Autonomous Trading in Modern Electricity Markets

Daniel Urieli

Daniel Urieli Autonomous Electricity Trading 1

Modern Electricity Markets?

Transition into Low Carbon Economies

Consumption

 \implies Increased demand

Transition into Low Carbon Economies

Transition into Low Carbon Economies

Challenges the current electricity infrastructure

The Smart Grid Vision

• "Grid 2030" - vision for a smart-grid

• Smart-grid will enable sustainable, clean, efficient, reliable, secure energy supply.

- AI: a main building block
- Smart-grid: new challenges for AI [Ramchurn et. al 2012]

Proposed and Actual Applications Domains

- Two of the "Grid 2030" milestones:
 - "Intelligent homes and appliances linked to the grid" Application domain 1: Smart-thermostat control [ECML-13, AAMAS-13]
 - "Customer participation in power markets through demand-side management and distributed generation" Application domain 2: Autonomous electricity trading

Proposed and Actual Applications Domains

• Two of the "Grid 2030" milestones:

• "Intelligent homes and appliances linked to the grid" Application domain 1: Smart-thermostat control

[ECML-13, AAMAS-13]

 "Customer participation in power markets through demand-side management and distributed generation"
Application domain 2: Autonomous electricity trading

New Power Markets

• Grid 2030 milestone:

"Customer participation in power markets through demand-side management and distributed generation"

New Power Markets

• Grid 2030 milestone:

"Customer participation in power markets through demand-side management and distributed generation"

- Power markets will financially incentivize sustainable behaviors
- Demand-side management will adapt demand to supply conditions
- Distributed generation can add efficient, clean, robust supply

Potential Risks

• California energy crisis (2001), east-coast blackout (2003)

Potential Risks

• California energy crisis (2001), east-coast blackout (2003)

- Needed: low-risk platform for testing
 - Retail power market designs
 - Related automation technologies

The Power Trading Agent Competition (Power TAC)

• Grid 2030 milestone:

"Customer participation in power markets through demandside management and distributed generation"

The Power Trading Agent Competition (Power TAC)

• Grid 2030 milestone:

"Customer participation in power markets through demandside management and distributed generation"

• Power TAC (Power Trading Agent Competition)

The Power Trading Agent Competition (Power TAC)

Grid 2030 milestone:

"Customer participation in power markets through demandside management and distributed generation"

• Power TAC (Power Trading Agent Competition)

- Uses a rich smart grid simulation platform
- Focuses on retail power markets structure and operation
- Competitors: autonomous broker agents

- Why brokers?
 - Wholesale markets not designed for individual participation

- Why brokers?
 - Wholesale markets not designed for individual participation
 - Retail brokers can represent customer populations

- Wholesale markets not designed for individual participation
- Retail brokers can represent customer populations
- Make profit, save customer costs, contribute to grid stability

- Wholesale markets not designed for individual participation
- Retail brokers can represent customer populations
- Make profit, save customer costs, contribute to grid stability
- Grid stability: managing volatile demand and supply

- Wholesale markets not designed for individual participation
- Retail brokers can represent customer populations
- Make profit, save customer costs, contribute to grid stability
- Grid stability: managing volatile demand and supply
- Why autonomous?

- Wholesale markets not designed for individual participation
- Retail brokers can represent customer populations
- Make profit, save customer costs, contribute to grid stability
- Grid stability: managing volatile demand and supply
- Why autonomous?
 - Operate 24/7

- Wholesale markets not designed for individual participation
- Retail brokers can represent customer populations
- Make profit, save customer costs, contribute to grid stability
- Grid stability: managing volatile demand and supply
- Why autonomous?
 - Operate 24/7
 - Execute complex decisions, calculations

- Wholesale markets not designed for individual participation
- Retail brokers can represent customer populations
- Make profit, save customer costs, contribute to grid stability
- Grid stability: managing volatile demand and supply
- Why autonomous?
 - Operate 24/7
 - Execute complex decisions, calculations
 - Process large amounts of information

- Wholesale markets not designed for individual participation
- Retail brokers can represent customer populations
- Make profit, save customer costs, contribute to grid stability
- Grid stability: managing volatile demand and supply
- Why autonomous?
 - Operate 24/7
 - Execute complex decisions, calculations
 - Process large amounts of information
 - Do that in real-time

Application domain: Autonomous Electricity Trading

Application domain: Autonomous Electricity Trading

Sequential decision making in a complex domain

Application domain: Autonomous Electricity Trading

- Sequential decision making in a complex domain
- Specifically [Russell and Norvig, 2009]
 - high-dimensional
 - partially-observable
 - multiagent
 - competitive
 - stochastic
 - sequential
 - dynamic
 - continuous
 - initially-unknown

Research Question:

How should an autonomous broker agent act to maximize its utility by trading in time-constrained, modern electricity markets?

