
TEXPLORE: Temporal Difference Reinforcement

Learning for Robots and Time-Constrained Domains

Todd Hester

Learning Agents Research Group
Department of Computer Science
The University of Texas at Austin

Thesis Defense

December 3, 2012

Todd Hester (UT Austin) Thesis Defense December 3, 2012 1



Robot Learning

Robots have the potential to solve many problems

Moving from controlled to natural environments is difficult

We need methods for them to learn and adapt to new situations
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Reinforcement Learning

Could be used for learning and adaptation on robots

Value function RL has string of positive theoretical results

[Watkins 1989, Brafman and Tennenholtz 2001]
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Reinforcement Learning

Could be used for learning and adaptation on robots

Value function RL has string of positive theoretical results

[Watkins 1989, Brafman and Tennenholtz 2001]

However, learning on robots presents many challenges for RL
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Velocity Control of an Autonomous Vehicle

Upgraded to run autonomously by adding shift-by-wire, steering,

and braking actuators.

10 second episodes (at 10 Hz: 100 samples / episode)
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Velocity Control

State:

Current Velocity

Desired Velocity

Accelerator Pedal Position

Brake Pedal Position

Actions:

Do nothing

Increase/decrease brake position by 0.1

Increase/decrease accelerator position

by 0.1

Reward: -10.0 * velocity error (m/s)
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Desiderata

1 Learning algorithm must learn in very few actions (be sample

efficient)

2 Learning algorithm must handle continuous state

3 Learning algorithm must handle delayed actions

4 Learning algorithm must take actions continually in real-time

(while learning)
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Common Approaches

Algorithm Citation Sample Real Continuous Delay
Efficient Time

R-MAX Brafman and Tennenholtz, 2001 Yes No No No
Q-LEARNING Watkins, 1989 No Yes No No
with F.A. Sutton and Barto, 1998 No Yes Yes No
SARSA Rummery and Niranjan, 1994 No Yes No No
PILCO Deisenroth and Rasmussen, 2011 Yes No Yes No
NAC Peters and Schaal 2008 Yes No Yes No
BOSS Asmuth et al., 2009 Yes No No No
Bayesian DP Strens, 2000 Yes No No No
MBBE Dearden et al., 2009 Yes No No No
SPITI Degris et al., 2006 Yes No No No
MBS Walsh et al., 2009 Yes No No Yes
U-TREE McCallum, 1996 Yes No No Yes
DYNA Sutton, 1990 Yes Yes No No
DYNA-2 Silver et al., 2008 Yes Yes Yes No
KWIK-LR Strehl and Littman, 2007 Yes No Partial No
FITTED R-MAX Jong and Stone, 2007 Yes No Yes No
DRE Nouri and Littman 2010 Yes No Yes No
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Sample Complexity of Exploration

Definition: Number of sub-optimal actions the agent must take

Lower bound is polynomial in N (# of states) and A (# of actions)

[Kakade 2003]

On a very large problem, NA actions is too many

If actions are expensive, dangerous, or time-consuming, even a

few thousand actions may be unacceptable

What should we do when we do not have enough actions to

guarantee convergence to an optimal policy?
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Thesis Question

Thesis Question

How should an online reinforcement learning agent act in

time-constrained domains?
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Thesis Question

Thesis Question

How should an online reinforcement learning agent act in

time-constrained domains?

Takes actions continually at specified frequency (not batch mode)

Concerned with reward during learning (not just final policy)

Todd Hester (UT Austin) Thesis Defense December 3, 2012 9



Thesis Question

Thesis Question

How should an online reinforcement learning agent act in

time-constrained domains?

