yeom jaentitication 142-48 EwDeél - 0

On the RED Language submitted to the DoD.

Having decided to study the languages in the alphabetic order --i.e. BLUE,
GREEN, RED (Dr PINK), YELLDOW-- the RED Language was number three. Was 1 getting
tired or was it my allergy for pictorial representations? When 1 picked up the
Informal Language Specificetion {ILS) of the RED Language I was initially re-
pelled, and when I studied the RED proposal foxr the type FIXED, nat even my
great love of Euclid;s Algorithm for the GCD could soften my feelings. It was
only after several days of study when I observed --with some amazement, for

'I still remembered my initial reactions-- that a certain sympathy had been
built up. Its authors had earned this sympathy by their obvious efforts to
keep the langusge simple and systematic:

1) "REDL prohibits all instances of dangercus aliasing." (1LS p.7-14)

2) "At run-time the effect of an invocation of & routine declared with the
<inline directive> is the same as if this <directive™ were absent,
except that the executien times and/nr code space requirements for the
invocations may differ." (115 p.?-?)

z) "To prevent side effects from accurring in functions, ..." (1.5 p.7-18)

4) "A funaamental\principle of REDL's data fecilitiy is that the type of
any data element is always named explicitly. i.e., it is always given
by a single identifier, and distinct identifiers denote distinct types."
(ILS p.5-4)

Questions to be asked, however, are "How successful have they been, and at what

costs?" We may remark

ad 1) Because array elements can be passed as VAR parameters, the prohibition

of aliasing in general requires run-time checks (ILS p.T7-15), while the compile

time checks seem to reguire access administration that could become pretty
complicated.

ad 2) Regretfully, the <dinline directive™ refers to the routine and not to

its invocatians, not all of which need to be time-critical.

ad 3) Regretfully the restrictions on functions are so severe that they

exclude the so-called "benevolent side effect” and I have some fear that the

child has been thrown away with the bathwater.- {Think about virtual storage

implementations in which a simple access may have on a lower level the side
effect of a rearrangement of primary stora.)

4) The notion of “type" has been weakened --by the additionsl introduction

../transcriptions/EWD06xx/EWD661.html

EWD661 - 1

of attributes-- . It may be my fault, but I did not find the RED Language's
discussion of types as clear as I had hoped on account of the quoted sentence.
For instance:

"REDL is strongly typed: each data object has a unique iype, determinable

at compile-time, which defines the possible values for the object and
its set of behavioral properties." (ILS p.5-1)
but on the next page we read that the values of some attributes --and as a

result: "the possible values for the object"!-- can only be determined at

run-time!

At first I was totally puzzled by section 5.1.2 (ILS p.5-3) where
assignment requires source and target toc "have the same type" , whereas
for VAR parameter passing they are required to have "both the same type and
the same representation (i,e. the same values for each attribute)". It was
only later --section 5.6.4.1 (ILS p.5-53)-- that I got the impression that
the difference only deals with the attribute GROUPINE . It was only still
later --section 5.8 {ILS p.5-59)~- that I realized that I couldn't understand
the attribute GROUPING and hence, fsiled to understand how variables can have
"the same type" --in the sense of uniquely identified-- and yet may differ
in their GROUPING attribute. I decided to try whether I could make sense out
of the proposal after omission of the GROUPING attribute.

It was then that I encountered a strange inconsequence. Section 5.1.3

(1LS p.5—4) is guite explicit: there are no anonymous types
VAR V: ARRAY(1..16) OF BOOLEAN INIT ?;
is illegal, it should be:

TYPE V_TYPE: ARRAY(1..16) OF BOOLEAN;
VAR V: V_TYPE INIT 7;

and a variable W is only of the same type as V provided W is declared to be of
V_TYPE: it is the repeated reference to the type identifier V_TYPE that dces
the trick. That seems sound. MNote that in spite of the bounds to be supplied
the declaration of an array type as such —--section 5.5.2, (ILS p.5—30)—— is

a <simple type declaration> and not a <barametarizeg.type declaration™> .,

I then turned to Section 5.6 (ILS p.5-50) and found the declaration

TYPE SQUARE_MATRIX{N}: ARRAY(1..N,1..N) OF FLOAT(S, -1.0..1.0);

EwWD66tl - 2

and on the next page in terms of the above declared type the declaration of

the veriable X
VAR X: SQUARE_MATRIX(2) INIT etc.