Dissertation Structure

Substrate Domain

Power TAC: Rich Energy Markets Simulation

General Agent Sensing and Acting

Broker Sensing and Acting

• Available actions: bid submissions

• Available actions: bid submissions

Bid: [needed-amount=2mWh, limit=25\$/mWh, when=5pm]

• Available actions: bid submissions

- Bid: [needed-amount=2mWh, limit=25\$/mWh, when=5pm]
- Bids cleared in a double auction:

Available actions: bid submissions

- Bid: [needed-amount=2mWh, limit=25\$/mWh, when=5pm]
- Bids cleared in a double auction:

 Day ahead market ⇒ 24 auctions for each timeslot

Available actions: bid submissions

- Bid: [needed-amount=2mWh, limit=25\$/mWh, when=5pm]
- Bids cleared in a double auction:

- Day ahead market \implies 24 auctions for each timeslot
- Need to:
 - Buy energy cheaply
 - Avoid imbalance costs \implies buy all needed energy

• Available actions: bid submissions

- Bid: [needed-amount=2mWh, limit=25\$/mWh, when=5pm]
- Bids cleared in a double auction:

- Day ahead market \implies 24 auctions for each timeslot
- Need to:
 - Buy energy cheaply
 - Avoid imbalance costs \implies buy all needed energy

Challenge: what bidding strategy to use?

Power TAC

• Available actions: tariff publications

- Available actions: tariff publications
- Tariff: contract for selling energy

- Available actions: tariff publications
- Tariff: contract for selling energy
 - E.g.: [type=consumption, rates=(rate1, rate2,...), signup-fee=none,...]

- Available actions: tariff publications
- Tariff: contract for selling energy
 - E.g.: [type=consumption, rates=(rate1, rate2,...), signup-fee=none,...]
- Rate: energy prices per time and/or quantity

- Available actions: tariff publications
- Tariff: contract for selling energy
 - E.g.: [type=consumption, rates=(rate1, rate2,...), signup-fee=none,...]
- Rate: energy prices per time and/or quantity
 - Rate types: fixed, time-of-use (TOU), real-time (RT)...

- Available actions: tariff publications
- Tariff: contract for selling energy
 - E.g.: [type=consumption, rates=(rate1, rate2,...), signup-fee=none,...]
- Rate: energy prices per time and/or quantity
 - Rate types: fixed, time-of-use (TOU), real-time (RT)...
 - Fixed: [fixed=true, price=7cent/kWh]

- Available actions: tariff publications
- Tariff: contract for selling energy
 - E.g.: [type=consumption, rates=(rate1, rate2,...), signup-fee=none,...]
- Rate: energy prices per time and/or quantity
 - Rate types: fixed, time-of-use (TOU), real-time (RT)...
 - Fixed: [fixed=true, price=7cent/kWh]
 - TOU: [(time1=Mon-Fri 7am-6pm, price=8cent/kWh), (time2=Sat, ...), ...]

- Available actions: tariff publications
- Tariff: contract for selling energy
 - E.g.: [type=consumption, rates=(rate1, rate2,...), signup-fee=none,...]
- Rate: energy prices per time and/or quantity
 - Rate types: fixed, time-of-use (TOU), real-time (RT)...
 - Fixed: [fixed=true, price=7cent/kWh]
 - TOU: [(time1=Mon-Fri 7am-6pm, price=8cent/kWh), (time2=Sat, ...), ...]
 - RT: [expected/min/max-price=7/5/8 cent/kWh, rate-notice=3 hours...]

- Available actions: tariff publications
- Tariff: contract for selling energy
 - E.g.: [type=consumption, rates=(rate1, rate2,...), signup-fee=none,...]
- Rate: energy prices per time and/or quantity
 - Rate types: fixed, time-of-use (TOU), real-time (RT)...
 - Fixed: [fixed=true, price=7cent/kWh]
 - TOU: [(time1=Mon-Fri 7am-6pm, price=8cent/kWh), (time2=Sat, ...), ...]
 - RT: [expected/min/max-price=7/5/8 cent/kWh, rate-notice=3 hours...]
- Customers subscribe to tariffs they find attractive

- Available actions: tariff publications
- Tariff: contract for selling energy
 - E.g.: [type=consumption, rates=(rate1, rate2,...), signup-fee=none,...]
- Rate: energy prices per time and/or quantity
 - Rate types: fixed, time-of-use (TOU), real-time (RT)...
 - Fixed: [fixed=true, price=7cent/kWh]
 - TOU: [(time1=Mon-Fri 7am-6pm, price=8cent/kWh), (time2=Sat, ...), ...]
 - RT: [expected/min/max-price=7/5/8 cent/kWh, rate-notice=3 hours...]
- Customers subscribe to tariffs they find attractive
 - Cheap, minimizes inconvenience...

