EWD520 - 0

EWD520.html

On-the-fly garbaqe collection: an exercise in cooperation.

by
Edsger W.Dijkstra *)
Leslie Lamport **)
A.J.Martin *x¥)
C.5.5cholten ***ﬂ
E.F.M.Steffens *¥¥)

" %) Burroughs, Plataanstraat 5, NL-4565 NUENEN, The Netherlands

**) Massachusetts Computer Associates Inc., 26 Princess Street, WAKEFIELD,
Mess. 01880, U.S.A. ' |

*#¥) Philips Research Laboratories, EINDHOVEN, The Netherlands

EXA¥) Philips-Electrologica B.V., APELDOORN, The Netherlands

Abstract. A technique is presented which allows nearly all of the garbage
detection and collection activity to be performed by an additional processor,
operating concurrently with the processor carrying out the computation
proper. Exclusion and synchronization contraints between the processors have

been kept weak.
Key Words and Phrases: garbage collection, multiprocessing, cooperation between
sequential processes with winimized mutual exclusion, program correctness for

multiprocessing tasks.

CR Categories: 4,32, 4.34, 4.35, 4.%9, 5.23,

20th of October 1975

http://www.cs.utexas.edu/users/EWD/transcriptions/EWD05xx/EWD520.html

' EWD520 -~ 1

-

On-the-fly garbage collection: an exercise in cooperation.

Introduction.

In any large-scale computer installation today, a considerable amount
of time of the (general purpose) processcr is spent on "operating the system".
With the emerging advent of multiprocessor installations the question arises
to what extent such "housekeeping activities" can be carried out concurrently
with the ccmputation(s) proper. Because the more intimate the interference,
the harder the organization of the cooperation between the concurrent pro-
cesses, the problem of garhage collection was selected as one of the most
challenging --and, hopefully, most instructive!-- problems. {ODur exercise
has not only been very instructive, but at times even humiliating, as we
have fallen into nearly every logical trap that we could possibly fall intu.)
In our treatment we have tried to blend a condensed design history --in
order not to hide the heuristics completely-- with a rather detailed justi-
fication of our final soclution., Whether the following solution, which is
the result of many iterations, is of any economic significance, is a question

beyond the scope of this paper.

We tackled the problem as it presents itself in the traditional im=-
plementation environment for pure LISP (and shall describe our solution
in the usual terminology, leaving ‘the natural generalizations to the reader).
The data structure %o be stored consists of a directed graph in which each
node has at most two outgoing edges, more precisely: may have a left-hand
outgoing edge and may have a right~hand outgoing edge. In the original
problem statement, either of them or both could be missing; for the sake
of homogeneity we follow the —-not unﬁsual—— practice of introducing a
special purpose node called "NIL" and we represent an originally missing out-
going edge by an edge with the node called NIL as its target. As a result,
each node has now always exactly two outgoing edges; the outgoing edges from
NIL point to NIL itself. At any moment in time all the nodes must be
"reachable" (via a directed path along the directed edges) from one or more
fixed nodes --called "the roots"-- with a coﬁstant place in memory. The storage
allocatéd to each node is constant in time and equal in size, viz. sufficient
to accommodate two pointers --one for each outgoing edge-- pointing to the
node's immediate successors, Given (the address 6f) a node, finding (the

Loy
L

EWD520 - 2

address of) its left- or right~hand successor node can be regarded as an
atomic, primitive action; finding its predecessor nodes, however, would

imply a search through memory.

In the original problem statement, for a reachable node an outgoing
edge could be deleted, changed or added. The effect of the special node
NIL is that now all three modifications of the data structure take the
same form, viz. the change of an outgoing edqe of a reachable node. Note
that such a change may turn a number of formerly reachable nodes into un-
reachable ones: they then become what is called "garbage". Changing an
edge may direct the new edge towards a target node that was already reach-
able or towards a new node that has to be added to the data structure;
such a new node ~-which upon creaticen has only NIL as successor node--
is taken from the so-called "free list", i.e. a linearly linked list of
nodes that are currently not used for storing a node of the data structure.
By linking the "free" nodes linearly --via their left-hand outgoing edge, say--
and introducing a special root pointing to the begin node of the free list,
also the nodes of the free list can be regarded as reachable, By furthermore
declaring that alsoc the node called NIL is a root, we achieve our next
homogenizing simplification: a change redirects for a reachable node one

of its outgoing edges to a reachable node. (Sée Appandix.)