I was very much amazed, because now the type of X again seems to be of the

anonymous type that has been abolished by making
VAR V: ARRAY(1..16) OF BOOLEAN INIT ?;

illegal! My first impression was that it was a misprint, that the authors had

forgotten to replace the above declaration of X by

TYPE TwWO_BY_TWD: SQUARE MATRIX(2);
VAR X: TWO_BY_TWO INIT ?7;

but according to the syntax diagram 11 --section5.3 (ILS p.5-10) my type decla-
ration for type TWO_BY_TWO is illegal!

I may be very dumb, but I fail to understand why the authors haven't
carried their principle of named types to its logical conclusion. Not having
done so, they have to resort to the subsidiary-cunditiun of "equal velues of

the attributes" and, hence,
VAR Y: SQUARE_MATRIX(f+1) INIT ?;

introduces a variable Y of the same type as the X declared above.

A possible source of their confusion may be found in their position that
the possible set of values ideelly should be determinsble at campile-time ar,
more precisely, that the type should be determinable at compile-time: only
type identity needs to be established at compile time. For the time being
I regard the fact that the notion of identified types has not been carried

to its logical conclusion as a regrettable mistake that seems easy to remedy.

* *
*

A more serious source of worry I encountered with the study of the
"Multipath Facilities". 1In the Preliminary Design Phase Report (PDPR p.3-15)
I read that semaphores were rejected because they were so "highly error-prone".
Full of interest I continued to read and saw that the authors propose to intro-
duce EVENTs instead, i.e. nonnegative integers that can be incressed and decreased

by 1 . What is in a name?

EWD661 - 3

In two respects, I am afraid, I am not certain that the replacement of

semaphores by EVENTs is such an improvement.

First of all, the operations on semaphores had the advantage of being
extremely cheap to implement; in the caese of EVENTs we have in addition the
rule of the priorities, compounded with the rule that within each priority
the blocked processes will be served on a first-come-first-served basis. Add
to this that while a path is being blocked, its priority may be changed: it

seems vain to hope that such an elaborate scheme is equally simple to implement.

Secondly, EVENTs are not data types. "To avoid ad hoc and complex
restrictions, we chose not to treat EXCEPTIDNs and EVENTs as data types [...]“
(PDPR p.2-5). As a result it is impossible to declare an array of EVENTs,
and as a result --but again: I wmay be dumb-- I did pot succeed in coding the
first nontrivial monitor I tried to write in the RED Language. (I tried to
write a monitor that would grant exclusive access to a single rescurce, but
would schedule it on a last-come~first-served ‘basis; the monitor should be

able to serve N cuntenders.)

* *

I had my next problem with the Compile Time Procedures, section 14.4
(ILS p.14-16 in particular). 1 had some problems with $DECLARE CAPSULE_ID
on the tope line of p.14-16, When used it requires the introduction of the
identifiers INT_STACK_CAPSULE and BOOL_STACK_CAPSULE , for which I see no use.

This is probebly not serious.

I was more worried by the fact that I did not see a way of introducing
two integer stacks of different lengths without writing $CALL STACK_GENERATOR
twice. I am perfectly willing to believe that supplying the type INTEGER
es actual parameter requires something the designers of the RED Language would
call & compile~time facility; is it unrealistic to expect something like a
parameterized type declaration as the result, to which a parameter like stack

size can be supplied at run time?

¥* *

I was somewhat alarmed by the underlying attitude of the designers that

EWD661 - 4

made them introduce the directives RECURSIVE and REENTRANT, The idea is

clearly that nonrecursive, nonreentrant routines can be implemented more
efficiently. (Personally I prefer machines in which this difference in
efficiency is absent or can be ignored. They do exist!) The explicit in-
troduction of these two directives requires from the implementation that it

is checked that théy are present where needed; hence in some stage of the compi-
lation, & complete call graph has to be constructed in order to check the
appropriateness of these directives. But, if that call graph is generated
anyhow, we don't need the directives! The introduction of these directives forcrs
all implementatiions to generate the call graph, even those in which we don't care
at all whether a routine is used recursively.nr reentrantly or not. In short:
the two directives are only an efficiency gain --but a risk increase!-- if the

implémentation omits the check.

