TEXPLORE: Temporal Difference Reinforcement Learning for Robots and Time-Constrained Domains

Todd Hester

Learning Agents Research Group Department of Computer Science The University of Texas at Austin

> Thesis Defense December 3, 2012

- Robots have the potential to solve many problems
- Moving from controlled to natural environments is difficult
- We need methods for them to learn and adapt to new situations

Reinforcement Learning

- Could be used for learning and adaptation on robots
- Value function RL has string of positive theoretical results [Watkins 1989, Brafman and Tennenholtz 2001]

Reinforcement Learning

- Could be used for learning and adaptation on robots
- Value function RL has string of positive theoretical results [Watkins 1989, Brafman and Tennenholtz 2001]
- However, learning on robots presents many challenges for RL

Velocity Control of an Autonomous Vehicle

- Upgraded to run autonomously by adding shift-by-wire, steering, and braking actuators.
- 10 second episodes (at 10 Hz: 100 samples / episode)

State:

- Current Velocity
- Desired Velocity
- Accelerator Pedal Position
- Brake Pedal Position
- Actions:
 - Do nothing
 - Increase/decrease brake position by 0.1
 - Increase/decrease accelerator position by 0.1
- Reward: -10.0 * velocity error (m/s)

Desiderata

- Learning algorithm must learn in very few actions (be sample efficient)
- Learning algorithm must handle continuous state
- Learning algorithm must handle delayed actions
- Learning algorithm must take actions continually in real-time (while learning)

Desiderata

- Learning algorithm must learn in very few actions (be sample efficient)
- Learning algorithm must handle continuous state
- Learning algorithm must handle delayed actions
- Learning algorithm must take actions continually in real-time (while learning)

Desiderata

- Learning algorithm must learn in very few actions (be sample efficient)
- Learning algorithm must handle continuous state
- Learning algorithm must handle delayed actions
- Learning algorithm must take actions continually in real-time (while learning)

Common Approaches

Algorithm	Citation		Real	Continuous	Delay
		Efficient	Time		
R-MAX	Brafman and Tennenholtz, 2001	Yes	No	No	No
Q-LEARNING	Watkins, 1989	No	Yes	No	No
with F.A.	Sutton and Barto, 1998	No	Yes	Yes	No
SARSA	Rummery and Niranjan, 1994	No	Yes	No	No
PILCO	Deisenroth and Rasmussen, 2011	Yes	No	Yes	No
NAC	Peters and Schaal 2008	Yes	No	Yes	No
BOSS	Asmuth et al., 2009	Yes	No	No	No
Bayesian DP	Strens, 2000	Yes	No	No	No
MBBE	Dearden et al., 2009	Yes	No	No	No
SPITI	Degris et al., 2006	Yes	No	No	No
MBS	Walsh et al., 2009	Yes	No	No	Yes
U-TREE	McCallum, 1996	Yes	No	No	Yes
DYNA	Sutton, 1990	Yes	Yes	No	No
dyna-2	Silver et al., 2008	Yes	Yes	Yes	No
KWIK-LR	Strehl and Littman, 2007	Yes	No	Partial	No
FITTED R-MAX	Jong and Stone, 2007	Yes	No	Yes	No
DRE	Nouri and Littman 2010	Yes	No	Yes	No

・ロト ・ 四ト ・ ヨト ・ ヨト

Common Approaches

Algorithm	Citation	Sample	Real	Continuous	Delay
		Efficient	Time		
R-MAX	Brafman and Tennenholtz, 2001	Yes	No	No	No
Q-LEARNING	Watkins, 1989	No	Yes	No	No
with F.A.	Sutton and Barto, 1998	No	Yes	Yes	No
SARSA	Rummery and Niranjan, 1994	No	Yes	No	No
PILCO	Deisenroth and Rasmussen, 2011	Yes	No	Yes	No
NAC	Peters and Schaal 2008	Yes	No	Yes	No
BOSS	Asmuth et al., 2009	Yes	No	No	No
Bayesian DP	Strens, 2000	Yes	No	No	No
MBBE	Dearden et al., 2009	Yes	No	No	No
SPITI	Degris et al., 2006	Yes	No	No	No
MBS	Walsh et al., 2009	Yes	No	No	Yes
U-TREE	McCallum, 1996	Yes	No	No	Yes
DYNA	Sutton, 1990	Yes	Yes	No	No
DYNA-2	Silver et al., 2008	Yes	Yes	Yes	No
KWIK-LR	Strehl and Littman, 2007	Yes	No	Partial	No
FITTED R-MAX	Jong and Stone, 2007	Yes	No	Yes	No
DRE	Nouri and Littman 2010	Yes	No	Yes	No
TEXPLORE	This thesis	Yes	Yes	Yes	Yes

Definition: Number of sub-optimal actions the agent must take

- Lower bound is polynomial in N (# of states) and A (# of actions) [Kakade 2003]
- On a very large problem, NA actions is too many
- If actions are expensive, dangerous, or time-consuming, even a few thousand actions may be unacceptable
- What should we do when we do not have enough actions to guarantee convergence to an optimal policy?

Thesis Question

How should an online reinforcement learning agent act in time-constrained domains?

-

- E 🕨

Thesis Question

How should an online reinforcement learning agent act in time-constrained domains?

- Takes actions continually at specified frequency (not batch mode)
- Concerned with reward during learning (not just final policy)

Thesis Question

How should an online reinforcement learning agent act in time-constrained domains?

- Agent has a limited number of time steps
- Not enough time steps to learn optimal policy without some assumptions

Model-Based Method

- Learn transition and reward dynamics, then update value function using model
- Typically more sample-efficient than model-free approaches
- Can update action-values without taking real actions in the world

Model-Based Method

- Learn transition and reward dynamics, then update value function using model
- Typically more sample-efficient than model-free approaches
- Can update action-values without taking real actions in the world
- But, can take significant computation time

Model-Based Method

- Learn transition and reward dynamics, then update value function using model
- Typically more sample-efficient than model-free approaches
- Can update action-values without taking real actions in the world
- But, can take significant computation time

Real-Time Architecture

- Parallelize model learning, planning, and acting onto 3 parallel threads
- Utilize an **anytime** sample-based planning algorithm

→

- Model generalization for sample efficiency
- Handles continuous state
- Handles actuator delays
- Selects actions continually in real-time

Available publicly as a **ROS package**:

www.ros.org/wiki/rl-texplore-ros-pkg

- Motivation
- Solution
- Background

2) TEXPLORE

3 Empirical Evaluation

Exploration

5 Conclusion

-

- For many practical problems, agent cannot take thousands of actions
- Actions may be expensive, time-consuming, or dangerous
- Agent does not have enough actions to guarantee it can learn an optimal policy
- Define domains that have this property as time-constrained domains

Sample Complexity of Exploration

Definition: Number of sub-optimal actions the agent must take

- Proven lower bound: $O(\frac{NA}{\epsilon(1-\gamma)}log(\frac{1}{\delta}))$
- For deterministic domains: $O(\frac{NA}{(1-\gamma)})$ [Kakade 2003]

Time-Constrained Domains

- Lifetime *L* bounds the number of actions agent can take
- Time-Constrained if L < 2NA
- Two orders of magnitude less than lower bound
- The agent does **not** have enough time steps to learn the optimal policy without some additional assumptions about the domain
- Assumption: Transition and reward are similar across states

Domain	No. States	No. Actions	No. State-Actions	Min Bound	Min Bound	Maximum L
				Deterministic	Stochastic	
Taxi	500	6	3,000	300,000	1,050,000	6,000
Four Rooms	100	4	400	40,000	140,000	800
Two Rooms	51	4	204	20,400	72,400	408
Fuel World	39,711	8	317,688	31,768,800	111,190,800	635,376
Mountain Car	10,000	3	30,000	300,000	10,500,000	60,000
Puddle World	400	4	1,600	160,000	560,000	3,200
Cart-Pole Balancing	160,000	2	320,000	32,000,000	11,200,000	640,000

Introduction

2

TEXPLORE

- Real-Time Architecture
- Sample Efficiency
- Continuous State
- Sensor and Actuator Delays

3 Empirical Evaluation

4 Exploration

5 Conclusion

Introduction

2

TEXPLORE

- Real-Time Architecture
- Sample Efficiency
- Continuous State
- Sensor and Actuator Delays

3 Empirical Evaluation

4 Exploration

5 Conclusion

Real-Time Action Selection

- Model update can take too long
- Planning can take too long

A (10) A (10)

Monte Carlo Tree Search Planning

- Simulate trajectory from current state using model (rollout)
- Use upper confidence bounds to select actions (UCT [Kocsis and Szepesvári 2006])
- Focus computation on states the agent is most likely to visit
- Anytime—more rollouts, more accurate value estimates
- Update value function at each state in rollout