- Available actions: tariff publications
- Tariff: contract for selling energy
 - E.g.: [type=consumption, rates=(rate1, rate2,...), signup-fee=none,...]
- Rate: energy prices per time and/or quantity
 - Rate types: fixed, time-of-use (TOU), real-time (RT)...
 - Fixed: [fixed=true, price=7cent/kWh]
 - TOU: [(time1=Mon-Fri 7am-6pm, price=8cent/kWh), (time2=Sat, ...), ...]
 - RT: [expected/min/max-price=7/5/8 cent/kWh, rate-notice=3 hours...]
- Customers subscribe to tariffs they find attractive
 - Cheap, minimizes inconvenience...

Challenge: what tariffs should a broker publish?

Power TAC

Power TAC

Dissertation Structure

• The trading problem is a large POMDP

- The trading problem is a large POMDP
- We model it as a (large) MDP
 - Treating hidden state as environment stochasticity

$$\langle t, \mathcal{B}, \mathcal{C}, \mathcal{P}, \mathcal{T}, \mathcal{S}_{B_0}, \mathcal{Q}_{B_0}, \mathcal{A}_{B_0}, I_{B_0}, \mathcal{W}, \$_{B_0}, \mathcal{R} \rangle$$

Some state variables are sets of unbounded size

$$\langle t, \mathcal{B}, \mathcal{C}, \mathcal{P}, \mathcal{T}, \mathcal{S}_{B_0}, \mathcal{Q}_{B_0}, \mathcal{A}_{B_0}, I_{B_0}, \mathcal{W}, \$_{B_0}, \mathcal{R} \rangle$$

- Some state variables are sets of unbounded size
- Typical state: 100s 10000s of dimensions

Power TAC Game State

$$\langle t, \mathcal{B}, \mathcal{C}, \mathcal{P}, \mathcal{T}, \mathcal{S}_{B_0}, \mathcal{Q}_{B_0}, \mathcal{A}_{B_0}, I_{B_0}, \mathcal{W}, \$_{B_0}, \mathcal{R} \rangle$$

- Some state variables are sets of unbounded size
- Typical state: 100s 10000s of dimensions

• Tariff actions: continuous, high-dimensional

• 10s, or 100s of parameters per action

- Tariff actions: continuous, high-dimensional
 - 10s, or 100s of parameters per action
- Wholesale actions: continuous, high-dimensional
 - 2 parameters per action, 10s of actions

Transition Function and Reward Function

$$r_{t}(s_{t-1}, t-1, s_{t}) := \underbrace{Q_{t}^{cons} p_{t}^{cons} - Q_{t}^{prod} p_{t}^{prod}}_{r^{\tau}(s_{t})} + \underbrace{Q_{t}^{ask} p_{t}^{ask} - Q_{t}^{bid} p_{t}^{bid}}_{r^{\omega}(s_{t})} \pm bal(I_{B_{0},t})}_{r^{\beta}(s_{t})} \underbrace{-max(Q_{t}^{cons}, Q_{t}^{prod}) \times distFee}_{dist(s_{t})} - pub(t-1) - rev(t-1) \pm psw(\mathcal{S}_{B_{0},t-1}, \mathcal{S}_{B_{0},t})}_{fees(s_{t-1}, t-1, s_{t})}$$
(1)

TacTex's Competition Results

- Power TAC 2013: 1st place
- Power TAC 2015: Best-Agent*
- Power TAC 2015 post-finals demo: 1st place

Dissertation Structure

Modeling the problem as an MDP

- Modeling the problem as an MDP
- Use a lookahead policy (Monte-Carlo search)
- Modeling the problem as an MDP
- Use a lookahead policy (Monte-Carlo search)
- Lookahead policies appropriate when:
 - Domain non-stationary

- Modeling the problem as an MDP
- Use a lookahead policy (Monte-Carlo search)
- Lookahead policies appropriate when:
 - Domain non-stationary
 - Unclear relationship between state \rightarrow action

- Modeling the problem as an MDP
- Use a lookahead policy (Monte-Carlo search)
- Lookahead policies appropriate when:
 - Domain non-stationary
 - Unclear relationship between state \rightarrow action
 - Hard to approximate a value function

- Modeling the problem as an MDP
- Use a lookahead policy (Monte-Carlo search)
- Lookahead policies appropriate when:
 - Domain non-stationary
 - Unclear relationship between state \rightarrow action
 - Hard to approximate a value function
- Addresses large state spaces, but not large action spaces

Lookahead Policy: Large Action Spaces

- How to optimize action combinations?
 - How to sample actions efficiently?
 - How to combine actions efficiently?