Agent has a limited number of time steps

Not enough time steps to learn optimal policy without some

assumptions
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Solution

Model-Based Method

Learn transition and reward dynamics, then update value function

using model

Typically more sample-efficient than model-free approaches

Can update action-values without taking real actions in the world
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Solution

Model-Based Method

Learn transition and reward dynamics, then update value function

using model

Typically more sample-efficient than model-free approaches

Can update action-values without taking real actions in the world

But, can take significant computation time

Real-Time Architecture

Parallelize model learning, planning, and acting onto 3 parallel

threads

Utilize an anytime sample-based planning algorithm
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The TEXPLORE Algorithm

1 Model generalization for sample efficiency

2 Handles continuous state

3 Handles actuator delays

4 Selects actions continually in real-time

Available publicly as a ROS package:

www.ros.org/wiki/rl-texplore-ros-pkg
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Time-Constrained Domains

For many practical problems, agent cannot take thousands of

actions

Actions may be expensive, time-consuming, or dangerous

Agent does not have enough actions to guarantee it can learn an

optimal policy

Define domains that have this property as time-constrained

domains

Sample Complexity of Exploration

Definition: Number of sub-optimal actions the agent must take

Proven lower bound: O( NA
ǫ(1−γ) log(

1
δ
))

For deterministic domains: O( NA
(1−γ) ) [Kakade 2003]

Todd Hester (UT Austin) Thesis Defense December 3, 2012 13



Time-Constrained Domains

Lifetime L bounds the number of actions agent can take

Time-Constrained if L < 2NA

Two orders of magnitude less than lower bound

The agent does not have enough time steps to learn the optimal

policy without some additional assumptions about the domain

Assumption: Transition and reward are similar across states

Domain No. States No. Actions No. State-Actions Min Bound Min Bound Maximum L
Deterministic Stochastic

Taxi 500 6 3,000 300,000 1,050,000 6,000
Four Rooms 100 4 400 40,000 140,000 800
Two Rooms 51 4 204 20,400 72,400 408
Fuel World 39,711 8 317,688 31,768,800 111,190,800 635,376
Mountain Car 10,000 3 30,000 300,000 10,500,000 60,000
Puddle World 400 4 1,600 160,000 560,000 3,200
Cart-Pole Balancing 160,000 2 320,000 32,000,000 11,200,000 640,000
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Real-Time Action Selection

Model update can take too long

Planning can take too long
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Monte Carlo Tree Search Planning

Simulate trajectory from current state using model (rollout)

Use upper confidence bounds to select actions (UCT [Kocsis and

Szepesvári 2006])

Focus computation on states the agent is most likely to visit

Anytime—more rollouts, more accurate value estimates

Update value function at each state in rollout
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Real-Time Model Based Architecture (RTMBA)

Model learning and planning on

parallel threads

Action selection is not restricted

by their computation time

Use sample-based planning

(anytime)

Mutex locks on shared data
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Action Thread

Add experience, 〈s, a, s′, r〉 to list of experiences to be added to

model

Set agent’s current state for planning

Return best action according to policy
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Model Learning Thread

Make a copy of current model

Update model copy with new experiences from list (batch updates)

Swap model pointers

Repeat
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Planning Thread

Plan using a sample-based MCTS planner (i.e. UCT [Kocsis and

Szepesvári 2006])

Continually perform rollouts from agent’s current state

Rollouts from previous state can help
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Sample Efficiency

Model Generalization

Generalize that actions have similar effects across states

Do not want to explore every state-action

Speed model learning by making predictions about unseen

state-actions

Exploration

Model learning is dependent on acquiring useful experiences

Balance exploration and exploitation to maximize rewards in

time-constrained lifetime
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Model Generalization

Model learning is a supervised learning problem [Hester and

Stone 2009]

Input: State and Action

Output: Distribution over next states and reward

Factored state s = 〈s1, s2, ..., sn〉

Separate model for each state feature and reward
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C4.5 Decision Trees [Quinlan 1986]

Incremental and fast

Generalize broadly at first, refine over time

Split state space into regions with similar dynamics

Good at selecting relevant state features to split on
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Relative Effects

Predict the change in state: srel = s′ − s rather than absolute

next state s′

Often actions have the same effect across states

Previous work predicts relative effects [Jong and Stone 2007]

[Leffler et al. 2007]
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How the Decision Tree Model works

