EWD720 -~ 0
EWD720.html

Why correctness must be a mathematical concern.

(Inaugural lecture for the "Chaire Internationale d'Informatique™

at the Universit€ de LiEge, Belgium.)

Ladies and Gentlemen:

The topic to which this new international chair at LiEge has been de-
voted has many names. 0On the continent of Europe the recently coined name
"Informatics" has become generally accepted; in the Anglo-Saxon world the
much older term "Computer Science" is most commonly used, though occasionally
replaced by the now more appropriate term "Computing Science". The latter
term is more appropriate because it expresses quite clearly that not a piece
of equipment, but an activity constitutes the core of its subject matter.

By its very néture, this subject matter is highly technical; an inaugural
address, however, is specifically the occasion at which technicalities should
be avoided, and it is my purpose today to explain to you the significance of

the topic without explaining in any detail the topic itself.

You cannot expect me to explain in a few words what mathematics is all
about: 1in order to grasp that, one has to do mathematics for many years one-
self. But I would like to show you one simple argument in order to give you

in a nutshell some of the flavour of mathematics.

Consider the following silly game to be played by a single person with
an urn and as many white balls and black balls as he needs. To begin with an
arbitrary positive number of balls is put into the urn, and as long as the
urn contains two or more balls, the player repeats the following move: he
shakes the urn and, without looking, he takes two balls from the urn; if
those two balls have the same colour he throws ane black ball back into the
urn, otherwise he returns one white ball intoc the urn. Because each move de-
creases the total number of balls in the urn by 1 , the game is guaranteed
to terminate after a fimite number of moves, and it is not difficult to see
that the game ends with exactly 1 ball in the urn. The question is: "What
can we say about the colour of that fimal ball when we are given the initial

contents of the urn?".


http://www.cs.utexas.edu/users/EWD/transcriptions/EWD07xx/EWD720.html

EWD720 - 1

Well, we can try all possible games! The games that start with 1
ball in the urn are very simple. - Because they involve no mave at all, we
might cail them "the empty games”, and could represent them as

O

and

respectively.

The games of 1 move are not very complicated either: we can represent

them by OO———).
C® — O
e — @
respectively.

But among games of 2 moves, life becomes already more complicated. We

might represent them as follows (note that there are six pussible games):

OO0 O~ OO0 — O
oey OO0 — @
TS 00— @
®e>» 00— O
% 00— O
00— 00— @

O o

Ce o

It is clear that such a tabulation becomes extremely tedious. Besides
that, one is never ready with such a tabulation: suppose that we have made
the tabulation af games up to 100 moves, then we know nothing to say when

faced with an urn that initially contains 300 balls.

Looking at the three single moves possible, we observe that the last two
(O®—> 0 and @@ —> @ ) leave the number of white balls in the urn unchanged,
while the first move (00—-—) .) reduces the number of white balls in the urn
by 2. In other words, each move leaves the so-called "parity" of the number
of white balls in the urn unchanged: an even number of white balls in the urn

remains even, and an odd number of white balls in the urn remains odd. In



EWD720 - 2

short: if the initial number of white balls is even, the final ball is black,
and if the ipitial number of white balls is odd, the final ball is white. And

that answers the guestion!

Note that this single argument settles the question for all initial
contents of the urn, and per initial contents for all of the perhaps many

possible games.

The above is a good carrier for some of the flavour of mathematics:
a) the answer to our question was a very general one in the sense that it
is pertinent to an unbourded number of different cases (here: possible games);
b) the answer to our guestion was very precise; this in contrast to the
saft sciences, such as sociology, in which generality is traditionally
achieved by vagueness, i.e. precision's opposite;
c) the answer to our guestion has been justified by a convincing argument,
i.e. the type of proof that makes mathematical statements wore trustwarthy

than anything else we utter.

In a very elementary, but fundamental sense the example is also typical
for some of the mathematical arguments that are relevant to automatic comput~
ing. Replace the initial contents of the urn by "the input", the rules of
the game by "the program", the game as it evolves by "the computation", and
the colour of the final ball by "the result", and the above example gives you
in a nutshell the bare structure of one of the most effective ways we know
of reasvning about programs. (Thanks to the fact that in each move the player
draws two arbitrary balls, our example even reflects the characteristics of
so-called "non-deterministic algarithms", in which the computational history

need not be uniquely determined by the input that has been supplied explicitly.)

A while ago I mentioned as a leading characteristic of mathematical
statements their "generality" in the sense that they are applicable to a vETY
large, often even unbounded number of cases. And it is good thing to realize
that almost all computer applications are "general" in that very same sense.
In a banking application one does not design a system that can only transfer

$ 100 from the account of a certain mr.Smith to that of a certain mr.Brown!



EWD720 - 3

On the contrary, the banking system should be able to cope with the transfer
of almost any amount from any account to any other account. 3o much for the

generality.

The next characteristic of mathematics that I mentioned was precision.
And it is a good thing to realize that almost all computer applications to he
worthwhile have to have that characteristic of precision as well. Again the
banking application may serve as an illustration. It is not only that all
accounts are kept track of accurately to the dollarcent, it is much more:
for it to be useful, the system as a whole must have a number of VEery precise
properties. As far as the internal transfers from one account to another are
concerned, the system must reflect the Law of Conservation of Money: the sum
of the accounts must remain constani because each deduction from one account

must be compensated by an equal increase of another account.

The last characteristic I mentioned was trustworthiness. And it is a
good thing to realize that almust all computer applications to be worhtwhile
must be trustworthy. What is the purpose of designing a banking system with
the best intentions, when in actual practice it fails to keep correctly track
of the flow of money? Not only does it have to do so correctly, but before
installing it and switching over to it we must have solid grounds for believ-
ing that it will do so correctly. Installing the system without such solid
grounds would, in view of the risks involved, be an act of sheer irresponsi-

bility.

Having thus shown that each worthwhile computer application shares with
mathematics the latier's three leading characteristics, I hope to have convin-
ced you that by its very nature responsible systems design and development
--in short: programming reliably-- must be an activity of an undeniably ma-
thematical nature. And having choserd the banking application as illustration,
I hope to have convinced you that this conclusion is not confined to the ap-

plication of computers to science and technology.

Though the conclusion seems unescapable, I should mention for the sake

of completeness that not everybody is willing to draw it. You see, mathematics



EWD720 - 4

is about thinking, and doing mathematics is always trying to think as well

as possible. By an unfortunate accident of history, however, programming
became an industrial activity in the United States at a moment that the
American manager was extremely fearful of relying on the education and the
intelligence of his company's employees. And management tried to organize
the industrial programming task in such a way that gach individual program-
mer would need to think as little as possible. This has been a sad mistake,
but the more management, with this conception of programming, failed to meet
its deadlines and to achieve reasonable guality standards, the wore has been
invested in these ill-directed efforts. And now we have reached the paradox-—
ical situation that, while the evidence for the intrinsic difficulty of the
programming task has become more and more convincing each year, the recog-
nition of the difficulty has become, both politically and socially, wore and
more unpalatable. It should be noted that under these circumstances fore-
sight and courage, if not also the tenacity of a bull-terrier, are required
for the foundation of an international chair of informatics at which programs
and programming are considered to be worthy of our serious scientific atten-

tion.

Let me next indicate, in the broadest outline possible, what this
serious scientific attention could cover. I shall keep this outline broad
for two reasons: firstly this is not the occasion to bore you with techni-
calities, secondly I hope to give an explanation with which the subsequent

occupants of this chair won't disagree too much.

1t is now the time to confess that my example of the game with the urn
filled with a finite number of balls, each of which is white or black, though
in one respect absolutely typical, is very misleading in another respect:
compared to the actual situation in programming it is such a gross oversim-
plification, that the use of this example in an expository lecture is almost

an intellectual dishonesty.

So that you may understand how terribly gross the oversimplification
really is, I would like you to realize that something as trivial as "a factor

of ten" --something we usually treat as a gradual difference from which we



EWD720 - 5§

canh abstract-- makes in practice an almost essential difference. Once I was
called to explain to a housewife what tremendous difference a mere factor of
ten makes. I asked her, how many children she had, knowing that she had six.
The lady saw the paint. Compared to the programming problem, the urn example
is an oversimplification that is orders of magnitude worse than merely ignor-

ing a factor of ten.

In the urn example, the initial state is fully characterized by two
integers, viz. the number of white balls and the number of black balls res-
pectively. That specification of the input is ridiculously simple compared
to, for instance, the cless of possible inputs a cempiler must be able to
process, viz. all texts that are legal or illegal program texts in the pro-

gramming language concerned.

