EWL415 -~ O

EWDA413.html

The formal treatment of some small examples.

In this chapter I shall give the formal development of & series of
small programs solving simple problems. This chapter should not be inter-
preled as wy suggestion that these programs must or should be developed
in such a way: such a suggestion would be somewhat ridiculous. 1 expect
most of my readers to be familiar with most of the examples and, if not,
they can probably write down a program, hardly aware of having to think

about it.

)
or

The development, therefore, is given g quite olher reasons. One
reason is. to make ourselves more familiar with the formalism as far as it
has been developed up)édj now. A second reason is to convince curselves

that, in principle at least, the formalism is able to make explicit and

‘quite rigourcus what is often justified with a lot of hand-waving. A third
reason is precisely that most of us are sqﬁ/;amjljar with them that we have

- forgotien how, a long time ago, we have convinced ourselves of their

correctness: in this fespect this chapter resembles the beginning lessons
in plane geoh&try that are traditionally devoted to proving the obvious.

Fourthly, we may occasionally get a‘iittle surprise and discover that a

.

little familiar problem is not so fawiliar after all. finally it may shed
some light on the feasibility, the difficulties and the possibilities of
automatic program composition or mechanical assistance in the programming
procees. This could be of importance even if we do not have the slightest
interest in automstic program composition, for it wmay give us a better

appreciation of the role that our inventive powers may or have to play.

73

http://www.cs.utexas.edu/users/EWD/transcriptions/EWD04xx/EWD413.html

EWDA13 ~ 1

In my examples I shall state requirements of the form "for fixed

X, Y, -..'"j this is an abreviation for "for any values x0 , yO, ... a

post-condition of the form X = x0 and y = yO angd ... should give rise

to a pre-condition implying x = x0O and y = yO and ... " We shall guarantee

this by treating such quantities as "temporary constants', they will not

occur to the left of an assigment statement.

First example.

Festablish for fixed X and vy the relation R(m):

(m=xorm=y) and m=xandmz2y :
For general values of x and y the relation m = x can only be established

by the assignment mi= X j &8s & consequence (m=xoporm= y) can only be

established by activating either m:= x or mi=y. In flow-chart form

e

ETEaE

The point j5 that at the entry the good choice wmust be made so as
" to guarantee that upon completion R(m) holds. For this purpose wWe "push

the post-condition through the alternatives":

i, o

L.,

£
o H :
and we have derived the guaxds! As

s i i A e 4 g A

EWD41% - 2 %

R(x) = ((x = X Or x = y) and x > x and x Ejy> = (x Ejy)
and R(y) = ((y=xpory=y)andy>xaidy<y) =(y2zx)
we arrive at our solution:
il xzy-m=x [y zx wm=y 03
Because (x >y 0r vy E;x) = T , the program will never abort (and in passing

we have glven an existence proof: for any values x and y there exists
an m satisfying R(m)). Because (x >y and vy ij) £ F , our program

is not necessarily deterministic: if initially x

i

y , it is undeter-
mined which of the two assignments will be selected for execution; this

non-determinacy is fully correct, because we have shown that the chaice

does not matter.

Note. If the function "max" had been an available primitive, we could

~have coded mi= max(x,‘y) becauéef R(max(x, y)) =T . (End of note.)

The program we have derived is not very impressive; on the other
Hahd we observe that in the prncess or deriving the program from our post-

condition next to nothing has been left to our invention.

‘Second _example.

For a fixed value of n (ni> O) a function f(i) is given for

0 <i<n . Establish the truth of R:

and (A i: 0 <i <n: flk) > 7(4)) .

!/\
pus

0 =

é&cauwc our program must waork for any positive value of n it is
hard to see how R can be established without a loop; we are therefore
looking for a relation P that is easily established to start with and

~such -that eventually (P and non BB) => R . In search of P we are therefore

EWD41% - 3

looking for a relation weaker than R , in other words: we want a generali-

zation of our final state. A standarxd way of generalizing a relation is
the replacement of & constant by a variable --~-possibly with a restricted
range~~ and here wmy experience suggests that we replace the constant n

by a new variable, j say, and take for P:

O<k<j<nand (Ai: 0<i<j: flk)>7(i))

where the condition j < n has been added in order to do justice to the
finite domain of the function f . Then, with such a generalization, we

have trivially (P and n = j) => R

In order to verify whether this choice of P can be used, we must

have an easy way of establishing it to start with. Well, because
(k =0and j=1) =P

we venture. the following structure for our program -comments being added

between braces--

k, ji= 0, 1 {F has been established};
do j #n - a step towards j = n under invariance of P : od

{R has been established}

Again my experience suggests to choose as monotonicly decreasing
function -t of the current state t = (m - j) , which, indeed, is such
that P = (t EjO) . In order to ensure this monolonic decrease of ¢

I propose to subject j to an increase by 1 and we can develop

wp("jr= j + 1", P) =

O<k<j+ 1 <nand (Ai: 0<i<i: flk)>e(3)) and flk) >

4 oo

r(3)

The first two terms are implied by 'P'QQQ j # n (for (j <nand j % n) =

EWD415 - 4

(5 +1 < n) and this is the reason why we decided to increase j only by 1.)

