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Autonomous Trading in Modern Electricity Markets

Daniel Urieli, Ph.D.

The University of Texas at Austin, 2015

Supervisor: Peter Stone

The smart grid is an electricity grid augmented with digital technologies that au-

tomate the management of electricity delivery. The smart grid is envisioned to be

a main enabler of sustainable, clean, efficient, reliable, and secure energy supply.

One of the milestones in the smart grid vision will be programs for customers to

participate in electricity markets through demand-side management and distributed

generation; electricity markets will (directly or indirectly) incentivize customers to

adapt their demand to supply conditions, which in turn will help to utilize intermit-

tent energy resources such as from solar and wind, and to reduce peak-demand.

Since wholesale electricity markets are not designed for individual participa-

tion, retail brokers could represent customer populations in the wholesale market,

and make profit while contributing to the electricity grid’s stability and reducing

customer costs. A retail broker will need to operate continually and make real-time

decisions in a complex, dynamic environment. Therefore, it will benefit from em-

ploying an autonomous broker agent. With this motivation in mind, this dissertation
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makes five main contributions to the areas of artificial intelligence, smart grids, and

electricity markets.

First, this dissertation formalizes the problem of autonomous trading by a

retail broker in modern electricity markets. Since the trading problem is intractable

to solve exactly, this formalization provides a guideline for approximate solutions.

Second, this dissertation introduces a general algorithm for autonomous

trading in modern electricity markets, named LATTE (Lookahead-policy for Au-

tonomous Time-constrained Trading of Electricity). LATTE is a general framework

that can be instantiated in different ways that tailor it to specific setups.

Third, this dissertation contributes fully implemented and operational au-

tonomous broker agents, each using a different instantiation of LATTE. These agents

were successful in international competitions and controlled experiments and can

serve as benchmarks for future research in this domain. Detailed descriptions of the

agents’ behaviors as well as their source code are included in this dissertation.

Fourth, this dissertation contributes extensive empirical analysis which val-

idates the effectiveness of LATTE in different competition levels under a variety

of environmental conditions, shedding light on the main reasons for its success by

examining the importance of its constituent components.

Fifth, this dissertation examines the impact of Time-Of-Use (TOU) tariffs in

competitive electricity markets through empirical analysis. Time-Of-Use tariffs are

proposed for demand-side management both in the literature and in the real-world.

The success of the different instantiations of LATTE demonstrates its gener-

ality in the context of electricity markets. Ultimately, this dissertation demonstrates

that an autonomous broker can act effectively in modern electricity markets by exe-

cuting an efficient lookahead policy that optimizes its predicted utility, and by doing

so the broker can benefit itself, its customers, and the economy.
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Chapter 1

Introduction

To ensure sustainable existence for society, a transition to sustainable energy con-

sumption is necessary. In 2003, the U.S. Department of Energy published a report

named “Grid 2030: A National Vision For Electricity’s Second 100 Years” [114]

which lays out a vision and an action plan for upgrading the traditional electricity

grid into a smart grid. The smart grid is expected to be a major step towards sus-

tainable, clean, efficient, reliable, and secure energy supply. Current deployments of

smart grid technologies [108] and planned investments in the smart grid show that

there is high-interest around the world to make the smart grid vision a reality. In

the US, the required investments between 2011 and 2031 are estimated to total close

to 500 billion dollars, and the benefit is estimated to be 1.2-2 trillion dollars [17]. In

the European Union, the required investments between 2011 and 2050 are estimated

to total about 2 trillion Euros [18].

One of the milestones described in the Grid 2030 vision is “Programs for

customer participation in power markets through demand-side management and

distributed generation”. Demand-side management refers to adapting customers’

electricity demand to supply conditions, and may be implemented using new power
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markets (aka electricity markets)1 that financially motivate desirable demand pat-

terns. Since wholesale power markets are not designed for individual customer

participation [49], retail brokers can represent large customer populations. These

retail brokers can aggregate and predict customers’ demand and production and

participate in the wholesale market on behalf of their customers. By representing

customer populations, brokers can make profit while reducing their customers’ costs

and contributing to grid stability [44, 47, 45]. Grid stability depends on having a

perfect balance between supply and demand at all times. Brokers who are financially

incentivized to maintain supply-demand balance in their portfolios can financially

incentivize their customers to adapt their demand to supply conditions, thus con-

tributing to demand-side management, and to the above Grid 2030 milestone.

A retail broker acts in multiple markets in parallel. In the retail market, it

designs tariff contracts that attract consumers and distributed producers (such as

rooftop solar and wind turbines). In the wholesale market, it bids for future energy

contracts. At all times the broker must maintain supply-demand balance in its

portfolio, potentially by affecting its customers’ demand through pricing incentives

and consumption curtailments.

Operating profitably as a retail broker is a challenging problem. A broker

needs to continually select among a large set of actions, under real-time constraints,

while incorporating large amounts of information and complex calculations into

its decision process, so that its long term profit is maximized in a competitive,

dynamic, and stochastic environment. Due to these problem characteristics, it can

be beneficial to employ an autonomous broker agent to decide and act on behalf of

the retail broker.

The idea of using autonomous electricity broker agents has been proposed by

Ketter et al. [44] and motivates the line of research in this dissertation. Russell and

1Throughout this dissertation we use the terms energy/electricity/power interchangeably.
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Norvig categorized agent task environments along a number of dimensions [93]. The

broker’s electricity trading task environment would be categorized using the most

complex option along each of these dimensions, being partially-observable, multi-

agent, competitive, stochastic, sequential, dynamic, continuous, initially-unknown.

On top of being continuous (having continuous world state and actions), this task

environment is also high-dimensional, having high-dimensional state and action rep-

resentations.

Due to the complexity of the broker’s electricity trading problem, a first

observation that can be made is that designing an autonomous broker that acts

optimally would be an impossible task. Thus, a primary research goal of this disser-

tation is designing and investigating autonomous electricity trading strategies that

approximate the optimal strategy and perform well empirically.

1.1 Objectives and Approach

1.1.1 Dissertation Research Question

The principal question addressed in this dissertation is:

How should an autonomous broker agent act to maximize its utility by trading

in time-constrained, modern electricity markets?

This dissertation advances towards answering this question by contributing a general

decision-making framework for an autonomous broker agent in smart grid environ-

ments where:

• A broker’s goal is maximizing its long term utility (profit).

• A broker decides on actions in real-time.

• A broker publishes tariff contracts to which retail customers can subscribe.

• A broker bids to buy and sell electricity in a day-ahead wholesale market.

3



• Supply-demand imbalance incurs (positive or negative) payments on brokers.