• LATTE: Lookahead-policy for Autonomous Time-constrained Trading of Electricity

- LATTE: Lookahead-policy for Autonomous Time-constrained Trading of Electricity
- A general algorithm for autonomous electricity trading

- LATTE: Lookahead-policy for Autonomous Time-constrained Trading of Electricity
- A general algorithm for autonomous electricity trading
- Can be instantiated in different ways

- LATTE: Lookahead-policy for Autonomous Time-constrained Trading of Electricity
- A general algorithm for autonomous electricity trading
- Can be instantiated in different ways
- LATTE is the main algorithm used by TacTex

LATTE's Flow Diagram

- How to optimize action combinations?
 - How to sample actions efficiently?
 - How to combine actions efficiently?

LATTE: Monte-Carlo, Receding Horizon Policy

LATTE as a Monte-Carlo, receding horizon policy:

- Action sampling: only at depth 0
- Outcome sampling: any, but we use "expected" transitions
- Horizon length: fixed ("receding horizon")

Dissertation Structure

Dissertation Structure

TacTex'15

TacTex'15: Competition Results

Power TAC 2015: Best-Agent*

Broker	11-broker	9-broker	3-broker	Total	11-broker (z)	9-broker (z)	3-broker (z)	Total (z)	
Maxon15	186K	3.7M	80.7M	84.5M	0.611	0.801	1.990	3.402	
TacTex	488K	5.2M	38.8M	44.4M	0.897	1.066	0.258	2.221	
CUHKTac	557K	4.0M	35.1M	39.6M	0.962	0.859	0.106	1.927	
AgentUDE	-15K	1.2M	52.1M	53.2M	0.421	0.367	0.809	1.597	
Sharpy	-6K	2.6M	45.1M	47.7M	0.429	0.614	0.521	1.564	/ s
COLDPower	307K	1.3M	14.3M	16.0M	0.726	0.397	-0.751	0.371	/ . 9
cwiBroker	-462K	-1.6M	43.8M	41.7M	-0.002	-0.120	0.465	0.343	1 1 1 1 1
Mertacor	-23K	-0.1M	32.2M	-0.1M	0.413	0.142	-1.341	-0.786	i 🛛 🗛
NTUTacAgent	-1533K	-10.4M	43.5M	31.5M	-1.017	-1.638	0.453	-2.202	
SPOT	-1570K	-2.3M	7.5M	3.6M	-1.052	-0.243	-1.032	-2.327	2
CrocodileAgent	-2981K	-13.9M	-3.3M	-20.2M	-2.387	-2.244	-1.479	-6.111	

Power TAC 2015 (post-finals demo): 1st place

Broker	4-broker	4-broker (z)
TacTex	15.0M	1.122
Maxon15	10.7M	0.627
CUHKTac	10.0M	0.537
AgentUDE	9.7M	0.509
cwiBroker2015	7.9M	0.297
Sharpy	4.6M	-0.092
COLDPower	-0.8M	-0.724
SPOT	-14.0M	-2.276

TacTex'15: 2015 Competitions

TacTex'15: 2015 Competitions

TacTex'15: Controlled Experiments

Performance of TacTex'15 against Power TAC 2015 finalists in controlled experiments of game-sizes of 2-5.

TacTex'15: Ablation Analysis

- Ablated agents created from TacTex'15:
 - Abl-cost: cost-predictor replaced with TacTex13's
 - Abl-bid: bidding-strategy replaced with TacTex13's
 - Abl-demand: demand-predictor replaced with TacTex13's

Demand Predictor Ablation

Gradual demand predictor ablation in 3-agent games

Cost Predictor Ablation

TacTex'15 cost predictor is quicker to adapt to changing costs

Dissertation Structure

The Problem with Peaked Demand

Cost as a function of generation

24-hour demand

• Time-Of-Use (TOU) Pricing Schemes:

• Goal: adapt demand to energy availability

- Time-Of-Use (TOU) Pricing Schemes:
 - Goal: adapt demand to energy availability
 - Planned to be mandated in southern California by 2019 [Desert Sun, May 2015]

- Time-Of-Use (TOU) Pricing Schemes:
 - Goal: adapt demand to energy availability
 - Planned to be mandated in southern California by 2019 [Desert Sun, May 2015]
 - In monopoly market: saves costs

• Time-Of-Use (TOU) Pricing Schemes:

- Goal: adapt demand to energy availability
- Planned to be mandated in southern California by 2019 [Desert Sun, May 2015]
- In monopoly market: saves costs
- In competitive market: less attractive for customers

