EWD636.html

Copyright Notice

The following manuscript
EWD 636: Why naive program transformation systems are unlikely to work
is held in copyright by Springer-Verlag New York.

The manuscript was published as pages 324-328 of

Edsger W. Dijkstra, Selected Writings on Computing: A Personal Perspective,
Springer-Verlag, 1982. ISBN 0-387-90652-5.

Reproduced with permission from Springer-Verlag New York.
Any further reproduction is strictly prohibited.

http://www.cs.utexas.edu/users/EWD/transcriptions/EWD06xx/EWD636.html

EWD636 - O

-

Why naive program transformation systems are unlikely to wark,

Look how carefully the title has been.worded! No developer of a program
transformation system needs to feel offended, for I have given him two escapes.
First, 1 am not arguing an impassibility, but only an unlikeliness --and we
know that all startling advances have been made against seemingly overwhelming
odds, don't we?-- ; second, he has the option to declare that the program
transformation system he is developing is not "naive" in the sense that I shall

make more precise below.,

I take the position that a serious programmer has at least two major
concerns, viz. that his programs are corrept and are efficient., And from ex-
isting software we can deduce that neither of these two concerns is a triviel

one.

For years I have argued what I still believe, namely that, when fzced
with different concerns, we should try to separate them as completely as pos-
sible and deal with them in turn. In the case of the concerns for correctness
and for efficiency this separation has hbeen achieved up to & point. It is
possible to treat the problem of program correctrness in isclation from the
problem of efficiency in the sense that we can deal with the correctness pro-
blem tcmporarily even ignoring that our program text also admits the interpre-
tation of executable code. It is aisn possible Lo investigate the various
cost aspects of program execution independent of the question whether such
exe;ution of the program will produce a correct resuit.

Presented as in the previous paragraph the separation sought seems to
have been found. It is true that the separation is reachable as far as the
program text itself is concerned; in the process of composing the iext, however,
the separation is less warked. There does exist a formal discipline that, wher
adhered to, cannot lead tc an incorrect program. In its spplication, however,
-we have a great amount of freedom, and in the chaice how to apply the digci-
pline ensuring correctness, the designer always makes up his mind by considering
his other concerns, such as efficiéncy. In other words, the more rigorous the

cvoncerns have heen separated with respect to the program text itself, the mcore

EWDE36 - 1

-

schizophrenic the act of program ccmpusifcn becomes: the programmer still re-
mains a jack of many trades, switching all the time --and at a high frequency!--
between various roles, whose differences have only become more and more marked

over the last decade.

I have been introduced to program transfermétinn systems as to overcome
the need for such a schizophrenic programmer behaviour. A number of so-called
"semantics preserving program traTSformatiGns" have been discovered. Each
such transformation, when applicable and applied to a program A generates
a new program A' that, when executed, will pruduce the same result as the
original program A , the difference being that the costs of execution of A
and of A' may differ greatly. Program ,A' may also be derived by successive

applications of a sequence of such transformations.

It was the discaovery of (sequences Df) such transformations that support-
ed the idea of --what I call: naive—- program transformation systems. When
using such a system for the development of a program, this development was
envisaged to take place in two successive, clearly and rigorously separated

stages.

In the first stage the programmer would only be concerned with program
correctness: unencumbered by efficiency considerations he would write a pro-
gram, the correctness of which could be established as easily as possible. In

the ideal case, the program's correctness would be trivial to establish.

In the second stage ~-which in the dreams of somé could or should be
conducted by a different person, unfamiliar with the original problem-- the
correct but inefficient program would be subjected to semantics preserving
transformations from a library, until the program had become efficient as.
well., (At the moment this dream was dreamt, the available library of acknow-
ledged transformation was admittedly still somewhat small, but it was constant-

1y growing and hopes were high.)

* *

When such sys{ems were proposed to me I wes very sceptical, but I was

EWD636 - 2

-

mainly so for a purely personal reason and accidental circumstance, Their
advocates tried to convince me of the viability of their approach by composing
according to their proposed method a program I had published myself. In their
demonstrations, stage two required about ten pageg of formal labour, while

stage one had taken them between cne day and one week.

It so happened that their demonstrations were not very convincing for
me, because, heading schizophremicly towards a eorrect and efficient solution,
I myself had solved the whole problem (withﬂut pencil and paper) in fifteen
minﬁtes. (It was the evident effectiveness of the heurisiics applied that
had prompted that publication: the problem itself was one of the kind I

could not care less about.)

At the time I was not worried so much about the ten pages of stage two,
as it was clear that most of it caould be mechanized and never need to see the
light of day. I was much more worried about the discrepancy between one ar
several days for stage one on the one hand, and fifteen minutes for the whole
job on the other, and I remember voicing this latter worry at a meeting of

the IFIP Working Group 2,% on "Programming Methodology".

OUne of the members --a pidneer in program transformations-- suggested
a possible explanation for the observed discrepancy: as programmers we had
in the past been so terrorized by efficiency concerns that it was very difficult
for us to come up with a triviallylcorrect solution, no matier hew.grossiy .in-
efficient. He supﬁorted his explanation by stating a prablem and presenting
a solution %Dr it that, indeed, was s0 ridiculously inefficient that it would

never have entered my mind.

I was struck by his argumert --otherwise I wouldn't have remembered itfem)
he wade we doubt but eould not convince me. The possible explanation for the
discrepancy that I had considered was that, by ignoring efficiency considera-
tions, the "admissible solution space" had become cumbersomely large: I felt

that the efficiency consideratiaons could provide a vital guiding principle.

It seemed a draw and for the next eight months 1 did not make up my mind any

further about the chances of success for naive program transformation systems,

* *
*

EWD6%6 - 3

-

All the above was introduction. After the closing ceremony of IFIP77
in Toronto I had dinner with Jan Poirters and Martin Rem, and in a conversation
about the role of wathematics in programning I ventured the conjecture that
often an efficient program could be viewed as the successful exploitation of
& mathematical theorem, I presented an efficient program as a piete of logical
brinkmanship in which a cunning argument could show that the computational

labour performed would be just enough for reaching the answer,

I came up with the example gf the shortest subspanning tree between N
points. There exists a simple one-to-one correspondence between the NN_2
different subspanning trees between N points and the NN_2 different
numbers of N-2 digits in base n ., A naive computation A could therefore
generate all NN‘_2 trees and select the shortest one encountered. But we ‘
know that there exists an efficient algorithm A' whose computaticn time is
proportional to N2 « But the only way in which I can justify the latter al-
gorithm is by using (a generalization of) the theorem that of the branches of

the complete graph that meet in a single point, the shortest ane is also a

branch o7 the shortest subspanning tree.

In confirmation of our experience that everything of significance in
computing science can he illustfated with Fuclid's algorithm, Martin Rem
came with that example., In order to compute the greatest common divisor of
a positive X and Y , the correct algorithm A constructs a table of di-
vigors of X , then a table of divisors of ¥ » then the intersecticn of the
two tables, and from that (finite and nunempty) intersection the greatest
value is selected. But good ﬁld Euclid knew already algorithm A* which T
can only justify by eppealing to (a generalization of) the theorem that
ged{x, y) = ged(x, y-x).

The next week David Gries told me about a speeding up of the Sieve of
Eratosthenes --ancther classic!-- for generating a table of prime numbers, a

job for which many inefficient but correct algorithms can be created, c.g.
¥y, po=1, 1
do p <N -~p:=p+1;doged(p,y) £1 - pt= p + 1 od;

print(p); yi=y *p

EWDG36 - 4

David's program, however, relied on the theorem that there exists @ prime

number between n and 2n .

In the meantime I have thought of a fourth example. The branches of a
subspanning tree between N points provide a unigue path between any of the
two points and we can define the sum of the‘branches of such a path to be the
"distance" between those two points, Which is the point pair with the maximum
distance from each other? The simple algorithm A determines all N(N—1)/2
distances and selects the longest encountered. The efficient algorithm A
uses the theorem that for an arbitrary point y the point x with the
maximum distasnce from y is one of the end points of the longest path. We
then determine the point z with the wmaximem distance from x y and the paiv
(x, z) is our answer.

The question is now what our chances are of deriving the efficient pro-
gram A' by applying (mechanizable) transfurmations from a finite library
to the original program A ? Because the transformations are semantics pre-
serving, program A‘' is correct if program A is. The correctness proof
for A --a proof which, ideally, is almost trivial--, together with the deri-
vation path from A tec A' , constitutes a correciness proof for A". In
none of the examples given the theorem with which we proved the correctness
of A' seemed unnecesserily strong, i.e. from the given correctness of At
the corresponding theorem seems in each case simply derivable. The suppnsed
derivation path from A +to A' therefore contains not only the major part
of the justification of A' , but alsc of the proof of the mathemztical theo-

rem that we used to justify program A' directly.

All our experience from mechanized methematics tells us that therefore
the derivation paths from A to A' ~-if, with a given library, they exist
at all-- can be expected to be ldng and to be difficult to find, Extending.
the library is only an improvement as long as the library is still very small:
using a large library will be exactly as difficult as commanding & large body
of mathematical knowledge, Furthermore, each intermediate product cn the
derivation path from A to A' must be a program that is semantically equi-
valent to A ; this seems a constraint for which I cen find no anslogue in
normal mathematical reasoning, and for many triples <A, A', library > it

may make even the existence of such a derivation path questionable?

EWDG36 - 5

-

The stated hope that, once our system of mechanized program transformations
is there, stage two can be left to & sort of "technical assistant" that need
not know anything about the original problem and its underlying mathematics,
but only needs to know how to operate the transformation system, now seems 1o
me unwarranted. And if that hope is expressed as a claim, that claim now

seems to me just as misleading as mest advertizing.

I do not exclude the possibility that useful program trqnafﬂrmation ays-
tems of some sert will be developed --it may even be possible to derive some
of the efficient algorithms I mentioned above-- , but I don't expect them to
be naive: the original goal of allocating the mathewmatical concern about
correctness and the engineering concern about execution costs to twe distinct,
well-separated stages in the development process seems unatlainable. It was

good old Euclid who warned king Ptolemy I:
"There is no ‘'royal road! to geomstiry.” 5

and those who think that that warning does not apply to them, will be remindead

of it the hard way.....

Acknowledgement. The argument displayed above contains enough loose expressions

—-such as "a major part of the proof"-- to be regarded as fishy. I am not even
myself perfectly sure of its convincing power. (Huw is that for a loose expres-—
sion?) I therefore gratefully acknowledge the opporiunity provided in Niagara-
on~the-lake, Aug.1977, to confront members of IFIP WG2.3 with it and to solicit
their comments. Although I found my feelings confirmed, it goes without saying
that none of them can be held responsible for the views expressed in the above.
I also thank Jan Poirters and Martin Rem for their contribution to a pleasant,

yeah even memorable dinner. (End of acknnwledgement.)

Plataanstraat § praf.dr.Edsger W.Dijkstra
- 5671 AL NUENEN Burroughs Research Fellow
The Netherlands