1.1.2 Approach

Our general approach to answering the dissertation research question is to proceed

from theory to practice using a series of approximations: we start by formalizing

the complete electricity trading problem and characterizing its optimal solution; we

then use the problem formalization to guide us through a series of approximations

into practical solutions; we then create complete autonomous broker agents that

implement these practical solutions; finally, we test these brokers extensively in a

complex, realistic electricity trading environment, under a variety of conditions and

competition levels.

Electricity markets are going through a major transition from traditional,

regulated monopolies into deregulated, competitive markets [35]. While in principle,

deregulation can increase efficiency, in practice, the California energy crisis (2001)

has demonstrated the high-costs of failure due to flawed deregulation [99, 7], and the

importance of testing new market structures in simulation before deploying them.

This is the focus of the Power Trading Agent Competition (Power TAC) [44, 47, 45],

which we use throughout this dissertation as a substrate domain for our research.

Power TAC is a realistic, detailed platform for modeling and testing compet-

itive retail power market designs and related automation technologies. Power TAC

simulates a future smart grid environment with about 57,000 customers (about

50,000 consumers and 7,000 renewable producers), smart-metering, autonomous

agents acting on behalf of customers and retailers, and realistic market designs:

the wholesale market represents a traditional energy exchange, such as Nord Pool

or EEX, and the retail market is similar to ERCOT’s2. Power TAC’s customers

are simulated using state-of-the-art customer models [87]. In Power TAC’s envi-

2See www.nordpoolspot.gov, www.eex.com, www.ercot.com
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ronment, autonomous broker agents compete with each other to make profits by

trading in retail, wholesale, and balancing markets (the balancing market provides

a simplified version of the reserve and regulating capacity markets and associated

controls normally operated by an ISO/TSO organization [46]).

Research results from Power TAC may help policy makers create mechanisms

that produce the intended incentives for energy producers and consumers. They are

also expected to help to develop and validate intelligent automation technologies

that can support effective management of participants in electricity markets. Due

to the high-level of detail and realism of Power TAC, we believe it can be viewed as

a reasonable substrate domain for studying general electricity market conditions.

1.2 Contributions

This dissertation makes five distinct contributions at the intersection between arti-

ficial intelligence (AI), smart grids, and electricity markets:

Problem Formalization A formal specification of the problem of autonomous

trading by a retail broker in modern electricity markets. This formalization is

suitable when brokers trade in the retail market by publishing tariff contracts,

trade in the wholesale market by bidding for future contracts, and where

supply-demand imbalance results in (positive or negative) payments by the

broker. This problem is formalized as a Markov Decision Process, which due

to its complexity is intractable to solve exactly.

The LATTE Algorithm A general algorithm that approximates the solution to

the autonomous broker trading problem. LATTE stands for Lookahead-policy

for Autonomous Time-constrained Trading of Electricity. LATTE is a general

framework that can be instantiated in different ways that tailor it to specific

setups.
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Complete Agents using Instantiations of LATTE Fully implemented and op-

erational autonomous broker agents, each using a different instantiation of

LATTE. These agents were successful in competitions and controlled experi-

ments and can serve as benchmarks for future research in the power trading

domain. Detailed descriptions of the agents’ behaviors as well as their source

code are included in this dissertation.

Extensive Empirical Analysis Extensive empirical analysis validates the effec-

tiveness of LATTE, shedding light on the main reasons for its success by ex-

amining the importance of its constituent components.

Impact of Time-Of-Use Tariffs in Competitive Markets A gradient-ascent al-

gorithm for optimizing Time-Of-Use tariffs by an autonomous broker in com-

petitive markets (as a part of one of the instantiations of LATTE), and an

empirical analysis of the impact of Time-Of-Use tariffs in competitive mar-

kets, on an autonomous broker and on the market. Time-Of-Use tariffs are

a main method proposed for demand-side management both in the literature

and in real-markets.

From the perspective of AI, these contributions are a demonstration of effective se-

quential decision making in a complex partially-observable, multiagent, competitive,

stochastic, sequential, dynamic, continuous, high-dimensional, initially-unknown do-

main.

1.3 Dissertation Overview

The remainder of the dissertation is organized as follows.

Chapter 2 introduces the substrate domain used in this dissertation: The Power

Trading Agent Competition (Power TAC) simulation environment. Power TAC’s
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simulation environment is a detailed, realistic electricity markets simulator

that is expected to help policy makers to create appropriate market mecha-

nisms, and to help to develop and validate intelligent automation technologies

for electricity markets.

Chapter 3 formalizes the problem faced by an autonomous electricity trading bro-

ker agent as a Markov Decision Process, which is impossible to solve exactly.

Therefore, this chapter provides guidelines for effectively approximating its

solution.

Chapter 4 introduces the LATTE algorithm, which is a general algorithm for au-

tonomous trading in modern electricity markets. LATTE stands for Lookahead-

policy for Autonomous Time-constrained Trading of Electricity.

Chapter 5 introduces the first instantiation of LATTE, used by the TacTex-13

agent, which won 1st place in the 2013 Power TAC finals. The chapter de-

tails TacTex-13’s constituent components and analyzes their contribution to

TacTex-13’s success.

Chapter 6 introduces a second instantiation of LATTE, used by the TacTex-15

agent, which achieved top performance in the Power TAC 2015 finals. The

chapter analyzes the performance of TacTex-15 in competitions and controlled

experiments, and the contributions of TacTex-15’s constituent components to

its performance.

Chapter 7 enables and enhances Power TAC customers’ demand-shifting capabil-

ities. This chapter then introduces a third instantiation of LATTE that uses

Time-Of-Use tariffs. It investigates how a broker should select such tariffs,

and what their impacts are on the broker and on the market.

Chapter 8 surveys related work in the electricity markets literature and in the
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artificial intelligence and autonomous agents literature.

Chapter 9 summarizes the contributions of this dissertation, and outlines promis-

ing directions for future work.

For readers who may wish to read chapters out of order, Figure 1.1 presents

a diagram specifying the relations between the different chapters. For example,

a reader that may wish to read Chapter 7, will need to first read Chapter 2, then

Chapter 3, then Chapter 4 before reading Chapter 7. This reader will find Chapter 6

useful but not necessary to understand Chapter 7, and Chapter 5 useful but not

necessary to understand Chapter 6.

Figure 1.1: Guide for reading individual chapters: a solid arrow is drawn from
a chapter that is necessary as a background for a following chapter, and a dashed
arrow is drawn from a chapter that is useful as a background for a following chapter.
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Chapter 2

Substrate Domain: The

Power TAC Simulator

This chapter describes the substrate domain used in this dissertation: the Power

Trading Agent Competition (Power TAC) simulation environment. The full details

of the Power TAC game are specified in the official game description [46]. This

chapter focuses on the aspects of the game that are most essential for understand-

ing the rest of the dissertation. In Power TAC, autonomous brokers compete with

each other to make profit by acting in multiple electricity markets in a simulated

smart grid environment. Section 2.1 overviews the competition and the simulation

environment. Section 2.2 details the actions available to brokers, the environment’s

response to these actions, and the environment sensors available to brokers. Sec-

tion 2.3 lists Power TAC’s modeling assumptions. The Power TAC simulation envi-

ronment is open-source, and can be downloaded from GitHub.1 A full specification

of the Power TAC game can be found in the Power TAC game description [46].