Real-Time Model Based Architecture (RTMBA)

- Model learning and planning on parallel threads
- Action selection is not restricted by their computation time

- Use sample-based planning (anytime)
- Mutex locks on shared data

- Add experience, (s, a, s', r) to list of experiences to be added to model
- Set agent's current state for planning
- Return best action according to policy

→ ∃ →

Model Learning Thread

- Make a copy of current model
- Update model copy with new experiences from list (batch updates)
- Swap model pointers
- Repeat

- Plan using a sample-based MCTS planner (i.e. UCT [Kocsis and Szepesvári 2006])
- Continually perform rollouts from agent's current state
- Rollouts from previous state can help

.

Introduction

TEXPLORE

Real-Time Architecture

Sample Efficiency

- Continuous State
- Sensor and Actuator Delays

3 Empirical Evaluation

Exploration

5 Conclusion

Model Generalization

- Generalize that actions have similar effects across states
- Do not want to explore every state-action
- Speed model learning by making predictions about unseen state-actions

Exploration

- Model learning is dependent on acquiring useful experiences
- Balance exploration and exploitation to maximize rewards in time-constrained lifetime

< ∃ →

- Model learning is a supervised learning problem [Hester and Stone 2009]
- Input: State and Action
- Output: Distribution over next states and reward
- Factored state $s = \langle s_1, s_2, ..., s_n \rangle$
- Separate model for each state feature and reward

C4.5 Decision Trees [Quinlan 1986]

- Incremental and fast
- Generalize broadly at first, refine over time
- Split state space into regions with similar dynamics
- Good at selecting relevant state features to split on

- Predict the change in state: s^{rel} = s' s rather than absolute next state s'
- Often actions have the same effect across states
- Previous work predicts relative effects [Jong and Stone 2007] [Leffler et al. 2007]

How the Decision Tree Model works

- Build one tree to predict each state feature and reward
- Combine their predictions: $P(s^{rel}|s, a) = \prod_{i=0}^{n} P(s_i^{rel}|s, a)$
- Update trees on-line during learning
Random Forest Model [Hester and Stone 2010]

- Create a random forest of *m* different decision trees [Breiman 2001]
- Each tree is trained on a random subset of the agent's experiences
- Each tree represents a hypothesis of the true dynamics of the domain

Random Forest Model [Hester and Stone 2010]

- Create a random forest of *m* different decision trees [Breiman 2001]
- Each tree is trained on a random subset of the agent's experiences
- Each tree represents a hypothesis of the true dynamics of the domain
- How best to use these different hypotheses?

Bayesian Approaches

- BOSS: Plan over most optimistic model at each action
- MBBE: Solve each model and use distribution of q-values

Bayesian Approaches

- BOSS: Plan over most optimistic model at each action
- MBBE: Solve each model and use distribution of q-values

TEXPLORE

- Desiderata: Explore less, be greedier
- Plan on average of the predicted distributions
- Balance models that are optimistic with ones that are pessimistic

 Limits exploration to state-actions that appear promising, avoids those which may have negative outcomes

5 models

Todd Hester	(UT Austin)
-------------	-------------

Thesis Defense

 Limits exploration to state-actions that appear promising, avoids those which may have negative outcomes

Todd Hester (U	T Austin)
----------------	-----------

 Limits exploration to state-actions that appear promising, avoids those which may have negative outcomes

Todd Hester (U	T Austin)
----------------	-----------

 Limits exploration to state-actions that appear promising, avoids those which may have negative outcomes

Todd Hester	(UT Austin)
-------------	-------------

 Limits exploration to state-actions that appear promising, avoids those which may have negative outcomes

Model 4

Todd Hester (U	T Austin)
----------------	-----------

Thesis Defense

 Limits exploration to state-actions that appear promising, avoids those which may have negative outcomes

Todd Hester (U	T Austin)
----------------	-----------

 Limits exploration to state-actions that appear promising, avoids those which may have negative outcomes

BOSS

 Limits exploration to state-actions that appear promising, avoids those which may have negative outcomes

BOSS

Todd Hester	(UT Austin)
-------------	-------------

Thesis Defense

 Limits exploration to state-actions that appear promising, avoids those which may have negative outcomes

MBBE

 Limits exploration to state-actions that appear promising, avoids those which may have negative outcomes

MBBE

Todd Hester	(UT Austin)
-------------	-------------

 Limits exploration to state-actions that appear promising, avoids those which may have negative outcomes

TEXPLORE

 Limits exploration to state-actions that appear promising, avoids those which may have negative outcomes

TEXPLORE

- Do not want to start from scratch learning on robots [Smart and Kaelbling 2002]
- Provide a few example transitions to initialize model
- Example transitions could come from human experience
- Avoid having the agent explore every state-action for unusual states

Introduction

TEXPLORE

- Real-Time Architecture
- Sample Efficiency

Continuous State

Sensor and Actuator Delays

3 Empirical Evaluation

4 Exploration

5 Conclusion

Problems

- Make continuous predictions
- Plan over continuous state space

- Use M5 regression trees to model continuous state [Quinlan 1992]
- Each tree has a linear regression model at its leaves
- Piecewise linear prediction

Continuous Modeling

- Use M5 regression trees to model continuous state [Quinlan 1992]
- Each tree has a linear regression model at its leaves
- Piecewise linear prediction

Continuous Planning

- Perform UCT rollouts over continuously valued states
- Discretize state space only for value backups

Continuous Planning

- Perform UCT rollouts over continuously valued states
- Discretize state space only for value backups

Continuous Planning

- Perform UCT rollouts over continuously valued states
- Discretize state space only for value backups
- Know where in discretized state you are

Introduction

TEXPLORE

- Real-Time Architecture
- Sample Efficiency
- Continuous State
- Sensor and Actuator Delays

3 Empirical Evaluation

Exploration

5 Conclusion

- Must know what state robot will be in when action is executed
- Delays make domain non-Markov, but k-Markov

- Provide model with previous k actions (Similar to U-Tree [McCallum 1996])
- Trees can learn which delayed actions are relevant
- Only requires upper bound on k

-

- 3 ≥ >

- Provide model with previous k actions (Similar to U-Tree [McCallum 1996])
- Trees can learn which delayed actions are relevant
- Only requires **upper bound on** *k*

Planning with Delays

• UCT can plan over augmented state-action histories easily

• Would not be as easy with dynamic programming

Limits exploration to be sample efficient

- Handles continuous state
- Handles actuator delays
- Selects actions continually in real-time

Limits exploration to be sample efficient

- Handles continuous state
- Handles actuator delays
- Selects actions continually in real-time
- Models domains with dependent feature transitions

Introduction

2 TEXPLORE

3 Empirical Evaluation

- Sample Efficiency
- Continuous State
- Sensor and Actuator Delays
- Real-Time Action Selection
- On the Physical Vehicle

Exploration

5 Conclusion

Autonomous Vehicle

- Upgraded to run autonomously by adding shift-by-wire, steering, and braking actuators.
- Vehicle runs at 10 Hz.
- Agent must provide commands at this frequency.

State:

- Current Velocity
- Desired Velocity
- Accelerator Pedal Position
- Brake Pedal Position
- Actions:
 - Do nothing
 - Increase/decrease brake position by 0.1
 - Increase/decrease accelerator position by 0.1
- Reward: -10.0 * velocity error (m/s)

- Experiments performed in simulation
- 10 second episodes (100 samples)
- Random starting and target velocity chosen each episode
- Time-Constrained Lifetime is 436, 150 actions (4, 361 episodes)
- No seed experiences
- Brake is controlled by a PID controller

Introduction

2 TEXPLORE

3 E

Empirical EvaluationSample Efficiency

- Continuous State
- Sensor and Actuator Delays
- Real-Time Action Selection
- On the Physical Vehicle

Exploration

5 Conclusion
TEXPLORE

- 2 ϵ -greedy exploration (ϵ = 0.1)
- Soltzmann exploration ($\tau = 0.2$)
- VARIANCE-BONUS Approach v = 1 [Deisenroth & Rasmussen 2011]
- S VARIANCE-BONUS Approach v = 10
- Bayesian DP-like Approach (use sampled model for 1 episode) [Strens 2000]
- BOSS-like Approach (use optimistic model) [Asmuth et al. 2009]

First five approaches use **TEXPLORE's model**

A Term

Sample Efficiency Results

 Adding ε-greedy, Boltzmann, or Bayesian DP-like exploration does not improve performance

A B b 4 B b

- BOSS (Sparse Dirichlet prior) [Asmuth et al. 2009]
- Bayesian DP (Sparse Dirichlet prior) [Strens 2000]
- PILCO (Gaussian Process Regression model) [Deisenroth & Rasmussen 2011]
- R-MAX (Tabular model) [Brafman & Tennenholtz 2001]
- Q-LEARNING using tile-coding [Watkins 1989]

Sample Efficiency Results

Simulated Car Control Between Random Velocities

 TEXPLORE accrues significantly more rewards than all the other methods after episode 24 (p < 0.01).

