

EwD287 - T3

Above we have sketched a very geners! approach, applicable to may, wvery
different problems, Faced with a particular problem, i.e. faced with a specific

set A, the problem of course is, what to select for our set H.

In a moment of optimism one could think that this is an easy matter, as
we might consider the following technique. We list all the mutually independent
conditions that our elements of set A must satisfy and omit one of them.
Sometimes this works but as a general technique this is too naive; if we want
to see its shortcomings, we only need to apply it blindly to the problem of the
eight queens., We can characterize our solutions by the conditions:

1) there are 8 queens on the board

2) no two of the queens can take one another.

Dmitting either of them gives for the set B the alternatives

Bl: all configurations with N queens on the board such that no two queens
can take one another

B2: all configurations of 8 gqueens on the board.

But both sets are so ludicrously huge that they lead to utterly impractical

algorithms. We have to ‘be smarter., How?

Well, at this stage of our considerations, being slightly "at
8 loss" we are not so much concerned with the efficiency of our final program
but rather with the efficiency of our own thought processes! So, if we decide
to make a list of the properties of salutions, in the hope of finding 8 useful
clue, this is a rather undirected search, we should not invest too ﬁuch mental
energy in such a search, that is: for a start we should restrict ourselves to

their obvious properties. Let us go ahead,

a) No row may contain more than one queen, 8 queens are to be placed

and the chess board has exactly 8 rows., As a result we conclude that each row
will contain exactly one queen.

b) Similarly we conclude that each column will contain exactly one queen,

c) There are fifteen "upward" diagonals, each of them containing at most
ane queen, i.e, B uoward diagonals contain exactly one queen and 7 upward
diagonals are empty. |

d) Similarly we conclude that 8 downward diagonals are occupied by one queen
and 7 are empty.

e) Given any non—empty configuration of gqueens such that no two of them can

take one another, removal of any of these qu;ené will result in a configuration

EwD287 - T4

sharing that property.

Now the last one is a very important property: in our earlier terminology
it tells us something about any non~empty configuration from set B1. Conversely
it tells us that each non—empty configuration from B} can be generated (in N
different ways!) by extending a configuration from Bl with N-1 gqueens by
snother queen. We have rejected Bl because it was too large, but maybe wa
can find a suitable subset of it, such that each non-empty configuration of
the subset is a one-queen extension of only one ather canfiguration from the
subset. This "extension property" suggests that we are willing to consider
configurations with less than 8 gueens and that we would like to form new
configurations by adding a queen to an existing configuration - a relatively
simple operation presumably. Well, this draws our attention immediately to
the generstion of the elements of the (still mysteriaus) set B, For instance:
in what order? And this again reises a question to which, as yet, we have not
paid the slightest attention: in what order are we to generate the solutians,
i.e. the elements of set A? Can we meke a reasonable suggestion in the hope

of deriving a clue from it?7

Priocr to that we should ask ourselves: how do we characterize solutions
once we have them? To characterize a solution we must give the positions of 8
queens. The queens themselves are unordered, but the rows and the columns are
not: we may assume them to be numbered from O through 7. Thanks to property a),
which tells us that each row contains exactly one queen, we can order tﬁa queens
according to the number of the row they occupy. Then each configuration of 8

queens can be given by the value of the integer array x[O:T], where

x[i] = the number of "the column occupied by the queen in the i-th row.

Each solution is then "an 8-digit word" (x[0]...x[7]) and the only
sensible order in which to generate these words that I can think of is the

alphabetic order.

Qﬁgﬁg. As a consequence we open the way toc algorithms in which rows and columns
are treated differently. At first sight this is surprising, because the original
problem is completely symmetrical in rows and columns. We should be glad: to
consider asymmetric algorithms is exactly what the above considerations have

taught us!)