1https://github.com/powertac
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2.1 Power TAC Overview

This section overviews the Power TAC competition and simulation environment.

2.1.1 The Power TAC Competition

Power TAC is an annual competition in which the competitors are autonomous

brokers programmed by teams from around the world. The competition includes

hundreds of games and takes several days to complete. In a game, the Power TAC

simulator runs on a central server, while competing brokers run remotely and com-

municate with the server through the internet. Each broker receives partial state

information from the server, and responds by communicating the actions it takes.

The competition includes different game sizes, ranging from a small to large number

of competitors. After the competition, participants release their broker binaries,

which allows for running controlled experiments against the state of the art brokers.

2.1.2 The Power TAC Simulation Environment: An Overview

This section overviews the Power TAC simulation environment. Power TAC uses

a rich, detailed power markets simulator, modeling a smart grid environment of a

medium-sized city. Figure 2.1 shows the structure of the Power TAC simulation en-

vironment. Electricity is generated both by traditional generation companies which

generate on demand, and by distributed renewable producers, who are also retail

customers, which generate based on weather conditions. Electricity is consumed by

a variety of commercial and residential consumer customers. Power TAC has more

than 57,000 simulated customers (50,000 consumers and 7,000 renewable produc-

ers). Power TAC’s customers are autonomous agents that optimize the electricity-

costs and convenience of their human owners [87]. Customers represent commercial

and residential buildings, hospitals, distributed solar panels, wind farms, storage

facilities and electric vehicles. Consumers and producers consume/produce using
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time-series generators constructed from real-world data, according to weather and

calendar factors. Weather conditions are determined by files containing real-world

weather data, recorded in different geographical zones at different times of year.

Figure 2.1: Structure of the Power TAC simulation environment

In Power TAC, autonomous broker agents compete by acting in three mar-

kets: (1) a tariff market, which is a retail market where energy is traded with

consumers and distributed renewable energy producers, (2) a wholesale market, in

which generation companies sell energy and brokers procure energy (or sell sur-

plus), and (3) a balancing market, which ensures that electricity supply and demand

are balanced at all times and determines broker imbalance fees. The brokers com-

pete to maximize profit by gaining market share and trading electricity. A broker’s

game-score is its cash balance at the end of the game. A broker’s total score in a

competition is computed as a sum of its z-scores in each of the game-sizes, where a

z-score in a game size is computed based on brokers’ cumulative score in all games

of this size. The simulation proceeds in 1-hour timeslots for about 60 simulated
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days (about 60× 24 = 1440 timeslots). Each simulated timeslot takes 5 seconds of

real-time, and the whole simulation takes about 2 hours to complete. Therefore, in

each timeslot a broker has at most 5 seconds to complete its computation.

In the tariff market, brokers publish tariff contracts for energy consump-

tion/production. Tariffs may include fixed and varying prices and possibly bonuses

and/or fees. Once a tariff is published, customers can subscribe to it and con-

sume/produce energy under this tariff as long as it is active (i.e. not revoked),

paying or getting paid according to the tariff’s terms. Customers stochastically

subscribe to tariffs which maximize their utility, i.e. minimize their cost (or max-

imize their profit) and minimize their discomfort. A discomfort is created when

a customer needs to shift its consumption to save costs (see an exact formulation

in Section 7.1.2). Customers are equipped with smart-meters, so consumption and

production are reported to the broker every hour. Some customers represent whole

populations (e.g. a village of 30,000 people) and can subscribe subsets of their pop-

ulations to different tariffs. Brokers may publish one or more tariffs once every 6

hours, 4 times per day.

In the wholesale market, brokers directly interact with each other, as well as

with generation companies and other wholesale participants. The wholesale market

is a day-ahead market that operates as a periodic double auction (PDA). It repre-

sents a traditional energy exchange, such as Nord Pool, or EEX.2 At every hour,

24 independent double-auctions are executed in parallel, where each auction results

in power to be delivered in one of the following 24 hours (timeslots). In these auc-

tions, brokers, generation companies, and other simulated wholesale buyers place

bids specifying amount to buy/sell, limit-price, and delivery time. Therefore, bro-

kers have 24 opportunities to trade energy for each future timeslot, starting 24

hours in advance. Typically, brokers trade in the wholesale market to balance their

2See www.nordpoolspot.gov, www.eex.com
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portfolio’s net demand.

Power TAC’s wholesale market is a relatively simple call market that is mod-

eled after existing wholesale power markets, with several simplifications. First,

the effects of transmission constraints on auctions are not modeled: Power TAC’s

wholesale market models a single region, with locational-marginal pricing modeled

through a simple manipulation of the wholesale supply curve [46]. Second, while

auctions for different timeslots are independent in Power TAC, in real markets they

are coupled through unit-commitment and other issues. Third, in North-American

and other real-world day ahead markets, the auctions do not have a rolling hourly

structure such as the one in Power TAC; instead, bids for the next day are submit-

ted once, on the previous day.3 On the other hand, Power TAC’s wholesale market

provides a realistic supply curve and auction clearing mechanism, which results in

a realistic financial impact on brokers. For example, the wholesale market incen-

tivizes brokers to reduce peak-demand and to contract with renewable producers.

Moreover, since Power TAC does not model “real-time” markets (as discussed later

in this section) the rolling structure of 24 sequential auctions provides an alternative

that allows brokers to control their imbalance in close to real-time.

On the electricity grid, electricity supply and demand must be balanced at

all times. The balancing market is responsible for real-time balancing of supply and

demand. The balancing market provides a financial incentive for brokers to balance

supply and demand in their portfolios in each timeslot, by being the most costly

to use for balancing purposes. In the real world, this function is typically han-

dled through ISO/TSO organizations and their ancillary services markets [9]. Since

Power TAC does not model the full grid hierarchy, the balancing market provides

3Several European markets have intra-day markets that allow for some of the repeated adjust-
ment of positions that can happen in Power TAC’s sequential auction mechanism. Still, these
repeated adjustments are different from those in Power TAC. For example, the Spanish market has
day-ahead bidding (i.e. 24 hourly, parallel auctions), and then three additional intra-day auctions;
however, these intra-day auctions do not extend past the end of the day, so there is no continuous
bidding process for the subsequent 24 hours such as the one in Power TAC.
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a simplified version of the reserve and regulating capacity markets and associated

controls normally operated by ISO/TSO [46].