ъ

- Most of state space is very predictable
- But fuel stations have varying costs
- 317,688 State-Actions, Time-Constrained Lifetime: 635,376 actions
- Seed experiences of goal, fuel station, and running out of fuel

- TEXPLORE (Greedy w.r.t. aggregate model)
- 2 ϵ -greedy exploration (ϵ = 0.1)
- **Boltzmann** exploration ($\tau = 0.2$)
- VARIANCE-BONUS Approach v = 10 [Deisenroth & Rasmussen 2011]
- Bayesian DP-like Approach (use sampled model for 1 episode) [Strens 2000]
- BOSS-like Approach (use optimistic model) [Asmuth et al. 2009]
- BOSS (Sparse Dirichlet prior) [Asmuth et al. 2009]
- Bayesian DP (Sparse Dirichlet prior) [Strens 2000]

→ ∃ → ...

Fuel World Results

- TEXPLORE learns the fastest and accrues the most cumulative reward of any of the methods.
- TEXPLORE learns the task within the time-constrained lifetime of 635, 376 steps.

글 🕨 🖌 글

Fuel World Behavior

- Agent focuses its exploration on fuel stations near the shortest path to the goal.
- Agent finds near-optimal policies.

Introduction

2 TEXPLORE

3 Empirical Evaluation

Sample Efficiency

Continuous State

- Sensor and Actuator Delays
- Real-Time Action Selection
- On the Physical Vehicle

Exploration

5 Conclusion

- Regression Tree Forest (TEXPLORE Default)
- Single Regression Tree
- Oecision Tree Forest
- Single Decision Tree
- Tabular Model
- KWIK Linear Regression [Strehl and Littman 2007]
- Gaussian Process Regression (PILCO model) [Deisenroth & Rasmussen 2011]

Continuous Model Accuracy

- **Regression tree forest and single regression tree** have significantly less error than all the other models in predicting the next state (*p* < 0.001).
- For reward, regression tree is significantly better than all models but GP regression after 205 state-actions (p < 0.001).

Todd Hester (UT Austin)

Introduction

2 TEXPLORE

3 Empirical Evaluation

- Sample Efficiency
- Continuous State

Sensor and Actuator Delays

- Real-Time Action Selection
- On the Physical Vehicle

Exploration

5 Conclusion

Methods for Delays

Model-Based Simulated (MBS) [Walsh et al. 2009]

- Input exact value of delay k
- Use model to simulate forward k steps
- Use policy at that state to select action

Tabular model

Separate table entry for each state-action-history tuple

Car brake delay

- Brake pedal is physically actuated, controlled with PID
- Delay is not a number of discrete steps
- Delay varies based on how far brake is from target position

Handling Action Delays

- TEXPLORE with k = 1, 2, or 3 all perform significantly better than than using no delay (k = 0) (p < 0.005).
- These approaches are significantly better than using another approach to handling delay (p < 0.005).

-

Introduction

2 TEXPLORE

3 Empirical Evaluation

- Sample Efficiency
- Continuous State
- Sensor and Actuator Delays

Real-Time Action Selection

On the Physical Vehicle

Exploration

5 Conclusion

Using TEXPLORE's model

- RTMBA (TEXPLORE)
- Real Time Dynamic Programming (RTDP) [Barto et al. 1995]
- Parallel Value Iteration
- Value Iteration

Other methods

- Dyna [Sutton 1990]
- Q-Learning with tile-coding [Watkins 1989]

Real-Time Action Selection Results

 TEXPLORE receives significantly more average rewards per episode than the other methods after episode 29 (p < 0.01)

Introduction

2 TEXPLORE

3 Empirical Evaluation

- Sample Efficiency
- Continuous State
- Sensor and Actuator Delays
- Real-Time Action Selection
- On the Physical Vehicle

Exploration

5 Conclusion

On the physical vehicle

But, does it work on the actual vehicle?

