EWD462.html

Copyright Notice

The following manuscript
EWD 462: A time-wise hierarchy imposed upon the use of a two-level store
is held in copyright by Springer-Verlag New York.

The manuscript was published as pages 67-78 of

Edsger W. Dijkstra, Selected Writings on Computing: A Personal Perspective,
Springer-Verlag, 1982. ISBN 0-387-90652-5.

Reproduced with permission from Springer-Verlag New York.
Any further reproduction is strictly prohibited.


http://www.cs.utexas.edu/users/EWD/transcriptions/EWD04xx/EWD462.html

EwWD462 - 0

A_time-wise hierarchy impeosed upon the use of a two-level store,

by Edsger W.Dijkstra.

Authors address:
BURROUGHS
Plataanstraat 5
NUENEN - 4565

" The Netherlands

Abstract: Following general d551gn principles a paging system has been
developed in which has been almed at high efficiency and a strong separation
between store management and processor scheduling and a minimal influence

of the program mix upon the system's performance. It is, furthermore, de-
scribed how some dedicated hardware can be expected to contribute effectively
to memory management and the prevention of thrashing. Finally, the properties
of the system should be such that a mismatch between canflguratlun and

workload gives a clear 1nd1cat1on as to what reconflguratlons sSEem 1nd1cated

Key Words and Phrases: demand paging, window size, thrashing control, smoothnes:

virtual store, two-level store, operating systems, design, reconfiguration,
separation of concerns.

C.R.Categories: 4.32, 4,34, 6.21, 6.34, 6.39,

NUENEN, 6th December 1974 prof.dr.Edsger W.Dijkstra

Burroughs Research Fellow




Ewndez - 1

A time-wise hierarchy imposed upan the use of a two-level store.

This paper is really two articles, merged into one. On the one hand
it deals with a general design principle, on the other hand it deals with
the design of a virtual storage system, a design to which that principle
has begn applied. Although thelfirst aspect is the more general one, %he
title refers only to the second aspect, firstly because its elaboration
occupies most of tﬁe space, and, secondly, because the virtual storage sys-
.tem to be developed below seems to be new and not without attractive proper-~

ties.

The design principle in its most gemeral form is that, whenever we
have to design a mechaniém meeting certain requiremenis, it does not suffice
to design something of which we hope that it meets the requirements, on the
contrary: we must design it in such a way that we can establish that it mests
the requirements. As far as program correctness is concerned, this design
principle has led to a programming methodology that is becoming more and more
widely accepted: instead of making the program first and trying to establish
its correctness afterwards --which may be ‘near to impassible-- correctness
proof and program are now develaped hand in hand. (As a matter of fact, the
development of the correctress proof is often slightly leading: as soon as
the next argument in the proof has been chosen, a program part is designed
s0 as to meet the proof's requirements.) Besides tge mathematical requirement
of correctness, we have the engineering requirement of "reasonable preformance”
as well: this time the principle tells us, that it does not suffice to design
a mechanism of which we hope that it will perform "reasonably well”, but that
we should (at least try to) design it in such a way that we can predidt_g.
pri?ri how well it will perform. If we ask very precise questions about the
performance, these questions may become very hard to answer: to predict that
the computation time for the Hornmer scheme grows linearly with the degree of
the polynomials is not hardy the estimatiﬁn of the computation time needed
for diterative computation of eigenvalues and eigenvectors of a symmetric
matrix, howeve;, is harder and probably most easily expressed in terms of the
separation of the eigenvalues, i.e. in terms of part of the answer; then this
dependance is something that we should try to derive and prove! Often we have
to be content with "worst case" bounds (whlch in contrast to averages have

-

at least the advantage of not depending on the usually unknown input pnpu—

lation).Sometimes we have even to be content with still vaguer definitions



EWD462 - 2

of what "reasonable performance" means: yet this is no licence to design,

for instance, a mechanism whose performance is occasionally surprisingly bad.