Therefore (P and § £ nand (k) > f(3)) = wp("ji= j + 1%, P)

and we can take the last condition as guaxd. The program

K, ji= 0, 1;

’

do j £ n = if 1(k) >f(j) —~ ji= 3 + 1 fi od

will indeed give the good answer when it terminates properly. Proper ter-
mination, however, is not guaranteed, because the alternative construct
might lead to abortion --and it will certainly do so, if k = O does

not satisfy R . If f(k) Ejf<j> does not hold, we can make it hold

by the assignment k:= j and therefore our next investigation is

wp("k, ji= 3, j+ 1", P) =

0.

IA
A

i+ 1 <nand (Ai: 0<i<j+1: £(35)>()) =

0<j<j+1 <nand (Ai:0

IA

i< j: f(3) > ()

To. our great relief we see that

and the following program will do the job without the danger of abortion:

‘k,'j”: 09 1;

do j A n = if flk) 2 (3) - ji= § + 1

0 #(k) <7(3) =k, je= 3, j+ 1 fi od

A few remarks are in order. The first one is that, as the guards of
- the altermative construct do not necessarily exclude each other, the program
harbours the same kind of internal non-determinacy as the first example.
Extiernally it may display this non-determinacy as well. The function f
could be such that the final value of k is not unique: in that case our

program can deliver any acceptable value!

EWD41% - 5

The second remark is that having developed a correct program does
not mean that we are through with the problem. Prcgramming is as much a
mathemstical discipline as an engineering discipline, correctress is as
much cuil concern as, say, efficiency. Under the assumption that the
computation of a value of the function f for a given argument is a
Ielativevtimemcomauming operation, s good engineer should ohserve that in
all probability this program will often ask for many re-computations of
(k) for the same value of k . If this is the case the trading of some
storage Spéce against some computation time is indicated. The effort to
make ouxr program more time-efficient, however, should never be an excuse
to make a mess of it. (This is obvious, but I state it explicitly because
so much messiness is so often defended by an appeal to efficiency conside-
rations, while upon closer inspection the defense is always unvalid: it
must be, for a mess is never defensible.) The orderly technique for trading
storage space versus computation time is the introduction of one or more
redundant variables, the value of which cén be used because some relation
is kept invariant. In this example the observation of the possibly frequent
re-computation of f(k) for ihe same value of k suggests the introduction
of a further varisble, wmax say, and to extend the invariant relation

with the further term
max = f(k) .

This relation must be established upon initialization of k and be kept
invariant --by explicit assignment to max -- upon modification of k . We

arrive at the following program

K, i, max:= 0, 1, £(0);

do § # no—= if mex > £(5) — ji= j o+ 1

[max < 7(j) =k, §, max:= is 5o 1, £(3) £i od :

EWD413 ~ 6

This program is probably much more efficient than our previous

version. If it is, a good engineer does not stop here, because he will now

ohserve that for the came value of j he might order a number of times
the computation of f(j). It is suggested to introduce a further variable,

h say (short for "help") and to keep

invariant. This, however, is a thing that we cannot do on the same global

level as with our previous term: the value j = n is not excluded and

[N

for that value f() is not necessarily defined. The relation h = f(j)
is therefore re-established every time j # n has just been checked;

upon completion of the outer guarded command --"just before the od" so to

speak-~ we have h = f(j - 1) but we don't bother and leave it at that.

k, j, max:= 0, 1, F(O);
do j#n - hi= £(3);
if max > ho= ji= j + 1
[max <h -k, j, max:i=j, j+ 1, h fi od

A final remork is not so much concerned with our solution as with

our considerations. We have had our mathemstical concerns,

we have had

our engineering concerns and we have accomplished a certain amount of
separation between them, now focussing our attention on this aspect and
then on that aspect. While such a separation of concerns is absolutely
essential when dealing with more complicated problems, 1 must stress that
focussing one's attention on one aspect does not mean completely ignoring
the others. In the more mathematical part of the design actﬁvity we should

not head for @ mathematically correct program that is so badly engineered

. i : My o 4 " N o ,
that it is beyond salvation. Similarly, while "Lcading" we should nol

EWD413% - 7

introduce errors through sloppiness, we should do it careful and systematic;
also, although the mathematical analysis as such has been completed, we
should still understand encugh about the problem to judge whether our

considered changes ave significant improvements.