Build one tree to predict each state feature and reward

Combine their predictions: P(srel |s, a) = Πn
i=0P(s

rel
i |s, a)

Update trees on-line during learning
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Random Forest Model [Hester and Stone 2010]

Create a random forest of m

different decision trees [Breiman

2001]

Each tree is trained on a random

subset of the agent’s experiences

Each tree represents a hypothesis

of the true dynamics of the domain
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Random Forest Model [Hester and Stone 2010]

Create a random forest of m

different decision trees [Breiman

2001]

Each tree is trained on a random

subset of the agent’s experiences

Each tree represents a hypothesis

of the true dynamics of the domain

How best to use these different

hypotheses?
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How to use these hypotheses?

Bayesian Approaches

BOSS: Plan over most optimistic model at each action

MBBE: Solve each model and use distribution of q-values
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How to use these hypotheses?

Bayesian Approaches

BOSS: Plan over most optimistic model at each action

MBBE: Solve each model and use distribution of q-values

TEXPLORE

Desiderata: Explore less, be greedier

Plan on average of the predicted distributions

Balance models that are optimistic with ones that are pessimistic
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Exploration

Limits exploration to state-actions that appear promising, avoids

those which may have negative outcomes

A1:

A2:

A3:

5 models
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Seed experiences

Do not want to start from scratch learning on robots [Smart and

Kaelbling 2002]

Provide a few example transitions to initialize model

Example transitions could come from human experience

Avoid having the agent explore every state-action for unusual

states
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Continuous State

Problems

Make continuous predictions

Plan over continuous state space
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Continuous Modeling

Use M5 regression trees to model

continuous state [Quinlan 1992]

Each tree has a linear regression

model at its leaves

Piecewise linear prediction
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Continuous Planning

Perform UCT rollouts over continuously valued states

Discretize state space only for value backups
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Continuous Planning

Perform UCT rollouts over continuously valued states

Discretize state space only for value backups

Know where in discretized state you are
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Delays

Must know what state robot will be in when action is executed

Delays make domain non-Markov, but k-Markov
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Modeling Delay

Provide model with previous k

actions (Similar to U-Tree [McCallum

1996])

Trees can learn which delayed

actions are relevant

Only requires upper bound on k
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Planning with Delays

UCT can plan over augmented state-action histories easily

Would not be as easy with dynamic programming
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The TEXPLORE Algorithm

1 Limits exploration to be sample efficient

2 Handles continuous state

3 Handles actuator delays

4 Selects actions continually in real-time
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The TEXPLORE Algorithm

1 Limits exploration to be sample efficient

2 Handles continuous state

3 Handles actuator delays

4 Selects actions continually in real-time

5 Models domains with dependent feature transitions
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Autonomous Vehicle

Upgraded to run

autonomously by adding

shift-by-wire, steering, and

braking actuators.

Vehicle runs at 10 Hz.

Agent must provide

commands at this frequency.
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Velocity Control Task

State:

Current Velocity

Desired Velocity

Accelerator Pedal Position

Brake Pedal Position

Actions:

Do nothing

Increase/decrease brake position by 0.1

Increase/decrease accelerator position by 0.1

Reward: -10.0 * velocity error (m/s)
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Simulated Velocity Control Task

Experiments performed in simulation

10 second episodes (100 samples)

Random starting and target velocity chosen each episode

Time-Constrained Lifetime is 436, 150 actions (4, 361 episodes)

No seed experiences

Brake is controlled by a PID controller
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Exploration Comparisons using TEXPLORE’s model

1 TEXPLORE

2 ǫ-greedy exploration (ǫ = 0.1)

3 Boltzmann exploration (τ = 0.2)

4 VARIANCE-BONUS Approach v = 1 [Deisenroth & Rasmussen

2011]

5 VARIANCE-BONUS Approach v = 10

6 Bayesian DP-like Approach (use sampled model for 1 episode)

[Strens 2000]

7 BOSS-like Approach (use optimistic model) [Asmuth et al. 2009]

First five approaches use TEXPLORE’s model
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Sample Efficiency Results
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Adding ǫ-greedy, Boltzmann, or Bayesian DP-like exploration

does not improve performance
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Comparing with other models

1 BOSS (Sparse Dirichlet prior) [Asmuth et al. 2009]

2 Bayesian DP (Sparse Dirichlet prior) [Strens 2000]

3 PILCO (Gaussian Process Regression model) [Deisenroth &

Rasmussen 2011]

4 R-MAX (Tabular model) [Brafman & Tennenholtz 2001]

5 Q-LEARNING using tile-coding [Watkins 1989]
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Sample Efficiency Results
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TEXPLORE accrues significantly more rewards than all the other

methods after episode 24 (p < 0.01).
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Fuel World

Most of state space is very predictable

But fuel stations have varying costs

317, 688 State-Actions, Time-Constrained Lifetime: 635, 376

actions

Seed experiences of goal, fuel station, and running out of fuel
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Comparison methods

1 TEXPLORE (Greedy w.r.t. aggregate model)

2 ǫ-greedy exploration (ǫ = 0.1)

3 Boltzmann exploration (τ = 0.2)

4 VARIANCE-BONUS Approach v = 10 [Deisenroth & Rasmussen

2011]

5 Bayesian DP-like Approach (use sampled model for 1 episode)

[Strens 2000]

6 BOSS-like Approach (use optimistic model) [Asmuth et al. 2009]

7 BOSS (Sparse Dirichlet prior) [Asmuth et al. 2009]

8 Bayesian DP (Sparse Dirichlet prior) [Strens 2000]
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Fuel World Results
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TEXPLORE learns the fastest and accrues the most cumulative

reward of any of the methods.

TEXPLORE learns the task within the time-constrained lifetime

of 635, 376 steps.
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Fuel World Behavior

Agent focuses its exploration on fuel stations near the shortest

path to the goal.

Agent finds near-optimal policies.
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Continuous Models

1 Regression Tree Forest (TEXPLORE Default)

2 Single Regression Tree

3 Decision Tree Forest

4 Single Decision Tree

5 Tabular Model

6 KWIK Linear Regression [Strehl and Littman 2007]

7 Gaussian Process Regression (PILCO model) [Deisenroth &

Rasmussen 2011]
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Continuous Model Accuracy
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Regression tree forest and single regression tree have

significantly less error than all the other models in predicting the

next state (p < 0.001).

For reward, regression tree is significantly better than all models

but GP regression after 205 state-actions (p < 0.001).
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Methods for Delays

Model-Based Simulated (MBS) [Walsh et al. 2009]

Input exact value of delay k

Use model to simulate forward k steps

Use policy at that state to select action

Tabular model

Separate table entry for each state-action-history tuple

Car brake delay

Brake pedal is physically actuated, controlled with PID

Delay is not a number of discrete steps

Delay varies based on how far brake is from target position
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Handling Action Delays
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TEXPLORE with k = 1, 2, or 3 all perform significantly better than

than using no delay (k = 0) (p < 0.005).

These approaches are significantly better than using another

approach to handling delay (p < 0.005).
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Real-Time Action Selection Methods

Using TEXPLORE’s model

1 RTMBA (TEXPLORE)

2 Real Time Dynamic Programming (RTDP) [Barto et al. 1995]

3 Parallel Value Iteration

4 Value Iteration

Other methods

1 Dyna [Sutton 1990]

2 Q-Learning with tile-coding [Watkins 1989]
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Real-Time Action Selection Results
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TEXPLORE receives significantly more average rewards per

episode than the other methods after episode 29 (p < 0.01)
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On the physical vehicle

But, does it work on the actual vehicle?
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On the physical vehicle

5 trials, starting at 2 m/s, target of 5 m/s.

Time-constrained lifetime: 33, 550 steps, or 335 episodes.

No seed experiences
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On the physical vehicle
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Yes! It learns the task in 2 minutes (< 11 episodes)
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Characterization of Domains

Haystack Domains

Some state-action with unusual transition or reward function

image (doorway, goal, etc.)