In the urn example the final state, i.e. the colour of the final ball,
represents only a single bit of information. That, again, is ridiculously
simple compared to the output required from standard programs such as com-
pilers, for which the representation of the result often requires millions

of bits.

And finally, in the urn example I could state "the rules of the game"
in one or iwo sentences, whereas in the practice of automatic computing the
program --i.e. "the rules of the computational game"-- often requires many

thousands, and sometimes apparently even milliens of lines of text.

In the urn example, a single argument based on the rules sufficed for

all possible games. In computing, a single argument based on the program

text should analogously suffice for all computations that are possible under
control of that program. The necessary economy of thought requires as its
ultimate consequence that we learn how to reasan about programs without men-
tioning the corresponding computational processes at all. This means no more
and no less than that we must learn how toc come to grips with the program text
as a mathematical abject in its ewn right. We must be able to deal with it
directly, rather than via the detour of the class of all corresponding com-

putations.



EWD720 - 6

It is abundantly clear that significant progress in programming, in
reasoning about programs, and in the design of programming languages will
only materialize, provided we learn how to do this, while temporarily fully
ignoring that our prdgram texis also admit the interpretation of executable
code, because it is precisely that interpretation that clutters up our minds
with all the computational processes, which truly baffle the imagination.

In short: for the effective understanding of programs we must learn to

abstract from the existence of computers.

This abstraction is not easy. For most people trained as electronic
engineers it is even impossible --though not for all: it is a pleasure to
mention Niklaus Wirth from Zurich as an exception-- . This is not surprising,
for suddenly they find themselves invited to abstract from what they have
been taught to regard as the core of their craft. As you might expect,
vested interests inhibit & widespread recognition of the obvious conclusion,
viz. that as a rule departments of electronic engineering actually deprive
their graduates from the ability to understand later in life what computing

science is really about.

In the ears of the traditional mathematician the suggestion to abstract
from the existence of computers sounds much mare natural. He should feel
quite at home with the idea of regarding, reading, writing, and manipulating
program texts just like any other mathematical formulae. But there is one
big, big difference: never in his life he has encountered such big formulae!
Remember the drastic difference already made by a single factor of ten, and
realize that program texts present themselves to the traditional mathematician
as formulae that are not one, but several orders of magnitude bigger than the
formulae he used to deal with! In relation %o our mathematical tradition,
it is just a drastic problem of scale, so drastic, as a matter of fact, that
gquite a few mathematicians, firmly rooted in the past, are quite unable to
recognize programming as a mathematical activity. Research and education in
computing sciences are, however, more concerned with the mathematicians af

the future.

By now you may have some feeling for the type of topics that would be



EWD720 - 7

fully appropriate for this international chair of informatics.

The most general topic, and also the one of the widest significance,
could be called "the scaling up of mathematics". Such scaling up would im-
ply a different style of mathematical texts in general, and the use of more
appraopriate notations in particular. By and large, current mathematical
style has been determined by faghion, and current mathematical notation by

accident.

The degree in which separable concerns are, indeed, separated is, for
instance, an aspect of mathematical style, but as far ags I know students of

mathematics are not taught today to take in this respect a conscious decision.

Similarly, the adeguacy of chosen notational econventions can be judged
by their suitability to our manipulative needs. Again, as far as I know,
students of mathematics are not taught today to screen notational conventiens

far their suitability before they adopt them.

As a result the style of today's mathematical text is unnecessarily con-
fusing and its notation is unnecessarily clumsy. This is obvious: people
tend to commit all the sins they think they can afford to commit. Prior to

"sins", but computing's

a commitment to “scaling up" they can hardly be called
demands an mathematics is sure to cause a "moral" shift between good and bad
mathematics. Already now omne of the comman reactions of the well-trained
computing scientist to the average mathematical paper is: "Oh gosh, what a
lousy programmer the guy who wrote this must be!"™ Already now we could start
purging the practice of mathematics from the usual little sins of which the
computing scientists knows that, at the next level, they will become capital

ones. The scaling up of mathematics in general is, of course, a very ambi-

tious topic.

A more modest topic, closer to the field of automatic computing, would
be the following. In the case of a socluble problem, what is essentially the
same solution can be realized by very different programs. This observation

is well-known, but raises all sorts of questions.