Todd Hester	(UT Austin)
-------------	-------------

On the physical vehicle

- 5 trials, starting at 2 m/s, target of 5 m/s.
- Time-constrained lifetime: 33, 550 steps, or 335 episodes.
- No seed experiences

On the physical vehicle

Yes! It learns the task in 2 minutes (< 11 episodes)</p>

Todd Hester	(UT Austin)
-------------	-------------

3 Empirical Evaluation

-

Haystack Domains

- Some state-action with unusual transition or reward function image (doorway, goal, etc.)
- Best exploration: try each state-action

Informative Domains

- Some state features predict the locations of unusual states (robot with distance sensors, camera)
- Can use these features to explore more intelligently

Prior Information Domains

 Agent is given information about location of unusual states (given a map for navigating)

- Haystack Domains
 - TEXPLORE with Explicit Exploration (TEXPLORE-EE)
- Informative Domains
 - TEXPLORE with Variance and Novelty Intrinsic Rewards (TEXPLORE-VANIR)
- Unknown Domain Type
 - TEXPLORE with Learning Exploration Online (TEXPLORE-LEO)

• Haystack Domains

- TEXPLORE with Explicit Exploration (TEXPLORE-EE)
- Informative Domains
 - TEXPLORE with Variance and Novelty Intrinsic Rewards (TEXPLORE-VANIR)

Unknown Domain Type

TEXPLORE with Learning Exploration Online (TEXPLORE-LEO)

A B F A B F

TEXPLORE-VANIR for Informative Domains

- Use intrinsic rewards to drive exploration
- Combine TEXPLORE model with two intrinsic rewards:
 - Drives agent to where model is uncertain
 - Drives agent to transitions different from what the model was trained on

Variance Intrinsic Reward

- Reward where model is uncertain
- Calculate a measure of variance: $D(s, a) = \sum_{i=1}^{n} \sum_{j=1}^{m} \sum_{k=1}^{m} D_{KL}(P_j(x_i^{rel}|s, a) || P_k(x_i^{rel}|s, a))$
- Add intrinsic reward proportional to variance measure:

 $R(s,a) = \mathbf{v}D(s,a)$

Novelty Intrinsic Reward

- Reward transitions that are most different from what was seen
- Calculate *L*₁ **distance in feature space** to nearest state where this action was taken:

 $\delta(\boldsymbol{s}, \boldsymbol{a}) = \min_{\boldsymbol{s}_{x} \in \boldsymbol{X}_{a}} ||\boldsymbol{s} - \boldsymbol{s}_{x}||_{1}$

- Add intrinsic reward proportional to novelty measure: $R(s, a) = \mathbf{n}\delta(s, a)$
- Given enough time, will drive agent to explore all state-actions.

LightWorld Domain [Konidaris and Barto 2007]

- Six actions: N, S, E, W, PICKUP, PRESS
- Agent must PICKUP key, use it to PRESS lock, and then can leave through door
- Keys, locks, and unlocked doors emit different colors of light
- 17 state features: ROOM, X, Y, KEY, LOCKED, and RED, GREEN, and BLUE light sensors in each of the four directions
- Reward: +10 for exiting door, 0 otherwise

∃ >

TEXPLORE Model

- TEXPLORE-VANIR with v = 1, n = 3
- External Rewards Only (TEXPLORE)
- Bonus for regions with more competence progress (similar to IAC [Baranes and Oudeyer 2009])
- Bonus for regions with higher prediction errors
- Explore state-actions with fewer than m visits (R-MAX [Brafman and Tennenholtz 2001])

Tabular Model

External Rewards Only

R-MAX (explore state-actions with fewer than m visits)

Task Performance

• TEXPLORE-VANIR receives significantly more cumulative rewards (p < 0.001).

イロト イ団ト イヨト イヨト

TEXPLORE-VANIR Exploration

- Novelty rewards draw agent to objects and corners.
- Variance rewards make it explore using objects.