have used "j < n" &as the guard for this repetitive construct, a habit I

still have to unlearn, for in a case like this, the guard "j £on" s
certainly to be preferred. The reason for ihe preference is twofold. The
guard "j £ n" allows us to conclude j = n upon termination without an
appeal to the invariant relation P and thus simplifies the argument about
what the whole construct achieves for us compared with the guard "j <n".
Much more important, however, is that the guard "j % n" makes termination
dependent upon (part of) the invariant relation, viz. j <n and is therefore
to be preferred for reasons of robustness. If the addition j:= i+ 1 would
erroneously increase j too much and wéuld establish j > n , then the

guard "j <n" would give no alarm, while the guard . "j £ n" would at
~least prevent proper termination. Even without taking machine malfunctioning
‘ into ac;ount, this aigument seems . valid. Lei a seguence XO’ X4 x2, ... be
given by a value for: X5 and for i >0 by x .= f(xi”1> , where F is

some computable function and:let us carefully and correctly keep the

relation X = X4 invariant. Suppose that we have in & program a monotonicly

increasing variable n , such that for some values of n we are interested

in X e Provided n > i , we can always establish X X by

i

do i £ mn—i, Xe=i +1, f(X) od

1f --due perhaps to a later change in the program with the result that it

is mo longer guaranteed that n can only increase as ihe computation proceeds--

EWD41% - 8

the relation n 2> i does not necessarily hold, the above construct would

(luckilyl) fail to terminate, while the use of
do j<n i, Xe=41 + 1, f(X) od

would have failed to establish the relation X = x . The moral of the
n
story is that, all other things being egqual, we should chouse ouxr guards

as weak as possible. (End of note.)

Third example.

For fixed a (a‘z O) and d (d >’O) it is reouested to establish
0<r<d and (a -~ 1)ld

(Here the vertical bar "]" is to be read as: "is a multiple of".) In other
words we are requested to compute the smallest non-negative remainder =r
that is left after division of a by d . In ordexr that the problem be

a prpblem, we have to restrict ourselves to addition and subtraction as
~the only aritmetic operations. Because the term (a - r)ld is satisfied
by r =wa , an initialization that --on account of a = 0-- also

satisfies O < r , it is suggested to choose as invariant relation P:

0O<r ‘ggg'(a - r)ld .

~€ér the function t , the decrease of which should ensure termination,
we choose‘ r itself; because the massaging of r wmust be such that the
relation (a - r)ld is kept invariant,, r may only be changed by a
multiple of 'd , for instance d itself. Thus we find ourselves invited

to evaluate

WP("r:: r - d", P) gpd wdec(”r:m r - d", 1) =

O<r-dand (a -1 +d)|d andd>0

Because the term d > 0 could have been added to the invariant

EWD41% - 9

relation 1? , only the first term is then not implied; we find the

corresponding guard "r > d" and the tentative program:
ifa=0apd d >0 -
Ti= a;
dor>d -~ 1ri=1 - dod

Upon completion the truth of P and non r > d has been established, a

relation that implies R and thus the problem has been solved.

Suppose now, that in addition it would have been required to

assign to ¢ such a value that finally we also have
a=4d*q+

-~in other words it is requested to compute the quotient as well-- then we

‘can try fo add this term to our invariant relation. Because
(a = d *.q + r) = (a = d *(q + 1)+(r - d))

we are led to. the program:

dor>d=-gqg, rt=qg+1, r~-dod

i
i
.

The above programs are, of course, very time-consuming if the quotient
is large. Lan we speed it up? The obvious way to do that is to decrease r
by larger multiples of d . Introducing for this purpose a new variable,

dd say, the relation to be established and kept invariant is

ddjd and dd >d ,

EWD41% - 10

We can speed up our first program by replacing '"r:=.r - d" by a
possibly repeated decrease of 1 by dd , while dd , initially =4d ,
is allowed to grow rather rapidly, e.g. by doubling it each time. So we

are led 1o consider the following program

fo

=
o
vV
O
o]
vV
O
i

jo r 2> dd = ri= r - dd; ddi= dd + dd od

od

The relation 0 < r and (a - r)‘d is clearly kept invariant and therefore
this program establishes R if it terminates properly, but does it? Of
~course it does, beﬁause the inner loop --that terminates on account of

dd >0 ~~ is only activated‘with initial states satisfying r > dd and

, thergfcrevthe decrease 1i= r - dd is pexformed at least once for every

repetition of the outer loop.

But the above reasoring --although convincing enough!-- is a very

“informal one and because this chapter is called "a formal treatment" we

can try to formulate and prove the theorem to which we have appealed

intuitively.

With the usual meahings of IF, DD and BB , let P be the

relation that is kept invariant, i.e.

(P and BD) ;D>wp(1F, P) for all states (

—
~—

EWD41% - 11

and let furthermore 1 be an integer function such that for any value

of t0 and for all states

(P and BB end t < t0 + 1) => wp(IF, t < t0) (2)
or --in an eyguivalent formulation--
(P and BB) => wdec(1F, t) for all states (3)

then for any value of tO and for all states
(p and BB and wp (DO, T) and t < t0 - 1) = wp(DD, t f{tO) (4)
or --in an equivalent formulation-—-

(P and BB and wp(DO, T) => wdec(DO, t)

—~
N
e

In words: if the xelation ‘P tﬁat‘is kept invaxiant guarantees that each
selected guarded command causes an effective/decxease of t , then the
,repeﬁjtive construct will cause an effective decrease of t if it terminates
properly,éfter at least one execution of ‘a guarded command. The theorem is
"so obvious, that it would be a shame if it were difficult o prove, but
‘.;luckily it’is not. We shall shbw that from (1) and (2) follows that foxr any

~value tO and all states
(P ard BB and H (T) and t < 10 + 1) £>-Hk(t < £0) (6)

for all k 2;0.‘It holds for. k = 0 ~~because (BBligg HO(T>) = [«= and we
" have to derive from the assumptiion that (6) holds for k = K , that it

holds for k = K+ 1 as well.

(P and BB and H ., (T) and t <10 + 1)

_______ (1)) and wp(IF, t < 10)

= wp(IF, P and H (1) and t < t0)
=> wp(1F, (P and BB and HK(T)‘QHQ t < t0 + 1) or (1 < t0 and non BB))

. - -~ 4 .
[t <10) ox ot = 10))

EWDA1E - 12

= wp(IF, HK(t < 10))

The first dwplication follows from (1), the definition of HK+1(T) and (2),
the egualily in the 3r{ line is obvious, the implication in the 4th line
is derived by taking the conjunction with (BB\QE.QQH_BB) and then
weak@ning both terms, the implication in the 5th line follows from (6)

for k = K and the definition of H0<t 5ﬁt0> and the rest is straight-
forward. Thus relation (6) has been proved for all k >0 and from that

result (4) and (5) follow immediately.

the quotient as well and give a formal correctness proof for your program,

Let us assume next, that there is a small number, 3 say, by which
we are allowed to multiply and to divide and that these operations are
sufficiéntly fast so that they are atiractive to use. We shall denote
fhe product by - "m. %* 3" ..or by ‘"3 * e and’the.quotjent by‘ "m / B
the latter expression will only be called for evalution provided initially

‘m{% holds. (We are working with integer numbers, aren't we?)

Again we try to establish the desired relation R by means of

a repetitive construct, for which the invariant relation P is derived
by replacing a constant by a variable. Replacing the constant d by
the variable dd. , whose values will be restricted to d *(a power of 3)

we come to. the invariant relation P

O <y <Tdd and (a - L)ldd and (F i: i >0: dd = d ¥ 3i)

EWD41% - 13

We shall establish the relation and then try to reach, while keeping it

invariant, a state satisfying d = dd .

In order to establish it, we need a further repetitive construct:

first we establish
O0<r and (a - r)[dd 'ggd'(ﬁ‘i: i>0: dd = d *‘31)

and then let dd grow until it is large enough and r < dd is satisfied

as well. The following program would do:

r, dd:= a, d;
do r Zdd 4 dd:= dd * 3 od;
do dd # d - dd:= dd / 3;

do r >dd - ri=r -~ dd od

quotient as well and give a formal correctness proof for your program. This
o , \ N . L
proof has to demonsirate that whenever dd / 3 is computed, originally

dd|3 holds. :

The above program exhibits a quite common characteristic. On the
outer level we have two repetitive construcis in succession; when we
have two or more repetitive constructs on the same level in succession,
the guarded coummands of the later ones tend to be more elaborate than those
of the earlicr ones. (This is known as "Dijkstra's Law', which does not

always hold.) The rcason for this tendency is clear: each repetitive con-

EWDA13 - 14

struct adds his "and non BB" to the relation it keeps invariant and that
additional relation has to be kept invariant by the next one as well.
But for the inner Joop, the second ene is exactly the inverse of the first

one; but it is precicely the function of lhe added statement

do v dd - i ox - dd od

to restore the potentially destroyed relation r <ldd , i.e. the achievement

of the first loop.

Faourth examples,

For fixed Q1 , Q2 , 0% and Q4 it is requested to establish

R where R is given as RI and R2 with
R1: The seyuence of values (q1, q2, g3, q4> is a permutation of the

sequence of values (Q1, 02, 0%, Q4)

R2: ql €492 < g% < g4 .

Taking R1 as relation P to be kept invariant a possible solution
e ul, 92, q%, g4:= Q1, Q2, 03, Q4;
do q1f>‘q2 - ql, q2:= g2, gl
a2 > q% - q2, q3:= g3, g2

[
“ g3 > a4 - q3, gqd:= a4, g3

od .

The first assignment obviously establistes P.and no guarded command
destroys it. Upon termination we have pnon BB , and that is relation R2.
The way in which people convince themselves that it does terminate depends
laxgely on their background: a mathematician might observe that the number
of inversions deuleasas)an operations researcher will interpret it as
Mmaximizing gl + 2%2 1 3%g3% + 4*%q4d and T, as a physicist, just "see"

the center of graviity moving in the one diiection (to the right, to be

EWD413 - 15

quite precise). The program is remarkable in the sense that, whatever we
would have chosen for the guards, never would there be the danger of
destroying relation P : the guards are in this example a pure consequence

of the requirement of terwmination.

ql > g% - at, g%:= q3%, g
as well; they camnot be used to replace one of the given three, (End of nate.)
I1L is a nice example of the kind of clarity that our non-determinacy
has made possible to achieve; needless 1o say, however, that I do not

recommend to sort a large number of values in an analogous manner.

Fifth example.

We are requested to design a program approximating a square root,

more precisely: for fixed n (n E:O) the program should establish

Rs B a2;§ noand (a + 1)21> n .

One way of weakening this relation is dropping one of the terms

of Llhe conjunction, e.qg. the last ong and focus upon

P | a <n

a relation that is obviously satisfied by a = C , so that the initialization
need not bother us. We observe that if the second term is not satisfied

this is due to the fact that a is too small and we could therefore

consider the statement "at= a 4+ 1", Formally we find

wp(”a:: & 1", P) = ((a + 1) < n) .

ity

) o - .- I 3T ‘ o
Taking this condition as --the onlyl-- guard, we have (P'ﬂﬂglhﬂﬂ BB) = |

EWD413 - 16

and therefore we are invited to consider the program

iftnz=0 -
a:= 0 {P has been established};
2 _
do (a + 1) <in o at=a + 1 {P has not been destroyed} od

{R has boen e%atafdlisﬁwad}

jiA{R has been wstablished}

all under the assumption that the program terminates, what it does thanks
to the fact that the squere of & non-negative number is a monotonicly

2

increasing function: we can take for t the function n - a .

This program is not very surprising, it is not very efficient either:
for large values of n it could be rather time-consuming. Anothexr way of
generalizing R is the introduction of ancther variable, b say --and

again .restricting its range-- that is to replace part of R, for instance

> 2 '
P a? <n and b >n and O0<La<b .

By the way this has been chosen it has the pleasant property that

Thus we are led to consider a program of the form --from now onwards
omitting the if n >0 - ... fi--

a, hi= O, n + 1 {P has been estab]ished};
do a + 1 # b - decresse b - a under invariance of P od

{R has been established}

Let esach time the guarded command is executed d be the amount by
which the differsnce L -~ a is decreased. Decreasing this difference can

be done by cither decressing b or by lncreasiang & 0T both, Without loss

EwWD4a1s - 17

of generality we can restrict ouxselves to such steps in which either a
or b is changed, but not both: if a is too small and b is too large
and in one step only b is decreased, then a can be increased in a

next step. This consideration leads to a program of the following form

a, b= 0, n + 1 {P has heen established};
do a + 1 ;é b e
di= ... {d has a suitsble value and P is still valid};
Aif ... ai=a + d {P has not been destroyed|
H ees = bi=b - d {P has not been destroyed}
jg_{P hes not been destroyed}

od {R has been established)

Now 2

wp("a:: ak-+ a", P) = ((a + d)g =<n :E’_DQ b = n)

which, because p implies the second term leads to the first one as our

first guard; the second guard is derived similarly and our next form is

a, b= 0, n+1;

fi {P has not been destroyed}

gg,{R has been established} .

We are still left with a suitable choice for d . Because we have chosen

b - a8 =--well:t b -a - 1 actually-- ag our function t , effective
decrease implies that d must satisfy d > 0 ., Furthermore the following
alternative construct mey not lead to abortion, i,e, at least one of the

v 2
guards must be true. That is, the negation of the first: (a + d) >N

must imply the other: (b - d)2'> n ; this is yguwarenteed if

EWD41% ~ 18

a +d<bhb -d

oy 2%d<b- a .
Besides a lower bound we have also found an upper bound for d . We could
choose d =1, bul the larger d , the faster the program and therefore

WEe Propose!
a, bit=0, n + 1;

od

where n div 2 ds given by n/2 if n|2 and by (n - 1)/2 if (n - 1)!2 .

The use of the operator div suggests that we should look what

happens if we impose upon ourselves the restricition that whenever d

1

is computed, b - a should be even. Introducing ¢ =b - a and eliminating

the b, we get the invariant relation

2

‘ 2
P a <n gnd (a+)" >n and (£ it 1> 0: ¢

i

2*)

Y

and the program (in which the roles of ¢ and d have coincided)

2

a, ct=0, 15 doc <n-ci=2 ¥ ¢ od;

do ¢ L1 weoi=o / 2;

it (s +¢)°

£ oA
LA

N~ &l a + ¢

i

(a + c)2 > - skip
[:

EWD41% - 19

Note. This program is very much like the last program for the third example,
the computation of the remainder under the assumption that we could multiply
and divide by 3 . The alternative construct in our above program could

have been replaced by
2
do (@ + c) “<n - at=sa + c od

If the condition for the remainder O < r <d would have been rewritten

as r<d and (1 + d)_Eﬁd the similarity would be even more striking.

