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Abstract—In many evolutionary optimization domains eval-
uations are noisy. The candidates are tested on a number
of randomly drawn samples, such as different games played,
different physical simulations, or different user interactions. As
a result, selecting the winner is a multiple hypothesis problem:
The candidate that evaluated the best most likely received
a lucky selection of samples, and will not perform as well
in the future. This paper proposes a technique for selecting
the winner and estimating its true performance based on the
smoothness assumption: Candidates that are similar perform
similarly. Estimated fitness is replaced by the average fitness
of candidate’s neighbors, making the selection and estimation
more reliable. Simulated experiments in the multiplexer domain
show that this technique is reliable, making it likely that the
true winner is selected and its future performance is accurately
estimated. 1

I. INTRODUCTION

In evolutionary computation applications, the goal is usually
to deliver a winner, i.e. the best candidate found during the
evolution. This candidate is then employed in the application,
and its good performance is expected to continue. For instance,
when evolving web interfaces that convert casual browsers to
paying customers [1], the result is a web page that converts
at the expected rate.

In most such applications, the performance of the candidate
is measured during evolution through sampling [2], [3]. The
candidate is shown a relatively small number of examples, or
it is subjected to a small number of simulated situations, to see
how well it performs. A web interface, for instance, is tested
on a 1000 or so users. The performance is thus an average of
these samples, i.e. a statistical estimate.

Such estimation becomes a problem when a winner needs
to be selected. For example, let’s say that there are 100 web
interface candidates with the same true conversion rate of 4%,
and let’s assume the standard deviation in the estimated rate
is 1%. Then roughly 2% of the time one of these candidates
will have an estimated conversion rate of 6%—that is there
are two candidates that seem to convert at 50% better than
they actually do. With thousands of such candidates generated
and tested during evolution, it is very likely that a suboptimal
one will be selected as a winner, and its performance will be
overestimated.

This problem is a severe instance of the multiple hypothesis
problem in statistics, and the standard solution to it is Bonfer-
roni correction [4]. It essentially reduces the confidence by a
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factor of 1/N if N candidates are being tested. Given the large
number of candidates, Bonferroni correction is not helpful
in evolutionary computation. However, an important aspect
of evolution is that the fitness landscape is not likely to be
random. A fundamental assumption in evolution is that small
changes in the candidates result in small changes in fitness—
that is, although the fitness landscape can be strongly nonlinear
globally, it changes smoothly locally. Indeed, mutation would
not work if it did not.

This paper builds on this smoothness assumption to de-
velop an approach for selecting a winner and estimating its
performance more reliably. The main idea is to calculate the
average fitness in a neighborhood of the candidate, and use the
neighborhood fitness instead of the candidate’s own estimated
fitness to select the winner and to report its performance.
Through a permutation test, confidence in this estimate, the
selection, and improvement over control can be measured.

This idea is evaluated in a series of experiments in the 11-
Multiplexer domain. Because the true fitness of each candidate
in this domain is known, these experiments allow evaluating
the viability of the approach and its variations thoroughly.
Neighborhood fitness is found to be reliable way to improve
the winner selection and the estimate of future performance.
It is therefore a promising method for improving performance
of evolutionary optimization in practical applications.

II. THE NEIGHBORHOOD FITNESS METHOD

The problem can be specified as follows: Given that many
candidates are produced during an evolutionary run, and their
performance is estimated through sampling, there is a serious
multiple hypothesis problem: The candidate that seems to per-
form the best may have simply gotten lucky in the sampling,
and as a result, will perform poorly in the future.

A solution to this problem consists of solving three sub-
problems:

1) Decide which one is the best candidate
2) Estimate its performance
3) Confirm that its performance is statistically significantly

better that that of other candidates (including the control)
There are potentially several ways to solve these problems,

including age-layering [5] and performing successive A/B tests
on the best candidates [6]. The approach pursued in this paper
is similar to nonparametric functional estimation [7]. It is
practical in that it can be implemented as a postprocessing
step to evolution: It does not affect evolution itself and it
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does not require additional sampling beyond that done during
evolution. This is an important advantage because in practice,
evolution may have to be terminated at any time based on
customer request, and a good candidate needs to be delivered
without further testing. In practice such termination often
happens early, before evolution has fully converged, when
candidate fitnesses still vary significantly, amplifying the need
for reliable selection and estimation.