Garbage may arise anywhere in store, and it is the purpose of the so-
called "garbage collector" to detect such disconnected and therefore obsolete
nodes and to append them to the free list. In classical LISP implementations
the computation proceeds until the free list is exhausted (Dr nearly so).

Then the computation proper comes to a grinding halt, during which the pro-
cessor is devoted to garbage collection. Starting from the roots, all reachable
nodes are marked —-because we have made the nodes of the free list reachable
from a special rovot, nodes of the free list (if any) will in our case be

marked as well-- ., Upon completion of this marking phase, all unmarked nodes
can be concluded to be garbage and are appended to the free list, after which

the computation proper is resumed.

The minor disadvantage of this arrangement is the central processar

time spent on the collection of garbage; its major disadvantage is the un-

predictability of these garbage collecting interludes, which makes it hard

EWDH20 -~ 3

-

to design such a system so as to meet real time requirements as well. It

was therefore tempting to investigate whefher a second processor —--called
"the collector"-- could collect garbage on a more continuous basis, concurrent-
ly with the activity of the other processor --for the purpose of this dis-
cussion called "the mutator"-- which would be dedicated to the computation
proper. We have imposed upon our solution @ few constraints (compare [2]).
The interference between collector and mutator should be minimal ——i.e.

no highly frequent mutual exclusion of elaborate activities, as this would
defy our aim of concurrent activity-- , the overhead on the activity of

the mutator (as required for the cooperation) should be kept as small as
possible, and, finaliy, the ongoing activity of the mutator should not impair
the collector's ability to identify garbage as such as soon as logically
possible. {One synchronization measure is evidently unavoidable: when needing
a new node from the free list, the mutator may have to be delayed until the
collector has appended some nodes to the free list. This is the now tradi-
tional prnducer/cmnsumer coupling; in the context of this article it must
suffice to mention that this form of synchronization can be achieved with-

out any need for mutual exclusion.)

Preliminary investigations.

A counterexample taught us that the goal "no overhead for the mutator™
is unattainable. Suppose that nodes A and B are permanently reachable
via a constant set of edges, while node C is reachable only via an edge
from A to C . Suppose %urthermnre that from then on the mutator performs
with respect to C repeatedly the fuiluwing sequence of operations:

1) making an outgoing edge from B point to C

2) deleting the edge from A +to C

3) making an outgoing edge from A point to C

4) deleting the edge from B to C .

The collector, which observes nodes one at a time, will discover that A

and B are reachable from the roots, but never needs to discover that C
is reachable as well: while A 1is observed by the cellector, C may be
reachable via B only, and the other way round. We may therefore expect

that the mutator may have to mark in some way target nodes of changed edges.

Marking will be described in terms of colours. When we start with all

EWD520 -~ 4

-

nodes white, and, furthermore, the combined activity of collector and
mutator can ensure that eventually all reachable nodes become black, then
all white nodes can be identified as garbage. For each repetitive process
~—and the marking process certainly is one-- we have always two concerns
(see [1]): firstly we must have a munutonicity argument on which to base
uﬁr proof of termination, secondly we must find an invariant relation which,
initially true and not being destroyed, will still haold upon termination.

For the monotonicity arqument we suggest (fairly ubvinusly)
during marking each node will darken monotonically.

For the invariant relation --a relation which must be satisfied both before
and after the marking cycle-- we must generalize initial and final state
of the marking process and our first guess was (perhaps less obvious, but

not unnatural)

P1: during marking there will be no edge pointing from a black node to

a white one.