Power TAC also models a Distribution Utility, which represents a regulated

electric utility that operates the distribution grid. The Distribution Utility has two

roles in Power TAC. First, it charges brokers a fixed distribution fee for the energy

transported over the grid by their customers. Second, it provides “default tariffs” to

which consumers and retail producers are subscribed in the beginning of a game. In

this role, the distribution utility simulates a monopoly that exists prior to market

liberalization. These default tariffs also bound brokers’ profits, since customers are

always free to choose them over brokers’ tariffs. These default tariffs are analogous

to the price-to-beat retail tariff that was required to be offered by incumbents in

the ERCOT retail market when it first opened.

The state of the game is rich and high-dimensional, containing 100s to 10000s

of variables (see Section 3.2.1): it includes the set of all active tariffs and customer

subscriptions, the current energy consumption/production of all customers,the whole-

sale market deliveries and orders of all brokers for the following 24 hours, the internal

states of all participants (brokers, customers, and generation companies), the cur-

rent weather and weather forecast, the current time, and the bank balance of all

brokers. The game state is partially observable to brokers. For instance, brokers

sees all published tariffs in the tariff market but they only know the customer sub-

scriptions for their own tariffs. Similarly, when an auction clears in the wholesale

market, brokers only see the clearing price of the auction and a list of uncleared

orders, but they do not know the list of cleared orders, or the future deliveries of

other brokers. The action space of brokers is also high-dimensional, containing 10s

to 100s of variables (see Section 3.2.1). For instance, tariff publications can include

up to 7× 24 = 168 hourly energy prices, and wholesale market actions can include

24 sets of orders, one set for each of the following 24 hours.
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2.2 Broker Interaction with the Environment

Autonomous agents operate by repeatedly sensing, deciding, and acting. This sec-

tion describes in detail how brokers sense the environment and what actions are

available to them. Later chapters of this dissertation focus on the broker’s decision

making process. Figure 2.2 provides a simplified overview of the sequence of interac-

tions of a broker with the simulation environment in each timeslot. The sequence of

simulation processes described in the figure is fixed, while brokers can send messages

at any time. Each simulation process uses all relevant broker messages that had ar-

rived before it needs them. Other messages are used in the following timeslot. The

following sections detail the available broker actions, the environment’s response to

these actions, and the broker’s sensing of the environment.

2.2.1 Broker Actions

This section describes the actions available to brokers, focusing on actions used by

brokers in this dissertation. In the tariff market, brokers can publish and revoke

tariffs. In the wholesale market, brokers can submit limit orders to procure and

sell energy for a future timeslot. In the balancing market, brokers can submit

balancing orders to curtail consumption of interruptible customers, and adjust the

consumption of storage customers for supply-demand balancing purposes. In our

experience the current simulator with the current parameters does not emphasize

balancing actions as being important strategically. Therefore the agents described

in this dissertation do not consider them to any meaningful extent.

Tariff Market Actions

Table 2.1 lists the tariff market actions used in this dissertation. In the tariff mar-

ket, brokers can publish one or more tariffs, revoke one or more tariffs, or take no

action. A tariff is a contract for buying or selling energy. A tariff can generally be
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Figure 2.2: Broker interactions with the simulation environment. Source:
the Power TAC game specification [46]. The diagram provides a simplified
overview of Power TAC the interactions between a broker and the environment
within one timeslot. Outgoing arrows represent possible actions, and incoming ar-
rows represent information sent by the environment to the broker. In the wholesale
market, a broker submits bids and asks for up to 24 parallel double auctions, and
then receives the results of these auctions in the form of order-books and cleared
orders. The weather service sends the current weather and forecast. In the tar-
iff market, a broker can publish tariffs, receive a notification on tariffs published
(by any broker), and receives updates on consumption/production of its customers
as well as subscriptions to its tariffs. Negotiation with large customers is not im-
plemented yet. In the balancing market, a broker can submit bids to balance its
portfolio (e.g. through curtailment), and it receives information about the balancing
actions executed and their costs. The accounting service sends the broker its whole-
sale market position, its cash position, and payment information for transactions
executed in any of the markets.
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a consumption tariff which is offered to consumers, or a production tariff which is

offered to producers. Tariffs can also be more specific, e.g. a wind-production or

solar-production tariff. As long as a tariff is active (i.e. published and not revoked),

customers can subscribe to it, consume/produce energy and pay/get-paid according

to its terms (See more details below, in Section 2.2.2). There is no limit on the num-

ber of tariffs a broker can publish and revoke at any given time, however publishing

and revoking a tariff incurs non-negligible fees on the broker, which discourages the

broker from flooding the market with tariffs. The tariff publishing and revoking fees

are determined as game parameters.

Table 2.1: Tariff market actions used in this dissertation.

Action Description

publishTariff(T ) publish tariff T in the tariff market, making it
available for all customers to subscribe

revokeTariff(T ) revoke tariff T from the tariff market, making it
unavailable for customers to subscribe

no-op() Take no action.

Power TAC supports different types of tariffs, such as fixed-rate tariffs, Time-

Of-Use tariffs, real-time price tariffs, tiered rate tariffs, and interruptible-rate tariffs.

Each of these tariffs can be optionally augmented with signup, withdraw, and peri-

odic payments. In this dissertation we use two of the above tariffs, which we have

found to be most effective and most stably implemented and tested in the current

implementation of the simulator: fixed-rate tariffs and Time-Of-Use tariffs, defined

in Table 2.2. We do not use signup, withdraw or periodic payments.

Wholesale Market Actions

Table 2.3 lists the available wholesale market actions. In the wholesale market, a

broker can submit limit orders called bids and asks to buy and sell energy to be

delivered in one of the following 24 hours, or take no action. For each of the following
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Table 2.2: Tariffs used in this dissertation.

Action Description

Fixed-rate tariff A tariff T := 〈type, rate〉, where type ∈
{consumption, production, solar-production}
determines what type of customers can sub-
scribe to T , and rate specifies a fixed-price p ∈ R
per-kWh of energy, applicable at any time.

Time-Of-Use (TOU) tariff A tariff T := 〈type, rate1 , rate2 , ...〉, where type
is as for fixed-rate tariffs, and each of the (two
or more) rates rate1 , rate2 , ... specifies a fixed-
price p ∈ R per-kWh of energy that applies only
during specific day/times. A valid Time-Of-Use
tariff must cover each hour of the week with ex-
actly one rate.

24 hours, a separate double-auction is executed with all orders submitted for this

hour by brokers, generation companies, and other simulated wholesale buyers. The

double-auction determines the cleared orders (energy quantities and prices). There is

no limit on the number of orders a broker can submit for a future timeslot, other than

the physical limit determined by the communication channel’s bandwidth. However,

orders with quantities smaller than 10 kWh are ignored, to prevent brokers from

flooding the auction with infinitesimal orders. Submitting an order does not incur

any fee on the broker.