Todd Hester (UT Austin)

- 2 TEXPLORE
- 3 Empirical Evaluation
- Exploration

- Future Work
- Conclusion

-

- SPITI [Degris et al. 2006]
 - Learn decision tree models for each feature
 - Used ε-greedy exploration
- AMBI [Jong and Stone 2007]
 - Instance-based model with relative effects
 - R_{max} bonus for state regions with few visits
- PILCO [Deisenroth and Rasmussen 2011]
 - Use Gaussian Process regression to model dynamics
 - Exploration based on variance of GP predictions
 - Batch mode, agent is provided reward model

- Offers optimal solution to exploration problem [Duff 2003]
- Computationally intractable
- Many approximate solutions:
 - Tie model parameters together [Poupart et al. 2006]
 - Sample from model distributions [Strens 2000, Asmuth et al. 2009]
 - Learn Bayesian optimal policy over time [Kolter and Ng 2009]

• KWIK Linear Regression [Strehl and Littman 2007]

- Linear regression model with prediction confidence
- Only for linearly parametrized domains
- FITTED-R-MAX [Jong and Stone 2007]
 - R-MAX style algorithm in continuous state
 - Use fitted value iteration [Gordon 1995]
• Model Based Simulation (MBS) [Walsh et al. 2009]

- Provide domain's delay, k
- Simulate *k* steps ahead in model, take best action for this state
- U-TREE [McCallum 1996]
 - Build decision trees for representing value function
 - Split on previous actions to handle delays

• Dyna Framework [Sutton 1990, 1991]

- Do Bellman updates on random states using model when not action
- Still uses tabular model, assumes model update takes insignificant time

• Combining sample-based planning with model-based method

- With UCT [Silver et al. 2008], With FSSS [Walsh et al. 2010]
- Neither places a time restriction on model update or planning
- Real-Time Dynamic Programming RTDP [Barto et al. 1995]
 - Similar to UCT, but full backups at each state

• Helicopter Control [Ng et al. 2003]

- Learn helicopter model from experiences acquired from human expert
- Computation performed off-line
- PILCO [Deisenroth and Rasmussen 2011]
 - Use Gaussian Process regression for model learning and planning
 - Very sample efficient in learning to control cart-pole
 - Takes 10 minutes of computation for every 2.5 seconds of experience
- POWER [Kober and Peters 2008]
 - Policy search for parameterized motor primitives
 - Only for episodic tasks

2 TEXPLORE

3 Empirical Evaluation

Exploration

Future Work

< E

- Many robots could utilize continuous actions (angles, velocities)
- Regression tree model can make predictions on the basis of continuous actions
- Could utilize work on UCT-like planning in continuous actions spaces (HOOT) using continuous bandit algorithms [Bubeck et al. 2011; Mansley et al. 2011; Weinstein and Littman 2012]

- Initialize each tree in forest with possible opponent strategy
- Could be from experience with past opponents
- Explore to determine which type of opponent you are playing

Future Work: Lifelong Robot Learning

- Goal: Act and learn in environment over lifetime, performing many tasks
- Handle large and complex state space: Make algorithm more parallel
- Generalize knowledge to new tasks: Find best state representation

- MDP Models that generalize action effects
- Targeted Exploration
- Real-Time Architecture
- ROS RL Interface
- Empirical Evaluation

Contributions

- The TEXPLORE algorithm
 - Limits exploration to be sample efficient
 - Handles continuous state
 - Handles actuator delays
 - Selects actions continually in real-time
 - Models domains with dependent feature transitions
- MDP Models that generalize action effects
- Targeted Exploration
- Real-Time Architecture
- ROS RL Interface
- Empirical Evaluation

MDP Models that generalize action effects Random forests of regression trees

- Targeted Exploration
- Real-Time Architecture
- ROS RL Interface
- Empirical Evaluation

- MDP Models that generalize action effects
- Targeted Exploration
 - Average predictions of each tree in random forest
 - Use intrinsic rewards for informative domains
- Real-Time Architecture
- ROS RL Interface
- Empirical Evaluation

- MDP Models that generalize action effects
- Targeted Exploration
- Real-Time Architecture
 - Maintain sample efficiency of model-based methods
 - While acting in real-time
- ROS RL Interface
- Empirical Evaluation

- MDP Models that generalize action effects
- Targeted Exploration
- Real-Time Architecture
- ROS RL Interface
 - Enables easy integration of RL on robots using ROS
- Empirical Evaluation

- MDP Models that generalize action effects
- Targeted Exploration
- Real-Time Architecture
- ROS RL Interface
- Empirical Evaluation
 - Real-time learning while running on-board physical robot

• TEXPLORE:

- Learns in few samples
- Acts continually in real-time
- Learns in continuous domains
- Handles sensor and actuator delays
- TEXPLORE has been released as a ROS package:

www.ros.org/wiki/rl-texplore-ros-pkg