Additional action is then required from the mutator when it is about
to introduce an edge from a black node to a white onme: just placing it would
cause a violation of P1 . The monotonicity requirement tells us, that the
black source node of the new edge has to remsin black, and, therefore, P1
tells us that the target node of the new edge cannoct be allowed to remain
white. But the mutator canmnct make it just black, because that could cause
a violation of P1 between that new target node and its immediate successors,
For that reasan grey has been introduced as intermediate colour and the

overhead considered for the mutator was

Al: when introducing an edge, the mutator shades itg target node.

Note 1. Shading a node is defined to make a white node grey and to leave

the colour of a grey or a black node unchahged. (End of note 1.)

The choice of the invariant relation P1 has been sufficient fer a
solution --not published here-- with a rather coarse grain of interleaving
(in which, for instance, A1 was assumed to be available as a single, in-
divisible actian). We could not use it, however, as a stepping stone towards

a solution that allowed a finer grain of interleaving, because total absence

EwWD520 - 5

of an edge from a black node to a white one was a stronger relation than we
managed to maintain. We could, however, retain the notion "grey" as "semi-
marked", more precisely, as representing our unfulfilled marking obligation:
as before, the marking activity of the collector remains localized at grey

nodes and their possibly white successors.

A coarse-graired sglutian.

In our unpublished solution we made essential use of the fact that
after the collector had initialized the marking phase by shading all roots,
the validity of P! allowed us to conclude that the existence of a white
reachable node implied the existence of a grey node (even of a grey reachable
node, but the reachability of such an existing grey node was not essential).

A weaker relation from which the same conclusion ecan be drawn is

P2: during the marking cycle (that the collector has initialized by shading
all rnots) there exists for each white reachahble node a so-called
"propagation path", leading to it from a (not necessarily reachable)
grey node, and consisting solely of edges with white targets (and, as

a consequence, without black sources).

Note 2. In the absence of edges from a black node to a white one, relation

P2 is clearly satisfied. {End of note 2.)

The existence of edges from a black node to a white one is restricted
by
P3: during the marking cycle only the last edge placed by the mutator may

lead from a black node to a white one.

Note 3. In the absence of black nodes, P3 is trivially satisfied. (End of
note 3.)

When the mutator redefines an outgoing edge of s black node,
it may direct it towards a white node: this new edge from a black node to a
white one is permitted by P3 , but because the previously placed cne could
still exist and be of the same type, we consider for the mutaior the follow-

ing indivisible action:

EWD520 ~ 6

A2: shade the target of the edge previously placed by the mutator and
redirect for a reachable node one of its outgoing edges towards an

already reachable node.

Note 4. For the very first time the mutator changes an edge we can assume
that, for lack of a previously placed edge, the shading will be suppressed
or an arbitrar& reachable node will be shaded; the choice does not matter

for the sequel. (End of note 4.)

Action A2 has been carsfully chosen in such a way that it leaves
P3 invariant; it leaves, however, the stronger relation P2 apnd P3 in-
variant as well.
Proof, The action A2 cannot introduce new reachable nodes; it, therefore, does
not introduce new white ones for which extra propagation paths must exist.
If the node whose successor is redefined is black, its outgoing edge that
may have disappeared as a result of the change was not part of any propa-
gation path,and the edges of the old propagation paths will be sufficient
to provide the new propagation paths. (Possibly we don't need all of them
as a result of the shading and/or white reachable nodes having become un-
rearhable.) If the node whose successor is redefined was white or grey to
start with, it will become at most grey and the resulting graph bas no edge
from a black node to a8 white one --if one existed, it has been removed hy
the shading and the change has not introduced a pew ane-- and (see Note 2)

P2 holds upon completion. {End of proof.)