The actual performance of a machine with a virtual storage system is
dependent of what is usually denoted as "the workload characteristics"., In
the name of the predictability.of that performance we shall try to design
the system such as to make thaffé;aéﬁdence as simple as possible: in par-
ticular Qe ;Eﬁﬁirémfﬁat a mismatch between cnnfiguration and workload does
not only make itself manifest in the form of poor performance, but will in
addition give & clear indication what type of change --if any-- of the

configuration would improve the performance.

In order not to camplicate the discussion unduly at the start, we shall
make a few simplifying assumptions about the hardware. At the end we can re-
consider these assumptions; some may be weakened easily, of others, however,
we may come to the conclusion that if our hardware does not allow such
idealizations, the scheduling problem will be "ecomplified" seriously, perhaps
even beyond our comprehension and control. In the latter case we don't need
to feel having failed "to cope with the problem"; on the contrary: the iden-
tification of seriously "complifying" hardwate characteristics seems in the

light of the present state of the art a valuable discovery.

As primary store we assume & random access store as randomly accessible
as, say, a core store. As secondary store we assume a device with the char-
acteristics of, say, a drum or a head-per-track dise, sueh that
1) place of information in secondary store need not influence decisiphs
to change the contents of primary store, i.e. that page-wisé it cén be regarded
as 2 randowm access store;

2) the processor speed is sufficiently slow and/or the cycle time of the
primary store is sufficiently small and/nr the transfer réte between primary
and secondary store is sufficiently low that any slowing down of the processor
as a result of cycle stealing by the channel (to all intents and purpnses)

can be ignored; :

3) transport between the two storage levels is taken care of by a single,

dedicated chanmel. .- S o ' S

Furthermore 1 assume



EWD462 - %

4) a single processor
5) demand paging with fixed-size pages
€) such a modest amount of processor-status information (registers included!,

that the time needed to switch the processor from one process to another can
(to all intents and purpoges) be ignored in view of an uppex bound on the
frequency with which these swifchings may have to take place

7) no page-sharing between user prugréms (for instance possible an account

of a common procedure library).

Remark 1. The above asumptions are -~or at least: were-- not unrealistic. We
shall later discuss some of the temptations that should be resisted when they

are only partly fulfilled. (End of remark 1.)

Remark 2. Assumption 6 means that as far as scheduling processor time is
concerned, we can regard the total processor time as the sum of the periods
of time devoted to actual program process, and are at any time free to grant
the processor to what is concerned as the most urgent task. If the price of
switching the processor from one task to another has to be regarded as high,
one is faced with the often conflicting aim to graét the processor to the

task with the maximum expectation value for the period of time for which

full~speed progress is possible. (End of remark 2.)

The role of the replacement algorithm in a multiprogramming environment.

The idea of demand paging is that processing proceeds at full speed
as long as the information is present in primary store. Upon a so-called
"page fault" --i.e. the detected desire to access a page that is currently
not in main store-- the missing page must be brought in from secondary store.
(The pragram causing the page fault has to wait until the chennel has completed
that transport; in a multiprogramming environment the processor is in the
mean time available for other programs.) Besides'bringing in the missing
page, another page has to be dumped. It is the task of the‘so—calléd "re-
placement algorithm" to choose that victim; its goal is to keep the inter-
esting pages in primary store. Obviously, with gach reascnable replacement
algorithm, permanently unreferenced pages have a tendency to disappear

sooner or later from primary store.



EWD4R2 - 4

The ideal replacement algorithm embodies clairvoyance: it kicks out
the page that in view of future needs can be missed best. Clairvoyance,
however, is hard to implement, and actual Teplacement algoxithms are based
upon, essentially, three different ideas. (We shall later see that for our

purposes the first two have to be rejacted.)

1) With a (quasi—)random number generator an M"arhitrary" page residing in
primary memory is chosen as the victim. It is reasonable in the sense that
.permanently unreferenced pages have indeed a tendency to disappear from
primary store, it is simple and its performance is not half as bad as might

be expected.

2) In an effort to speed up the disappearance of permanently unreferenced
pages the machine keepts track of the order in which the pages currently
residing in primary store came in, and the older ones are given a greater
probability of being chosen as the victim. In the extfeme case, always the

oldest is chosen and the algorithm becomes a FIFO ("First—In-FirstTDut") rule.

3) Predicting tomorrow's weather according to the principle "the same as
today", the machine keeps to a certain extent track. of the order in which
pages currently in primary store have been accessed, and pages which for e
relatively long time have not been accessed are given 3 greater probability
of being chosen as the victim, In the extreme case we get.the so-called LRU-

algorithm ("Least Recently Used").

Note 1. In the case of cyclic access to n+l pages with room for only n ,
both FIF0 and LRU give the worst possible choice. As purely periodic
access patterns are not unrealistic, it has been suggested to incorprate
always a randomizing element in the page replacement algorithm, so as to
reduce the probability of such a "disastrous resorance" to nearly nil. (End

of note 1.)

We shall resume the discussion aof the replacement algorithm later,
because in a multiprogramming environment a more crucial decision has to be

taken first. When a new victim has to be chosen, there are two alternatives::

1) either we regard primary store as a hnmogeneous pecol of page frames and
the victim is chosen on account of the total history in core, independesnt of

the identity of the program that caused the page fault;

b

2) or we regard the page fault as a private DCCUétﬂCE of the program in 7
. )



EWD462 - 5

which it happened, only the history of the pages of this program is taken

into account and one of its own pages will be selected as the victim.

In the design.of the THE-muitiprngramming system in the early sixties
1 have chosen the first alternative and I remember the (oppcrtunisti:) argu-
ments in favour of that decision: firstly it removed the obligation to keep
track of which page frames were occupied by which programs --an administration
that would have been complicated by the presernce of shared library pages--,
secondly it would automatically see to it that a program idling for other
reasons would not continue to occupy page frames, as its then permanently
non-accessed pages would disappear via the‘normal mechanism (which was LRU,
related to the total histnry). This paper is a peccavi in the sense that
~--as I hope to demonstrate convincingly in the sequel-- this decision has
been more than a mistake: it was a sin against proper design. (Une of its
unattractive features was that a large high-vagrancy program always lost its
pages, and, as a result, suffered from very slow progress.) In the mean time
we know that "separation of concerns" should be one of our dearest goals,
and in the case of choice 1 the page faults caused by a single program are
dependent Both an its fellow-programs and on the relative speeds with which
they are allowed to proceed. In the case of choice 2, however, were each pro-
gram has its own, fixed number of page frames at its disposal, the generation
of page faults is each program's private business, only dependent on that
number of page frames, its access pattern and its(!) replacement algorithm.
The mistake we made ten years ago was to allow a hardly controllable fine-
grained interference between fellow programs that had been independently
conceived but found themselves by accident mixed, instead of maintaining
for these mutually independent programs te a much codrser grain of time the

mutual independency between their computational histories.

In the following we make the weak assumption about the replacement
algorithm(s) used, that the average frequency of a program's page fault gene-
ration is a non-increasing {and usually even: a decreasing) function aof its

so-called "window size", i.e. the number of page frames allocated to it.

About the ideal window size,

In this section we shall describe how we propdse to exploit our first

three sssumptions. After having observed- that it is the function of the re-



EWD462 - 6

placement algorithm to try to reduce --with a given window size-- the number
of page faults caused by that program and, therefore, the total amount of
time the channel is busy for the benefit of that program, our next purpose

is to keep the channel nicely busy.

For each program we can introduce the total time C the processor has
performed "computation" for that program, and also the total time T the
-channel has been occupied with "transports" between storage levels as a result
"of page faultis caused by that program, both times €C and T being recorded
for that program since the same moment. When deciding how to allocate page -
frames to programs, i.e. when deciding the window size for each pragram, we
seem to be managing three resources, viz. processor, channel and pripary
store. In this management problem, general dimension considerations Eeiif;é:ﬁ
that the dimensionless quantity C/T must be significant. The point is, that
processor and channel are rescurces doing something at a certain speed, but

we cannot change the "speed" with which something is kept in store (no more

than we are able to wait twice as fast for something).

Under the (temporary) assumption that for each program sueh a window
size exists, we define for each program the "ideal" window size as the one
that would give rise to a ratio E/T =1, i.e. the window size that would
cause on the average egual demands on processor time and channel time, the
reason being that then processor and channel can be scheduled as a single
resource. The result of demand paging is that a program has no use for the
processor during the period of time that the channel is busy for it; as a
result no program can occupy more than 50 percent of this combined TEsSDUTrCE,
and if we want to keep the latter busy, we conclude that our degree of multi-
programming should at least be equal to twﬁ. This degree will usually not

suf%ice (SEE below).

About the deqree of multiprogramming.

In this section we assume that for each pragram the vagrancy characterist
are such that for each program a constant --and known-- window size can be

caonsidered as ideal.

In order to keep the combined resource constantly busy, individual C/T-

ratios close to 1 is in general not enough. Suppose that the one program



Fwpar2 - 7

generates its page faults --when executed all by itself-- quite regularly,
one at a time, while the other program would generate under the same circum-
stances with half the frequency bursts of two page faults at a time: the
combination would not fit and both processor and channel could be busy for
at most BO percent of the time. With a third program (of either type) full
occupation is possible and an afbitrary program can use the maximum 50 per-
cent. The typical purpose of multiprogramming is clear as far as utilization
" of the active resmdrces is concerned: to absorb the bursts in which programs
.may generate page faults., After some consideration --and in analogy to oiher
statistical phenomena-- it becomes hard to believe that the desire to absorh

the bursts would ever give rise to a degree of multiprogramning exceeding

4 or §5 .,

About the adjustment of window sizes.

We have introduced the notion of the "ideal" window size as the one
by which program progress implies on_the_average erqual loads C and T for
processor and channel respectively. As a result the question whether for a
given program the actual window has the ideal size or not, is mesningless
unless it is related to a sufficiently larﬁe section af computation history,
in which the increase of € + T .is an order of magnitude larger than the
T-increase caused by a single page fault (say: 20 times).-Up till now, we
have-aéﬁé as if during each computation the access pettern was sufficiently
constant so that from beginning to end a single window size could be regarded
as "ideal" for it, and also that for each program this size was known. In
usual practice neither of these two conditions is fulfilled and, therefere,
the system is required to discover for each computation what the ideal window
size is, and to adjust for each program the wirdow size when needed. For
each program reconsideration {and possibly adjustment) of the window size
should only take place with a frequency which is an order of magnitude
_smaller than that of the target frequency of page fault generation: it is
pointless to be willing to vary a program's window size so rapidly that the
periods during which it is by definition constant are so short that the

question as to-whether it was "ideal" becomes meaningless!

Let us assume therefore that for each program the system reconsiders

. its window size each time when that program has increased its C+T bya

certain amount (equal to, say, 20 times the T-increase corresponding to a



EWDde2 - 8

single page fault.) When since the previous reconsideration of the window
size € has increased much more than T, a smaller window might be more
adequate, when T has increased much more than C » @ larger window might

be more adequate. We could think of a simple negative feedback, based upon
the quotient of the observed increases of C .and T » say decreasing the
window size by one page frame when that quotient exceeds 1.1 and increasing
- the window size by one page frame when that quotient is less than 0.9 .

Such a simple negafive feedback, however, will not do the job, because even
.if our replacement algorithm 'is such that we can prove that a larger window
would never lead to more page faults, the pregram might be such that.a larger

window would not lead to fewer page faults either!

.A compuiation with high-frequency access to two fixed (prngram) pages
and random access to 10,000 other (data) pages will not perform any hetter
with a window of 100 frames (Dur maximum say) than with a window of 3 , If
it has a window of 3% and its C/T ratio is too small, there is no point
in increasing the window size. The simple negative feedback would continue
to increase it and {like a young cucken) this program would eventuslly
push the other programs out of primary store, This cuckoo effect cannot be
remedied withéut penalty by suppressing growih of the window --although
desirable ©n account of C/T-- 8s s00n as no improvement is observed, and
the reason is the following. A program with high-frequency access between
12 pages may perfarm equally poor with windaws up to 11 frames and beautifully
with a window of 12 frames, and this is something we would like to be
discovered when its current window happens to be 4 , In other words: it
is not enough to know the C/T-— ratio caused by the current window size, we

should also know it for other ones!