For TOU to be competitive with fixed-rate tariffs, we need:

$$\underbrace{cost\left(T_{tou}, e_{H}^{*}\right) + w \times d\left(e_{H}, e_{H}^{*}\right)}_{TOU} \stackrel{?}{<} \underbrace{cost\left(T_{fixed}, e_{H}\right)}_{Fixed-Rate}$$

For TOU to be competitive with fixed-rate tariffs, we need:

$$\underbrace{cost\left(T_{tou}, e_{H}^{*}\right) + w \times d\left(e_{H}, e_{H}^{*}\right)}_{TOU} \stackrel{?}{<} \underbrace{cost\left(T_{fixed}, e_{H}\right)}_{Fixed-Rate}$$

Where

- *cost* (T, e_H): cost of 24-hour consumption e_H under tariff τ
- e_H^* : optimally shifted energy profile
- w: weight representing cost-convenience trade-off
- d (e_H, e^{*}_H): distance between desired and optimally-shifted profiles

TOU vs. Fixed-Rate Tariffs

For TOU to be competitive with fixed-rate tariffs, we need:

$$\underbrace{cost\left(T_{tou}, e_{H}^{*}\right) + w \times d\left(e_{H}, e_{H}^{*}\right)}_{TOU} \stackrel{?}{<} \underbrace{cost\left(T_{fixed}, e_{H}\right)}_{Fixed-Rate}$$

For TOU to be competitive with fixed-rate tariffs, we need:

$$\underbrace{cost\left(T_{tou}, e_{H}^{*}\right) + w \times d\left(e_{H}, e_{H}^{*}\right)}_{TOU} \stackrel{?}{<} \underbrace{cost\left(T_{fixed}, e_{H}\right)}_{Fixed-Rate}$$

Questions:

• Can TOU tariffs benefit the broker?
For TOU to be competitive with fixed-rate tariffs, we need:

$$\underbrace{cost\left(T_{tou}, e_{H}^{*}\right) + w \times d\left(e_{H}, e_{H}^{*}\right)}_{TOU} \stackrel{?}{<} \underbrace{cost\left(T_{fixed}, e_{H}\right)}_{Fixed-Rate}$$

Questions:

- Can TOU tariffs benefit the broker?
- If TOU tariffs benefit broker, would they benefit the economy in competitive markets?

For TOU to be competitive with fixed-rate tariffs, we need:

$$\underbrace{cost\left(T_{tou}, e_{H}^{*}\right) + w \times d\left(e_{H}, e_{H}^{*}\right)}_{TOU} \stackrel{?}{<} \underbrace{cost\left(T_{fixed}, e_{H}\right)}_{Fixed-Rate}$$

Questions:

- Can TOU tariffs benefit the broker?
- If TOU tariffs benefit broker, would they benefit the economy in competitive markets?
- How should an autonomous agent design TOU tariffs?

For TOU to be competitive with fixed-rate tariffs, we need:

$$\underbrace{cost\left(T_{tou}, e_{H}^{*}\right) + w \times d\left(e_{H}, e_{H}^{*}\right)}_{TOU} \stackrel{?}{<} \underbrace{cost\left(T_{fixed}, e_{H}\right)}_{Fixed-Rate}$$

Questions:

- Can TOU tariffs benefit the broker?
- If TOU tariffs benefit broker, would they benefit the economy in competitive markets?
- How should an autonomous agent design TOU tariffs?
- Can we extend LATTE with TOU tariffs?

LATTE-TOU: Extending LATTE with Tariffs

LATTE-TOU: Extending LATTE with Tariffs

Demand and Unit-Cost Curves

- Fixed-rate tariffs
- TOU tariffs

TOU tariffs

TOU tariffs

• Fixed-rate tariffs

TOU tariffs

Daniel Urieli Autonomous Electricity Trading 56

LATTE-TOU:

Find best fixed-rate tariff

- Find best fixed-rate tariff
- Perturb each of the 24 rates by $\pm \epsilon$ and estimate utility

- Find best fixed-rate tariff
- Perturb each of the 24 rates by $\pm \epsilon$ and estimate utility
- Use the 2 x 24 = 48 points to estimate gradient

- Find best fixed-rate tariff
- Perturb each of the 24 rates by $\pm \epsilon$ and estimate utility
- Use the 2 x 24 = 48 points to estimate gradient
- Climb gradient until a local maximum

- Find best fixed-rate tariff
- Perturb each of the 24 rates by $\pm \epsilon$ and estimate utility
- Use the 2 x 24 = 48 points to estimate gradient
- Climb gradient until a local maximum
- Optimization objective is the predictive lookahead model

Baseline TOU Algorithm - TOUNaive

Experimental Setup

- Compare three brokers:
 - TOUBroker uses LATTE-TOU
 - TOUNaive from previous slide
 - FixedRateBroker uses LATTE with fixed-rate tariffs