EWD720 - 8

A pretiy cbvious question wauld be "Which of the possible programs
would be the easiest to understznd?", but the guestion is not as irnocent
as it seems, for what do we mean by "ease of understanding"? FProgrems are
expressed in (what I may here denote by) linguistic structures, and differant
linguistic siructures require different patterns of reasoning for the justi-
fication of their ussge. Intuitively people tend to prefer the ones they are
mast familiar with, but we shouldn't confuse "corvenient" with "conventional",
and should remember that what we call thinking and understanding are not much
maore than our perscnal habits, hébits thet we can replace by others by training
ourgselves. Same linguistic structures are known te cause troubles in a sense
as chjective as the statement that cecimal arpithmetic is "easier" in Arabic
than in Roman numerals, but th2 area as a whole is gtill a field for investi-

gaticn and experiment.

Ancther question in cunnecfiom with differert possible programs, realiz-
ing the same solution is the following: "Does a single program suit a1l our
purposes?". The solution might have different relevant aspects, sach of which
is most manageably reflected in a different program. Whe knows? Note that
the absence of an example of such a solution does not settle the guestion:
we tend to think about scolutions in terms of a program that realizes it, and
the mere concsption of a sclution that requires tws or more alternative pro-
grams for the adequate reflectiaon of its different aspects might therefore
be well beyond cur current intellectual ahilities! I orly raised the last
question as an example, in the hope that it may give you some idea of the

possinle scope of our concerns.

While programming we don't only consider different programs embodying
the samg solution to a given problem, usually we have to invent the selution
as well. Human inventiveress being what it is, we usually invent more than
one solution, with the result that we have to choose. When different solutions
to the same problem can be shown to be correct by proofs that share part of
the argument, is it then possible to reslize those sclutions by programs that
share parts of the text? Those parts of the text could then already be written
without completely committing cneself to the solution to be finally adopted;

the larger the program, the more important the possibility to postpone such



EWD720 - 9

commitments. Equally important is the possibility of postponing the precise
choice of the problem %o be selved: you really cannot expect your customer
--regardless of whether you are your own customer or your customer is someone

else-—- to have fully made up his mind and stick to it.

In the previous paragraph I have sketched in a very informal fashion
some of the flexibility requirements. What the manager sees as "keeping op-
tions open" is seen by the scientist as "sharing": different programs sharing
code, different proofs sharing arguments, different theories sharing subtheo-
ries, and different problems sharing aspects. The need for such "sharing" is
characteristic for the design of anything big. The control of such "sharing"”
is at the heart of the problem of "scaling up" and it is the challenge to the
computing scientist or mathematician to invent the abstractions that will en-

able us toc exert this control with sufficient precision.

After having seen how much the catch phrase "the scaling up of mathe-
matics" captures of the challenge posed to us by the existence of modern com-
puters, we are quite naturally led to the question to what extent those very
machines --the fast symbol manipulators they are-- could assist us in meeting
that challenge. Like all ihe guestions raised in the second part of this
talk, also this question will remain unanswered here. I will confine myself

to pointing out that the question has two sides.

Firstly we have questions such as "What mechanizable assistance can we
think of besides the well-known program transformation and theorem proving
systems, and how useful can we expect them to be?", but also, once such a
mechanization has been designed "How depends the economics of its usage on
the size of the application?". Because I did not define "size", the latter
question is vague, but remember that we were interested in "scaling up™!
Hence, costs growing guadratically (Dr wnrse) as a function of something we
would like to increase by several orders of magnitude, would disqualify the

tool for the very purpose we had in mind.

Seccndly, the answer to what extent computers can assist us in meeting

the challenge of "scaling up mathematics' also depends on our interpretation



EwWD720 - 10

of that challenge. For some mathematicians doing mathematics is a mental
activity whose primary purpose is understanding. Such a mathematician is
inclined to reject an alleged theorem for which the only available alleged
proof is millions of steps long, i.e. orders of magnitude too long to be

read and, as he calls it, "understood".

The question "What is Mathematics?" is as unavoidable and as unanswer-
able as the guestion "What is Life?". In actual fact I think it's almost

the same guestion.

I thank you for your attention.

Plataanstraat & 18 November 1979
K671 AL NUENEN prof.dr.Edsger W.Dijkstra

The Netherlands Burroughs Research Fellow