The first two problems can be solved by relying on the
smoothness assumption, that is, that similar candidates have
similar performance. Evolutionary computation in general
relies on this assumption: small mutations, i.e. local search,
are assumed to result in small changes in performance. With
smoothness, it is then possible to estimate the performance of
a candidate by averaging the performance of all candidates in
its neighborhood:

fN,x = 1/k

k∑
i=1

fC,i (1)

where fN,x is the neighborhood fitness of candidate x and fC,i

is the candidate fitness, i.e. performance estimated through
sampling, of candidate i among the k candidates in its neigh-
borhood.

Even if the candidate itself may have gotten lucky, i.e. the
candidate fitness is overestimating its performance, its neigh-
borhood is likely to contain both lucky and unlucky candidates.
This neighborhood fitness, therefore, is more reliable and can
be used as a more realistic estimate of the candidate’s perfor-
mance, and thereby to identify good candidates. The definition
of a neighborhood can be based on k-nearest neighbors, as in
this paper, or it can be based on a distance metric in genotype
space. Since evolution converges the population around good
candidates, it is likely that there is a large enough number
of candidates in good neighborhoods. Thus, the neighborhood
fitness can be used to select good candidates and estimate their
future performance better than candidate fitness.

Note that a similar idea is commonly used in signal pro-
cessing: A measurement is replaced with a weighted average
of measurements in its neighborhood. This process is called
”filtering” because it can be shown to provably remove noise
under some conditions [8].

This approach solves the first two problems. The third
problem, i.e. to confirm that the best candidate is statistically
significantly better than other candidates, including the control
candidate, can be solved in two steps. In the first step, the
probability that the performance of the best candidate B is
due to luck is estimated. That is, a permutation test [9] will
be run by repeating the following steps M times:

1) Permute the samples assigned to candidates, i.e. assign
+/- labels in the same proportions as seen during evolu-
tion;

2) Calculate the neighborhood fitness of each candidate;
3) Find the candidate with the best neighborhood fitness in

this permutation;

4) If it is equal or better than that of candidate B, increment
a counter s.

The probability p1 that performance as good as that of
candidate B could have been observed by chance, given the
multiple hypotheses, is then p1 = s/M .

The second step tests whether the performance of B is
significantly better than that of control. Control is one specific
candidate, C, and it is usually tested more than the others, so
its candidate fitness can be used to estimate its performance
(instead of neighborhood fitness). However, its performance
is still a random variable. To estimate the probability that
the performance observed for candidate B is better than that
of C, two binomial distributions with the observed means
are compared. This test will yield the probability p2 that the
distributions are the same. The combined probability, i.e. that
candidate B is actually better than C, is then (1−p1)(1−p2).

The experiments in this paper will focus on evaluating the
viability of the neighborhood fitness approach experimentally,
by comparing winner selection and its performance estimation
based on candidate and neighborhood fitnesses to known and
estimated true fitnesses. The p-value calculations are left for
future work.

III. EVALUATION IN THE 11-MULTIPLEXER DOMAIN

The neighborhood fitness method is evaluated in the domain
of evolving a set of rules to implement an 11-multiplexer
function. In this domain, fitness can be estimated by a small
number of samples from the domain, but also the true fitness
of every candidate can be calculated efficiently. It is therefore
possible to evaluate whether neighborhood fitness allows es-
timating true fitness more accurately, and whether it allows
selecting candidates with better true fitness, than the usual
candidate fitness.

Multiplexer functions have long been used to evaluate
machine-learning methods because they are difficult to learn
but easy to check. In general, the input to the multiplexer
function consists of u address bits Av and 2u data bits
Dv , i.e. it is a string of length u + 2u of the form
Au−1...A1A0D2u−1 ...D1D0. The value of the multiplexer
function is the value (0 or 1) of the particular data bit that
is singled out by the u address bits. For example, for the 11-
Multiplexer, where u = 3, if the three address bits A2A1A0

are 110, then the multiplexer singles out data bit number 6
(i.e. D6) to be its output.

A Boolean function with u+2u arguments has 2u+2u rows
in its truth table. Thus, the sample space for the Boolean
multiplexer is of size 2u+2u . When u = 3, the search space
is of size 22

11

= 22048 ≈ 10616. However, since evolution
can also generate redundant expressions that are all logically
equal, the real size of the search space can be much larger,
depending on the representation.

