EWD566 - O

Programming: from craft to scientific discigline.

Summary:

In response to the software crisis and to the lack of clear guidance
in the design of programming languages, "programming methodology" emerged in
the second half of the sixties, with the avowed purpose of discovering what
would be involved in the design of sizeable high-quality programs. The
recognition that high-quality implied correctness and that correctness could
be proved in theory and might be provable in practice then became a major
driving force. The proper roles of intuition and of formal discipline were
reassessed, thereby reshaping the nature of the programmer's task and his way
of working. After a general survey of this develeopment and an indication of
its significance, some of its consequences will be discussed, because it is
certain to have great impact upon our educational practices in computing science
and software engineering, on the constitution of our work force, on the divis-
ion of intellectual labour and on the management of software development

projects. {(End of summary.)

When, in the late sixties, I coined the term "Structured Programming®
I made a few sericus mistakes. UOne mistake has been that I did not make it
a registered trademark. Anather mistake has been that I introduced the term
without giving a definition for it. My only excuse is that I had not foreseen
that the term, just the term, mind you, would spread like wildfire, and would
become one of the most overworked buzzwords of the computing scene in the
seventies (to such an extent, as a matter of fact, that since a number of
years I myself have stopped using the term altogather). I would like to use
this opportunity to explain why I did not define it and, yet, introduced it.
Such an explanation seems a good introduction for a description of what has
roughly happened since then: to give you a feeling for the significance of the
development in programming during the last eight years is the main purpose of

this talk.

For reasons that I shall mention in & moment, several of us felt that

../transcriptions/EWD05xx/EWD566.html

EWD566 - 1

the activity of computer programming had not only the potential, but also a
great probability of changing drastically. Whether the change would be so
slow as to be called "evolution™ or so abrupt as to be called "revolution"

was something we did not venture to predict. But the nmature of the change it-
self was clear enough and we needed a name to label the development that, we
felt, was about to occur, Hence I coined the term "Structured pregramming®:

I felt that it captured my observations and my hopes very nicely.

In the mid-sixties we observed what was then known as "the software
failure™ or "the software crisis™. Its emergence was no surprise, its occur-
rence had been prediected. 1In not much more than ten years the power of come
monly available computers had increased by a factor of thousand, and our pre-
gramming ability had not increased in proportion. Besides that, the logically
simple, sequential machines of the fifties had been replaced by much more
complicated pieces of equipment, complicated by such Teatures as multi-level
stores and asynchronously active peripherals. It was very clear that the pro-
gramming task was outgrowing our programming capacities and the emergsnce of
the software crisis was, as said, no surprise. The problem, however, was that
very little could be done about it, as long as its existence was hardly admitted
or even denied: it is vain to urge a world to try toc improve its programming
habits as long as that world pretends that its programming habits are perfectly
adequate. In this respect the conference on "Software Engineering®™, sponsored
by the NATO Science Committee and held in Garmisch, Germany, in Octaober 1968
was the great turning point: here the existence of the software crisis and the
urgency of the situation was openly adwitted by such an impressive ecollection
of representstive authorities, that this admission was sure to have its impact
and to help create the climate in which a change in our programming habits
could be discussed. This conference was one of the main reasons why we felt

that for the expected change the time to happen at last had come.

Another reason was the fate of a number of committees trying to design
a new and better programming language, such as the SHARE Committee designing
PL/1 and IFIP Working Group 2.1 trying to design a successor for ALEDL 60.
I ~-and many share this opinion, although perhaps for different reasons--
consider both efforts, each in their own way, as most unsuccessful. It was

already during the design pbhase of those languages that many of the people

EWD566 - 2

ariginally involved became very doubtful as to whether things were developing

in the right direction. Inexperienced as they were, they first blamed the
committee mechanism, and the joke of the season was to define a camel as a horse
designed by a committee. But on cleser inspection it was discovered that not
all the blame could be put on the committee mechanism, for there was a pro-

founder reasoen: we did not know the nature of the programmer's task well enough.

