EWD993 - 0O
transcription

The nature of my research and why I do it.

(Lunchean speech for tas Cruces, 14 November 1986.)

In 1955, as a young and promising theoretical physicist, I decided to devote
my scientific life to programming instead, because I felt that programming well
presented the greater intellectual challenge.

The next decade was devoted to gathering experience by designing and imple-
menting systems of increasing size, ambition, and sophistication. By 1965 I
could forcefully argue that the ability of detecting in an early stage the need

for some special-purpose theory was one of the programmer's most important assets.

Another five years later I formulated the core of the programming challenge
as how to prevent the generation of unmanageable complexity. It became clear
--to me at least-- that the challenge was a mathematical one. By 1975 1 had
developed a formal system in which the program and its correctness proof could
be designed hand in hand.

I was very excited because that was really great: another area of human

endeavour had been shown to be in principle amenable to mathematical treatment.

From a purely technical point of view it is in retrospect amazing that
it took me no less than two decades to reach that stage. From a sociological
peint of view, this slowness is easy to understand: the conclusion was almost
universally unpopular. Programmers, and even more so their industrial managers,
decried the whole idea as too academic to be of any practical significance. (Many
of them still do.) The mathematicians ignored or denied the conclusion, because
the type of mathematics needed was so different from what they were used to that
they hardly recognized it as mathematics. (Many of them still don't.) At the
time I did not understand the vigour of the academic opposition, but it quickly
convinced me that computing science had to develop itself the type of mathematics
it needed. In retrospect I can understand the rejection: the siress must have
seemed all wrong. In a nutshell: whereas during the last century mathematics
as intellectual discipline has become more and more knowledge-oriented, most

of that knowledge was totally irrelevant for us; for us, for instance, the choice

http://userweb.cs.utexas.edu/users/EWD/transcriptions/EWD09xx/EWD993.html

EWD993 - 1

of notation seemed much more often to be the crucial decisian.

So I found myself analyzing which hahits and which precautions should be
cultivated for the mathematical answer to the programming challenge. In the
beginning I booked these explorations under the to me familiar heading of "pro-
gramming methodology”.

But then all sorts of things started happening. By virtue of its mechanical

interpretability, a programming language inevitably represents a formal system

of some sort, and hence program derivation is unavoidably a highly formal activity.
But this activity is only doable provided we find ways of preventing the amount

of formal labour needed from exploding. As soon as brevity becomes a conscious
goal, one begins to ask oneself "What makes formal derivations lengthy?" Not
surprisingly, case analysis emerges as a main culprit. So one asks oneself "What
techniques do we have for avoiding case analysis?". And one finds a few, some

of them sometimes even very effective. (Later in this talk, as time permits,

I shall mention some of them.)

Shortly thereafter, the reading of a well-known, generally recommended
and widely used mathematical textbook leaves aone completely aghast! The arguments
--and even the formulations of the thegrems-- are often so incredibly clumsy

that one is forced to conclude that one's explorations have a bearing on mathe-
matics in general.

Example. In "An Introduction to Number Theory" by Harold M.Stark, a main theorem
is formulated as follows:

"If n 1is an integer greater than 1 , then either n is prime or n
is a finite product of primes,"
But 1 1is certainly finite,and by defining the product of 1 factor --how else?--

to be equal to that factor we can do away with the case distinction in the con-

seduent:

"If n 1is an integer greater than 1, then n is a finite product of

primes."

But also 0 1is certainly finite and by defining the product of 0 factors

--how else?-- to be equal to 1 we can do away with the exception:

EWD993 - 2

"If n is a positive integer, then n is a finite product of primes."
Finally we can do away with the identifier n :

"A positive integer is a finite product of primes."
(End of Example.)

In connection with the above example I would like to stress that a clumsy
formulation of a theorem is a protbtype of an unfortunate interface in the sense
that it tends to increase labour on both sides of the fence: it makes the theorem
harder to prove and harder to use.

Thus I found myself drawn into a wider topic than just "programming metho-
dology". Sometimes I call it --mainly for private purposes-- "the streamlining
of the mathematical argument", sometimes I call it "mathematical methodology",
a name partly chosen to express that we were exploring to what extent the experience
gained from programming methodology could be carried over to mathematics in general,
and partly chosen because it reflected a shift in emphasis, viz. from polishing
existing arguments to the discipline of designing in an orderly fashion new

arguments. As time went by, heuristics entered the picture.