EWD287 ~ 15

Returning te the alphabetic order: now we are approaching familiar grounds.
If the elements of set A are to be generatad in alphabetic arder and then have
to be generated by sélecting them from a larger set H, then the standard technique
is generating the elements of set B in ‘alphabetic order as well and ta produce

the elements of the subset in the order in which they occur in set B,

first we have to generate all solutions with x[O] = 0, then all with
x[O] = 1 etc.; the solutions with x[O] = 0 have to be generated first those
with x[I] = 0 (if any), then those with x[1] = 1 (if any), then those with
x[t] = 2 (if any) etc. In other words: the queen of row O is placed in
column O —say: the field in the top left corner— and remains there until all
elements of A (and B) with queen O in that position have been generated and
only then is she moved one filed to the right to the next column, For sach
position of queen O, queen 1 will walk from left to right in row 1 -skipping
the fields that are covered by queen O~}for each combined position of the first
two queens, queen 2 walks along row 2 from left to right, skipping

all fields covered by the preceding queens, stc.

But now we have found set B! It is indeed a subset of Bl: set B consists

f‘
° all configurations with one queen in each of the firzt N rows, such that

no two queens can take one snother.

Having established our choice for the set B, we find burselves immediately
faced with the task of generating its elements in alphabetic order. We could
try to do this via an operator "GENERATE NEXT ELEMENT OF B" with a program
of the form |

INITIALIZE EMPTY BOARD;
repeat GENERATE NEXT ELEMENT DOF B;
if N = B do PRINT CONFIGURATION

until B exbausted

but this is not too attractive for the following two reesans.

Firstly, we don't have a ready-made criterion fo recognize the last element
of B when we meet it and in all probability we have to generalize the operator
"GENERATE NEXT ELEMENT OF B" in such a way that it will produce the indication
g £XHAUSTED" ~for instance in the form of the empty board- when it is applied

to the last "true" element of B. Secondly, it is not too obvious how to make the

EWD287 ~ 76

operator "GENERATE NEXT ELEMENT OF B": the number of queens on the board may

remain constant, it may increase and it may decrease.

3o that is not too attractive. What can we do about it? As long as we
regard the sequence of configurations from set B as a single sequence, not
subdivided into & succession of subsequences, the corresponding program structure
will be a single loop as in the program just sketched, If we are looking for
an alternative program structure, we must therefore ask ourselves: "How can we

group the sequence of configurations from set B into a succession of subsequences?".

Realizing that the sequence of configurations from set B have to
be generated in alphébetic order and thinking of the main subdivision in a
dictionary -viz. by first letter— the first grouping is obvious: by position

of queen Q.

Generating all elements of set B ~for the moment we forget about the
printing of the elements that belong to the subset A as well- the presents

itself in the first instance as

hi= O;

repeat SET QUEEN ON FIELD H;
GENERATE ALL CONFIGURATIONS WITH QUEEN O FIXED;
REMOVE QUEEN;
hi= h + 1

until h=8 ,

where the operations SET QUEEN and REMOVE QUEEN pertain to row zero,

i.e. the first free row or the last occupied row respectively.

But now the guestion repeats itself: how do we group all configurations
with queen O fixed? We have already given the answer: in order of increasing

column position of queen 1, i.e,

hl:= O;
repeat if FIEED HFREE do
begin SET QUEEN ON FIELD Hi;
GENERATE ALL CONFIGURATIONS WITH FIRST 2 QUEENS FIXED;
REMOVE QUEEN
£nd;
hi:= h1 + 1

until hl = 8B

EwWD287 - T7

where, again, FIELD FREE and SET QUEEN pertain to the first free row and REMOVE

QUEEN pertains to the last occupied row.

For "GENERATE ALL FIELDS WITH FIRST 2 QUEENS FIXED" we could write a
similar piece of program and so on: inserting them inside each other would
result into a correct program with some eight nested loops, but they would
all be very, very similar. To do so has two disadvantages:

1) it tekes a cumbersome amount of writing

2) it gives a program solving the problem for a chess board of B * 8 fields,
but to solve the same puzzle for a board of, say, 10 * 10 fileds would Tetjuire
a new (still langer} program, We would like to avoid this by exploiting the

similarity of the loops.

The we have to answer two guestions
1) can we make the loops exactly identical?

2) can we prafit from their similarity?

The two exceptional cycles are the outermost ome and the innermost one,
The outermost one is different because it does not test, whether the next
field is free. There is however no objection to inserting this test: as it
is only applied when the board is empty it is guaranteed to give the value
lrue and we can give the outermost cycle the same form by inserting the
conditional clause

if FIELD H FREE do.

The innermost cycle is exceptional in tﬁe sense that as soon as
8 queens have been placed on the board, there is no point in generating all
configurations with those gqueens fixed, because we have a full board. Instsad
the configuration has to be printed, because we have found an element of sat
B that is also an element of set A, We can map the innermast cycle and the

embracing seven ones upon each other by replacing the line "GENERATE" by

Af BOARD FULL then PRINT CONFIGURATION
else GENERATE ALL CONFIGURATIONS EXTENDING THE CURRENT ONE.

By now the only difference betweesn the eight cycles is that each cycle
has toc have "its private h". By the time that we have reached this stage, we
can give an affirmative answer to the secand questien. The sequencing through

the eight nested loops can be provoked with the aid of a recursive procedure

EWD287 - 78

"generate" say which describes the cycle once. Using it, the program itself

collapses into
"INITIALIZE EMPTY BOARD;
generate™

while "generate" is defined recursively as follows:

procedure generate;

begin integer h;

hi= O
repeat if FIELD H FREE do
begin SET QUEEN ON FIELD HW;
if BOARD FULL then PRINT CONFIGURATION

else generate;

REMOVE QUEEN

1]

=2

Q.
-

Each activation of "generste" will introduce its private local variable
h, this catering for h, h1, h2, that we would need when writing 8 nested
loops inside each other., FIELD H FREE and SET QUEEN ON FIELD H again refer to
the first free row, the operation REMOVE QUEEN to the last occupied one.

Our program —although correct to this level of detail - is not yet complete,
i.e, it has not been refined up to the standard degree of detail that is required
by our programming language, In our next refinement we should decide upon the
conventions according to which we represent the configurations on the board.

We have already decided more or less that we shall use the

integer array x[O:T]

giving in order the column numbers cccupied by the queens, We need a separate
convention to represent the number of queens on the board. Let us introduce

integer n, such that

n= the number of queens on the board
and for 0 < i <n: x[i] = the number of the column occupied by the queen in the

i=th row,.

EwD287 ~ 79

The array x and the scalar n are together sufficient to fix any configuration
of the set B and those will be the only ones on the chess board., As a result we
have no logical need for mare variables; yet we shall introduce a few more
because from a practical point of view we can make good use of them, Thq
problem is that with only the above material the analysis whether a given field
in the next free row is unciverd is rather painful and time—consuming. Here we
can look for a standard techniqgue, called "trading storege space versus computation

time", The pattern of this technique is as follows.

In its most simple form we are faced with a computation that regularly
needs the value of "FUN(arg)" where "FUN" is a given, computable function
defined on the current value of one or more stored variables, collectively
called "arg". In version 1 of a program only the value of arg is stored and
the value of FUN(arg} is computed whenever needed. In version 2, an additional
variable, "fun" say, is introduced whose sole purpose is to record the value

of "FUN(arg)" corresponding to the current value of "arg".

Where version 1 has
argi=... (i.e, assignment to arg)
version 2 will have (effectively)
arg:=...; fun:= FUN(arg) ,
thereby maintaining the validity of the relation

fun = FUN(arg) .

As a result of the validity of this relation, wherever version 1 calls
for the evaluation of FUN(érg), version 2 will call for the current value of the

variable "fun".

The intreduction of such redundant additional tabulated material is one
af the programmer's most powerful ways ta improve the efficiency of a program,

Of course we need our ingenuity for its invention!

Quite often the situation is not as simple as that and we come now to the
second reason for introducing such a variable "fun®. Often it is very unattractive
to compute FUN(arg) from scratch for arbitrary values of arg while it is much
easier to compute how the value of FUN(arg) changes when the value of arg is
changed. In that case the adjustment aof the value of "fun" is more intimately
linked with the nature of the functional dependence and the history of the

variable "arg" than is suggested by

EwD287 - 80

arg:=...; fun:= FUN(arg) .

