Eupazs - 0
PROF. DR. M. WIRTH
ET

H
CLAUSIUSSTRASSE 55
CH-8006 ZURICH

Array varjables,

EWD428.html

I have been trained to Tegard an array in the ALGOL 60 sense as a
finite set of elementary, Consecutively numbered variables, whose "identifiers"

cauld be "computed", But for two Teasons this view does not satisfy me anymore.

variable a Passive scope and an active SCope, separated by a syntactically
recognizable initialization for that variable. But when we regard the array

8s 8 collection of (subscripted) variables, that solution breaks down,

For thev:oncurremt @ssignment we have insisted thst a1l variables at the

left-hand side should be different; it would be foolish to attach to

"%, x 1= 1, 2n any other meaning than "error". fFor a long time, however,

I hesitated to adopt the concurrent assignment on 8ccount of the problems

it cayses in cases like

3

AL al5)i= %,

£

should this be allowed when 3 # J.y but not when 3 = j ? DOr is, perhaps,

i=j permissible if x = y holds as well, as for instance in

TN 8 e A g e

http://www.cs.utexas.edu/users/EWD/transcriptions/EWD04xx/EWD428.html

EENy

, éisting of a single, anonymous point--, a function that does not change

EWD428 - 1

Ali), Al3) :=al3], Ali] ?

If we go that route we are clearly piling one logical patch upon another.

However, I have now come to the conclusion that it is not the concurrent

assigrment, but the notion of the subscripted variable that is to be blamed.

In the axiomatic definition of the assignment statement via "substitution

of a variable" one cannot afford -~--as in, I guess, all parts of logic-- Vi
I

any uncertainty as to whether tweo variables are the same or not.

The moral of the story is that we must regard the array in its
entirety as a single variab}e, a¥ so-called "array variable", in contrast
to the "scalar variables" discussed so far. In the following I shall restrict
myself to array variables that are the analogon of oqe—dimensional arrays.

Ty

We can regard'Cthe value of) a variable of type "integex" as an

e integer~valued function without arguments --i.e. defined on a domain con-

G

unless explicitly changed (usually by an assignment). It is. somewhat

unusual to consider functions without arguments; but we mention the view-

8 point for the sake of the analogy. For, similarly we can regard (the value

of) a variablé of type "integer array" as an integer-valued function of
Copatetg vty

one argument with a domain in the integers, a function, again, that does

not change unless explicitly changed.

But the value of a variable of type "integer array" cannot be any
integer-valuea function defined on a domain in the integers, for I shall
resfrictkhyself tb such types that, given two variables of that type, we
can write an algorithm establishing whether or not the two variables bhave

the same value. If x and y are scalar variables of type "integer", the n

EWD428 - 2.

this algorithm boils down to the boolean expression x =y , i.e. both
functions are evaluated at the only (anonymous) point of their domain and
these integer values are then compared. Similarly, if ax and ay are

two variables of type "integer array", their values are equal if and only
if, as functions, they have the same domain and in each point of the domain

their values are equal to each other. In order that all these comparisons

are possible, we must restrict ourselves to finite domains. And what is

[l
H

more, besides being finite, the domains must be availasbe in one way or
another to the algorithm that is to compare the values of the array variables e

ax and ay.

For practical purposes I shall restrict myself to domains consisting
of consecutive integers (when not empty). But even then there are at least

,tWo possibilities. In ALGOL 60 the domain is fixed by giving in the declaration

’e~~E¢g. - "boolean ar:ag,A[1:10], B[T:Sj“ -- the lower and upper bounds for
o , o ; e - ;
the,subsc:ipt‘value. As a type determines the class of possible values for
~ aivarieble of that type, we must come to thevconcluéion that the two‘arrays
 " A aﬁdk'B in the above example are ef different type: A maykheve 1024
| different values, B dnly %2. In ALGOL €0 we’have as many di%ferent types
' "hoolean arfay" as we cen have boend peirs (and, es the bound pair mey
cdntain expiessions, the type is in principle only determined upon biock
, entry).'Besides that, the necessary knowledge about the domain’must’be
;xprovided by other’means: withoe£ fgrther‘information it is impossible to
write in ALGOL 60 an inner block determining whether two global boolean

.

arrays A and B are equal!

The alternative is to introduce only one type "integer array" and

only one type "boolean array" and to regard "the domain" as part (aspect)

EWD428 - 3

of any value of such type; we must then be able to extract that aspect
from any such value. Let ax be an array variable; in its active scope I
proposé to extract the bounds of the domain from its value by means of two
integer-valued functions, denoted by "ax.lob" and "ax.hib" respectively,
with the understanding that the domain of the function "ax(i)" extends

over all integers 1 satisfying

ax.lob < i < ax.hib

.