A. Representation

In prior work on evolving solutions to the 11-Multiplexer
problem [10], a rule-based representation was used where each



candidate specifies a set of rules of the type

< rule > ::= < conditions > → < action > . (2)

The conditions specify values on the bit string and the action
identifies the index of the bit whose value is then output. For
instance, the following rule outputs the value of data bit 6
when the first three bits are 110:

< A0 = 0 & A1 = 1 & !A2 = 0 > → D6. (3)

These rules are evolved through the usual mutation and
crossover operators of genetic programming [11].

In the experiments in this paper, however, this representation
is modified somewhat to make it more similar to evolutionary
applications such as web interface design. The length of the
chromosome in such applications is fixed, which makes it
possible to measure distances between chromosomes. Ac-
cordingly, the multiplexer is represented in this paper by a
fixed set of eight rules, where each rule specifies whether the
corresponding data bit should be output. Further, each rule
consists of exactly three elements that together specify the
condition, such as B0 = 0, B1 = 1, B2 = 0. Unlike before,
where only address bits appeared in the conditions, Bi can be
any one of the address or data bits. The search space is thus
larger, compensating for the smaller search space due to the
fixed size of the genome. The elements in the condition are
ordered from lowest to highest, i.e. the order does not matter.
If multiple rules fire for a given example, the lowest of the
corresponding data bits is output.

The genomes are linearized so that they consist of 3*8=24
elements. Crossover point can then be placed on any element
boundary, and mutation can change any of the elements by
identifying a different bit and its value. Note that there is no
mutation that changes only the right-hand side of the element.
It turns out that in the multiplexer domain that often results
in a larger change in fitness than changing both the bit and its
value, making the landscape less smooth and different from
applications like web-interface design.

To compute the size of the search space, note that each rule
can consist of

(
11
3

)
possible bits and 23 right hand sides, for

a total of

(11!/(3!∗(11−3)!))∗8 = ((11∗10∗9∗8!)/(3∗2∗8!)∗8) = 1320
(4)

different conditions. With eight rules, the size of the search
space is

13208 = (1.32 ∗ 103)8 ≈ 9.22 ∗ 1024, (5)

Although this is significantly smaller than the 10616 for the
original representation, it is approximately nine times larger
than the number of stars in the known universe. With this rep-
resentation, a distance between two genomes can be calculated
simply as the number of elements in the eight rules that differ,
i.e. it ranges within 0..24.

Fig. 1. Fitness difference as a function of genetic distance in the multiplexer
domain. The distance of the 250 candidates with the highest estimated
fitness was measured to all 4000 candidates in the population at convergence
(generation 70), as shown in the x-axis. It varies from 0 to 24, with each
segment in the genetic encoding adding one unit of difference. The difference
in fitness, in the scale of -4096..2048, were averaged at different distances
and plotted in the y-axis. Other experimental configurations lead to similar
results. The curve has an S-shape, with an inflection point around distance 7,
suggesting that fitness values in close neighborhoods of the best candidate
change relatively smoothly, making the neighborhood averaging approach
possible.

B. Fitness Calculations

The 11-multiplexer was chosen as a test domain because
it is both easy to estimate the fitness and calculate the true
fitness of a candidate. True fitness is obtained by evaluating
the candidate systematically with all 2048 different cases. Each
correct sample increases the fitness by one, and incorrect
reduces it by two. Therefore, true fitness ranges within -
4096..2048.

Fitness is estimated by creating random strings of 11 bits
and counting how often the candidate returns the correct
bit. That number is then scaled to the range -4096..2048 by
multiplying it with 2048 / number of samples. Multiplexer has
regularities such that if a candidate is correct on a large number
of samples, such as 1024 or 512, it is likely to be correct on
all 2048. Therefore, in the experiments a small number of
samples, such as 32, is used to create a noisy evaluation that
models real-world sampling well.

In the experiments, smoothness and overestimation in the
11-multiplexer domain are first tested as a sanity check.
Whether the method improves accuracy and winner selection
is then evaluated, and variations of the method with different
population and sampling sizes are measured. There is no
control candidate in this domain, so the significance testing is
not meaningful. Significance will be measured in the second
domain on web-interface design.