After this interlude on program aoptimizetion via trading storage space
versus computation time, we return to our eight queens. The role of "arg" is
played by the configuration on the board, but this value is not changed wildly,
oh no, the only thing we do with it is adding or removing a queen. And we are
looking for additional tables that will assist us in the decision whether a
field is free, tables such that they can be kept up to date easily when a queen

is added to or removed from the configuration.

How? Well, we might think about a boolean array of 8 * 8, indicating for
each field whether it is free or not. If we do this for the full board, adding
a queen implies dealing with 29 fields, removing a queen, however, is then
a painful process because it does naot follo that all fields no longer covered
by her are indeed free: they might be covered by other queens, There is a
remedy for this, viz, associating with each field not a boolean variable but
an integer counter, counting the number of queens covering the field. Addind a
queen means increasing 2Y counters by !, removing a queen means decreasing 29
counters by 1 and a field is free when its counter is zero. We could do it that
way, but the guestion is whether this is not overdoing it: 29 adjustments is

quite a lot.

Each field, in the freedom of which we are interested, covers a row {(which
is free by defenition, so we need not bother about that), covers one of 8 columns
(one which stillsshould be empty), covers one of the 15 upward diaganals (one
which should be empty) and one of the t5 downward diagonals{one which should

be empty). This suggests that we should keep track of

1) the columns that are free
2} the upward diagonals that are free
3) the downward diagonals that are free.

As each column or diagonal is covered only once we don't need a counter
for each, a boolean is sufficient. For the columns we introduce a

boolean array col[O;?]

where "col[i]" means that the i-th column is still free.

How do we identify the diagonals? Well, along an upward diagonal the

difference between row number and column number is constant, along a downward

EwD287 - &1

diagonal their sum. As a result difference and sum respectively are the easiest
index by which to distinguish the diagonals and we introduce therefore

boolean array ;p[-7:+7], down[0314]

to keep track of which diagonals are free.

The question whether field[n,h] is free becomes
col[h] and up[n*h]‘ggg duwn[n+h] ’

setting and removing a queen both imply adjustment of three booleans, one in

each array.

Without the tabulated material, REMOVE QUEEN would only consist of "™ni= n = 1",
now we would like to know her column number as well, i.e. we replace it by
REMOVE QUEEN FROM FIELD H®, 1In the final program, the variable "k" is introduced
for general counting purposes, statements and expressions are labelled for

explicative purposes.

EwD287 - 82

auTTMau

‘e

aniy

ajexauab

G| = 3 TTIUR | + » =iy {8nig Huﬁluczun fanxy u"ﬁhlzgaz Jeadal !0 =iy

ig = 3 TIFun | + X =iy {3AI3 H“ﬁxgﬂcu jeadax {p =i

uﬁtuauu faniy u"ﬁ:lcgn: HETR T H"ﬁz + c;cxov {1 = u =tu
‘H 01314 WOH4 NIFNT IA0W3IM

f{ajprauab 3878

g = > TTIUR | + % =y _AﬁxuxVPCHMQ 1E8d8T {0 =iy
INDILVHNOIJINDD INI¥d UIbag

usuyl (g = u) f7In4 ayvod IT

as (e} H"ﬁz+cchDU fastey H"ﬁcltgn: HEER N n"ﬁcuﬁmu fy n"ﬁch

p =:u
‘0MYOH AldiW3 3ZIWILINI
T
8 =4 TT3un
Yy =iy
pus
uThaq

PH I7314 nNO N33ND L3S

P ([u+u]umop Pue [y-u]dn BCE [4]1o2) :3344 H Q1314 JT T@adal

¢ O.umfu ¢y Iabajur utbag

tagexauab @anpsooid

mﬁ¢rnouczoﬁ .ﬁh+"hlua: .ﬁbuouauu Aexxe ueatooq uﬁbuoux Aexie Iabajur {y‘u TabajuT urbag

EwD28T - 83

This completes the treatment of our problem; the program, incidentally,

generates 92 configurations.