Experimental Setup

- Compare three brokers:
 - TOUBroker uses LATTE-TOU
 - TOUNaive from previous slide
 - FixedRateBroker uses LATTE with fixed-rate tariffs
- Each broker plays 200 games against:
 - AgentUDE (1st place, 2014)
 - CWIBroker (2nd place, 2014)

Experimental Setup

- Compare three brokers:
 - TOUBroker uses LATTE-TOU
 - TOUNaive from previous slide
 - FixedRateBroker uses LATTE with fixed-rate tariffs
- Each broker plays 200 games against:
 - AgentUDE (1st place, 2014)
 - CWIBroker (2nd place, 2014)

TOUBroker: Utility Optimization \implies Peak-Flattening

Total consumption, 24 hours.

TOUBroker: Utility Optimization \implies Peak-Flattening

Total consumption, 24 hours.

Per-broker consumption, 24 hours.

TOUBroker: Utility Optimization \implies Peak-Flattening

Total consumption, 24 hours.

Per-broker consumption, 24 hours.

Active tariffs, 24 hours.

Results: TOUBroker vs. AgentUDE, CWI

vs. AgentUDE

	(a) FixedRate-vs-UDE	(b) TOUNaive-vs-UDE	(c) TOUBroker-vs-UDE	Change (c)/(a)
score: our-agent (M\$)	1.893	1.689	1.922	1.016 (+1.6%)
score: UDE (M\$)	0.895	0.578	1.122	1.253 (+25.3%)
market-share: our-agent (%)	64.0	73.3	61.4	0.959 (-4.1%)
(our) avg electricity-buy price	0.053	0.051	0.051	0.963 (-3.7%)
(our) avg electricity-sell price	0.105	0.098	0.105	1.000 (-0.0%)
(all) avg electricity-buy price	0.051	0.049	0.049	0.961 (-3.9%)
(all) avg electricity-sell price	0.105	0.099	0.104	0.990 (-1.0%)
peak-demand (MW)	86.771	71.882	73.519	0.847 (-15.3%)

Results: TOUBroker vs. AgentUDE, CWI

vs. AgentUDE

	(a) FixedRate-vs-UDE	(b) TOUNaive-vs-UDE	(c) TOUBroker-vs-UDE	Change (c)/(a)
score: our-agent (M\$)	1.893	1.689	1.922	1.016 (+1.6%)
score: UDE (M\$)	0.895	0.578	1.122	1.253 (+25.3%)
market-share: our-agent (%)	64.0	73.3	61.4	0.959 (-4.1%)
(our) avg electricity-buy price	0.053	0.051	0.051	0.963 (-3.7%)
(our) avg electricity-sell price	0.105	0.098	0.105	1.000 (-0.0%)
(all) avg electricity-buy price	0.051	0.049	0.049	0.961 (-3.9%)
(all) avg electricity-sell price	0.105	0.099	0.104	0.990 (-1.0%)
peak-demand (MW)	86.771	71.882	73.519	0.847 (-15.3%)

vs. CWI

	(a) FixedRate-vs-CWI	(b) TOUNaive-vs-CWI	(c) TOUBroker-vs-CWI	Change: (c)/(a)
score: our-agent (M\$)	0.677	0.524	0.622	0.919 (-8.1%)
score: CWI (M\$)	0.771	0.620	0.558	0.724 (-27.6%)
market-share: our-agent (%)	44.2	54.3	54.7	1.238 (+23.8%)
(our) avg electricity-buy price	0.057	0.054	0.054	0.947 (-5.3%)
(our) avg electricity-sell price	0.095	0.087	0.086	0.905 (-9.5%)
(all) avg electricity-buy price	0.057	0.055	0.053	0.930 (-7.0%)
(all) avg electricity-sell price	0.094	0.086	0.086	0.915 (-8.5%)
peak-demand (MW)	86.701	74.720	73.651	0.849 (-15.1%)

TOUBroker: Self-Play

	(d) TOUBroker-vs-TOUBroker	Change (d)/(c) (UDE)	Change (d)/(c) (CWI)
score: our-agent (M\$)	0.493	0.257 (-74.3%)	0.791 (-20.9%)
score: agent-copy (M\$)	0.482	-	-
market-share: our-agent (%)	50.5	0.823 (-17.7%)	0.927 (-7.3%)
(our) avg electricity-buy price	0.051	1.000 (-0.0%)	0.944 (-5.6%)
(our) avg electricity-sell price	0.083	0.790 (-21.0%)	0.954 (-4.6%)
(all) avg electricity-buy price	0.051	1.041 (+4.1%)	0.944 (-5.6%)
(all) avg electricity-sell price	0.083	0.798 (-20.2%)	0.954 (-4.6%)
peak-demand (MW)	70.101	0.954 (-4.6%)	0.947 (-5.3%)