2.2.2 Environment Response to Broker Actions

This section describes in more detail the simulation environment’s (i.e. the endoge-

nous agents’) responses to brokers’ actions, in the tariff market and in the wholesale

markets.

18



Table 2.3: Wholesale market actions.

Action Description

bid(〈e, l, t〉) A bid 〈e, l, t〉 := 〈energyAmount , limitPrice, targetTime〉
specifies an energy amount energyAmount ∈ R>0 to procure,
a limit-price limitPrice ∈ R∪{∞} that the broker is willing
to pay per-MWh of energy (∞ is known as a market-order,
which agrees for any price), and a target timeslot in one of
the following 24 hours targetTime ∈ {+1, ...,+24} in which
the energy is to be delivered. A convention of Power TAC
is to precede a bid with a negative sign to signify that the
bidder pays.

ask(〈e, l, t〉) An ask 〈e, l, t〉 := 〈energyAmount , limitPrice, targetTime〉
specifies an energy amount energyAmount ∈ R<0 to sell, a
limit-price limitPrice ∈ R∪{−∞} that the broker is willing
to get paid per-MWh of energy (typically positive, meaning
the broker is paid; −∞ is known as a market-order, which
agrees for any price, even if negative), and a target timeslot
in one of the following 24 hours targetTime ∈ {+1, ...,+24}
in which the energy is to be delivered.

no-op() Take no action.

19



Tariff Market Response to Broker Actions

In the tariff market, customers respond to brokers’ tariff publications/revocations by

(a) potentially subscribing to a new tariff, and (b) consuming or producing energy

under the new tariff’s terms.

Subscribing to a Tariff. Customers are approximate utility-optimizers: their

subscription decisions are based on their predictions of their utilities under each can-

didate tariff. Specifically, tariff subscription is a two step process. First, customers

predict their utility under each candidate tariff in the tariff market. Their utility is a

weighted sum of monetary payments and discomfort factors. To predict their mon-

etary payments under a tariff, they predict their expected consumption/production

under this tariff, and compute the resulting payments based on the tariff terms.

Payments may include one-time fees/bonuses e.g. for early-withdraw or signup, re-

spectively. Discomfort factors take into account the need to shift consumption to

save costs under non-fixed-rate tariffs (See a detailed description in Section 7.1.2),

the need to switch brokers or tariffs, and the need to agree to consumption cur-

tailment: all these factors reduce the desirability of a tariff by customers. Second,

once customers compute the utility of each candidate tariff in the market, the use a

probabilistic softmax selection rule between tariffs, where a tariff with higher utility

is more likely to be selected. The softmax rule models imperfect tariff information

in the real-world.

In Power TAC, about 90% of the consumption and more than 90% of the

renewable production is done by customer models called factored-customers [87].

Some factored-customer models represent populations (e.g. a village of 30,000 peo-

ple) and can subscribe subsets of their population to different tariffs. Other customer

models represent an individual. In either case, each individual in the population is

always subscribed to exactly one tariff at any given time. Customers inertia which
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prevents customers from evaluating/switching tariffs too frequently.

Consuming/Producing Under a Tariff. Once customers are subscribed to a

tariff, they consume/produce under this tariff. Customers’ consumption/production

is determined by some or all the following factors: weather conditions, time-of-day,

day-of-week, elastic adaptation to tariff prices, random factors, shifted-consumption

under non-fixed-rate tariffs. These factors have different impact on different cus-

tomer types. For example, a residential customer will mainly consume in mornings,

evenings and weekends, a commercial customer will mainly consume during week-

days, and a solar producer will produce in sunny days.

Wholesale Market Response to Broker Actions

In the wholesale market, brokers’ orders enter into double auctions, and auction

results are sent back to brokers. At every hour, 24 independent double-auctions are

executed in parallel, where each auction results in power to be delivered in one of

the following 24 hours (timeslots). In these auctions, brokers, generation companies,

and other wholesale buyers place bids/asks specifying a quantity to buy/sell, a limit-

price, and delivery time. In the clearing process, demand and supply curves are

constructed from bids and asks, and their intersection determines the clearing price

and cleared quantity.

Figure 2.3 provides an example of a double auction. Note that bids specify

a positive energy quantity and a negative price, and asks specify a negative energy

quantity and a positive price. Note also that market orders (here specifying only

quantity) are ordered first, since they agree at any price. In this example, there is

no unique price where supply and demand curves intersect, therefore the average of

these prices is taken to be the clearing price. All bids higher than the last executed

bid and all asks lower than the last executed ask are fully executed for the same

clearing price. In this auction-example the clearing price is 16, and the total cleared
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quantity is 27 MWh. The last executed ask or bid may be only partially executed.

In our example, the last ask is partially executed.

Figure 2.3: Double-Auction Clearing Example. Source: the Power TAC
game specification [46]. See text for details.

After the auction completes, the following information is sent to brokers:

• The clearing price (16) and total quantity (27 MWh) are sent to all brokers.

• The uncleared orders are sent to all brokers, without broker information. In

this case these are the asks (-3, 15) and (-7, 16) and the bids (5, -14) and (7,

-12).

• Each broker’s cleared orders are privately sent to the broker.

• Updated cash and wholesale market positions (future energy deliveries for the

timeslot for which the auction was executed) are privately sent to each broker.
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• All orders that participated in the auction are discarded.

2.2.3 Broker Sensing

In Power TAC, a broker senses the environment through messages sent to it by the

simulation environment. These messages reveal to the broker partial information

about the simulation’s world state. This section lists the types of messages sent to

a broker by the simulator. We group messages by whether they are public (sent to

and known by all brokers) or private (sent to and known by a single broker), and

by the times in which they are sent. This section closely follows Section 3.3 from

the Power TAC 2015 game description [46].

Public Messages Sent by the Power TAC Simulator

The following messages are sent publicly to all brokers at the beginning of a game:

• Game Parameters: the parameters used to configure the current game. The

Power TAC game parameters are listed in Appendix B.

• Competing Broker Identities: the identities of competitor brokers, which

remain unchanged throughout a competition.

• Customers List: names and properties of customers in the current game,

most importantly their type (consumers, producers, solar-producers, inter-

ruptible consumers, etc.) and population-size.

• Default Tariffs: tariffs offered by the distribution utility, to which customers

are subscribed at the beginning of the game, and can re-subscribe at any point

in the game. Typically there are two such tariffs, one for producers and one

for consumers, at default prices that would be used in a monopoly situation.