By way of conclusion ! would'like to make up the bill: the final splution
is not very important {at least not more important than the problem of the eight
queens). The importance of this section is to be found in the methods on which

our final program relies and the way in which we have found them,

1) The final algorithm mebodies a very general technique, so general that

it has a well-established name: it is called "backtracking". The configurations
of set B can be thought of as placed at the nodes of a hierarchical tree, each
node containing configuratiaon C supporting the subtree with all the nodes with
configurations that have C as a true sub-configuration. At the root of the tree
we have the empty configuration (from which B different branches emanate), at each
next level we find configurations with one queen more and at the top nodes (the
leaves) we find the 92 solutions. The backtracking algorithm generates and scans
the nodes of this tree in a systematic manner. I recommend the resder to become
thoroughly familiar with the idea of backtracking, because its can be applied
when faced with a great number of at first sight very different problems., (It

is only when you recognize that they all ask for a solution by means of back-

tracking that the problems become boringly similar to each other.)

2) If the only thing the student learns from this sectiom is his becoming
familiar with backtracking, he has learned something, but it was my intention

to teach him more: we showed all considerations which together can léad to the
discovery of our method, this time to backtracking. But it is my firm conviction
that, when faced with & different problem to be solved by a diffarent method,

the latter may be discovered by a very similar analysis of ends and means.

%) The finla program contained a recursive procedure. But backtracking is by
no means the only algorithmic pattern that is conveniently coded with the aid
of recursion. The main point was the collection of consideratians leading to the

discovery that im this case recursion was an appropriate tool.

4) The major part of our analysis has been carried out before we had decided

how (and how redundantly) a configuration would be represented inside the machine.

EWD2ET - 84

[t is true that such considerations only bear fruit when, finally, a convenient
representation for configurations can be found. Yet it is essential not to bother
about the representation before that becomes crucial. There is a tendency among
programmers to decide the (detailed) representation conventions first and then

to think about the algorithm in terms of this specific representation but that

is putting the cart before the horse. It implies that any later revisipn of the
representation convention implies that all thinking about the algorithm has

to be redone; it fails to give due recognition to the fact that the only point

in manipulating (such groups of) varisbles is that they stand for something else,

configurations in our case.

5) The trading of storage space versus computation time is more than a trick
that is useful in this particular program. It is exemplar for many of the choices
@ producing programmer has to take; he will work more consciously and more reliably
when he recognizes them as such.

o
Exercise. Write two programs generating for N > Q all N! permutation of the
numbers 1 through N, one with and one without recursion, and establish for both

programs their correctness,

Exercise. For }) <N <M generate all integer solutions of the equations in

c[1] through c[N] such that

1) c[1].2 0

2) celi]>eli-t] for1 <i<n
3) c[1]+ .o +¢n]=m

Again, write two programs, one without and one with recursion and establish

their correctness,

Exercise. Write a program solvang the problem of page EWD287 - 57, but now using

recursion.

Ewnz2g7 - 85

A rearranging routine,

The following example has been inspired by work of C.A.A.Hoare (Algcrithm
64, C.A.C.M,).

The original problem was to rearrange the values of the elements of a given

array AI_1:N] and a given value of f {1 e N) such that after rearrangement

for 1 <k < f Alk] < alf]
for £ <k <N ALk} > a[f] . (1)

As a result of this rearrangement A[f] equals the f-th value in order of
non—decreasing magnitude. We call the array rearranged satisfying (1) Peplit
around "} we call the final value of A[f] "the splitting value"™, When the array
has been split it is divided into two halves, the one half =the "left-hangd" half,
say~ containing the "small" values and the other half ~the "right~hand” half, say-
containing the large elements, with the splitting value sandwiched in betwesn. The
overall function of the algorithm is to move small values to the left and large
values to the right, The difficulty is that for given f the final value of A[f],

i.e. our criterion "small/large", is unkmown to start with.

Hoare's invention is the following. Select some g rather arbitrary criterion
"small/large"; by moving small elements to the left and large elements to the
right, a split will be established somewhere, around some position s. If 5
happens to turn aut = f, the criginfl pFoblem is solved. The kernel of Hoare's
invention is the observation thatwgigs;;igéjlﬁé original prablemu? - reduced
to the same problem, but now applied to one of the halves, viz. to the left-~hand
half if f lies to the left of the split and to the right=hand half is f lies to

the right of the split.

Note. An alternative approach would be to sort the array completely: after that
A[f] will equal the f-th value in the order of nan-decreasing magnitude, But this
can he expected to be rather axpensive,for then we have established relations (1)
for all values of f, As a matter of fact we will arrive at a rearranging routine
which itself can be used for complete sorting, aon account of the fact that, when
a split around s has been established, A[s] has the vslue it is going ta have

in the completely

EWD287 - 86

sorted array, and that ~because all elements to the left of it are f;A[s] and those
to the right of it are > A[s]- completely sorting it could now be performed by
sorting thereafter the two parts +Lat-die- A at a0 e et ﬁ%?’lﬁsﬁd’iﬁi@-
separabeiy., mo{gq.wﬁu\}[,/.

g
We now focus our attention $8 the rearranging routine which is to cause a

split in the array section

Alm] ... a[n] with 1 <m<n<N ,

Whe we try to make such a routine we are immediately faced with the choice
of our criterion "small/large". One of the ways is to select an arbitrary element
from the section, ta call all element§ lsrger than it "large", all elements smaller
than it “smali" and all elements equal to it either "large® or "small", just
what is mast convenient (in the final X¥X arrangement they may occur everywhere,
either at the split or at ei;;‘;f its two sides). Let us therefare postpone the

choice in this discussion for a moment, as there is a chance that we Can use our

}
freedom e some advantage.

We are going to select one of the values in the array ;xs the "splitting
value"; having chosen this value, its final paosition - i,e. the position of the
split= is unknown before the algorithm startsy it is defined when the algorithm
has been executed, in pther words it is determined by the evolution of the computation,
This suggests that we build up the collection of the small values, starting at the
left-hand Banand#hat of the large values at the right—~hand end, and continue doing
so until the two collections meet somewhere in the middle. To be more precise,
we introduce two pointers, "i% and "j" say, whase initial values will be "m"
and "n" respectively,and rearrange values in such a fashion that, when we call the

splitting value VY, we ensure that

Alk]<v form<k<i and
Alk]>v for j<k<n .

Having chosen the splitting value, the algorithm will have the duty'd¥ bu1ld§ﬁ5
up the collections of small and large values repectively from the outside inwards.
The algorithm can start scanning, at the left-hand end say, until a large element
is encountered, Ifqgaftiﬂls value has to be removed from the collection of small

values, i.e, it has to be added to the collection of large slements. It is, as a

EWD287 - 87

v ff, it
Whote I inly s
~

matter of fact, the first element ef-which the algorithm has established its
“i#tgerssW,: as we have decided to build up the collections from the outside
inwards, this "large" value has to be assigned to A[n]. As we would like this
pastion in the array to be "free" -i.e. avajilable tu‘raclive this first large value-
the original value of A[n] can be taken out of the array and can be chaosen as the
splitting value V,

That is, we initialize i = m and j = n and "take out” A[n] -by assigning it
to the variable V- thereby initializing the situation where scanning starts at
element Ai}a, while "j" points to the ¥hole" just made. Whenthe upward scan
(under control of increasing "i%) finds a large elemsnt, i.e, when for the first
time A[i] >V, this value is placed in the hole, now leaving the Whole at the
place pointed.to by ™i", From then onwards a downward scan (under control of
decreasing "j") cantgigif until a small element has been encountered which will
be placed in the hole at position "i", leaving the hole ;h the place pointed to
by "j". Such upward and downward scens have to succeed sach other altarnatiﬂgly
until i1 = j, i,e. until both point to the hole at the position around which the
split has been effectuated. Finally the hole receives the value V which had been

taken out at the beginning.

The above sketch gives an informal description of the essential features of

the algorithm, it(égttlgffggmgo meaqé)the structure of the sequential program that

will embody it.

I have tried a program in which the core consists of the program part for
the up\ward scoqm followed by the psogram part for the downward scan. The first
part consistis of a loop with "i:= i + 1" in the repeatable statement} the second
part consists of a loop with "ji= j = 1" in the repeatable statement. The two
parts together then form the repeatable statement of an uutﬁésd loop. This program
became very ugly and messy, the reason being that termination may occur either

because the upward scan o#because the downward scan is on the verge of scanning

}
the hole. The reasoning needed to establish t&t'the program did(éiiﬁifigjgg;;z:;zs)

became tortuous.

0n account of that experience I have tried the alternative approach, one
loop in which a single execution of the repeatable statement decreases the

difference "j - i" ~i,e. the length of the unscannad array section- by 1, by doing

a step of the appropriate scan,

EwWD287 ~ 88

The decision to control the steps of both scans by the same repeatable
statement calls for the introduction of another variable; as we have to distinguish

between only two casesya boolean variable suffices, "up" say, with the meaning:

up = frue means:

the algorithm is in the state of upward scanning and j points to the hole

up = false means:

the algorithm is in the state of downward scanning and i points to the hole.

The initialization has to be extended with the assignment "up := true"! after the

initialization the program continues with
"while i < j do perform the appropriate step" .

In the course of the action "perform the appropriate step"y the value of "up" has
to change its value whenever the hole is filled and the scanning direction has to

reverse., Without any further detours I arrived at the following procedure:

integer procedure split{real array a, integer value m, n);

begin integer i, j; real V; boolean up;

it=m; ji= n; Vi= a[j]; upi= true;

if a[i] > V do begin a[j]:: a[i]; up:= false end
else

if vy >'a[j]_gg begin a[i]:: a[j]; up:= true end;

Af up then i:= i + 1 else ji= j = 1
end;

aLil:

Vi split:= j

In its applications we shall only call the procedure "split" with m < n; as

it stands it also caters for the case m = M

Exercise. Show that in a version of split that only needs to cater for m < n,
its internal repetition could have been controlled by a repeat until clause as

well.

Note. At the price of a larger number of subscriptions to be performed,

the text of the procedure can be shortened by not intreducing the separate variable

EWD287 ~ &9

V, but by storing this value "in the hole" i.se.
V = if up then a[j] else a[i] ..

As a result the splitting value zigzags to its final position. With the above

convention the tests “a[i] > UM and "W > a[j]" both become "E[i] >'a[j]“, the

assignments XX "a[j):= ali]" and "a[i]:= o[j]" @ESiTsIEEEE)the interchange
"Wi= ali]; a[i]:: a[j]; a[j]:: wv

and the assignments "up;= false" and Mup:= true" can both be represented by
"up:= nan up" ,

The sbove observations allow us to condense the procedure text into

inteqer.brocedure split(real array a, integer value m, n);

begin integer i, j; real W; boolean up;

iit=m; ji= n; up:= true;
while 1 < j do
begin if a[i] > a[j] do
begin W:= a[i]; a[i]:= a[j]; a[i]:= W; up:= non up eng;

if up then i:= i + 1 else j:= j - 1

end;
split:==
end .

We now return to our original problem: given an array ﬁ[i:N] and a value f

(1 sfF< NY, rearrange the elements in such a way that

for 1 <i<Ff Ali] < A[f] and
for £ <i<N Ali] = a[f]

as a result A[f] will equal the f-th element in the order of nan-decreasing

magnitude,

The idea is to apply the operator "split" first to the original array
from 1 through N, The operator establishes the split somewhere, position s
say. If the position of the split coincides with f (f = s), we have reached our
goal, otherwise the operator "split" is applied to one af the halves, viz, to the

left-hand half when f < s and to the right-hand half when f > s etc.

For this purpose we introduce variables p and q, satisfying

ISp<Sf<qswm

EWD287 - 90

such that A[p] o A[q]

will be the section of the array to which the split will be epplied, as this section

is certain te contain the (future) value of A[f].

If the split is found to the right of f (i.e. f<s) the operator has to he,
applied to the left—hand half, i.e. q has to be reset to s -= 1 and p can be left
unchanged. In the case f > s, p has to be reset to s + 1 and q can be left

unchanged. We thus arrive at the routine

integer p, q, s8; p:= 1; qi:= N;
repeat s:= split(A, p, Q)i

Af F<sdo qi=5 - 1;
Af > s do pi=s + 1

until f = 5 ,
(Note. In the case N = 1 this routine will call split with m = n.)