	TOUBroker	NoShift	FlatCost
score: our-agent (M\$)	0.622	0.507	-0.007
score: CWI (M\$)	0.558	0.550	0.210
peak-demand (MW)	73.651	83.728	82.779

Ablation analysis: erratic-predictions

	TOUBroker	NoShift	FlatCost
score: our-agent (M\$)	0.622	0.507	-0.007
score: CWI (M\$)	0.558	0.550	0.210
peak-demand (MW)	73.651	83.728	82.779

Ablation analysis: erratic-predictions

- Shifting and cost predictions are critical for
 - Profits
 - Peak-flattening

LATTE-TOU: LATTE with gradient-ascent action sampling Local optimization of TOU tariff actions

- LATTE-TOU: LATTE with gradient-ascent action sampling
 - Local optimization of TOU tariff actions
- Currently the only TOU algorithm that:

- LATTE-TOU: LATTE with gradient-ascent action sampling
 - Local optimization of TOU tariff actions
- Currently the only TOU algorithm that:
 - Improves upon fixed-rate

- LATTE-TOU: LATTE with gradient-ascent action sampling
 - Local optimization of TOU tariff actions
- Currently the only TOU algorithm that:
 - Improves upon fixed-rate
 - Outperforms both top 2014 agents

- LATTE-TOU: LATTE with gradient-ascent action sampling
 - Local optimization of TOU tariff actions
- Currently the only TOU algorithm that:
 - Improves upon fixed-rate
 - Outperforms both top 2014 agents
 - Performs well in Power TAC's complex environment

• LATTE-TOU: LATTE with gradient-ascent action sampling

- Local optimization of TOU tariff actions
- Currently the only TOU algorithm that:
 - Improves upon fixed-rate
 - Outperforms both top 2014 agents
 - Performs well in Power TAC's complex environment
- TOU algorithms that failed:

• LATTE-TOU: LATTE with gradient-ascent action sampling

- Local optimization of TOU tariff actions
- Currently the only TOU algorithm that:
 - Improves upon fixed-rate
 - Outperforms both top 2014 agents
 - Performs well in Power TAC's complex environment
- TOU algorithms that failed:
 - TOUNaive

- LATTE-TOU: LATTE with gradient-ascent action sampling
 - Local optimization of TOU tariff actions
- Currently the only TOU algorithm that:
 - Improves upon fixed-rate
 - Outperforms both top 2014 agents
 - Performs well in Power TAC's complex environment
- TOU algorithms that failed:
 - TOUNaive
 - LATTE with Amoeba/BOBYQA/Powell instead of gradient-ascent
Conclusions 1: LATTE-TOU

- LATTE-TOU: LATTE with gradient-ascent action sampling
 - Local optimization of TOU tariff actions
- Currently the only TOU algorithm that:
 - Improves upon fixed-rate
 - Outperforms both top 2014 agents
 - Performs well in Power TAC's complex environment
- TOU algorithms that failed:
 - TOUNaive
 - LATTE with Amoeba/BOBYQA/Powell instead of gradient-ascent
- LATTE-TOU requires accurate demand/cost predictions

Broker incentives to use TOU?

TOU brokers can win against fixed-rate brokers

- TOU brokers can win against fixed-rate brokers
- Market-share impact:

- TOU brokers can win against fixed-rate brokers
- Market-share impact:
 - Large market share ⇒ can flatten, but encourages free-riders

- TOU brokers can win against fixed-rate brokers
- Market-share impact:
 - Large market share ⇒ can flatten, but encourages free-riders
 - Small market share ⇒ less flattening, less free-riding, but reduced revenue

- TOU brokers can win against fixed-rate brokers
- Market-share impact:
 - Large market share ⇒ can flatten, but encourages free-riders
 - Small market share ⇒ less flattening, less free-riding, but reduced revenue
- New incentives required for discouraging free-riding?