Best exploration: try each state-action

Informative Domains

Some state features predict the locations of unusual states (robot

with distance sensors, camera)

Can use these features to explore more intelligently

Prior Information Domains

Agent is given information about location of unusual states (given

a map for navigating)
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Exploration for Different Domain Types

Haystack Domains

TEXPLORE with Explicit Exploration (TEXPLORE-EE)

Informative Domains

TEXPLORE with Variance and Novelty Intrinsic Rewards
(TEXPLORE-VANIR)

Unknown Domain Type

TEXPLORE with Learning Exploration Online (TEXPLORE-LEO)
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Exploration for Different Domain Types

Haystack Domains

TEXPLORE with Explicit Exploration (TEXPLORE-EE)

Informative Domains

TEXPLORE with Variance and Novelty Intrinsic Rewards
(TEXPLORE-VANIR)

Unknown Domain Type

TEXPLORE with Learning Exploration Online (TEXPLORE-LEO)
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TEXPLORE-VANIR for Informative Domains

Use intrinsic rewards to drive exploration

Combine TEXPLORE model with two intrinsic rewards:
1 Drives agent to where model is uncertain
2 Drives agent to transitions different from what the model was

trained on
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Variance Intrinsic Reward

Reward where model is uncertain

Calculate a measure of variance:

D(s,a) =
∑n

i=1

∑m
j=1

∑m
k=1 DKL(Pj(x

rel
i |s,a)||Pk (x

rel
i |s,a))

Add intrinsic reward proportional to variance measure:

R(s,a) = vD(s,a)
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Novelty Intrinsic Reward

Reward transitions that are most different from what was seen

Calculate L1 distance in feature space to nearest state where this

action was taken:

δ(s,a) = minsx∈Xa
||s − sx ||1

Add intrinsic reward proportional to novelty measure:

R(s,a) = nδ(s,a)

Given enough time, will drive agent to explore all state-actions.
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LightWorld Domain [Konidaris and Barto 2007]

Six actions: N, S, E, W, PICKUP,

PRESS

Agent must PICKUP key, use it to

PRESS lock, and then can leave

through door

Keys, locks, and unlocked doors

emit different colors of light

17 state features: ROOM, X, Y,

KEY, LOCKED, and RED, GREEN,

and BLUE light sensors in each of

the four directions

Reward: +10 for exiting door, 0

otherwise
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Comparison Methods

TEXPLORE Model

1 TEXPLORE-VANIR with v = 1, n = 3

2 External Rewards Only (TEXPLORE)

3 Bonus for regions with more competence progress (similar to IAC

[Baranes and Oudeyer 2009])

4 Bonus for regions with higher prediction errors

5 Explore state-actions with fewer than m visits (R-MAX [Brafman

and Tennenholtz 2001])

Tabular Model

1 External Rewards Only

2 R-MAX (explore state-actions with fewer than m visits)
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Task Performance
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TEXPLORE-VANIR receives significantly more cumulative rewards

(p < 0.001).
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TEXPLORE-VANIR Exploration

Novelty rewards draw agent to objects and corners.

Variance rewards make it explore using objects.
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Related Work: Sample Efficient Model Learning

SPITI [Degris et al. 2006]

Learn decision tree models for each feature

Used ǫ-greedy exploration

AMBI [Jong and Stone 2007]

Instance-based model with relative effects

Rmax bonus for state regions with few visits

PILCO [Deisenroth and Rasmussen 2011]

Use Gaussian Process regression to model dynamics

Exploration based on variance of GP predictions

Batch mode, agent is provided reward model
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Related Work: Bayesian RL

Offers optimal solution to exploration problem [Duff 2003]

Computationally intractable

Many approximate solutions:

Tie model parameters together [Poupart et al. 2006]

Sample from model distributions [Strens 2000, Asmuth et al. 2009]

Learn Bayesian optimal policy over time [Kolter and Ng 2009]
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Related Work: Continuous State

KWIK Linear Regression [Strehl and Littman 2007]