• Bootstrap Customer Data: consumption and production of each customer

in the 14 days prior to the beginning of the game, under the default tariffs.
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• Bootstrap Wholesale Market Data: delivered prices and energy quantities

by generation companies to the customers of a default broker that represents

a monopoly in the 14 days prior to the beginning of the game.

• Bootstrap Weather Data: weather conditions in the 14 days prior to the

beginning of the game.

The following messages are sent publicly to all brokers once every 6 simulated hours:

• Tariff Updates: updates on newly published, revoked, or modified tariffs by

all brokers.

The following messages are sent publicly to all brokers once every simulated hour :

• Wholesale Market Clearing Data: wholesale market total quantities traded

and clearing prices for each of the 24 auctions executed in this timeslot.

• Wholesale Market Order Books: lists of uncleared bids and asks (each

includes a price and a quantity) from each of the 24 auctions executed in this

timeslot.

• Total Consumption and Production: the total consumption and the total

production by all simulated customers in the current timeslot.

• Weather Report and Forecast: weather conditions for the current timeslot

(temperature, cloud cover, wind direction, wind speed), and a 24-hour forecast

of these conditions.

Private Messages Sent by the Power TAC Simulator

The following messages are sent privately to each broker once every 6 simulated

hours:
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• Tariff and Subscription Changes Transactions: confirmations and paid

fees for the brokers’ tariff publication and revocations, subscription changes of

the brokers’ customers (either sign-up or withdraw) and associated payments

if exist, such as signup and early withdraw payments.

The following messages are sent privately to each broker once every simulated hour :

• Tariff Consumption/Production and Payment Transactions: consump-

tion and production of the brokers’ customers in the current timeslot and the

associated payments, broken down by customer-subscriptions (customer-tariff

pairs).

• Wholesale Market Transactions: cleared and partially cleared bids and

asks submitted by the broker.

• Wholesale Market Positions: energy to be delivered to/by the broker in

each of the following 24 timeslots.

• Distribution Transactions: the quantity distributed by the broker among

its customers and the associated charges for this distribution.

• Balancing Transactions: the broker’s supply-demand imbalance and the

associated charges for this imbalance.

• Cash Position: the broker’s current bank balance.

2.3 Power TAC Modeling Assumptions

This section lists the modeling assumptions used by the Power TAC simulation

environment [46], as follows.
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1. Line capacity limitations are ignored, reflecting an assumption that electricity

flows unconstrained over the simulated distribution grid, among all partici-

pants. This assumption frequently holds in distribution grids, so it is not a

major restriction. Once more distributed generators and storage facilities will

be simulated, this assumption will need to be re-examined.

2. Power factor effects, i.e. phase shifts between voltage and current, are ignored.

A lower power factor typically results in higher energy losses over the distri-

bution network. Therefore, electric utilities typically charge a higher cost to

industrial or commercial customers with a low power factor. Modeling power

factor effects in Power TAC may affect brokers’ decisions on how to charge

customers, but is currently out of scope.

3. Electricity distribution and transformation losses are ignored. These losses are

estimated to be 5.5% in North America [115], and can be considered roughly

constant and similar among distribution grid participants. Therefore, the

validity of the simulation results is not affected by this assumption.

4. In addition to traditional generation companies, two types of producers (elec-

tricity production facilities) are simulated. Producers of the first type produce

electricity whenever they are active. For example, solar arrays and wind tur-

bines are activated by weather conditions. Producers of the second type are

“controllable”: their output can be adjusted remotely within their capacity

range. Examples of this type are electric vehicle batteries, and some combined

heat and power units. Both of these producer types are becoming increasingly

common in the real world, and are therefore included in the simulation.

5. Real-time operations of the local distribution grid, including supply-demand

balancing, are outside the control of competing brokers, and are executed

using a combination of controllable generators and spinning reserves. In the
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real-world these operations are typically managed by a system operator.

6. Brokers pay for supply-demand balancing as determined by a balancing-market,

which constitutes a simplified version of real-world reserve and regulating ca-

pacity markets. Power TAC is not intended to model these markets in detail;

the balancing-market’s goal is mainly to incentivize brokers to balance supply

and demand as closely as possible.

7. Simulation time progresses in discrete timeslots, each representing one hour.

Timeslots correspond to trading intervals in a regional wholesale market. This

assumption allows for simulating a period of months rather than minutes

or hours. However, under this assumption, the temporal distribution of en-

ergy consumption and production cannot be captured. For example, supply-

demand imbalance is computed as the difference between total consumption

and production in a one-hour timeslot, rather than as an instantaneous differ-

ence between two continuous time-series.4

8. Some portions of consumption can be controlled directly (through curtailment)

or indirectly (using price signals). In the latter case, autonomous agents adjust

consumption on behalf of human consumers to optimize cost and comfort. This

assumption currently holds to some extent in the real-world, and is expected

to hold more widely in the future. For example, programs that allow for

consumption curtailment by utilities exist (e.g. in Austin, Texas), and some

autonomous agents are already being installed in buildings (such as smart-

thermostats).

4In the US and in some European markets, in addition to reserves and regulating markets there
are also “real-time” markets that allow for another set of auctions, at 5 or 15 minute intervals
(where offers are updated every hour and stay fixed for all 12 of the 5-minute auctions in any
given hour). The real-time market deals with some of the intra-hour supply demand balance, with
the result that less of the balance needs to be dealt with by the reserves and regulating capacity
markets. Such “real-time” markets are not modeled in Power TAC, and are assumed to be included
in the balancing-market model. However, the rolling structure of Power TAC’s 24 sequential double
auctions provides an alternative that allows brokers to control their imbalance in close to real-time.
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To summarize, the Power TAC simulator is fairly detailed and realistic, and

therefore we contend that it can be viewed as a reasonable substrate domain for

studying general electricity market conditions.

2.4 Chapter Summary

Future smart grids will require new power market structures [114]. Due to the risk

of deploying new market structures in the real-world [7], it is important to test new

market structures first in simulation. The Power TAC simulator is a detailed and

realistic retail markets simulator, and therefore we contend that it can be viewed

as a reasonable substrate domain for studying general electricity market conditions.

We use the Power TAC simulation environment as a substrate domain throughout

this dissertation.

In Power TAC, autonomous brokers compete with other for making profit

by gaining market share and trading energy with about 57,000 retail customers

(consumers and producers), by trading energy with generation companies and other

brokers in a wholesale market, and by participating in a real-time supply-demand

balancing-market. Such autonomous, self-interested, broker agents can be finan-

cially incentivized to contribute to social welfare, for example by maintaining supply-

demand balance in their portfolios, thus contributing to grid stability. We overviewed

the Power TAC simulator and detailed the parts that are used in the rest of this

dissertation. Full details can be found in the Power TAC Game Specification [46].

