EWD526 - O

Comments on "Woondenm.n™ HCL Requiroments for the Dol.

{This is a sequel to EWD514 "0n a language proposal for the Depariment
of Defense”, weitten after reading "Strawman®™, Many of those comments on that
earlier document are still applicable to itis successor "Woodenman'. I here
confine mysclf to sowme further cnmments.)

1. Repercussions on future hardware design have nob been taken intc account.

If the Dol accepts as a standard a comman HOL, ils sheer buying power
will ensure that efficient implementability of tha HOL will become an impor-
tant design criterion for computer manufactures. This will then happen, if
the Dob so desires or not. This implies that the Dol cannot restrict its
responsibility Lo just serving its own software needs as it now sees Lhem:
the choice will have much wider consequences of (almost certainly) lang
duration, affecting the whole market place. These responsibilities have not
been taken into account, and that is a serious omission.

The old view of programming was that it was the purpose of our programs
to instruct our machines. With the software problems —--and as a result: the
software costs—- skyrocketing, a new view of that relation has everged, viz.
that it is the purpose of our machines to execute our programs! The latter,
more modern and more appropriate view is hardly reflected in Woodenman, in
which existing hardware --with the reports insistence on efficient implemen-~
tation by existing techniques-- is too much taken for granted. Unless the
HOL is designed for an ideal machine -~or betier: machines as we would like
them to be--, the whole effort may in the long run cause great harm.

2, Simplicity and ease to learn the new lanquage.

The report contains a discussion of simplicity versus complexity that
itself is so simplified as to be misleading. I mention in connection the
requirement that the new language should be "easy to learn".

It is perfectly clear that any unnecessary ilraining burden should be
avoided: programmers should not learn to fight problems that should not be
there in the first place. And the repori is fully justified when it points
out the tremendous costs induced by grotesquely baroque programming languages.
Hence the cry for a simple programming language, which, in my view, is fully
justified.

To conclude that, therefore, the language must be "easy to learn",
however, is a rush conclusion, for cruelly stated, that "easiness" suggests
the desire to continue to design software with hardly educated programmers!
And then our problems will remain with us, no matter which 0L is adapted,

The training of programmers cannot be "easy",for programming is and
will remain difficuli. The point is that "learning *the language" should,
indeed, be a minimal affair, and the major attenlion should be given to
mastering an orderly discipline how to use it.

As long as we discuss the whole problem in terms of simplicity versus
complexity, we may cnd up with the conclusicn that machine code --or perbaps
even a Turing machine!-- is the most "simple" code.The major point is that
machine codes, the Turing machine and the most haroque higher programming
languages, suffer from the same shorteoming, viz. the absence of such an
orderly discipline fur their use.

EWDH2¢G -

When designing a programming language the existence of a sound, orderly
discipline for its use --a discipline that, by necessity shall be one of a
rather mathematical naturc-- should be one of onp's major caoncerns. [siress
this for immensely practical reasons. The existence of such a discipline is
a prercquisite for the design of high-quality programs; it is also a VETY
effeclive criterion for ihe decisicn what to include and whal to exclude
from one's language design! When considering a "featlre", one cannot find
a way uf avoiding the pur:zles and the conflicts, omit it... The resuliing
language will be "small" and "simple" as a consequence: there are not so
many "features" with the nccessary (mathematical) properties.

Besides the existing population of machines, also the existing popu-
lation of programmers is taken too much for granted. When I read --page 37--
"Mast programmers are nol used to origin O and find it incosvenient or
unnatural.”, 1 conclude that "inconvenient" has ~-again!-- heen confused
with "unconventional"™, and that the report is too much oriented towards Lhe
past and the present and too little towards the future.

3. Are so many "specialized capabilities needed"?

On a number of places --e.g. pages 11 and %1-~ the report accepts the
not uncommon assumption that, because applications are varied and the language
must be geared to the application, a great number of specialized features or
capabilities will be needed. Is this true to the extent that the report
suggests? 1 seriously challenge this opinion because
a) I do not believe it myself
b) the report does not motivate it and takes it just for granted
c) historical evidence in inconclusive, as the observable variation can also
be interpreted as the obvious result of the ahsence of the discipline referred
to above,

It will not surprise the reader that I consider the discussion on pages
11-12 "Generality versus Specificity" as rather unconclusive; page 31 even
strikes me as misleading. When I read there:
"A common lanquage must have capability for growth. It should contain
all the power necessary to satisfy all the aplications and the ability
tp specialize that power to the particular application task. A language
with defining facilities for data and operations will make it possible
to add new applicatiocn-oriented structures snd to use new programming
techniques and mechanisms using descriptions wriiten entirely within
the language."
I feel like reading a misleading advertisement that would be rejected by the
professional code of our advertisers.

* *

A few further, minor points. %)

4. Equivalence for real numbers.

On page 38 I read:
"The use of equivalence is not Tfecommended for real numbers but
resultion of what equivalence means for imprecise quantities is a
problem of numerical analysis not language design.™
This is not true, the problem should not be left to the numerical analysis,
because language design requires --and dictates—— a very precise anhswer to

* OSpES o inar g '
) In retrospect not so miror at all WD

EWD526 - 2

to that question. The poini has been selttled Tifteen years ago,

When I implemented ALGBL 60, I thoughl that --because exact equality of
floating point rnumbers seemed to wmuch to ask for-- I would provide a service
by delivering the value true for the boolean expression a == b , when a
and b were floating point values only differing in the least significant
bit of the mantissa. This was one of the gravest wmistakes I cver made, because
it proved te be an absolute disaster, and I had to remedy the situation VETY
quickly. The poini is that such a loose equality is to weak a criterion to
be of any use; for instance, the loose equality is no longer transitive. One
could find a =b , b=rc and a # ¢ all being true at the same time! Under
those shaky circumstances it is very hard, if not impnssible, to prove the
correctness of a program manipulating real variables. If at that time, proving
programming caorrectness had been normal practice, I would never have made
the blunder in the first place.

I mention this point for two reasons: firstly it settles a point that
.the report has erroneously left open, secondly it illustrates my point, made
above, that the rcquirement of an orderly discipline indeed seliles design
questions,

5. The range.

I read on page 43%:

"The source language should require its users to individually specify
the range of values for integer and floating point variables [...]
Range-[...] specifications should not be interpreted as defining new
types."

The latter addition seems in contradiction with page 3% "By the type
of a data object is meant the set of objects themselves, the ~ssential
properties of those objects and the set of operations which give access to
and take advantage of those properties."

There seems to be a confusion, it is not clear what the implications
are when the integer variable x has the range declared to be from O through
15. There are at least two possibilities:

a) any implementation has to check that the value of the intermediate
variable x always lies within that range from O through 15,

h) no implementation needs to allocate more than 4 bits to the variable
x 3 any implementation has the right, but never the obligation, to signal
an alarm when x is found to lie outside the ranve from O through 15,
it has only the duty to signal an alarm when it has used ihe assumption
that)x would have such a value (by, for instance, only allocating 4 bits
to 1t).

In interpretation (b) any implementation, btherefeore, may ignore the
range specification, and may take it into accouni if it can deo so at goéd
advantage. In interpretation (a), each implementation hag to take it into
account; as this implies in general a run-time check, interpretation (a)
is in conflict with some of the efficiency requirements. In‘ornretation {a)
has the further dramatic disadvantage that "static type checking is no
longer possible. I call this "dramatic", because it introduces an intertwining
of the semantics of the programming languages --describing the net effect
to be effectuated by the programs written in it-- and their implementations
--i.e. possible computational histories that could achieve that effect—-- .

EwDL26 - 3

I have learned to appreciate axiomatic, non-operalional definitions
of programming language semantics, in which the program text defines the
net effect to be established independent of the compuiational histories that
may be invoked under control of the pregrams. In such an apprnach the pro-
gram dees not prescribe what has to happen during the execution, it only
prescribes the answers; what happens during the excculion of a program is
only defined by the combination of program and implementation., Dut the
implementation is not defined by the definition of the programming language,
only constrained by the requirement that always the correct answer will be
‘produced. I have found such a separation of concerns between what zhould be
achieved and how it is to be achicved, absolutely essential. Interpretation
(a) which refers to the computational history, would deny to me that sepa-
ration of concerns; it is for thai reason --and not on account of the cost
of run-time checks-~ that I regard adoption of interpretation (a) as a
disaster. The suggesticon --page 80-- that formal definition of the semantics
could be done via cither the Vienna Definition Language or (a la LISP) by
an interpreter --which are both operational definitions-- is one of which

I cannot approve.

* *
*

To Dr.dJdohn B.Goodenough's list of Lypographical errars I can add:

Page Linge As Is Should Be
18 7 inovatian innavation
%rd November 1975 prof.dr.BEdsger W.Dijkstra
Plataanstraat 5 : Burroughs Research fellow

NUENEN - 4564
The Netherlands