We may wish to improve upon this program: it is rather superflusus to
call the operator "split" with p = q: if the section consists of a single element
no (significant) rearrangement can take placej the split will be arocund its single
element and both halves will he empty. The relation p < q gives us therefore
another necessary criterion for continuation,and we can lcagﬁzﬁether we can make
it the sole criterion for continuation. Because we want to stick to p<f<ag,
the termination via the luck of hitting f with the split, i.e, f = s; has to

generate p = f = q. The following program would achieve that result.

integer p, q, s; p:= 1; q:= N;
while p < q do
begin s:= split(A, p, q);
if f = s then begin pi= f; gi= f end

else if f<s then q:= s - 1 else pi= s + 1

from the above program text it is obvious that the operator "split" will

anly be applied to sections of the array containing at least two elements.

EwD287 - 9

A more intricate use of the operator "split" is in complete sorting of the
array, observing that after application of the operator “split" st least one element
(viz.'A[s]) has reached its final destination, while all other elements, although
not necessarily in their final position, will be in the correct half, so that complete

sorting then consists of sorting both halves independently.

The naive approach is a recursive

procedure sort(real array a, integer value p, q);

begin integer s;

s:= splitla, p, q);
if p<s -1 do sort(a, p, s ~ 1);
if s + 1 < q do sort{a, s + 1, p)

end

h th 1
such that the call surt(A, 1, N)

will sort the entire array. Again it has been exploited that sarting an array
section is only a necessary operation if the section contains at least twe elements.
(The routine "sort" may be called with a section of only one element’but will not

generate such calls itself,)

We have called the above procedure naive and we have done so for the
following reasons, The operator "split" may divide the section offered to it
into two very unequal parts —e.g. when originally the rightmost element had a near
maximum value=; as a result the maximum dynamic depth of recursive calls may grow
proportionally to N, the length of the array section. As recursive calls require
an amount of storage space proportional to the dynamic depth, the given program
may turn ogut to be prohibitively demanding in its storage requirements. This would
lead to the conclusion that recursige sorting is gapractical, but for the fact that
a slight rearrangement of the procedure "sort" ensures that the maximum dynamic
depth will rnot exceed log2 N. In view of the existence of such a sorting procedure

we call the previous one "naive",

We can guarantee that a sorting routine will not generate a dynamic depth
exceeding 1092 N, if whenever it has called "split",it will only prescribe a
recursive call on itself for the sorting of the smallest of the two halves. (In
the case that the two halves are of equal length, the choice is immaterial,)
Applying "sort" recursively to the smallest half only will leave the other half
unsorted, but this can be remedied by repeatedly applying this only half-effective

sorting effort to the still unsorted section. In the body of "sort", two integers

EWD287 - 92

"pu" and "qu" are introduced, pointing to the left— and right-hand end of the still

unsorted section.

procedure sort{real array a, integer value P, q);

begin integer s, pu, qu;

pur= p; qui= q;
while pu > qu do
begin s:ix split(a, pu, QU);
ifqu - s<gs - pu then
begin if s + 1 < qu do sort(a, & = 1, qu); qu:= s = 1 end
else

 beqin if pu<s -1 do sort(a, pu, s = 1); puti= s + { end

.-
Again, sort may be called with section of a single element,but will not

generate such calls itself.

Exerciseigiove that termination of the loop is guaranteed to take place with

pu = qu.

Note. If, to start with, the elements of array A are ordered according to non-
decreasing magnitude, excessive depth ef recursive calls has been prevented, Ahe
algorithm remains time-consuming {proportional to NZ). This has given rise to
refinements of the procedure "split": instead of blindly taking the right-most
element of the array section as splitting value, some sort of small search for
@ probably better approximation of the median value can be inserted at the he-
ginning of ™"split"} this element can ke interchanged with the rightmost element

and thereafter split can continue as described.