We have now reached the stage where we can describe our first collector,

which repeatedly performs the following program, (Our bracket pairs "if..,fi"
and "do...o0d" delineate our altermative and repetitive constructs respect-
ively (seé [1]), cemments have been inserted between braces and labels have

been inserted for the discussion.) The program has two local integer variables

i and k ; the nodes in memory are assumed to be numbered from O through

M-1.,

EWDh20 - 7

marking phase:
begin {there are no black nodes)
C1: "shade all the roots" {P2 and P3};
ii= 05 ki= M;
marking cycle:
~ do k>0 = {P2 and P3}
if C2: "node nr. 1 is grey" -
ki= M;
C3: "shade the successors of node nr. i and make node
nr. i black" {P2 ang P3}
[c2: "node nr. i is not grey" -
ki= k - 1 {P2 and P3}
£i {P2 and P3};
it= (i + 1)mod M
od {P2 and P3 and there are no grey nodes, hence all white nodes
are garbage}
end;
appending phase:
begin i:= 0;
do i <M - {a node with a number < i cannot be black;
a node with a number > i cannot be grey,
and is garbage, if white}
if €2: "node nr. i is white" -
C4: "append node nr. i to the free list"
l c2: "node nr. i is black" —

C5: "make node nr. i white"

-

1;
it=1 + 1

od {there are no black nodes}

The indivisible actionsg of the collector --between the execution of
which actions A2 of the mutator may occur-- are
1) "shading of a single root" (from which C1 is composed: the order
in which the roots are shaded is irrelevant)

2) establishing the current colour of node nr. i (labeled "c2").

3) the total actions [3, C4 (see, however, the Appendix) and C5.

EWD520 -~ 8

Remark 1. With a more elaborate administration loecal to the cellector --a
list of grey or possibly grey nodes-- a probably much more efficient marking
phase could have been designed. For the sake of eimplicity we have not done

50, (End of remark 1.)

We observe that (even independent of the colour .of node nr. i !) action
C3: "shade the successors of node nr. i and make node nr. i black™ can
never cause a violation of P2 and P3 : the shading of the successors can
never do any harm, as a result of the shading the outgoing edges of node nr.
i are no lenger needed for a propagatian path, and making node nr. i black
maintains the existence of the propagation paths needed without introducing

an edge from a black node to a white one.

The state characterized by the absence of grey nodes, which implies
on account of P2 that all white ones are garbage and that all reachable
ones are black, is stable, because the absence of white reachable nodes
prevents the mutator from introducing grey rodes, and the absence of grey
nodes prevents the collector from doing so. Because, when a grey node is
encaountered, k is reset to M, the marking cycle can only terminate with
a scan past all nodes, during which no grey node is encountered. Because
the mutator leaves grey nodes grey, no grey node can have existed at the
beginning of such a scan, i.e. the stable state must have been reached at
that mdment. Termination of the marking cycle is guaranteed because of the
monotonicity of the colouring history of each node and because of the fact
that resetting k to M is always accompanied by effective darkening of at

least one node {(nr. i to be precise).

When the appending phase starts, all reachable nodes are black and
all white nodes are garbage. Note that the existence of black garbage is not
excluded. The appending phase deals with each node in turn: as long as it has
not been dealt with (i.e. has a number > 1) it cannot change colour: if black,
it remains black because the mutator can only shade it, and if it is white,
it is garbage and, by definition, the mutator won't touch it. As soon as it
has been dealt with (i.e. has a number < i), it has been white and can
at most have been shaded by the mutator, Black garbage at the beginning
of the appending phase will not be appended during that appending phase, it

will only be made white; during the next marking phase it will remain white,

EWD520 - 9

4

and the next appending phase will indeed append it. Therefore, no garbage,

once created, will escape being collected.

A solution with a fine-grained collector.

We would like to break [3 open as a succession of five indivisible

subactions, say (m1 and mZ2 being local variables of the :ollectur):

C3.1: ml:= number of the left-hand successor of node nr. i

C3.2: shade node nr. ml ;

)

C3.3: m2:= number of the right~hand successcr of node nr. i

€3.4: shade node nz. m2 ;

C3.5: make node nr. i black

None of the actions C3.1 , C3.2 , C3.%, and C3.4 can cause violation
of P2 and P3 . The actions C3.1 and C3.3 cannot do so because they leave
no trace in common memory, and the actieons C3.2 and C5.4 cannot do so
because shading cannot do so, Besides that, because shading of a node commutes
with any number of actions A2 , we have,by the time that the collector
starts with (3.5, a state as if the shading of node nr. m! had been part
of C€3.1 and the shading of nhode nr. m2 had occurred simultaneously with
€3.3 . Without loss of generality we can continue our discussion as if "shade
left-hand successor" and "shade right—hand successor" are available as in-
divisible actions. The problem, however, lies with C3.5 : can we safely
make node nr., i black? Note that neither ml , nor m2 needs still to be
one of its successors: m! and m2 even never need to have been its left-
and right-hand successor simultaneously! A more thorough study of the muta-
tor, however,‘reveals that it is safe. |
Proof. During the marking phase we define a changing set of edges to which we
'give --in order to avoid false connotations-~ the rather meaningless name
"dodo-edges". {Note that we only define the set of dodo-edges for our bene-
fit. The mutator and collector would have a hard time if they had to update
it explicitly: in the jargon the term "ghost variable" is sometimes used for
such an entity.) The set of dodo-edges is defined as follows as a function
of the evolving computations:

1} at the begirning of the marking phase the set of dodo-edges is initialized
with all the edges with a grey target

2) each time a white node becomes grey, all its incoming edges (that were

EwD520 - 10

not already a dodo-edge) are added to the set of dodo-edges

3) when the action A2 , seen as a replacement of an outgoing edge,
removes a dodo-edge --or an edge that, according to the second rule, would
have become one as a consequence of A2's shading act-- the new edge that
replaces it is also a dodo-edge: it "inherits the dodo-ness" of the edge
it replaces.

The above rules imply that a dodo-edge is never needed for a propaga-
tion path. The last one all by itself implies that once the left-hand out-
going edge of & node is a dodo-edge, it will remain so, no matter how often
redirected by the mutator, until the end of the marking phase, and that
the same holds for the right-hand cutgoing edge. In short: when, since the
beginning of the marking phase,a given node has had a grey left-hand successor
and has had a grey right-hand successor, it has two outgoing dodo-edges and
making it black will never cause violation of P2 , It won't violate P3
either: if it has a white successor, the corresponding edge must have been
the last one placed by the mutator (it can therefore have at most one white
successor) and that edge from a black node to a white ane is the one explicit-

ly allowed by P3. (End of pruof.)

The above argument sheds another light upon the acﬁion 3. Instead of
waiting until it has seen both successors of a node to be non-white, it
forces termination of that waiting process by shading its successors itself.
It refrains from shading the successors of a white node, as that would defeat
garbage detection, it also refrains from shading the successors of a black
node (althcugh such a black node could have a white succeasnr) because that
is unnecessary. It is in this sense that the grey nodes represent our unful-

filled marking obligation.

Note 5. In breaking up C3 we have placed (3.5 "make node nr. i black"

at the end. As making a node black commutes with all other actions A2 and
C3.1 through C3.4 , we could also have placed it at the beginning, before
dealing (in some Drder) with the successors; P2 and P3 could then be violated

temporarily. (End of note 5.)

A solution with a fine-grained mutator as well,

From the above it is obvious that no harm is done if at random moments

a daemon would shade a reachable node. We now assume a very friendly daemon

EwD520 - 11

-

that between any two successive actions A2 of the mutator shades the

target node of the last placed edge. For the initial‘state of an action A2
during a marking cycle, we can now assert (besides P2 and P3) the absence
of an edge from a black node to a white one, regardless of the question
whether the last shading by the friendly daemon took place during the current
marking phase, or earlier. As a result, the proof that A2 leaves P2 and P3
invariant is now also valid if A2 does not shade at all! Thanks to the
daemon, it does not need to do su anymore! We can therefore replace A2 by

the succession of the following two separate indivisible subactions:

"redirect for & reachable node an outgoing edge towards a reachable

node™ ;

"shade the target of the edge just placed".

Remark 2. The detailed implementation of what we have described as "a grain
of interleaving" falls very definitely outside the scope of this paper: many
technigues --even allowing concurrent access to the same unit of informaticn--

are possible (see [3], [4]). (End of remark 2.)

In retrospect.

It has been surprisingly hard to find the published solution and justi-
ficaticn. It was only too easy to design what looked --sometimes even for
weeks and to many people-- like a perfectly valid soclution, until the effort
to prove it to be correct revealed a (somstimes deep) bug. Work has been
done on formal correctness proofs ([5], [6]), but a shape that would make
them fit for print has, to our tastes, not yet been reached. Hence our in-
formal justification (which we do pot regard as an adequate substitute for a
formal correctness proof!). Whether its stepwise approach --which this time
seems to have been successful in reducing the case analyses-- is more generally

applicable, is at the moment of writing still an open guestion,

When it is objected that we still needed rather subtle arguments, we
can only agree whole-heartedly: all of us would have preferred a simpler
argument! Perhaps we should conclude that constructions that give rise to
such tricky problems are not to be recommended. Ore firm conclusion, however,
can be drawn: to believe that such solutions can be found without a very

careful justification is optimism on the verge of fooclishness,

EWD520 - 12

History and acknowledgements. (As in this combination this is our first

exercise in international and inter-company cowoperatian, soﬁe internal

credit should be given as wall.) After careful consideration of a wider class
of problems the third and the fifth authors selected and formulated this pro-
blem and did most of the preliminary investigations; the first author found
a- first solution during a discussion with the latter, W.H.J.Feijen and M.Rem.
It was independently improved by the second author --to give the free list

a root and mark its nodes as well, was his suggestion-- and, on a suggestion
made by Jack Mazola, by the first and the third author, The first and the
fourth merged these embellishments, but introduced a bug that was found by
N.Stenning and M.Woodger [7]. The final version and its Justification are

the result of a joint effort of the four authors in the Netherlands. The

active and inspiring interest shown by David Gries is mentioned in gratitude.

References.

1. Dijkstra, Edsger W., Guarded Commands, Nondeterminacy and Formal

Perivation of Programs. Comm, ACM 18, 8 (Aug. 1975), 453-457.

2. bteele Jr.,Guy L., Multiprocessing Compactifying Garbage qulaction.

Comm. ACM 18, 9 (Sep. 1975), 495-508. ,

3. Lamport, Leslie. On Concurrent Reading and Writing. (Submitted to the

Comm. ACM,)

4. Scholten, C.S., Private Communication

5. Gries, David, An Exercise in Proving Parallel Programs Correct. (Submitted
to the Cumm.AEM.)

6. Lamport, Leslie, Report CA-7508-0111, Massachusetts Computer Associates, Inc.

T. Woodger, M., Private Communications.

Appendix.

Here we give an example of how the free list and the cperations such
as taking a node from or appending a node to the free list can be implemented.
We consider the nodes of the free list ordered according to "age", For each
node in the free list, the right-hand successor is NIL, the left-hand
successor is NIL for the youngest node and is the next-younger one for the
others. We have a root called TAKE s its left-hand successor and its right-
hand successor are both the oldest free node; we have a second root called

APP , whose left-hand and right-hand successor are both the youngest free

node.

EWD520 - 13

v

Taking a free node --and making it the left-hand successor of some
reachable node X , say-- can be dane in the following steps (shown in a

hopefully self-explanatory notation):

X.left:= TAKE.left; (A1l four actions should follow
TAKE.left:= TAKE.right.left; the shading convention chosen.)
TAKE.right.left:= NIL;
TAKE.right:= TAKE.left

To append, say, node Y —-in action Cd-- could be done by:

Y.lefti= NIL; Y.right:= NIL;
APP.left:= Y:
APP.right.left:= Y;
APP.right:= APP.left

When a minimum of two free nodes is maintained, the collector that
appends is certain only to deal with nodes that are left alone by the mutator,
and the action C£4 need not be regarded as a single, indivisible action, but
is trivially allowed to be broken up in the above subactions. The synchronization
guaranteeing the lower bound for the length of the free list is here supposed

to be implemented by other, independent means.

20th of October 1975