Linear regression model with prediction confidence

Only for linearly parametrized domains

FITTED-R-MAX [Jong and Stone 2007]

R-MAX style algorithm in continuous state

Use fitted value iteration [Gordon 1995]
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Related Work: Sensor and Actuator Delay

Model Based Simulation (MBS) [Walsh et al. 2009]

Provide domain’s delay, k

Simulate k steps ahead in model, take best action for this state

U-TREE [McCallum 1996]

Build decision trees for representing value function

Split on previous actions to handle delays
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Related Work: Real-Time Architecture

Dyna Framework [Sutton 1990, 1991]

Do Bellman updates on random states using model when not action

Still uses tabular model, assumes model update takes insignificant

time

Combining sample-based planning with model-based method

With UCT [Silver et al. 2008], With FSSS [Walsh et al. 2010]

Neither places a time restriction on model update or planning

Real-Time Dynamic Programming RTDP [Barto et al. 1995]

Similar to UCT, but full backups at each state
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Related Work: Robot Learning

Helicopter Control [Ng et al. 2003]

Learn helicopter model from experiences acquired from human

expert

Computation performed off-line

PILCO [Deisenroth and Rasmussen 2011]

Use Gaussian Process regression for model learning and planning

Very sample efficient in learning to control cart-pole

Takes 10 minutes of computation for every 2.5 seconds of

experience

POWER [Kober and Peters 2008]

Policy search for parameterized motor primitives

Only for episodic tasks

Todd Hester (UT Austin) Thesis Defense December 3, 2012 83



1 Introduction

2 TEXPLORE

3 Empirical Evaluation

4 Exploration

5 Conclusion

Related Work

Future Work

Conclusion

Todd Hester (UT Austin) Thesis Defense December 3, 2012 84



Future Work: Continuous Actions

Many robots could utilize continuous

actions (angles, velocities)

Regression tree model can make

predictions on the basis of continuous

actions

Could utilize work on UCT-like planning in

continuous actions spaces (HOOT) using

continuous bandit algorithms [Bubeck et

al. 2011; Mansley et al. 2011; Weinstein

and Littman 2012]
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Future Work: Opponent Modeling

Initialize each tree in forest with possible

opponent strategy

Could be from experience with past

opponents

Explore to determine which type of

opponent you are playing

Todd Hester (UT Austin) Thesis Defense December 3, 2012 86



Future Work: Lifelong Robot Learning

Goal: Act and learn in environment over

lifetime, performing many tasks

Handle large and complex state space:

Make algorithm more parallel

Generalize knowledge to new tasks: Find

best state representation
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Contributions

The TEXPLORE algorithm
Limits exploration to be sample efficient
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Handles actuator delays
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Contributions

The TEXPLORE algorithm

MDP Models that generalize action effects
Random forests of regression trees

Targeted Exploration
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Contributions

The TEXPLORE algorithm

MDP Models that generalize action effects

Targeted Exploration
Average predictions of each tree in random forest

Use intrinsic rewards for informative domains

Real-Time Architecture

ROS RL Interface

Empirical Evaluation
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Contributions

The TEXPLORE algorithm

MDP Models that generalize action effects

Targeted Exploration

Real-Time Architecture
Maintain sample efficiency of model-based methods

While acting in real-time

ROS RL Interface

Empirical Evaluation
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Contributions

The TEXPLORE algorithm

MDP Models that generalize action effects

Targeted Exploration

Real-Time Architecture

ROS RL Interface
Enables easy integration of RL on robots using ROS

Empirical Evaluation
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Contributions

The TEXPLORE algorithm

MDP Models that generalize action effects

Targeted Exploration

Real-Time Architecture

ROS RL Interface

Empirical Evaluation
Real-time learning while running on-board physical robot
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Conclusion

TEXPLORE:
1 Learns in few samples
2 Acts continually in real-time
3 Learns in continuous domains
4 Handles sensor and actuator

delays

TEXPLORE has been released as a

ROS package:

www.ros.org/wiki/rl-texplore-ros-pkg
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