- LATTE-TOU reduced peak-demand by 15%
 - No customer herding

- LATTE-TOU reduced peak-demand by 15%
 - No customer herding
- LATTE-TOU implicitly coordinated flattening
 - Through utility-maximizing tariffs

- LATTE-TOU reduced peak-demand by 15%
 - No customer herding
- LATTE-TOU implicitly coordinated flattening
 - Through utility-maximizing tariffs
- Saved costs for all customers (including competitors')

TOU Impact on the economy:

- LATTE-TOU reduced peak-demand by 15%
 - No customer herding
- LATTE-TOU implicitly coordinated flattening
 - Through utility-maximizing tariffs
- Saved costs for all customers (including competitors')

Demonstrates a potential benefit of employing autonomous (TOU) brokers in future power markets

Related Work: Contribution Areas

Extending Time-Of-Use (TOU) Tariffs

- Extending Time-Of-Use (TOU) Tariffs
 - In presence of more competitors

- Extending Time-Of-Use (TOU) Tariffs
 - In presence of more competitors
 - In presence of renewable generation

- Extending Time-Of-Use (TOU) Tariffs
 - In presence of more competitors
 - In presence of renewable generation
- Production tariffs (solar, wind production)

- Extending Time-Of-Use (TOU) Tariffs
 - In presence of more competitors
 - In presence of renewable generation
- Production tariffs (solar, wind production)
- Benefit from supply-demand imbalance

- Extending Time-Of-Use (TOU) Tariffs
 - In presence of more competitors
 - In presence of renewable generation
- Production tariffs (solar, wind production)
- Benefit from supply-demand imbalance
- Direct Load Control (DLC)

- Extending Time-Of-Use (TOU) Tariffs
 - In presence of more competitors
 - In presence of renewable generation
- Production tariffs (solar, wind production)
- Benefit from supply-demand imbalance
- Direct Load Control (DLC)
- Real-Time Pricing (RTP)

- Extending Time-Of-Use (TOU) Tariffs
 - In presence of more competitors
 - In presence of renewable generation
- Production tariffs (solar, wind production)
- Benefit from supply-demand imbalance
- Direct Load Control (DLC)
- Real-Time Pricing (RTP)
- Contract hedging

Increased customer rationality

- Increased customer rationality
- Different cost-comfort trade-off functions

- Increased customer rationality
- Different cost-comfort trade-off functions
- Strengthen incentives to balance supply-demand

- Increased customer rationality
- Different cost-comfort trade-off functions
- Strengthen incentives to balance supply-demand
- Model line capacity limitations

- Increased customer rationality
- Different cost-comfort trade-off functions
- Strengthen incentives to balance supply-demand
- Model line capacity limitations
- Model power factor effects

Real-time smart-metering

- Real-time smart-metering
- Autonomous customer agents deployed in buildings

- Real-time smart-metering
- Autonomous customer agents deployed in buildings
- Learning predictors from real-world data

- Real-time smart-metering
- Autonomous customer agents deployed in buildings
- Learning predictors from real-world data
- Deploy in small field tests (10s, 100s of customers)

- Real-time smart-metering
- Autonomous customer agents deployed in buildings
- Learning predictors from real-world data
- Deploy in small field tests (10s, 100s of customers)
- Incorporate protections against worst-case behavior

- Research Question:
 - How should an autonomous broker agent act to maximize its utility by trading in time-constrained, modern electricity markets?

- Research Question:
 - How should an autonomous broker agent act to maximize its utility by trading in time-constrained, modern electricity markets?
- Contributions:

 - Autonomous electricity trading: problem formalization

- Research Question:
 - How should an autonomous broker agent act to maximize its utility by trading in time-constrained, modern electricity markets?
- Contributions:
 - Autonomous electricity trading: problem formalization
 - LATTE: Lookahead-policy for Autonomous Time-constrained Trading of Electricity

- Research Question:
 - How should an autonomous broker agent act to maximize its utility by trading in time-constrained, modern electricity markets?
- Contributions:
 - Autonomous electricity trading: problem formalization
 - LATTE: Lookahead-policy for Autonomous Time-constrained Trading of Electricity
 - The TacTex agents: binaries and source-code

- Research Question:
 - How should an autonomous broker agent act to maximize its utility by trading in time-constrained, modern electricity markets?
- Contributions:
 - Autonomous electricity trading: problem formalization
 - LATTE: Lookahead-policy for Autonomous Time-constrained Trading of Electricity
 - The TacTex agents: binaries and source-code
 - Extensive experimental evaluation

- Research Question:
 - How should an autonomous broker agent act to maximize its utility by trading in time-constrained, modern electricity markets?
- Contributions:
 - Autonomous electricity trading: problem formalization
 - LATTE: Lookahead-policy for Autonomous Time-constrained Trading of Electricity
 - The TacTex agents: binaries and source-code
 - Extensive experimental evaluation
 - Impact of Time-Of-Use (TOU) tariffs on competitive markets

- Research Question:
 - How should an autonomous broker agent act to maximize its utility by trading in time-constrained, modern electricity markets?
- Contributions:
 - Autonomous electricity trading: problem formalization
 - LATTE: Lookahead-policy for Autonomous Time-constrained Trading of Electricity
 - The TacTex agents: binaries and source-code
 - Extensive experimental evaluation
 - Impact of Time-Of-Use (TOU) tariffs on competitive markets