Besides those two I propose a third (dependent) one, "ax.dom", equal to

the number of points in the domain. The three functions satisfy

ax.dom = ax.hib - ax.lob +1 >0 .
Come (¥
(Note that eéven the empty domain --dom = O-~ has a place along the number

Iy

 line: lob and hib remain defined, they then satisfy hib = lob - 1 .)

We have used here a new notation, the dot as in M"ax.lob, "ax.hib"

‘and "ax.dom". The names‘fbllowing the dot are what is calledkhsubordiﬁatej

to thg;type of the variable whose name precedes . the dot".‘Following'the

 ,dot that follows a variable, only names subordinate to the fype;df‘that
"variablé may occur and their meaning will be as defined with respect to

that type.

’ Remark 1. In other contexts, i.e. not following the dot, the same names
may be used with completely different meaning. We could introduce an array

variable named "dom" and in its active scope we could refer to "dom.lob",

"dem.hib" and even "dom.dom" ! Such perversities are not recommended and

therefore I have tried to find subordinate names that, although of some

'mhehonic value, are unlikely candidates for introduction by the programmer

himself. (End of remark 1.)

- tion in the point as indicated by the value of the further argument i
- For each type, such an abbreviation can be introduced just once! Note

o that‘alsc the type "integer" could have a subordinate name "val",,that

EWD428 - 4

Remark‘Z. A further feason for using the dot notation rather than the
function notatidn ~—8.7. "dom(ax)" etc.-~ is that, unless we introduce
different §ets of names for these functions defined on boolean arrays and
integer arrays respectively --which would be awkward-- we are forced to
introduce functions of an argument that may be of more than ane type,

something I would like to avoid as long as paossible. (End of remark 2.)

Remark 3. The expression "ax(i)" is used to denote the function value in
point i. Only when the value of "ax(i)" is required needs the argument
o~ -

i to be defined and to satisfy
ax.lob < i < ax.hib .

In view of the.dot notation we could regard "ax(i)" as an abbreviatian

for "ax,val(i)" , where "val" is the subordinate name indicating evalua-

o

’;would enable us to write a little bit more explicitly:

Xi=y,val

dinstead of the usual and somewhé£ sloppy X:i=y .(End of remark 3.)

For the sake of convenience we introduce two further functions; for

the array variable ax they are defined if ax.dom >0 . They are

ax.low , defined to be equal to ax(ax.lob) and

ax.high , defined to be equal to ax(ax.hib)

They denote the function values at the lowest and the highest point of the

domain respectively. They are nothing really new, they are defined in terms

~considered -as "nice" operations. On the contrary: in many programming tasks

the Core‘of the problem consists of building up an array value graduélly;

R . EWD428 - 5

of conceots iready known and in the definition of the semantics of -operations

on array vsiues we o0 not need to mention the effect of them explicitly.

As stated above, a scalar variable can be regarded as a function
(withOut argument) that can be chénged by assigning a new value to it: such
an assignment destroys the information stored as "its old value" completely.
We also need operations to change the value of an array variable --without
them it would always be an array constant!-- but the assigrment of a new
value to it that is totally unrelated to its old value will play a less &
central role. It is not that the assignment to an array variable presents

any lbgical difficulties ~--on the contrary, I am tempted tg add-- but.there ¢

~ is something wrong with its economics. With a large domain size the amount
of information stored as "the value of an array variable" can be very large,

~-and neither copying nor destroying such large amounts of information zare

Coim

“’4i,e. in a number of steps, each of which can be considered as a "nice"

~operation, "nice" in the sense that the new value of the array can be

regarded as a "pleaSant" derivation of its old value. What makes such

operatiaons "nice" or "pleasant!" depends essentially on two aspects: firstly,

the relation between the old and. the new value should be mathematically

manageable --otherwise the operations are for us too cumbersome to use--

and,‘SeEondly,,its implementation should not be too expensive for the kind
of hardware, that we intend to instruct with our program. The extent to

which we are willing to take the latter hardware constraints into account

is rot.a sciertific questiom, but a political one and as a corsequence I

don't feel obliged to give an elaborate justificat on of my choices. for
the sake of convenience 1. shall be =smewhati -rore liberal than many pProgrammers

K

o
£%
A}

)

TN . P . P o 3 s ' . 3

EWD428 - 6

would be --particularly those that are working daily with machinery, the
conceptual design of which is ten or more years old--; on the other hand I
hope to be sufficiently aware of the possible technical consequences of

my choices, that they remain, if not realistic, at least not totally un-

realistic.