(End of note,>

Under admission of the danger of beating this little example to
deatt, 1 would like to submit the last version to yet another transformation.
We have written the program under the assumption that sgaring a number is
among‘the repertoire'O% available operations, but suppose it is pot and
suppose that mu?%iplying and dividing by (small) powers o 2 are the
only‘(semim)multjpljﬁative operations aé our disposal. Then our-last
©program as it stands, is no good, i.e. it is no good if we assume that
the values of the variables as directly manipulated by the machine are
to be equated to the vélues of the variables a@ and ¢ if this computation
were performed "in abstracté". To put it in another way: we can considexr
a ‘and c as abstract variables whose values are represented --according
to a cohvention more complicated than just identity-~ by the values of
other variables that are in fact manipulated by the machine. Instead of
directly manjpglaﬁing a and ¢, we can let the machine manipulate

p, g and 1, such that

EWD41% - 20

I+ is & co-ordinate transformation and to each path through ourx (a,c)_space
gorresponds a path through our (p,q,r)~space. Not always the other way
round, for the values of p , q and r are not independent: in texms of

p, g and r we have redundancy and therefore the potential to trade
some storage upace against not only computation time but even against the
need to sguase!l (The transformation from a point in (a,c)~space to & point
in (p,q,r>~space has quite clearly been constructed with that objective

in mind.) We can now try to translate all boolean expressions and moves

in (a,c>wspac@ into the corresponding boolean expressions and moves in
(p,q,x)»space. If this cen be done in terms of the there permissible
operations, we have been successful. The transformation suggested is
indeed adequate and the following program is the result (the variable

. h has been introduced for a very local optimization):

p, g, ri= 0, 1, n; do g <n —~qi=q ¥4 od;

doq#1—qi=q/4; hi=p+a;p=p/2{h=2%p+al;

i;

i

r>hep, ri=p+g, ¢ ~h
l r<h - skip
i

e

od; {p has the value desired for a}

This fifth example has bean included because it relates --in an
embellished form-- a true design history. When the youngest of our two
dogs was only a Few months old 1 walked with both of them one evening,
preparing my lectures for the next morning, when 1 would have to address
students with only a few weeks exposure to programming, and I wanted a
simple problem such that 1 could "massage" the solutions. During that

one-hour walk the first, third and fourth program were developed in that

EWn413 - 21

order, but for the fact that the correct introduction of h in the last
program vas something I could only manage with the aid of pencil and paper
after 1 had returned home. The second progrem, the one manipulating a
and b , which hexre has been presented as a stepping stone to our third
solution, was only discovered a few weeks later --be it in a less elegant
form than presented here. A second reason for its inclusion is the relation
between ihe third and the fourth program: with respect to the latter one
the other one represents our first example of so-called "representational

abstraction".

‘Sixth example.

For fixed X (X >1) and Y (v 270) the program should establish
R: z = X

gnde: the --obvious-- assumption that exponentiation is not among the
:gvailable repcrtoire. This problem can be solved with the aid of an
: "abstract‘variable" , h say; we éhall do it with a loop, for which
v thglinvaxiant relation is
P: o ‘ h %z =X
and our (equally "abstract") program could be

h, z:= X, 1 {P has been established};

do h 41 - sgueeze h under invariance of P od

{R has been established]

Thé last conclusion is justified hecause (p and h'= 1) =R
above program will terminate under the assumption that a finite number

of applications of the operation "squeeze" will have established h = 1.
The prohlem; df course, is that we are‘nol allowed to represent the value

of b by that of a concrete variable directly manipulated by the machine:

EWD413 -~ 22

if we were allowed to do that, we could have assigned the value of XY
immediately to 2z , not bothering about introducing h at all. The trick
is that we cen introduce two ~--at this level concrete-- variables, x and
y say, to represent the current value of h and our first assignment

suggests as convention for this representation

The coirdition '"h # 1" then translates into "y # O" and our next
task is to discover an implementable operation "squeeze". Because the
product h % z must zemain invariant under squeezing, we should divide
h by the same value by which =z is multiplied. In view of the way
in which h is represented, the current value of x is the most
natural candidate. Without any further problems we arrive at the

translation of our abstract program

Xy ¥y 23= X, Y, 1{P has been established};
doy £C -y, zt=y =1, z *x {P has not been destroyed} od

{R has been established} .

Looking at this program we realize that the number of times
control goes through the loop equals the original value Y and we can
ask ourselves whether we can speed things up. Well, the guarded command
 has now the ta$k to bring y down to zero: without changing the value

of h , we can investigate whelher we can change the representation of

that value, in the hope of decreasing the value of y . We are just
going to try to exploit that the concrete representation of a value of
Y

h as given by x is by no means unique. 1f y is even we can halve

y and square x, and this will not change h at all, Just before ihe

EWD41% - 23

squeezing operation we insert the transformation towards the most attractive

representation of h and here is the next program:

doy £ 0w do yi? - x, yi=x ¥x, vy /2 od;

Qg‘{R has been established|

There exists one value that can be halved indefinitely without becoming
odd and that is the value O, in other words: the outer guard ensures

that the inner repelition terminates.

I have dncluded this example for various reasons. The discovery
~that a mere insertion of what on the abstract level acts like an empty
statement could change an algorithm invoking a number of operations
proportional to Y into one invoking a number of operations only propor-
tional to iog(Y) startled‘me when I made it. This discovery was a direct
consequence of my fdrcing myself to think in terms of a single abstract

variable. The exponentiation program I knew was the following:

—

Ky Yy Zi X, Y, 1;

do v £ 0 = if non y|2 =y, zi=y -1, z *x [y|2 - skip fi

This latter‘piogram is very well known, it is a program that many of us
have discovered independently of each other. Because the last squaring
of x when y has reached the value 0 is clearly superfluous, this
program has often been cited as supporting the need for what were called

"intermediate exits". ln view of our second program I come to the conclusion

that this suppourt is weak.

EWD4A1% - 24

Seventh example.

For a fixed value of n (n EjO) a function f(i) 1s given for
O <i <N . Assign to the booclean variable "allsix" +the value such that

evgfually
A
R: allsix = (A it 0<i<n: f(i) = 6)

holds. (This example shows some similarity to the Second Example of this
chapter. Note, however, that in this example, n = 0 is allowed as well.
In that case the range for i for the all-quantifier "A" is empty and

allsix = true should hold.) Analogous to what we did in the Second Example

the invariant relation
P: (allsix = (A i: 0<i<j: f(i) = 6)) and 0<j <n

suggests itself, because it is easily established for j = C , while
(P and i = n) =R . The only thing to do is to investigate how to increase

v

3 under invariance of P . We therefore derive

wp("jr=j + 1", P) =

Il

(allsix = (A i: 0<i<j+1: f(i) =6)) and 0<j+ 1 <n

The last term is implied by P and j % m ; it presents no problem because
we had-already decided that j # n as a guard is weak enough teo conclude

R upon termination. The weakest pre-condition that the assignment
allsix:= allsix and f(j) = 6
will establish the other term is
(a11six and f(j) =6) = (A i: 0<i <3+ 1: £f(i) = 6)

a condition that is implied by P. We thus arrive at the program

EWD413 - 25

allsix, j:= true, O;
do j # n - allsix:= allsix and f(j) = 6;
j:: J + 1

od

(In the guarded comnand we have not used the concurrent assignment for no

particular reason.)

By the time that we read this program --or perhaps already earlier--
we should get the uneasy feeling that as soon as a function value £ 6 has
been found, there is not much point in going on. And indeed, although

(P and j = n) = R , we could have used the weaker

(P and (j = n or non allsix)) = R

leading to the stronger guard "j # n and allsix" and to the program
allsix, j:= true, O;
do j # n and allsix - allsix, ji= f{j) =6, j+ 1 od .

(Note the simplification of the aséignment to allsix , a simplification

that is justified by the stronger guard.)

Exercise. Give for the same problem the correctness proof for

if n'= 0 -~ 8llsix:= true

[n>0-j:=0;

Q_Qj;éﬂ—v1 andf‘(j)=6.—>j;=‘j+19_q;

allsix:= f(j) = 6

!
fe

and also for the still more tricky program (that does away with the need

-to invoke the function f from more than one place in the program)

x

EWD413 -~ 26

ji= 0;
do j # neand £(j) = 6 = ji= j + 1 od;
allsix:= j = n
(Here the condition conjunction operator "cand" has been used in order to

do justice to the fact that f(n) need not be defined.) The last program

is one, that some people like very much,

Eié¥h example.
I

Before I can state our next problem, I must first give some definitions

and a theorem. Léif p = (po, Pys eee 5 P) be a permutation of n (nl> 1)

n-1
different values pi (O <i <Zn), i.e. (i # j) = (p, # pj) . Let

i
q = (qo, q1, ce ey qn 1) be a different permutation of the same set of

n values. By definition "permutation p precedes q in the alphabetic

and only if for the minimum value of k such that Py £ q, we

The sorcalled "alphabetic indexn" of a permutation of . n different
values is the ordinal number given to it when we number the n! possible

permutation arranged in alphabetic order from O through n!-1 . For

instance, for n =73 and the set of values 2, 4 and 7 we have

index3(2, 4, 7) =0

index3(2, T, 4) =1

i
N

index3(4,‘2, 7)

it
W

index3(4, 7, 2)
index3(7, 2, 4) = 4

index3(7, 4, 2)

i
A

+

EWD413 - 27 ?6

Let (p0§ p1§ vee §pn) denote the permutation of the n different
values in monotonicly increasing order, i.e. indexn((po§ p1§ ... §p)) = O.
n

(For example (48 7§ 2) = (2, 4, 7) but also (7§ 2§ 4) = (2, 4, 7) .)

With the above notation we can formulate the following theorem for

n > 1: i nd (
in exn pO, D1, eee 3 P

1) =

1ndexn(po,(p1§ p2§ - §pn"1)) + 1ndexn_1(p1, Pps =+ 5 P

n—

)

n-1

(e.q. index3(4, 7, 2) = index_ (4, 2, 7) + index2(7, 2) =2+1 =3 .)

3
In words: the indexn of a permutation of n different values is the
indexn of the alphabetigly first one with the same lefimost value increased

by the indexn 1 of the permutation of the remaining rightmost n-1 values.