In the rest of this dissertation, on focus on the decision making process of an au-

tonomous broker agent in smart grid environments, as modeled by Power TAC.
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Chapter 3

The Broker’s Power Trading

Problem: Formalization

This chapter formalizes the complete broker’s power trading problem. Our formal-

ization is beneficial in multiple ways, as it: (1) compactly captures the complex

challenges faced by a broker, (2) characterizes the optimal solution, (3) provides

a guideline for approximating the solution and for extending existing approximate

solutions. Indeed, in the following chapters we use our problem formalization to

design a series of approximate solutions of increasing generality, which work effec-

tively in practice. While our formalization is based on the Power TAC simulator, we

expect it to generalize and be useful in reality, since Power TAC closely models real-

world markets. We start with an intuitive problem description (Section 3.1), then

formalize the power trading problem as a Markov Decision Process (Section 3.2),

and characterize approximate solutions (Section 3.3).
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3.1 The Power Trading Problem’s Temporal Structure

Figure 3.1 illustrates the temporal structure of a broker’s power trading problem.

In our illustration and in the rest of the dissertation we exclude balancing market

actions, since we have found in preliminary tests that the current simulator version

does not provide enough incentive to use them. Henceforth, we focus on tariff

and wholesale market actions. The temporal structure of the tariff and wholesale

market actions differ in multiple ways. Tariffs specify energy for immediate and

repeated delivery and are published at low-frequency (every one or more days).

Immediate delivery means that once a tariff is published, customers can subscribe

to it immediately and consume/produce energy under its payment terms. Repeated

delivery means that customers can do so indefinitely, until the tariff is either revoked

or expires. Tariff publications/revocations are typically executed at low frequency

(every one or more days) since (1) tariffs are for repeated delivery, (2) each tariff

publication/revocation incurs a fee paid by the broker, and (3) customers respond

slowly to tariff publications, due to inertia that binds them to their current tariff.

In contrast to the tariff market, wholesale actions (bids/asks, referred to here

as “orders”) typically specify energy for future, one-time delivery and are executed

at high-frequency (every hour). Future delivery means that the energy and payment

transactions specified in a cleared order happen in the future (one of the next 24

hours). One-time delivery means that these transactions happen once, in a single

timeslot. Since wholesale orders are for one-time delivery, and since the broker

trades energy continually, wholesale orders are executed at high-frequency.

3.2 Power Trading as a Markov Decision Process

Given the internal states of the simulator and competing brokers, the broker’s en-

ergy trading problem is a Markov Decision Process (MDP) [82]. However, since
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Figure 3.1: Temporal structure of the power trading problem. Time pro-
gresses to the right; the notation ‘+i’ stands for ‘i timeslots into the future’. Di-
amonds stand for broker actions. Squares stand for simulation environment re-
sponses. The top part represents the wholesale market: a broker submits limit
orders to buy/sell energy for the next 24 hours, then it receives the results of the 24
double-auctions. The bottom part represents the tariff market: a broker may pub-
lish one or more tariffs (once every 6 hours), and customers respond by potentially
(1) subscribing to new tariffs, (2) shifting consumption to cheaper times, and (3)
elastically adapting total consumption based on price.

competitors’ state and parts of the simulator state are unobservable, the trading

problem is actually a Partially Observable MDP (POMDP). Nevertheless, for com-

putational tractability and modeling clarity, we approximate the trading problem

as an MDP. We present our MDP definition next, denoting the acting broker as

B0. For easier reference, Table 3.1 summarizes the variables used for defining the

MDP’s main components, Table 3.2 summarizes the variables used in the MDP’s

state definition, and Table 3.3 summarizes the main variables used in the MDP’s

reward definition.
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Table 3.1: Variables used for the power trading MDP’s main components.

Variable Description

S the set of states
A the set of all actions
Aτ the set of tariff market actions
Aω the set of wholesale market actions
Aβ the set of balancing market actions
γ discount factor

st state at time t
at action(s) taken at time t
rt reward at time t
rτ tariff market component of the reward
rω wholesale market component of the reward
rβ balancing market component of the reward

• States: S is the set of states, where state s is a tuple

〈t,B, C,P, T ,SB0 ,QB0 ,AB0 , IB0 ,W, $B0 ,R〉

that includes the current time t (which encapsulates weekday/hour), and

the sets: competing broker identities B; identities of consumers C and pro-

ducers P (both referred to as customers); published tariffs of all brokers

T := ∪B∈BTB; customer subscriptions to B0’s tariffs SB0 ; current energy con-

sumption/production of B0’s customers QB0 ; recent auction results AB0 :=

{〈pc, qc,OcB0 ,Ou,MB0〉j}t+24
j=t+1 including, for each of the following 24 times-

lots, the clearing price pc and total quantity qc, B0’s cleared orders OcB0 , all

brokers’ uncleared orders Ou, and B0’s wholesale market-positions MB0 (en-

ergy deliveries and charges, updated incrementally from OcB0); B0’s energy

imbalance IB0 ; current weather and forecast W; B0’s cash balance $B0 ; and

randomly sampled game-parameters (such as fees and game length) R.

Note: the underlying state of the game, which includes elements unobserved
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Table 3.2: Variables used in the power trading MDP’s state definition. We
use the following conventions: calligraphic letters (e.g. B) stand for sets; uppercase
letters stand for items in sets (e.g. B is an item in B); lowercase letters are items or
numbers that are not part of a set; a superscript symbolically augments a variable’s
letter (to avoid two-letter variables, for instance, pc is an auction’s clearing price,
where the superscript clarifies the type of the price); a subscript defines either a
subset (when it indexes a calligraphic letter), or an item in a set (when it indexes an
uppercase letter). One exception is our use of $ to stand for a set of cash balances,
and of $B to stand for one item in the set, due to the symbolic meaning of the sign
$.
Note: these conventions could lead to conflicts with other notation in this disser-
tation (e.g. MDP states and a subscription share the letter S). Due to the large
number of variables it is hard to avoid some conflicts, so in case that happens, we
make sure to explicitly disambiguate and clarify the use of a variable. We preferred
the option of keeping notation intuitive at the expense of some notation overload,
rather than using unique, but non-intuitive letters for variables.

Variable Description
t current time (which encapsulates weekday/hour)
B the set of competing brokers’ identities
Bo the set of competing brokers, including their internal states
B a broker identity
B0 the identity of the broker acting in the MDP
Go the set of generation companies, including their internal states
C the set of consumers’ identities
Co the set of consumers, including their internal states
P the set of producers’ identities
Po the set of producers, including their internal states
T tariffs published by all brokers
TB tariffs published by broker B
S customer subscriptions
SB customer subscriptions to broker B’s tariffs
Q current energy consumption/production of all brokers
QB current energy consumption/production of broker B’s customers
A recent auction results for all brokers
AB recent auction results for broker B
pc auction clearing price
qc auction’s total traded quantity
Oc

B auction’s cleared orders of broker B
Ou auction’s uncleared orders of all brokers
MB wholesale market-position of broker B
I energy imbalances of all brokers
IB energy imbalance of broker B
W current weather and forecast
$ cash balance of all brokers
$B cash balance of broker B
R randomly sampled game-parameters (such as fees and game length)
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Table 3.3: Variables used in the power trading MDP’s reward definition.