Monotonic replacement algorithms.

There is an important class of replacement algorithms --LRU is one of
them, RANDOM and FIFO are not-- which we might call "monotonic", and are
characterized‘by the following property. Considering two synchronized ex-
ecutions of the same program but with di?fqreﬁt window sizes, we call the
replacement algorithm "monotonic" if at all-times all pages contained in the
smaller window will be contained in the larger window as well, provided that

this was true at the beginning. As a result, in the computation with the larger

window no page fault occurs that dees not occur in the other computation as

well.



£EwWp462 - 9

Therefore, if a program is execu{ed with a monotonic replacement algo-
rithm and an actual window size w , it cannot cost mueh to record how many
page faults would have occurred if the window size had been w + 1 , w+ 2 .,..
up to the maximum: it would only be a minor overhead on the actual page
faults and would, therefore, be negligible. This information can be used
to prevent .the growth of a cuckﬁa; it does not cater for the detection of
an existing cuckoo, i.e. a program whose window size can bé decreased without

“any ill effects.

To record the page faults that would have occurred with window sizes
smaller than the actual ones, additional hardware seems indicated. The
knowledge of the number of page faults that would have occurred with
smaller sized windows (pérticularly for -the size w - 1 ) is so attractive
to have, that the additional hardware seems justifiedt (In the latter case
it ean probably also take care of the recording of the number of page faults
durresponding to window sizes larger than w .) Plotting page-fault frequency
against window size it is not uncommon that this curve has a very sharp
bend: we may expect programs that for a given window size w will give
a2 ratio E/T >1 , while with a size w -1 the ratio C/T would drop
down unacéeptably close to zero. With the simple feedback mechanism the
effort at window size adjustment would lead to thrashing half the time
--a nasty property of that feedback mechanisms that has been used as an
argument against virtual storage systems as such-- . If additional hardware
counts the virtual page faults that would have occurred with window sizes

smaller than the actual one, the thrashing half the time is easily avoided.

In view of the above it is doubtful whether thé introduction of a
ran#omizing element in the page replacement algorithm in order to avoid
"disastraus resonance" --see Note 1-- is still desirable: most desastrous
resonances occur when the window size is a few frames too small., But now
we can detect this and know how to remedy it, it seems better not to

obscure the detection by the noise of a randomizer.

The time-wise hierarchy.

At our lowest level we have the individual access: the recording

of its having taken place (for the sake of the replacement algorithm) and

the test whether it causés a (virtual or actual) page fault are obvious



EWD462 - 10

candidates for dedicated hardware.

At the next level we have the actual page faults, which oecur several
orders of magnitude less frequently. Taken in isolation they only influence
the program in which they occur. . |

y
At the next level, but again an aorder of magnitude less frequent, the
-windDw sire is reconsidered. In the decision to increase or decrease the
window size a threshold should be introduced so as to incresse the probability
that the result of reconsidering the window size will be the decision to
leave it as it stands. Furthermore, if available information suggests a
drastic change in window size, follow this suggestion anly partly —-half-
way, say-- : either the suggestion is "serious" and the total change will
be effectuated within two or three adjustments anyhnw, or the suggestion is
not "serious", because the access pattern is so wild, that the notion of an
"ideal" window size is (temporarily or permanently) not applicable to that
program., In the latter case it is better to allow this program to contribute
unequal loads tec the processor and the channel —--if it only occupies one
tenth of Fhat combined resource, it can only bring the two total loads

mildly out of balance-- .

At the last level, but again at a lower frequency, change of window
sizes may have to influence the degree of multiprogramming: growing window
sizes may force load shedding, shrinking window sizes can allow an increase

of the degree of multiprogramming.

As a result of past experience, the fact that these different levels
(each with their own appropriate “"grain of time") can be meaningfully dis-
tinguished in the above design, gives me a considerable confidence in its

smoothness, in its relative unsensibility to workload characteristics.

Efficiency and flexibility.