Each tool shapes its users, and each programming language reflects, in
its capacity as a tool, a picture of the programmer and his task. A rather
intuitive, not very explicitly described but commonly accepted picture of the
programmer and his task had given rise to FORTRAN and ALGOL 60. The failure
to achieve striking improvements upon them was a direct consequence of the
fact that our view of the programmer and his task had insufficiently evolved.
The "typical programmer™ still seemed to be the professional physicist or
engineer who, for some technical computation, would write as a nonprofsesional
programmer a three-page program in an afternoon, i.e. very much the same pro-
spective user that had inspired FORTRAN and ALGOL 60 some ten years earlier.
Hence, for instance, the paralyzing stress on the requirement that the new
language should be "easy to learn™; in practice this meant that the new language
should not be too unfamiliar, and too aften "convenient® was confused with
"conventional®™. More and more pecple began to feel that tuning those designs
to the supposed needs of the nonprofessional programmer was for lack of
any idea how a truly professional programmer would look like! We knew how the
nonprofessional programmer could write in an afternoon a three-page program
that wes supposed to satisfy his needs, but how would the professional programmer
design a thirty-page program in such a way that he could really justify his
design? What intellectual discipline would be needed? What properties could
such a professional programmer demand with justification from his programming
language, from the formal tool he had to work with? ALl largely cpen questions.
In an effort to find their answers a new field of scientific activity emerged
in the very late sixties; it even got a name: it was called "Programming Meth-

odology”™.

Programming methodology was in its infancy a rather vague and diffuse

subject. More stress was certainly given to program correctness than to ex-

EWDD66 - 3

ecution efficiency. in some minds this has created the impression that pro-
gramming methodology did not care about efficiency, but this impressiaon is
wrong. In the sorry state of the art that could be observed in those days

it was not the inefficiency thai seemed most alarming: most alarming seemed
that all sizeable programs seemed to be bug-ridden. Efficiency of computer
programs had already been such a fashionable topic for so many years, that
the balance seemed to need some redressing. When programming methodolegy
first focussed its attention on the problem of program correctness, it did

so because many of us felt that that was a relevant concern that for too long

a time had not received the attention it apparently deserved.

I called programming mathodology in its infancy vague and diffuse. In
spite of the fact that Naur [1], Flayd [2], and Hoare [3] had already published
their articles, we used in the beginning hardly the cruel and uncompromising
expression "proving the correctness of a program™. For at least yst another
year their articles stoed on the shelf reserved for interesting academic ex-
ercises without much practical significance. It was the time when people could
make four different programs for the same problem and then could ponder for
hours or days on the question which of the four versions they liked best. That
was an exploratory activity that encountersd little appreciation and even e-
voked criticism, The practitioners --the programmers of "the real world™--
could not see much significance in all those assthetic exercises, the theo-
reticians --the mathematicians and logicians-- saw no depth and, therefore,
no significance in them either. The fact that, as an alternative to the quan-
tifiable efficiency, we turned %o easthetic criteria has not without justifi-

cation been qualified as an exaggerated preoccupation with "programming style"™.

Yet, all those experiments with little programs have not only been valu-
able, they were at that stage even necessary. Programming at that time was
still an intuitive craft, and before the decision to adopt and to further de-
velop a formal discipline can be taken, it should have been established with
sufficient evidence that such a formal discipline is needed and that its further
davelopment is indeed worth the effort. And in order to prevent the formali-
zation from becoming and end in itself, it should be sufficiently clear what

it should achieve.

EWD566 - 4

The exploratory stage, during which the notions of "simplicity"™ and
"elegance" absorbed so much of our attention has had one very important effect.
By the time that formal techniques became more general adopted, we had, for
"aesthetic reasons" stripped our programming vehicles, removing many of the
usual bells and whistles whose presence would only have encumbered the farmal
treatment. The beauty of some of the programs we had discovered was an incentive
to look for correctness proofs of comparable beauty and the circumstance that
our most beautiful programs were often by all the usual standards also very

efficient gave us the encouraging feeling that the whole exercise made sense.

In short I thinmk that the infancy of programsing methodoleogy, with its
stress an aesthetic criteria, has not been wasted. As craftsmen that to a
certain extent had become artists as well, we had already developed into better .
intuitive programmers; at the same time the subject matter worth of formal
treatment had been filtered out. And, finally: the fact that we talked about
"the beauty of a program" in very much the same way as in which mathematicians
refer to “the beauty of a proof" provided an emotional link between two at that
time rather disjoint cultures, a link that may very well have had a decisive

influence.

In the above I have tried to sketch the emotional and intellectual
climate of the infancy of programming methodology. I have done so in the hope
that it will assist you in getting some apprecistion of the significance of its
later achievements, an appreciation I would like to transmit to you without

fully going into the technicalities that would take a full semester to cover.

We should remember that, when a2ll this started, programs were almost
exclusively considered from the point of view of what would happen when the
program would be executéd by a computer. It was only via the class of possible
computations that could be evoked under contrnl of a program that such a pro-
gram could be appreciated. Textbooks on programming used to begin with a fesw
chapters devoted to the description of the average computer architecture and
the global characteristics of the machine's major components. Efforts at the
formal definition af the semantics of programming languages were almost ex-—
clusively so-called "operational definitions™, i.e., in terms of the properties

of the possible computational histories. The quality of a pregram was very

EWD566 - 5

often equated to run-time efficiency, a notion which is, of course, highly

implementation-dependent.,

Yet, for progress it was necessary that the close tie to the process of
program execution be loosened. UOne reason for this necessity was that as long
as the tie was so close, characteristics of machines as they happened to ex-
ist, whether desirable or not, tended io pervade the thinking about programming:
the way in which the properties of the IBM/360 had pervaded the design of PL/I
was & warning not to be ignored. Another resson —-although that one was perhaps
discovered only later-- was that program correctness and cost of execution are
two so important concerns, that the programmer who has to give full attention
to both of them, should be given the mental tools to separate these two con-

CETANS.

Twoe concurrent developments made it possible to loosen the tie betwesn
a program and the corresponding class of computational histories. I have al-

ready mentioned them both.

The one development consisted of the many, many programming experiments
made during the infancy pf programming methodology. As the problem of pro-
gramming language design was one of the major incentives for these numerbus
programming experiments, many of these experiments were performed in tentative,
unimplemented (and often yet incumplete) programming languages: the purpose of
the experiments was very often to explore the consequences of a yet uniried
language feature. The fact that these experiments were mastly carried out in
unimplemented languages loosened the tie between the programs and their exe-
cutions, The other development was the discovery and application of the papers
by Naur [1], Floyd [2], and Hoare [3], which dealt with the possibility of
proving program correctness by means of a formal discipline. Such a formal
discipline may have been ingpired by what happens during program execution via
a computer, by the time that the formal discipline is applied it can be used

"in its own right"™ so to speak.

This second develocpment was @ necessary complement to the first one: it
is all right to push the class of possible computational histories to the

background of one's awareness, but this is only possible provided we have an

EWDS66 - 6

alternative technique far coming to grips with what a program "means": Naur
and Floyd gave a proof technique, Hoare was the one who siressed most clearly
that these proof rules cculd be regarded as axiams. This was an important
discovery: from now onwards the proof rules need no longer be regarded as
summarizing properties of compuiers, but they could be regarded as axioms,

as postulates, as a functional specification for computing engines that those
engines had better satisfy if they were to be useful engines. The discovery
was important for its psychological side-effect: while in the past it was
regarded as the purpose of our programs to instruct our computers, a shift to
the opposite view could now take place, viz. that it is the purpose of our
machines to execute our programs. Or, to put it in another way, logic which
up to that moment had mostly been a descriptive scienee, fraught with meta-
physics, now also admitted to be regarded as a prescriptive science, almost

as z discipline of engineering.

* *

The transition from the vague and emotional terms as "understandahle",
"clear™, "readable™ io the uncompromising and cruel notion of "z formal cor-
rectness proof®™ marks for Programming Methodology the transition from infancy
to adolescence. It was a slow and sometimes painful process, like all pro-
cesses of mental growth. From the people involved it required a greater agility
in the propositional calculus and a greater familiarity with various induction
patterns than most of them originally possessed. Younger computing scientists
are free to laugh in either amazement or contempt, but I am not ashamed of
confessing in public that five years ago, I was thoroughly familiar with the
logical connectives "and™ and ™or® but certainly not with the implication, which
I, therefore, tended to svoid, programming around it by replacing "a = b"
by the more familiar "b or non a®.

Besides this inherent cause that made the growth process a slow ane, there
was an external, and rather accidental one. Floyd's paper [2] was given greater
publicity than Naur's earlier one [1]; we must conclude that Naur's paper was
published ahead of its time. In contrast to Naur's paper that deals with pro-
gramming, Floyd's paper has immediately been associated with mechanical veri-
fication --or even: discovery-- of formal proofs of the correctness of programs.

As a sad result, Programming Methodology has for quite some years been in danger

EWD566 - T

of being killed in its youth by the superstition that underlies so much of
the Artificial Intelligence activity, viz. that everything difficult is so

boring that it had better be done mechanically.

1 ealled the growth process, besides slow, also painful --like svery
adolescence, for that matter-- . For some time during its adolescence,
programming methodology indeed had a very difficult time. This was when the
first correctness proofs started to circulate: some of them were, indeed,
appalling, even distressingly so. I was repelled by them, and at one occasion
I declared, full of disgust, with emphasis that such formal techniques "were
not my cup of tea™. Those present at that occasion take a special delight in
reminding me of it, For some time it indeed looked as if formal correctness

proofs were totally unfit for human design and for human consumption.

Thank goodness there were also a few beautiful programs with beautiful
correctness proofs hanging around and, as a resuli, Programming Methodulogy
survived its adolescence without committing suicide. The point is that those
convincing examples were very inspiring because "length of formal correctness
proof" was immediately accepted by all people invplved as an abjective and
relevant yardstick for "quality". Its objectivity caused among those people
a greater unity of purpose thah eloguence or money could ever have achieved.
This unity of purpose was so welcome that programming methodology survived its
first disappointing experiences with formal correctness proofs, until it had
‘been discovered that many of those early proofs, indeed, had been unnecessarily

ugly and cumbersome.

The first proofs were very cumbersome because, for lack of any theorems,
they were built upon the axioms themselves. In the meantime a few general,
but very powerful and useful theorsms have been discovered and proved, and we

have gained much experience in their effective exploitation.

A second cause for improvement was the discovery that the existence of
such theorems and the ease with which they are formulated and used depends on
the programming language used. The combinatorial freedom of the flowchart lan-

guage that was used by Floyd in his fundamental article [2] creates problems

EWD566 - 8

with the satisfactory solution of which people are still struggling today [4];
by adhering to a mere strict sequencing discipline, these prohlems can be made

to disappear.

A third cause for improvement was the discovery =--in retrospect not very
surprising-- that besides a formal theory aboui one's programming language and
its constructs, one also nesds a certain amount of formal theory about the sub-
ject matter of the computation. For instance: while proving the correctness
of a parser it is not enough to have axioms about the relevant programming
language constructs such as the operations on strings. Besides those one
needs a certain amount of theory about sentences generated according teo, say,

a BNF-grammar; one may even be expected to need some theorems about the specific
grammar of the language in question. In the beginning we often did not clearly
separate thase two different aspects of our proof obligations, thus confusing

the issue.

A fnurtﬁ improvement was perhaps the most spectacular. for many years
the whole correctness issue had been posed in the following form "Given a pro-
gram and given the specifications of what its execution should achieve, can
you prove that the program meets these specifications?"™ The attention was
thus focussed on "a posteriori™ verification of given programs. It was then

cbserved, however, that for different programs meeting the same specifications,

the corresponding correctress proofs could greatly differ in cumple#ity! And
as a result, our picture of the programmer's task changed: it was no longer
sufficient to design a correct program, in addition the program should be de-
signed in such a way that its correctness could, indeed, be established. The
simplicity of the corresponding correctness proof became thus an important
aspect of program quality. But when this message was taken to heart, the
programmer's task and his way of working changed radically. For, how does

one develop a program ihat admits a nice correctness praof? Well, by developing
the program and its correctness proof hand in hand. In actual fact the cor-
rectness proof is often even developed slightly ahead of the actual program
text: as soon as the next step in the correctness proof has been chosen, the
next refinement of the program is made in such a way that the chosen step in
the correctness proof is applicable to it. Instead of seeking for a proof to
go with a given program, we now construct a program to go with a chosen correct-
ness proof! The later construction process is so well understoad that we are

now entitled to talk about a calculus for the formal derivation of programs [5].