As a corrolary: from

< ... <p ’

P n-1

<
n-k Pk

follows that indexn(po, p1, P) is a multiple of k! and vice

n-1

versa.

After these preliminaries we can describe our problem. We have a row
of n ~“positions (n >-1) numbered. in the order from left to right from

) thréugh n-1 ; in each position lies a card with a value written on it

such that no two different cards show the same value.

When at any moment c; (O <i <in) denotes the value on the card

in position i , we have initielly

(i.e. the cards lie sorted in the order of increasing value). For given

value of r (O < r <n!) we have to rearrange the cards such that in the

EWD413 - 28

R . index (c) = r .

n 0’

[e C
11 * ’ n~1

the only way in which our mechanism can interfere with the cards is via

the execution of the statement
cardswap(i, j) with 0 <i, j<n

that will interchange the cards in positions i and j if i # J

(and will do nothing if i = j).

In order to perform this transformation we must find a class of states-
~-~-all satisfying a suitable condition P1-- such that both initisl and
final states are specific instances of that class. Introducing a new

variable, s say, an obvious candidate for P1 is

1ndexn(co,ic1, vee Cn—1

ds this is easily established initially (viz. by "s:= O") and

(P1 and s =) =R .

- Again we ask, whether we can think of restricting the range of s

and in view of its initial value we might try

Pls index (c., €,y oo , 6 .) =85 and O0<s <r
i TR0 T - =

- which would lead to a program of the form

s:= O {P1 has been established};
dos# 1 {Pl and s <r}
increase s by a suitable amount under

invariance of P1 {P1 still holds}

od {R has been established} .

. EWD413 - 29 +

Our next concern is, what to choose for "a suitab:e amount", Because
our increase of s must be accompanied by a resarngement of the cards in
order‘to keep P1 invariant, it seems wise to investigate whether we can
find conditions, under which a single cardswap corresponds to a known

increase of s . Let for a value of k satisfying 1 <k <n hold

“h-k < ©h-k+1 <e.e < Ch-1 5
this assumption is equivalent with the assumption k!|s --read: "k!
divides s"--. Let i = n-k-1 , i.e. €5 is the value on the card
to the immediate left of this sequence. Let furthermore c. <c and

i n-1

let cj be for j in the range n-k < ji<n the minimum value such that
c. <c, (i.e. cj is the smallest value to the right of ci exceeding the
latter). In that case the operation cardswap(i, j) leaves the rightmost
- k values in the same monotonic order and our theorem about permutations

cand their indices tells us that k! is the corresponding increase of s

It also tells us that when besides k!|s we have
s <r<s + k!

through c have attained their final value.

0

c n~k-1

. Y/
I therefore suggest to stre%}hen our original invariant relation P1

with the additional relation P2 ~-fixing the function of a new variable k —-

P2 1<k<n and k!ls and r <s + k!

which means that the rightmost k cards show still monotonicly increasing
values, while the leftmost n-k cards are in their final positions: we have

decided upon the "major steps" in which we shall walk towards our destination,

In order to find "the suitable amount" for a major step the machine

EWD413 - 30

first determines the largest smaller value of k for which r <s + k!
no longer holds -~ c, with i = n-k-1 is then too small, but to the
left of it they are all OK-- and then increese s by the minimum multiple
of k! needed to make r < s + k! hold again; this is done in "minor
steps" of k! at a time, simultaneously increasing c, with cards to

the right of it. In the following program we introduce the additional

variable kfac , satisfying
P3: kfac = k!

and for the second inner repetition i and j , such that i = n-k-1

and either j=n or i<j<nandc.,>c. and c, < c,
N i "j-t —"i

s:= 0 {P1 has been established};
kfac, k:= 1, 1{P3 has been established as well};
do k:£ n - kfac, k:= kfac *(k + 1), k +1 od
{P2 has been established as wellf;
dos#r-{s<r, i.e. at least oﬁe, and therefore
at least two cards have not reached their
final position|
do r <'s + kfac - kfac, ki= kfac / k, k =1 od
{P1 and P3 have been kept true,.but in P2
the last term is replaced by
s + kfac <r<s +‘(k + 1)'*‘ kfac};
i, je=n -k -1, n ~ k;
_g_qs‘+kfat5r~{n-k_<;j<n}
st= s + kfac; cardswap(i, j); Ji= 4 + 1

og.{P2 has been restored again: P! and P2 and P3}

od {R has been established}

EWDM 3 - 31

Exercise. Convince yourself of the fact that also the following rather

similar program would have done the job:

s:= 0; kfac, k:i= 1, 1;
do k #n - kfac, ki= kfac *(k + 1), k + 1 od;
dok £ 1 -
kfac, k:= kfac / k, k - 1;
i, ji=n -k -1, n - k;
do s + kfac < r -

s:= s + kfac; cardswap(i, j); ji= 3 + 1

od .

(Hint: the monotonicly decreasing function t > 0 for the outer repetition

is t=r-s+k-1.)

,,,,,,
e