The purpose of aiming at C/T—ratios close to 1 was to achieve for
the active resource {i.e. processor and channel combined) a duty cycle close
to a 100 percent, to a large extent independent of the program mix.‘This
freedom can still be exploited in various ways. A ﬁrogram needing a large

window on account of its vagrancy can be given the maximum 50 percent



Ewngez - 1

of the active resource in order to reduce the time integral of its primary
storage occupation. Alternatively we can grant different percentages of the
active resource in view of (relatively long range) real time obligations:
to allocate a certain percentege of the active resource to a program means
to guarantee a certain average progress speed. (This seems ta me more
meaningful than "priorities" which, besides being a relative concept, can
only be understood in terms of a specific gueueing discipline that users

should not need to be aware of at all!)

Remark 3, When a producer and & consumer are coupled by & bounded buffer,
operating system designers prefer to have the buffer half-filled: in that
state they have maximized the freedom to let one partner idle before it
affects the other, thus.cuntributing to the system's smoothness. Granting

no program more than 50 percent of the active resource is another instance

of consicously avoiding extreme of "skew" system states! (End of remark 3.)

Temptations to be resisted.

If we enjoy the luxury of a full duple# channel, the page being
dumped and the page being brought in can be transported simultaneously
(possibly at the price of one spare page frame). Usually, however, such a
page swap between the two storage levels takes twice as much time as only
bringing in a page. If the channel capacity is relatively low, it is there-
fore not unusual to keep track of the fact whether a page has been (nr:
could have been) written into since it was lastly brought in: if not, the
identical information still resides in secondary store and the dumping
transport can be omitted. This gain should be regarded as "statistical
luck®™ which ne strateqy should try to increase and which should never be
allowed to influence one's chaice of the victim (quite apart from the fact
that it is hard to reconcile with the monot}nicity of the replécement
algorithm, as the monotonic replacement algorithm is defined for all window

sizes simultaneously, independent of the size of the actual window).

We have also assumed the absence of page sharing. But this was not
essential: if program A wants to access a page from the common library
which at that meomept happens to reside in program B's window, a transport

can be suppressed by allowing the windows to overlap on that page frame.



EWD462 - 12

Both progrems keep, independently of eachother, track of their own usage

of that page for the sake of their own replacement algorithm and the page
only disappears from main store when it is no longer in any window at all.
Again, this gain should be regarded as "statistical luck" which should never

be allowed to influence our strategies. Such pressure should be resisted,

yvielding to it would he terribie!

Analyzing thé mismatch between confiquration and workload.

If the channel achieves a duty cycle close toﬁ 100 percent , but
the processor does not, a faster channel (ur more channels) or a slower
processor may be considered. If the processor achieves a duty cycle close
to 100 percent , but the channel does not, & faster processor {(or more
processors) or a slower channel may be considered. (With two processors

and one charnel each program has the target C/Trratiu =2 .)

Note 2. A change in the quotient of processing capacity and trensport capa-
city will give rise to other window sizes. With the built-in detection of
virtual page faults as well, a user can determine himself what effect oh
the window sizes the change in that capacity ratio wo&ld have for his work-
load, without changing the actual window sizes, He should de so before

deciding to change tha configuration. (End of note 2.)

If neither processor, nor channel achieves an acceptable duty cycle,
we either have not enough work, or are unable to buffer the bursts. If we
have enough independent programs, a larger primary store could be considered
sp as to increase the degree of multiprogramming. Dtherwise we should con-
sider the attraction of more work, or reprogramming —;so as to change vagrancy
characteristics~—, or a completely different installation (e.g. with very
different secondary store characteristics). Dr we may decide to do nothing

about it at all and live with it.

Acknowledgements. Collective acknowledgements are due to the members of the

IFIP Working Group W.G.2.3 an "Prcgraﬁming Methodology™ and to those of the
Syracuse Chaptér of the ACM. Personal acknowledgements are due to the latter's
Chairman, Jack B.Cover, to Steve Schmidt f;nm Burroughs Corporation, to John
E.5avage from Brown University and Per Brinch Hansen from the California

Institute of Technology.