Variable Description

Qconst energy quantity consumed by the broker’s customers at time t
pconst average price of energy sold to the broker’s customers

Qprodt energy quantity produced by the broker’s customers at time t

pprodt average price of energy procured from the broker’s customers
Qaskt energy quantity sold by the broker in the wholesale market at time t
paskt average price of energy sold by the broker in the wholesale market
Qbidt energy quantity procured by the broker in the wholesale market at time t
pbidt average price of energy procured by the broker in the wholesale market

by the broker, is the tuple

〈t,Bo,Go, Co,Po, T ,S,Q,A, I,W, $,R〉

where Bo,Go, Co,Po are the sets of brokers, generation companies, consumers

and producers, respectively (the difference from B,G, C,P is that while these

sets included only object identities, the sets Bo,Go, Co,Po include complete

objects, and importantly the internal states of these objects)1; and where

S := ∪B∈BSB, Q := ∪B∈BQB, A := ∪B∈BAB, I := {IB}B∈B, $ := {$B}B∈B.

• Actions: A broker’s set of actions A := Aτ ∪ Aω ∪ Aβ is composed of tariff

market actions Aτ , wholesale market actions Aω and balancing market actions

Aβ, as follows.

1. Tariff market actions Aτ : publish/modify/revoke tariffs. A tariff is a

tuple T = 〈type, rates, fees〉 where:

– type ∈ {consumption, production,...} can be general (e.g. production)

1An internal state generally refers to the computation state of an object. Different objects may
have different representations of their internal state. For example, two competing brokers may be
implemented differently, and therefore their computation states may have different representations.
Most generally, an object’s internal state is a snapshot of its representation in the computer’s
memory. The distinction between an object identity and a complete object that includes an internal
state is important for understanding our MDP: while the latter is part of the complete MDP’s state,
only the former is observed by the broker acting in the MDP.
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or specific (e.g. solar-production).

– rates: a set of rates, each specifying price/kWh and times, and/or

usage thresholds where it applies.

– fees: optional periodic/signup/withdraw payments.

2. Wholesale market actions Aω: submit limit orders of the form

〈energyAmount , limitPrice, targetTime〉

to buy/sell energy for one of the next 24 hours.

3. Balancing market actions Aβ: submit customers energy curtailment re-

quests (currently unused).

• Transition Function: The transition function is partially deterministic and

partially stochastic, as follows. The time t is incremented by 1 hour; B, C,P

remain unchanged; T is updated by publish/modify/revoke tariff actions, de-

terministically by B0, and stochastically (due to unobservability) by other bro-

kers; SB0 is updated stochastically based on customers’ decisions; QB0 is deter-

mined stochastically based on weather and customers’ internal states (shifting

and elasticity, see Figure 3.1); AB0 is updated with auction results, stochasti-

cally since (i) competitors rely on stochastic information (demand predictions),

(ii) competitors’ internal states are hidden, and (iii) generation companies

bid stochastically; IB0 is a deterministic function of TB0 ,SB0 ,QB0 ,AB0 ; W is

stochastic; $ is updated deterministically from the recent stochastic reward;

and R remains unchanged.

• Reward: Let st, rt, at be the state, reward, and broker-action(s) at time t.

Let rτ , rω, rβ be the broker’s energy buy/sell payments in the tariff, wholesale,

and balancing markets respectively. Let dist be the energy distribution fees,

and fees the tariff-market fees. The reward at time t can be characterized by
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the following function.

rt(st−1, at−1, st) := rτ (st)+rω(st)+rβ(st)+dist(st)+fees(st−1, at−1, st) :=

Qconst pconst −Qprodt pprodt︸ ︷︷ ︸
rτ (st)

+Qaskt paskt −Qbidt pbidt︸ ︷︷ ︸
rω(st)

±bal(IB0,t)︸ ︷︷ ︸
rβ(st)

−max(Qconst , Qprodt )× distFee︸ ︷︷ ︸
dist(st)

−pub(at−1)− rev(at−1)± psw(SB0,t−1,SB0,t)︸ ︷︷ ︸
fees(st−1,at−1,st)

(3.1)

where ± denotes components that can be positive of negative; Qconst , Qprodt are

the total consumed/produced quantities by B0’s customers in the tariff-market

(both are sums of entries ofQB0); Qaskt , Qbidt are the amounts B0 sold/procured

in the wholesale-market (both are sums of elements ofMB0 inside AB0); pconst ,

pprodt , paskt , pbidt are the average buying/selling prices (determined by TB0 , SB0 ,

QB0 andMB0); bal(IB0,t) is the fee for imbalance IB0,t = Qconst −Qprodt +Qaskt −

Qbidt (which depends on unobserved other broker imbalances I \IB0,t); distFee

is a fixed fee per kWh transferred over the grid; pub, rev are tariff publication

and revoke fees; psw are tariff periodic/signup/withdraw fees/bonuses.

• Discount Factor: γ reflects daily interest on cash balance.

3.2.1 Dimensionality of the State and Action Spaces

To get a better understanding of the size of the trading problem, we estimate the

number of dimensions (i.e. variables) in the MDP’s state and action spaces. Fre-

quently, complex MDPs use factored state representations, in which a state is repre-

sented as a fixed set of variables, each taking values from some discrete or continuous

domain. However, in the power trading problem’s MDP, a state cannot be repre-

sented as a fixed set of variables since it contains information of unbounded, variable
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size (bounded only by the computer memory’s size). Example of such variable-size

information is the set of existing tariffs and the set of uncleared wholesale orders. In

practice, the sizes of these sets are within some reasonable ranges, based on which

we provide a rough estimation of the typical number of dimensions in a state, as

follows.

• Time (t): 1 variable.

• Identities of brokers, consumers and producers (B, C, P): typically 10s

of variables.

• Published tariffs (T ): typically 10s to 100s of tariffs, each containing 1-168

prices, 0-4 fee parameters, so that the number of variables is roughly 10s to

10000s.

• Broker subscriptions (SB0): between 0 and the number of customers. The

number of customers is currently about 57,000, but in the current implementa-

tion customers are grouped into up to several 100s of groups (each member of

a group consumes/produces identically), therefore the number of subscriptions

is between 0 and 100s.

• Current energy consumption/production of customers (QB0): be-

tween 0 and the number of customers which is, as was just described, up

to 57,000 but currently typically 100s of groups.

• