EWDAR4 - O
Burroughs

—9

DR. EDSGER W. DIJKSTRA

PLATAANSTRAAT 5 NUENEN THE NETHERLANDS

Dr.H.Bekic

IBM Laboratorium Wien

Parkring 10

1010 WIEN

Oostenri jk 8th October 1974

Dear Dr.Bekic,

I received your letter of 2nd Octeber 1974 yesterday and it distressed
me to see that you found much of it gquite upsetting.'Perhaps one should not
let other people peep in one's diary. I am not going to repeat here what 1
wrote to you in my personal covering letter: i still holds and I trust that

you will honour my request.

In your letter you raise @ number of guestions, thereby challenging
some of the opinions I expressed. The best I can do is to try to describe to

you how I came to these opinions.

To start with: my suspicions with regard to defining the semantics of
proegramming languages by means of an interpreter are of quite long standing,
at least compared to the youth of our field. My first suspicion was roused
by the observation that whenever we evoke via our program an available
primitive --such as an ADD-instruction, say-- its occurrence in that program
can only be justified by what that instruction achieves, hy "what it does
for you", rather than by "how it works". On the level of machine-code pro-
gramming I could, for instance, not care less whether my machine has a serial
adder or a parallel adder, as long as it adds. As soon as you decide to define
what you mean by the sum of two numbers as the quput of a carefully described
adder when you feed it the operands as its input, you pay immediately a rather

heavy price in at least two respects.

Firstly, the properties of addition --such as being commutative and

Burroughs EHD4s4 - 1

—9

DR. EDSGER W, DIJKSTRA

PLATAANSTRAAT & NUENEN THE NETHERLANDS

associative-- are fairly well hidden and you have to prove them as a property
cf your adder. I considered that a heavy price because, as far as the use of

the ADD-instruction is concerned, it are exactly these properties that matter.

Secondly, it is practically impossible to give such a mechanistic
definition without being over-specific. The first time that I can remember
having voiced these doubts in public was at the W.G.2.1 meeting in 1965 in
Princeton, where van Wijngaarden was at that time-advocating to define the
sum of two numbers as the result of manipulating two strings of decimal (!)
digits. (I remember asking him whether he also cared to define the result
of adding INSULT to INJURY ; that is, why I remember the whole episode.)

And being over-specific seemed harmful to me in more than ore respect. Firstly,
one must state very carefully which aspects of the mechanism's behaviour

are to be considered "essential" and which may be considered as "irrelevant™,
because without having done so it is impossible to consider an alternative,

but in essentials equivalent alternative. Secondly, the presentation of an
alternative implementation presents the problem of demonstrating the equi-

valence of algorithms, a problem which I did hot regard as an attractive ore.

At that moment, I could not offer van Wijngaarden an alternative
technique for the definition of the semantics of programming languages, but
feeling that the mechanistic definition did not seem to fulfill its most
important functions too well, I started to think about why and how I would
like to use the semantic definition. And as a result I started to think about
how to prove the correctness of programs --not all the time! I had other axes
to grind as well!-- ., And 1 discovered the following. At that time considerable
attention had been ﬁaid to the guestion how to decide, whether two given
programs were equivalent or not. (Fbr this fact 1 can think of two explanations.
It was one of the ways in which the problem of compiler correctness came to
us; besides that, the boolean question "equivalent or not" has a certain
mathematical appeal.) Very little attention --as far as I could find-- had,

however, been given to the question how to design programs in such a systematic

Burroughs EWD454 — 2

B

PLATAANSTRAAT & NUENEN THE NETHERLANDS

DR, EDSGER W. DIJKSTRA

way that they would be correct by virtue of the way in which they were con-
structed. That second question, however, seemed to me more relevant —-after
all: programs are not "given",they have to be "constructed"-— and alsc more
tractéble. As the result of some exercises I wrote an article "A constructive
approach to the problem of program correctness.™ (It was published in BIT:
IiF.Irremember the dates correctly, it was written in 1967 and published in
1968.) Much of the argument was still fairly informal, all sorts of hand-
waving included, but at that time I did not worry about that: before developing
a formalism I wanted to get a feeling of the demands that would be made upon
that formalism. About that time, three articles appeared that gave a first
start towards such a formalism: Peter Naur's article about the General Snap-
shots, Robert Floyd's article about Assigning meanings to programs, and,

a year later Tony's article on the axiomatic definmition in the Comm.A,C.M,

I think that at that time, Peter’s article appealed most to me. From
my reaction to Bob's article I remember that I was rather put of by his use
of flowcharts and tHa resulting need to isolate cycles in the corresponding
graph. Tony's article attracted me in the sense that it tied in with the
syntactical structure of the program text, but the separation in axioms and
rules of inference --a logical tradition, but not my tradition-- worried me,

My first reaction to these three articles was "Interesting, wait and see...".

In the next years, Scott's Mathematical Semantics began to appear.
I found that very difficult when I first saw that on account of sheer lack
of mathematical knowledge on my side. I studied a certain amount of 3t and
also decided "Interesting, wait and see...". For a considerable period aof
time I hesitated whether I should develop my agility in the propositional
calculus, or get a thorough knowledge of the ins and outs of lattice theory
or both. I decided to wait another half year before tentatively making up |

my mind, and to go my own way in the mean time.

As a side-effect of lectures I gave during that period of time, I

Burroughs EWDAS4 - 3

—9

DR. EDSGER W, DIJKSTRA

PLATAANSTRAAT 5 NUENEN THE NETHERLANDS

learned how to develop in a systematic way the synchronization conditions
needed to ensure a given form of harmonious cooperation between loosely
coupled seguential processes. I hecame more and more constructive in my
approach and the experience at that time is, I think, responsible for the
fact that what for a number of years had been a matter of personal policy,
now became a firm principle, viz. never to maneuver myself in the position
where I would have to derive the unknown properties of a given algorithm,
ner to try to prove the correctness of a given algorithm a posteriori. Both
problems struck me as putting the cart before the horse. When, later, 1
saw Wegbreit's article in the Comm.A.C.M, in which, for instance, he tried
to find the invariant of a loop, I felt fully justified in my decision to
avoid that problem.

In the mean time the balance slowly started to tip over in favour of
the axiomatic methed compered to the mathematical semantics. While Tomy's
original article presented axioms or postulates about programming constructs
of which it was not fully clear --at least to me-- to what extent they could
take the place of a definition of the semantics and while they only enabled
the deriviation of sufficient pre-conditions for partial correctness, that
has been cleaned up and one can now give --very much in the same style--
the weakest pre-condition for total correctness and as a system for semantic
definition it now seems fully satisfactory. (In particular, all argquments
in favour of "complementary definitions" as suggested by Hoare and Lauer in
Acta Informatica seem to have disappeared --this is not only my impression:
Tony cunfirm;d it when I spoke to him last September--; thank goodness, for
I never liked to complementary definitions: that was another érticle of which
I said to myself "Wait and see...." but this time in the hope that it would
become superfluous.) Another reason, why the balance started to tip over was
that the probability that the theory could be forged into a tool, helpful for
actual program construction, seemed greater for the axiomatic method than for

the mathematical semantics.

Burroughs EWD454 - 4

B/

PLATAANSTRAAT § NUENEN THE NETHERLANDS
DR, EDSGER W. DIIKSTRA

The next tipping of the balance took place during the meeting of
W.6.2.3 in Munich in April 1973, where John Reynolds gave for our instruction
8 commented survey of the mathematical semantics. It then came towards me as
a view of computing that can be appreciated for its consistency, for its
conceptual unification, but not without a few drawbacks, which I am beginning
to regard as serious. The first one is the size of the mathematical machinery
involved, compared to which the propositional calculus --and for an axiomatic
definition now nothing more seems needed-- is negligible, Of course one can
point out that up till now the axiomatic method is fuite madest in its aims
--8.9. no functions as values--, on the ather hand, within that limited scope
(and I am greatly in favour of choosing bur limitations wisely) the cost/per—
formance ratio --if you allow me the use of that term as one computing indus-
trialist writing to another one-- of the two different approaches seems to
be very different. The second drawback is that defining the semantics as a
minimal fixpoint is a very indirect one --some people would even call it
clumsy--: first one needs functional armalysis in order to introduce the
cencept of a fixpoint, and after that lattice theory to formulate that it

is not just any fixpoint, but among the fixpoints the minimal one.

A further ressnn that tipped the balance was our realization at that
Munieh meeting, that one of the usual motivations for the mathematical seman-
tics does not heold water, viz. that the study of infinite computations is
of importance for "operating systems and airline reservation systems"., {We
heard it repeated in Newcastle, if I remember correctly by Milner.) John
Reynolds started in Munich also with the operating systems and the airline
reservation systems and after that two-minute motiuation.... he talked for
the remainder of more than an hour about the logical difficulties of dealing
with real numbers! It was a very nice and illuminating talk (at which I rejaiced
that real numbers are no longer my prublem!), but by the time it is suggested
that one needs real number theory for dealing with operating systems and air-
lire reservation systems, some hilarious mistake has been made. (Actualry,

that a theory for dealing with operating systems and airline systems can’

Burroughs EWDASA - 5
—9
»

DR. EDSGER W. DIJKSTRA

PLATAANSTRAAT § NUENEN TH NETHERLANDS

shed some new light on the real numbers is perhaps more probable.) The inclu-
sion of infinite computations should have a better motivation, for instance
for the sake of simplification of one's arguments (the inventjon of projective
geometry by extending the Euclidean plane with its horizon is an example,
where such an extensiaon made & drastic simplification possible). Such a
simpiifyinq breakthrough, however, was not transmitted to me. It may happen
.Dné day --I try ta keep my mind open-~ but I expecl it less and less the

more I realize to what extent the simplicity of the axiomatic method is
dependent on the explicit restrictior to computatians which are guaranteed

to be finite.

Other facts that T take into consideration when trying to estimate
significance and potential of a scientific theory are the problems it evokes
and the problems it is applied to. You write to me in your letter "Nondeter-
.minism is a phenomenan we are all interested in and the guestion how to
deal with it in any ¢given semantical framework seems to be a legitimate and
interesting one," D% course, as long as you allow me to draw at least some
conclusions about the appareni adequacy of such a "given semantical framework"
when the dealing with nondeterminism presents any more or less serious problems:
the drawing of such conclusions seems to me the major purpose of such an _
exercise.l could not help comparing your struggle with the current state of
affairs in the axiomatic wethod, in which non-determinism —-as a matter of
fact: to the extent of the non-determinism as displayed by a general, finite
Petri net-- enters the picture so naturally, that I hkave come to regard
determinism as a special case (which, by the way, does not seem to be very
interesting either, because, as far as mathematical manageability is concerned,
there is hardly anything to be gained by restricting oneself to the fully

deterministic case). I eould not help to compare, could I7

Furthermore, during the last decade there seems a shift of emphasis .
to have taken place, a shift of emphasis that seems worthwhile to draw your

attention to, as also such an emphasis plays a role when trying to estimate

Burroughs EWDASA - 6

R

PLATAANSTRAAT 5 NUENEN THE HETHERLANDS
DR. EDSGER W. DIJKSTRA

significance and potential of a scientific theory. While in the beginning
of formal definitions of programming languages the efforts were vVery mﬁch
directed upan the needs and problems of the language implementer, this
emphasis shifted during the next ten years via the broblems of the language
designer towards the needs of the language user. Taking into account that
the combined users present the broadest interface, I think we must regard
this as a healthy and welcome development. But such a shift has a profound

influence on our appreciations.

For instarmce, in the most recent Computing Reviews I found (CR27.102)
Zemanek being quoted, when he observed that an axiomatic methad only works
for a "highly elegant environment”. I hope that he is right. Under the assumptio:
that he is, ten years ago this ohbservation would have been interpreted as cne
of the shortcomings of axiomatic methods. Now, however, I think that we
react inversely and say "One up for axiomatic methods!": at last a discipline
which, when you stick to it, forces elegance upon you! Great! And if I am
then exposed to a lecture in which Scott has chasen ta demonstrate the
descriptive power of his method quite emphatically with an example including
goto~-statements, what do you think that happens te the balance? It, again,
tips & little bit further. There is between the two of us perbaps a profound
difference in appreciation of the "power" of a descriptive method: I do not
care for the ability of describing things, of which I know already on other
grounds that they had better be left alone, stronger: I rather had not such

an ability,

You see, that I am answering your letter backwards. I have not "dismissed
the whole thing" (yet), but it is undeniable that the balance made a further

tip. And 1 trust that you now understand why.

* *

On page 1 I described to you my first reasons for being suspicious

as regards mechanistic definitions of semantics. As time went on, that

Burroughs EWDASA - 7

B/

PLATAANSTRAAT 5 NUENEN THE NETHERLANDS

DR, £DSGER W. DIJKSTRA

suspicion grew. Defining the semantics of a programming language by means of
an inierpreter for it, defines the meaning of algorithms written in that
programming language by means of ... another algorithm! As such, it does

not solve the problem, it only pushes it one stage further. But even if we
assume to be able to understand --or "agree upon"-- how the interpreter is
suppesed to act, what then can we do with that interpreted, when faced with
a program written in the language concerned? Well, the interpreter can
interpret the program, provided we choose values for the input. But that
gives us no more information than program testing, and such sampling will
never enable us to make assertions pertaining to "any" input value of the
domain. 5o how can we proceed? Well, we could try to prove --how, is somewhat
mysterious, but for the sake of the argument we can suppose that we can--
certain properties of the interpreter on account of which we can prove
properties of programs being interpreted, which, of course, must depend an

the program text. But seems this a sensible approach? 1 do not think so.

Firstly, the mystery of how we can prove such properties af the
interpreter bothers me, but secondly, it seems a very tortous way of deriving
properties of the programs interpreted, because if those are the propertias
we are after, why not postulate directly, how they depend on the program
text and forget about the whole interpreter? That seems much more efficient.
Instead of interpreting a program text as a piece of executable code, we
can also give it a completely timeless interpretation and introduce
axiomatically how each program text defines a relation between the initial

"state space and the final state space. (If I am in a very puritan mood,
I even talk about the left~hand state space and the right-hand state space,

just in order to remove all connotaticns with sequential execution.)

If you start to think about it, the advantages of the latter approach
are overwhelming. It gives, for instance, a clear distinction between the

semantics of the programming Qanguage proper --i.e. how the text defines

W A -
Burroughs Ewnass - 8

DR. EDSGER W. DIJKSTRA

PLATAANSTRAAT § NUENEN THE NETHERLANDS

a2 relation between the left-hand state space and the right-hand state space--
and its implementation. Correctness concerns belong to the realm of the
semantics of the programming language proper, efficiency concerns have only

a meaning with respect teo a specific implementation, and nothing is gained

by mixing these concerns, on the contrary.

In one mood 1 can regard the program text as a mathematical object
and convince myself that, according to the rules of the semantics it defines
the desired relation between left-hand state space and right-hand state
space! time, seguencing, altermative actions, repetition, determinism,
intermediate machine states and all that, none of it needs to enter my
mind, when I am in that mood {if it does, it is only confusing, because
irrelevant as far as correctness is cnncerned). In another meood, I can
ponder about the price of execution by a given implementation, for instance
by knewing that, what in my first mood was something like functional com-
bosition, indicated in the text by, say, a2 semicolon, correspords in that
implementation to a-concatenation in time of two activities, separated by
"an intermediate state of that machine". In that sccond mood, however, I
need not worry about the guestion whether the execution will produce the

desired result.

The grave disadvantage of defining programming language semantics
by mweans of an interpreter is that it defines the relation between left-
hand state space and right-hand state space as the result of a computational
process, as the last of a long series of machine states, while during
correctness considerations, of this long series only the first and the last
matter. But if the intermediate ones don't matter, please define your
semantics in such a way that they don't enter the picture to start with,
As far as thinking about programs and programming lanquages is concerned,
that is so much more efficient. Distinguishing in one's mind between a
programming language and its implmentation(s) is already difficult enough,

(as is illustrated by not uncommon assertions such as "ALGOL £O0 is an in-

Burroughs EWD454 ~ 9

—90

DR. EDSGER W. DIJKSTRA

PLATAANSTRAAT 5 NUENEN THZ NETHERLANDS

efficient language"” or “PL/I pointers are more efficient than ALGOL 68 referencecs

sentences so elliptic as being close to nonsense) ,

When I first heard that the Vienna crew was tackling a formal definition
of PL/I, I was horrified, because on account of what I knew of it, PL/I seemed
to me one of the most unattractive objects to give a formal definition of. I
certainly did not envy them their job. The next thing 1 heard was that a
definition by means of an abstract interpreter was chosen, 3 message to which
I could give anly are interpretation, wviz. that, indeed, PL/I was a most
unattractive object to give a fermal definition eof. Without further knowledge
I have assumed without hesitatien that "an interpreter" was at least your
second choice, as I could not envisage the Vienna crew not sharing a good
fraction of my misgivings about mechanistic definition of semantics. (And I
still believe that they are shared by many of its members.) And when I received
what is now known as "The Vienna Telephore Directory”, I was ance more horri-
fied; also very much impressed. I had not the slightest intention of being
"unfair" to the Vienna crew and, if you smelled criticism, it was criticism
regarding PL/I rather than VDL. But you understand that the whole project
struck me as relatively successful attempt to make the best of a bad job.

That "at least with metalanguages we should be given a chance to correct
our mistakes" js a prayer that has my full sympathy, I would even like to

extend the prayer to programming languages.

With‘some of the peoints raised‘in the preceeding paragraph I have
more or less dealt, but not with your suggestion that eventually the study
of such a merging operator is unavoidable. Is it? And, if so, has it a place
in the definition of the semantics of programming languages? 1 am not so sure.
In the case of what is usually called a sequential programming language, we
have seen that as far as its semantics are concerned a completely time-less
interpretation suffices, so time-less as a matter of fact that even the
notion "before-after" has no place. For the sake of convenience ore is usually

not a Puritan and one talks about initial and final state, about pre- and post-

Burroughs EWD4S4 ~ 10
—9
»

DR. EDSGER W. DIJKSTRA

PLATAANSTRAAT § NUENEN THE NETHERLANDS

conditions, but T found it most convenient to start at the post-condition.
(To follow the relation the other way round is samething I gladly leave to
the machines') Stronger: on that level it is totally irrelevant that one's
primitives and the way in which they may be combined, are such that imple-
mentation by & sequential machine is absolutely straightfdrward. The usual
consequence of such choices is that implementation by a machine that we

would like to diéplay more concurrent activity is less nbvious.

One can certainly think about a programming language for which the
primitives and the way in which they may be combined have carefully been
chosen in such a way that implementation by a "less seguential maching"
becomes equally obvious, but aéain: the way in which its semantics have
been defined need (and I think, therefore: should) in no way reflect this
fact. It is not unthinkable that the implementor can exploit nondeterminism
of the programming language by omitting some synchronization constraints,
leaving speed ratie's rather undefined, you ﬁame it. But starting at this
end the non-determinism has already been introduced in the usual noiseless
fashion and one is never faced with the Question what all possible sequences
may do in the sense that, whatever sequence will be chosen, one has already
established that what will happen will he acceptable, so one does not bother
about what happened. The merging operator only needs to be studied if one
intends to use it to generate non-determinism that one can then study. I
should rather start with the non-determinacy at the semantic level and later

exploit it while implementing.

Compared with the mechanistic approach this.is, of course, in the
other way. I think it is easier. The only thing the traditional logicians
did was to try to find a model for the real world, but, since in the form
of computing science logiec has also become an engineering activity, I

prefer the real world to provide a model for my dreams,...,

As to the preceeding paragraph of your letter: please don't be worried

Burroughs EWDA54 — 11
— 3
]

DR. EDSGER W. DIJKSTRA

PLATAANSTRAAT 5 NUENEN THE NETHERLANDS

by the fact that in your first lecture you more or less failed to reach
your public: not all our kites fly.... (As you have seen, more or less the
same happened to me in Edinburgh the day before. O0f course one regrets it,
but one should take the risk: it is vain to pretend all one's talks are a

guaranteed success.)

In view of the fact that you have sent a capy of your letter to nine
gentlemen, 1 guess, that I should do the same with my answer to you. I hope
that my explanations in this letter have made the trip report less upsetting.
Please don't feel guilty on account of the length of this answer. It was a
pleasure to write to you and to show to you, by doing so, my appreciation

for the fact that you wrote to me in the first place.
With my best wishes and warmest regards,

yours ever
é dsqer
prof.dr.Edsger W.Dijkstra

Burroughs Research Fellow

cc.t R.M.Burstall
C.A.R.Hoare
J.Hopcroft
£.5.Page
M.Rabin
B.Randell
D.5.5cott
S.Winograd

H.Zemanek