EWD566 ~ 9

Let me repeat. We are trying to find a "matching pair", consisting eof
a program and a proof and "matching™ in the sense that the proof establishes
that the programs meets its specifications. Given a program, finding a matching
proof may be very hard; given a proof, finding a matching program is almost
trivial. This is not the place to ponder about a mathematical or psychological
explanation of this phenomenon. I have repeated and described the phenomenan
in other wards because of its drastic social impact. Here I use the term
"drastic social impact" because it is bound to cause a change in a traditional

division of labour.

Ten years ago, before the above had been understood, a tradition of
"software production" had already established itself. It was regarded as the
programmer's task "to produce programs®, and the management of "software pro-
duction" was organized under that assumption in close analogy to more traditional
production processes such as thase of cars, TV-sets or washing machines. This

view of "software production® has had a few severe consequences.

1) In analogy to the production line worker, for “programmer productivity"
the measure "number of lines of code produced per month" became among managers
accepted. Doubts about its adequacy and significance have been voiced. It

has been remarked that the adoption of this measurs of programmer productivity
is certain to encourage the production of insipid cede. It has alsoc besen re-
marked that "code" is no end in itself, but only a means, and that rather than
talking about the lines of code "produced™ we should refer to the lines of

cade "used"™, and that, therefore, this "productivity measure®™ books the number
of lines on the wrong side of the ledger. But large organizations have a great
inertia, and the number of lines of code ®produced", no matter how inadequate,

is still in use as a grading criterion for programmers.

2) In analogy to the production lime, software managers have iried to re-
duce software production costs by resorting te cheaper labour, which, in each
given environment, means less educated people. The resulis af these tactics

are only too well known.

3) In analogy to the production line, completely independent groups for

EWD566 - 10

"quality assurance” have been installed: the pesple from "quality assurance"
had to certify the saftware "produets™. Little it was understood, however,

how impossible their task was., They could hardly do any better than to “cer-
tify™ after the sucecessful run of a set of test cases, no matter how inadequate
they were for "certification". Also the results of this are only too well

known.

So much for the traditional division aof labour in the process of software
production, This tradition has to be broken because it is based an a false as-
sumption, The tradition will be breken because the modern way of developing
progroms is so dramatically more effective. In future we shall see in retro-
spect that today's traditional way of software producticn was the result when

a craft was applied, where a scientific discipline was needed.

* *
*

In the last decade programming has made the transition from craft to
scientific discipline. It has been a development not unlike the one that took
place in medieval painting in Eurcpe. Before the discovery of the relevant
rules of projective geometry, painters had only intuitive ideas about perspective.
It was the old and experienced craftsman-painter who, on the average, was most
successful in rendering the proportions well. But each new painting was in
this respect an experiment that involved a ceriain risk, and, whenever a
craftsman-painter had besn exceptionally lucky, he had created a work of art
that would become famous for its geometrical perfection. But within a few
decades the old craftsmen had been superseded by a next generation of painters,
mostly pupils of a certain Albrecht Dlrer: these youngsters just knew the
rules of perspective and produced without risk and with absolute confidence in
this respec: perfect paintinga. Not only that they could do it, they knew
that they could do it, they knew hou'they did it and could teach it to their
successors. A next area of human endeavour had shown itself to be amenable
to mathematical treatment, and a craft had been replaced by a scientifice
discipline. But whenever a craft is replaced by a scientific discipline, the
old members of the guild feel themselves threatened, and gquite understandably

SO,

I used the term "drastic social impacti™ because today's "programming guild"

EWD566 - 11

encompasses —--depending.on how we count-- between 500,000 and 1.000,000 people,
for the majority of whom it is totally unrealistic to expect that they can
5till acquire a scientific attitude. For them the recent developments in pro-
gramming poses a serious problem, and their existence presenis a sericus
barrier to the more wide-spread adoption of the newer programming techniques.
In view of these conflicts it is very hard to predict how, when, and where

the old programming tradition will he broken first. I shall just give you

a few observations and leave the extrapolation to you.

When in 1968 the software crisis was for the first time openly admitted,
a quite well-known prafessor of computing science waved the idea of correctness
proofs away as being ™idyllic", %o another one the idea of correctness proofs

caused "mental hiccups" [6].

As late as 1972, the suggestion that programming was soa difficult that
it deserved scientifically educated programmers has been waved away: with a
reference to the then current intellectual calibre of "the average programmer"

the suggestions was waved away as obvious nonsense.

Three years later, however, an International Conference on Sofiware
Reliability, where formal techniques played a predominant role, was held at

Los Angeles and attended by about a thousand people.

Another year later, in 1976, a draft proposal for an advice to the U.S.
government draws attention to the for them alarming circumstance that "hy an
accident of history, the United States has more inertia (and local vested
interests) in current software practives than the rest of the world.® It
points out the danger for the USA that in the practice of software development

they will be overtaken by nations that in this respect are yet more flexible.

Sa much for my few observation: I gladly leave to you to guess the how,

the when, and the where of the breakthrough.

* *
*

The cenclusion that successful computer programming will eventually re-

quire a reasonable amount of scientific education of a rather mathematical

EWD566 - 12

nature is not tor welcome among the guildmembers: they tend to deny it and to
create a climate in which "bringing the computer back to the ordinary man™ is
accepted as a laudable gozl, and in which the feasibility of doing sc is pas-
tulated, rather than argued. (This is understandable, because its infeasibility
is much easier to argue.) They create a climate in which funds are available
for all sorts of artificisl intelligence projects in which it is proposed that
the machine will take over all the difficult stuff so that the user can remain
uneducated. I must warn you not to interpret the fact that such projects are
sponsored as an indication that they make sense: +the fact of their being

sponsored is more indicative for the political climate in which this happens,

I am convinced that all these projects will fail, and that, the more
ambitious they are, the more miserably they will do so. Hence 1 consider
these projects as rather foclish, and for programming as a scientific discipline

worth teaching, as rather harmless rearguard actions. As a bit pathetic, even.

In the meantime these projects can still do a lot of harm, They can do
so by their false promises, pretending that the sophistication of their future
systems, combined with decreasing hardware costs, makes it economically attractive
to forsake our educaticnal obligations to the next generstion. Needless to
say, falling into that seductive trap would be the culitural blunder of the

decade.

In another respect I sometimes fear that the harm has already been done.
There is a wide-spread folklore that in particular correctness proofs for com-
puter programs are intrinsically so long, tedious, boring, uninteresting and
prone ta error, that the mechanization aof their verification is a must. The
assumption, however, is wrong: correctness proofs for programs can be --and
should bef-- just as beautiful, fascinating and convincing as any other piece
of mathematics. But the rumour to the contrary is censtantly spread by the
advertizing campaigns for the mechanical verification systems. The fact that
the most outstanding feature of most artificial intelligence projects seems
to be the heavy advertizing campaigns deemed necessary for their support, should

instill into our minds a healthy wmistrust and suspicion.

[1] Naur, P., "Proof of Algorithms by General Snapshots", BIT & (1966)

pp. 310 = 316,

EWD566 - 13

[2] Floyd, H.W., "Assigning Meanings to Programs", Proceedings of a Sympaosium
in Applied Mathematics 19 (ed. Schwartz, J.T.), Providence, Rhode Island:
American Mathematical Society, 1967, pp. 19 - 31,

[3] Hoare, C.A.R., "An Axiomatic Basis for Computer Programming®™, Comm.ACM

12, 10 (Oct. 1969), pp. 576 - 583

[4] Manna, Zochar and Waldinger, Richard J., "Is "sometime" sometimes better
than "always"? Intermittent assertions in proving program correctness.™
Stanford Artificial Intelligence Laboratory Memo AIM-281 / Computer
Science Dspartment Report No. STAN-LS-76-558, June 1976.

[5] Dijkstra, Edsger W., "Guarded Commands, Nondeterminacy and Formal

Derivation of Programs" Comm. ACM 18, 8 (Aug. 1975) 453 - 457.

[6] Naur, P. and Randell, B., "Saftware Engineering™, Report on a Conference

Sponsored by the NATO Science Committee, January 1969.

Plataanstrsat 5 prof.dr.Edsger W.BDijkstra
NL-4565 NUENEN Burroughs Research Fellow
The Netherlands