It may even be @ burden. Via EVENTs it is possible to program different
paths of a <fork statement™ in such a way that certain parts exclude each other
in time; the language requires a routine called from a few of such paths to
be given the directive REENTRANT, although it is absolutely irrelevant. {Note
that a monitor is not always the proper vehicle to implement mutual exclusiun.)

Are all the routines in the library REENTRANT?

* *
*

1 wasn't pleased at all by the sentence (ILS p.7-5)

"We note that a compiler can choose (for efficiency reasons) to implement
CONST binding as a call "by reference” as opposed to "copy" provided it
can guarantee that the effect of the routine is as though the parameter
were passed by copy---viz., that the value of the actual parameter re-

mains unchanged during the execution of the routine.”

I didn't like it because, unless such an analysis is trivial and always gives

the result "yes, O0K", the language'seems a very unsafe tool to use; but the
design of the RED Language doesn't indicate why the analysis is trivial. On

the contrary: the éuggested REDL Language Support Facilities are of a frightening
complexity (PDPR, section 4.4).

* *

The documentation should be written in a way which is superior to the

way in which the Informal lLanguage Sepcifications have been written.

Ewneet - 5

I refer the reader for example to section 12.4.3 (ILS p.12-13) that begins with

"The effect of the <wait statement> is to perform the following actions,

in an indivisible manner:"

(Presumably the authors meant something like "The effect of executing the
<wait statement™> is the effect of performing the following actions, in &n

indivisible manner:") .

Then follow five actions numbered (1), (2), (3), (4), and (5). Action
(1) is empty (but refers to "step" (3)). Action (2) is obscure in its last
sentence: "If the path executing the <wait statement> holds the named monitor,
then it releases the monitor." As the previous sentence has postuleted that
the <wait statement™ must be lexically contained in the named monitor, it is
hard to see --at least for me-~- how the path executing the <wait stetement> can
feil to hold the named monitor; the word "then" in the gquoted sentence is
superfluous; I failed to find the definition of "releasing™ a monitor.
Actions (3) and (4) exclude each other; besides that,in action (3) "execution
continues in the scope which contains the <wait statement> " is wrong: because
we have still actions (4) and (5), it should be something like "“execution will
continue after completion of action {5) etc.". Action (4} describes how the
path will be suspended; in view of the fact that action (5) is still to follow,
it is hard to reconcile that suspension with the usual interpretation of "in
an indivisible manner". The description of action (5) is linguistically‘BK
(but for another superfluous "then" and the fact that the last two sentences

had better he separated by a weaker separator than the period.)

* *
*

The reports dealing with the Red Language are as disturbingly inhomogeneous
as those for the GREEN Language. Again one must fear that they have been pro-
duced by an incoherent team. While the design has tackled a number of fundamental
design issues, in a way we should appreciate, we also encounter irrelevant
remarks such as --section 4,%3.1.2 PDPR p.4-21-- "The entire interpreter together
with its tables will be resident in main memory."; a few lines lower the text
refers to "overlays". I don't know what to do with-such remarks; on the one hand
I can skip them as irrelevant and suppose that some underling has imported them
into the text without the real authors --due to lack of time--~ really noticing
it, on the other hand I can assumz that the authors really think this remark

important enough to be included. In the latter case it betrays an almost

EWDE61 - 6

medieval attitude towards programming that would justify the gquesticning of
most of their design justifications that are based vpon implementation con-

siderations. The proposal is both advanced and backward in such an incongruous

manner that I am baffled.

Have I failed to do the designers of the RED Language justice? Perhaps:
the above has been written despite a mounting headache. Whether my feelings
towards the RED Language are the result of the headache, or the headache is

the result of the RED Language remains an open guestion.....

Plataanstraat 5 prof.dr.Edsger W.Dijkstra
5671 AL NUENEN Burroughs Research Fellow
The Netherlands