[N

Our first modification of the value of an array variable, ax say,
does not change the domain size, nor th¢ set of function values, nor their
order, ‘it only shifts tbg domain{over a number of places, k say, upwards(.
along the number line. (IF k <0 it is a shift over -k places in the
other direction, if k = 0 it is the identity transformation, sgmantically

Con

equivalent to "skip".) We denote it by
,éx;shift(k) .

Here we have introduced the colon ":". Its lowest dot indicates in the

usual manner that the following name is subordinate to the fype of. the

‘variable mentioned to its left; the upper dot is just an embellishment
(inspired by the assignment operator ":="), indicating that the value of

the variable mentioned to its left is subject to redefinition.

Immediately we are confronted with the guestion, whether we can give
an axiomatic definitidn Df‘the predicate transformer wp("axtshift(E)", R)
Well, it must Be a predicate transformer similar to the one of the axiom
of assignhent to a scalar variable, but more complicated --and this will
be true as well for all the other modifiers of array values-- because the
value of a scalar value is fully defined by. one (elementary) value, while
the value of an array variable involves the domain itself and a function

~value for all points of the domain. Because the value of the array variable

EWD428‘- 7

ax is fully determined by

the valge of ax.,lob ,
the value of ax.dom and

the value of ax(i) for ax.lob < i < ax.lob + ax.dom .

we can --in principle, at least-- restrict ourselves to post-conditions R

referring to the array value only in terms of "ax.lob", "ax.dom" and

" 114

ax(arg)" where "arg" may be any integer-valued expression. For such a

post-condition R the corresponding weakest pre-condition
wp("ax:shift(E)", R)
is derived from R by simultaneously replacing

1) all occurrences of ax.lob by (ax.lob + (E)) and SRR

2) all occcurrencés of (sub)expressions of the form ax(arg) by
'ax((argz -,(E)) .

f'Note. If E itself depends on the value of ax , the safest way is to

‘evaluate first for the given R Qith a completely new name, K say,

; WP("ax:shiFt(K)", R) , in which then the actual expression E is sub-

stituted for K . We have already encountered the same complication when

applying the axjiom &f assignméht to statements such as x:= x + f(x). (End
~of note.) . S : ’ é
We give a few examples. Let R be ax.lob =10, then
(n .t " - . -
wp ! ax,%hlft(ax.lob) , R) = (ax.lob + ax.lab = 10)
= (ax.lob = 5) .
let R be (ﬁ_i: 0 <i <ax.dom: ax{ax.lob + i) =4i) , then

wp("ax:shift(7)", R) = (ﬂ i: 0 <i < ax.dom: ax(ax.lob + 7 +i =7) = i)

EWD428 - 8

An alternative way of formulating the weakest pre-condition is

oy . 3 " =
wp(ax:shift(E) ’ R) = Rax' s ax

(i.e. a copy of R, in which every occurrence of ax is replaced by ax'),

where ax'.lob

ax.lob +(E > . ‘:ffLQ"

-

ax'.dom = ax.dom

ax'(arg) = ax(arg —{E) for any valje of arg .

i G

From these three definitions it follows that

ax'.hib

ax.hib + E
ax'.low = ax.low

ax!.high = ax.high .

°1Note. Such equalities are meant to imply that if the right-hand side is.

o

o G F [. \\ : G

“undefined, the left-hand side is so as well. CL)

: V"Forvthé definition of our further operators we shall follow the

‘ff:léttef technique: it describes more ‘clearly how the final value ax' de-

The next operafors extend the domain at either the high or the low
énd with one point. The function value in the new point is given as parameter
which must be of the so-called "base type" of the array, i.e. boolean for

»

a boolean array, etc. The operators are of the form

ax:hiext(x) or ax:loext(x) .

Ewp428 -~ 9

The semantic definition of hiext is given by

wp("ax:hiext(x)", R) =R ,
ax' - ax

where ax'.lob

it

ax.lob

it

ax'.hib ax.hib + 1

ax'.dom = ax.dom + 1

ax'(arg) = x for arg = ax.hib + 1
= ax(arg) for arg # ax.hib + 1 .

The semantic definition of loext is given by

wp("ax:loext(x)", R) = R

ax' - ax
“.where) ax'.lob = ax.lob -1
ax!.hib~= ax.hib
ax'.dom = ax.dom + 1;
é*'(arg) = x B for arg - ax.lob ~ 1
= ax(arg) for arg # ax.loE -1

‘Note,,Uurvéarlier remark that also .the empty domain would have its place
;élong the number line was to ensure that the extension operétors hiext
.and‘ loext are also defined when applied to an array variable with dom = O .

‘(Ehd of‘nmte.>

The next two operators remove a point from the domain at either the

high or the low end. They are only defined when initially dom > O holds

for’the array to which they are applied; when applied to an array with

dom = Q , they lead to abortion. They destroy information in the sense that

~one of the function values gets lost.

EWD428 - 10

The semantic definition of hirem is given by

wp("ax:hirem", R) = (ax.dom > 0 and R ,)
ax' - ax

where ax'.lob

ax.lob

ax'.hib = ax.hib -~ 1

ax'.dom = ax.dom - 1
ax'(arg) = undefined for axg = ax.hib
= ax(arg) for arg # ax.hib

The semantic definition of lorem is given by

wp("ax:lorem", R) = (ax.dom >0 and R)

= ax! - ax

whezre ai'.lob = ax.lob + 1
i
ax'.hib = ax.hib
|
aj';dom = ax.,dom -1

ax‘(arg) = undefined for arg = ax.lob

i

% ax(arg) ¢- for arg # ax.lob .
;
|
,7 For the sake of convenience we introduce two further operations, the
“semantics of which can be expressed in terms of the functions and operations
~ already introduced: they are
‘ x, axthipop semantically‘ equivalent to "x:= ax.high; ax:hirem™ ‘and

x, ax:lopop , semantically equivalent to "x:= ax.low; ax:lorem”

They are given in a notation which is reminiscent of the one for the
‘concurrent assignment; the name following the ":" must be subordinate to
thektype of the varioble immediately before the ":". Obviously, the other

.variable x must be of the base type of the array variable ax .

i ¥

T

EWD428 ~ 11

The above modifiers all change 6 domain of the function, either only

its place along the number line or alsa its size. Two further modifiers will

be introduced, modifiers that leave the domain as it stands, but only affect

one or two function values.

A very important one does not introduce new function values, but only

rearranges them. It is of the form

ax:swap(i, j) .

It leads to abortion when invoked without both i and j lying in the

/daméin. Its;§emantics are given by

oo :
wp("ax:swap(i, j)", R) = (ax.lob <i<ax.hib a

ax,lob < j < ax.hib an

3
a%ﬁ“

o

Rax' - ax)
:VTWﬁere' | ‘; ax’.lob = ax.lob
L ax'. hib = ax.hib
ax',dom = ax.dom
ax’(érg)»= ax(j) o for arg = i
=,ax(i) ' ’ for arg = j
; ax(arg) for arg # i gig arg'%‘j .

Note. Initially i # j is not required: if initially i = j ‘holds, the

“value of the array variable remains unaffected. (End of note.)

Our last modifier redefines a single function value; it is of the

form ax:alt(i, x) .

It leads to abortion when invoked without i

lying in the domain; the

EWD428 - 12

second parameter x must be of the array variable's base type. Its semantics

are given by wp("ax:alt(i, x)", R) = (ax.lob < i < ax.hib and

R)

ax' - ax
where ax'.lob = ax.lob o
ax'.hib = ax.hib
ax'.dom = ax.dom
ax'(arg) = x for arg = i

= ax(arg) for arg # i .

e

The opération denoted above as "ax:alt(i, x)" is semantically equi-
‘valent to what-FORTRAN or ALGOL 60 programmers know as "theassignment to
‘a subSc;ipted variable", (They would write "AX(I) = X" and "ax[i]:: x"

g féspectiVéth) I héVe introduced this operation in the form "ax:al:t(i, x)"
iﬁ ardé# £d“stress that such an operation affects the array ax as a whole:
“f,fwo fgﬁ§ti0ns with ‘the same domain are different functions if they_diffef:f
in at least one point of the domain. The gofficial" --or, if you prefer:‘
;vpu:itan"~~ notation "axtalt(i, *)ﬁ is, however, even to my‘tasteftoo
kCUmba:soms and too unfamiliar and I therefore proposé -~1 too have my

‘weaker moments!-~ to use instead
ax:(i): X

a notation which is somewhat shorter, reminiscent of the so much more
familiar assignment statement and still reflecting, by its opening "ax:"
that we must view it as affecting the array variable ax. (The decision

r
"o,

kto write "ax:(i)= x"

is not much different from the decision to write

"ax(i)" instead of the more gompog "nx.vul(i)",)

EWDA28 ~ 13

None of the previous operators can be used for initialization: they
can only change the value of an array under the assumption that it has
already a value, they can only occur in the active scope of the array

variable. We have not yet introduced the assignment
ax:= bx

a construct that would do the job. I am, however, very hesitant to do so,
because in its full generality "assignment of a value" usually implies
"copying a value" and if the domain of the function bx is large, this

is not to be regarded as a "nice" operation in present technolog}t Not
that 1 am absolutely unwilling to introduce "unpleasant” operations, but
éiﬁ‘l do so, I would not like them to appear on paper as innocent ones, A&~
‘programming language in which "x:= y" should be regarded as "nice", but
"ax:= bx" should have to be regarded as "unpleasant” would be misleading;
it would at least mislead me. A way out of this dilemma is to’admit as

the right-hand side of the‘assignment to an array variable only Enumeratgg

e

constants, e.g. of the form

(<Iinteger'>'{, < value of the base type >})

‘such‘tﬁat
| bx:i= (5, true, true, Talse, txue);
Qould establish
bx.lob = 5 bx{5) = true
bx.hib = 8 ‘ bx(6) = true
bx.dDT = {4 bx(7) = false
; bx(B) = true

The consequence of such a restriction is that assignment of or initialization
with a value with a large domain size cannot be written down unncticed. My

expectation is that most initializations will be with values with dom =0 .

EWDA2S - 14

few concluding remarks are in order.
. |

There is, to start with, the question of economics. My basic assumption
is that all operations mentiocned in this chapter can be performed at roughly
the same price. Some assumption of this nature has to be made, for without

it the programming task does not make sense. For instance, instead of writing
ax:(S): T

we could have written the inner block

e e b
begin glovar ax; privar bx;
if ax.lob <5 and 5 < ax.hib -
e . ¢

bx vir int array:= (0);

do ax.hib # 5 = bx:hiext(ax.high); ax:hirem od;

ax:hirem; ax:hiext(7);

do bx.dom £ 0 ax:hiext(bx.high); bxshirem gi

“end

but I would like to reject that inner black as a worthy substitute, not

so much on account of the lé%gth of ‘the text, but on account of its in-

efficiency. I will not even regard "axi(5)= T"

' a5 an abbreviation aof the

above -inner block.

With the possible excépgion of the assignment of an enumerated value

hd

I assume in particular the price”G¥ all operations independent of the
values of the arguments supplied to it: the price of executing ax:shift(k)
will be independent of the value of k , the price of executing ax:swap(i, j)

will be independent of the values of 1 and j, stc. With present-day

technology these assumptions are not unrealistic.

PR

EWD428 - 15

1t is in such considerations that the justification is to be found
for my willingness to introduce otherwise superfluous names: we could have
restricted ourselves to ax.lob and. ax.dom, for whenesver we would need

ax.hib, we could write
ax.lob + ax.dom - 1

instead, but that would make the ffective use of ax.hib '"twice as expensive"
as the effective use of ax.lob and our consciousness of this fact could

easily twist our thinking. (Worse: it is guaranteed to do s0.)

1 said that the prices are of the same order of magnitude. What I

also mean is "of the same order of magnitude as other things that we consider

~as primitive"» If the array operations were orders of magnitude more ex-
pensive than other operations, we would, for instance, find ourselves

e invited‘to:replace

axiswap(i, i)

Lo
N

by if i f - swep(i,) [3= - skip £i

~and very quickly we should need to know both the exact price ratios and

,a yehy good' estimate for the probability of hitting the case "= j" in

order to be able to decide, whether our replacement of ax:swap(i,

i)

by'ﬁhe'alternétive canstruct is actually an improvement or not. I know

kof mathematicians who revel in such optimization problems, problems of

which they sometimas seem to thiné that they constitute the cehtral problems -

of computer programming. I leave these problems gladly to them if they are

‘happy with them: the operations that we prefer to consider as primitive

should not confront us with such conflicts. I like to believe that we have

more important problems to worry about.

e

§7™

EWDA28 — 16

A final remark about implementation. It is conceivable that upon
initializatiop of the array variable ax some limits are given: a lower
limit for ax.lob, or an upper limit for ax.hib or both, or perhaps only
an upper limit for ax.dom. If such "hints to the compiler" are included,

a wealth of traditional storage management techniques becomes exploitable.
I prefer, however, to regard such "hints to the compiler" not as part of
the program: they only make (on some equipment!) a cheaper implementation
possible, they represent for the implementation the permission (but not

the obligatiqnl) to abort a program execution in which such a stated limit .

is exceeded.,