C. Sanity Checks: Smoothness and Overestimation

The first step is to estimate whether the fitness landscape of
the multiplexer domain is smooth enough for the neighborhood
fitness idea to work. The fitness difference is expected to
increase smoothly and gradually with distance, and preferably



Fig. 2. Best candidate fitness, true fitness of that candidate, and best
neighborhood fitness for different k throughout evolution. Generations are
shown in the x-axis and difference (in true fitness) from the candidate
with the best true fitness in the entire population at each generation is
shown in the y-axis. Data was averaged over 10 runs until the fastest runs
converged. Each evolved a population of 4000 evaluated with 32 samples.
“Best Candidate” is the best candidate fitness found at each generation and
“True of Best Candidate” is the true fitness of that candidate. The plots
“k=2..k=10” show the best neighborhood fitnesses in the population for each
different neighborhood size k (where the neighborhood includes the candidate
itself and its k nearest neighbors). The candidate fitness grossly overestimates
the true fitness; neighborhood fitness reduces the error by 1/2 to 2/3, providing
a better estimate of future performance.

slowly in short distances. This is indeed the case, as can be
seen in Figure 1. The curve has an S-shape, with the inflection
point at around distance 7. This is interesting because the
multiplexer function is not particularly smooth: small changes
in the rules, such as flipping the right side of a condition
from 0 to 1 or vice versa, can have a large effect on behavior.
However, the mutations and distance measurement based on a
fixed set of elements and rules makes this domain smoother,
and therefore a good surrogate for applications such as web
interface design.

The next check is whether the candidate fitness indeed
overestimates the true fitness, as expected. As can be seen
in Figure 2, this is indeed the case. The candidate fitness is
a gross overestimate, especially early in evolution. Towards
the end, when the candidates’ true fitnessess are closer to the
optimum, there is less room to overestimate and the effect is
smaller.

D. Improvements: Future Performance and Its Estimate

The first main question, then, is whether neighborhood
fitness helps. It is indeed much more accurate than candidate
fitness in measuring the true fitness, reducing the error by
a 1/2 to 2/3. A whole range of k values works well; larger
neighborhoods reduce the error slightly more, but that effect
tapers off at around k − 10. The accuracy is also robust
and similar throughout evolution. Thus, neighborhood fitness
provides a reliably improved estimate of true fitness, and
therefore future performance.

Fig. 3. The true fitnesses of the candidate with the best candidate fitness,
and the candidates with the best neighborhood fitnesses with k = 4 and k =
10 throughout evolution for the same runs as in Figure 2. Up to generation
60, the neighborhood fitness can be used to identify candidates whose true
fitness is significantly better than the true fitness of the candidate with the
best estimated fitness. In applications where evolution may have to return
candidates early, neighborhood fitness thus provides significant improvements
in future performance.

The second main question is whether the neighborhood
fitness makes it possible to select the best candidate more
reliably than candidate fitness. Again, this is indeed the case,
as can be seen from Figure 3. Early on in evolution, when the
estimates are least accurate, the true fitness of the candidate
with best neighborhood fitness is significantly better than the
true fitness of the candidate with best candidate fitness. This
advantage lasts until about 60 generations, when candidates
are better and the candidate fitness thus more reliable (cf.
Figure 2).

Larger neighborhoods (e.g. k = 10) seem to be more
reliable than small neighborhoods (e.g. k = 4) but more data is
necessary to draw that conclusion with statistical significance.
Eventually when k becomes large enough, the neighborhood
fitness is likely to measure something different than the fitness
of the candidate at the center of the neighborhood, which
eventually will overwhelm the benefit of making a more
accurate measurement of that quantity. However, within the
range observed in these experiments, the improvement is
robust to different values of k, and the expected true fitness
of the neighborhood best constant throughout the run. Neigh-
borhood fitness is thus a reliable way to select the winner; in
applications like web interface design, where solutions need to
be found early in evolution, it offers significant improvement
over candidate fitness, identifying candidates that perform
better.

Of course, in any individual run, what matters more than
average performance of the neighborhood fitness is its actual
performance on that run. Figure 4 shows a data from Figures 2
and 3 for one example run with k = 10. The plots are more
noisy, but an important aspects of the method becomes visible:
About half the time, the neighborhood fitness identifies the



Fig. 4. best candidate fitness, best neighborhood fitness, and corresponding
true fitnesses throughout a single evolution run from Figures 2 and 3. The plots
are more noisy but show the same trends. Importantly, the “True of k=10”, i.e.
the true fitness of the candidate with the best neighborhood fitness, reaches
the 0-level about half the time in early evolution, and is almost always above
the “True of Best Candidate.” That is, it can be used to identify the best
candidate in the entire population half the time, and other times a candidate
that is better than that identified by the best candidate fitness. It can therefore
be used to improve evolution results reliably in practice.

true population champion, i.e. the candidate with the best true
fitness in the entire population. In early evolution, it almost
always allows picking a candidate that is better than the one
picked based on candidate fitness. Therefore, the method can
be used to improves performance not just statistically, but also
reliably in actual applications.

E. Robustness to Method Variations

As has already been discussed, the method is robust to varia-
tions to some of the main parameters such as the neighborhood
size k and length of the run. In a subsequent experiment
described below, it also turns out to be relatively robust
wrt. population size and density. On the other hand, with
increased sampling the estimates become more accurate, and
the advantage of neighborhood fitness reduces.

The first experiment evaluates whether more dense neigh-
borhoods lead to better neighborhood estimates. That is, if
the k nearest neighbors are more similar to the candidate, its
neighborhood fitness is likely to be more accurate. While the
simulations so far used a population of 4000 and mutation
proportion of 60% (with the remaining 40% of offspring
generated through crossover), a more dense neighborhood was
created with population of 8000 and mutation proportion of
80%. However, there is little difference (Figure 5). A possible
explanation is that even with a small population and more
frequent crossover, evolution converges the population around
the best candidates. A larger population and more mutation
may increase the density overall, but not that much around the
best candidates. Thus, evolution is naturally well suited for the
neighborhood fitness approach, and robust against population
size and genetic operators used.

The second experiment evaluates the effect of increased
sampling on the neighborhood fitness method. In two setups,

64 and 128 samples were used to evaluate the fitness of
each candidate during evolution, instead of 32. As can be
seen from Figure 6, neighborhood fitness confers still a slight
advantage with 64 samples, but not much with 128. Indeed,
at that level of sampling, the estimate is very reliable in the
multiplexer domain. That is, if a candidate gets 128 samples
right, it very likely gets all 2048 cases right. Therefore, the
neighborhood fitness method offers the largest advantage in
domains where only partial sampling is possible, leading to
unreliable estimates of fitness. This is true in many real-world
applications where fitness evaluation is expensive, such as
designing web-interfaces, robotic controllers, or game agents.

IV. DISCUSSION AND FUTURE WORK

The neighborhood fitness method offers the greatest ad-
vantage early in evolution, before the populations start to
converge around optimal solutions. This property turns out
to be important in practical applications where sampling re-
sources are limited. For instance in web-interface optimization,
the customer often wants to deploy a new page as soon as
significant improvement is seen, instead of letting evolution
run its course and find near-optimal solutions [1].

A compatible advantage is that the method can be applied
at any point during evolution as a postprocessing step, and
does not require further traffic for testing the best candidates.
Evolution can therefore be terminated at any point when
the customer so desires, and a winning candidate delivered
immediately, with good confidence that it is indeed a good
one and will perform as expected in the future.

In domains where more sampling is available, and the
termination point is predictable, it might be possible to relax
these requirements. More traffic could be directed to the
best candidates for a while before the winner is selected,
narrowing down the choice systematically. Implementing such
a method and comparing it with neighborhood fitness is a most
interesting direction of future work.

V. CONCLUSION

This paper shows how a winner in evolutionary optimization
can be selected more reliably and its performance estimated
more accurately based on the average fitness in its neighbor-
hood rather than its own fitness. This method assumes that
the fitness landscape is locally smooth and good candidates
have close neighbors in the population, which is likely to
be the case in many domains. The method can be applied
as a postprocessing step at any point in evolution, making it
possible to deploy it in practical applications without modi-
fying evolution or sampling. It offers the greatest advantage
early in evolution, which is useful in many applications where
resources are limited. It is therefore a promising method
for improving performance of evolutionary optimization in
practical applications.



Fig. 5. Best candidate fitness, best neighborhood fitness, and corresponding true fitnesses with populations of different densities. On the left is the average
over 10 runs of a population with 4000 candidates and mutation proportion of 60%; on the right, an average of 10 runs of a population of 8000 and mutation
of 80%. The differences are negligible, suggesting that the evolutionary algorithm already maintains dense populations around the best candidates.

Fig. 6. Best candidate fitness, best neighborhood fitness, and corresponding true fitnesses with different amount of sampling. On the left is the average over
10 runs where each candidate was evaluated with 64 samples during evolution, and on the right, the average over 10 runs where 128 samples were used.
Neighborhood fitness allows making better estimates and selecting better winners with 64 samples, but that advantage is smaller with 128 samples, which
is very reliable in the multiplexer domain. The method is thus best suited for domains where fitness evaluations are expensive and not comprehensive, as in
many real-world domains.
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