In these activities we found a new appreciation for formalisms as an alter-
native to verbal thinking. We learned that formalisms are much more than a short-
hand: we now consider then as the main means for freeing ourselves from the
shackles of our native tongues.

Let me give you two examples of how confusing our languages are. By the
Law of the Counterpositive, A =$B8 is the same as 4B =77 . The implication
is linguistically rendered by prefixing the antecedent with "if" , e.q.

"It will rain tomorrow if the wind does not turn." ,
a perfectly acceptable sentence. The counterpositive, however, yields:
"The wind turns if it won't rain tomorrow." ,

a funny statement, to say the least. Evidently, the conjunctive "if" carries

with it a whole extra-logical burden of before/after or of cause/effect (a dichotomy
for which there is no place in the inanimate world). Verbal mathematics has

learned to strip the conjunctive "if" from that extra-logical burden, but only

to a certain extent, as is shown by the following example. Logical eguivalence,

EWDS93 - 3

alias the mutual implication, is verbally rendered by "if and only ift", as in
"An integer n 1s even if and only if n+1 is odd."
So far so good, but have now a look at the following sentence:

"I see with both eyes if and only if I see with one eye if and only if
I am blind." .

Linguistically, this is complete gibberish because the sentence can be
parsed in two different ways. Its blatant syntactical ambiguity prevents it
from being an acceptable sentence. Logically, it is of the form A= 8 =C
and we are, indeed, free to omit the parentheses since the boolean aperator of
equivalence is associative: the continued equivalence means thai the number
of false operands is even, and since I do not have more than 2 eyes, the above
statement, though baffling gibberish, is formally correct.

In mathematical reasoning, the equivalence is a grossly underexploited
relation, and there is no doubt in my mind that this is closely related to the
linguistic shortcomings of the verbal rendering "if and only if" . Consequently,

I have come to the conclusion that it is a mistake to teach logic by translating
formulae into prose, for that is precisely the vehicle from which we want to
increase our distance. My characterization "grossly underexploited" is no exaggera-
tion: the judicious use of the equivalence has reduced many an existing argument

by an order of magnitude. (I have seen reduction factors of 16 and 24.) The
explanation is probably to be found in the nice properties of the eguivalence,

such as symmetry, associativity and the fact that disjuction distributes over

it; moreover it has the full power of equality, i.e. x=y = f.x =f.y

Formalization, in general the reduction of a greater part of mathematics
to calculation, is not our goal. It just happened, and in this connection I
wauld like to stress that our experience is directly opposite to what is commonly
held as unshakable dogma, viz. that formal treatments are always long, tedious,
laborious, error-prone and what not. On the contrary, a more calculational
treatment has invariably led to a crisper argument. My conclusion is that the
bad name of formal techniques is undeserved. Our experience is so striking and,
at the same time so contrary to what is gemerally felt that you may have difficulity

in believing me. So let me venture an explanation why so many pegple have such

EWD393 - 4

poor experiences with formal mathematics.

(i) Many established notational conventions are not well geared to our manipu-
lative needs, e.g. by being ambiguous or by denying us the combinatorial freedom
we need.

(ii) Some calculational styles introduce meny steps that are better avoided.

When using an associative operator, one may confine oneself to fully parenthesized

expressions, explicitly shuffling, when needed, the parentheses by an appeal to
(X o ¥Y)e Z = X (Y e 2)

Just dropping the superfluous parentheses is much simpler.

(iii) Many people have failed to develop a sufficiently reliable handwriting: they
think that formal mathematics is hard while in actual fact they only lack some
simple hand-eye coordination.

it was the dream of Leibniz to reduce all of mathematical reascning to
a universally applicable calculus. Not being Leibniz, we are more modest: we
won't hesitate to calculate when it comes in handy.

But Leibniz needs to be mentioned in connection with computing science because
it could very well be that that discipline gets the task of realizing most of

nis dream. The reasons are the following:

. The kind of complexity that computing scientists face makes formal techniques
indispensable.
. From his experience, the computing scientist is intimately familiar with

the idea of manipulating uninterpreted formulae.
. If the need arises, the computing scientist has the technclogy for mechaniza-

tion at his disposal.

If ours is the task of realizing the dream of Leibniz, let us see to it

that it does not turn into a nightmare!

prof.dr.Edsger W.Dijkstra
Department of Computer Sciences
The UNiversity of Texas at Austin.
Austin, TX 78712 - 1188, USA

	transcription:

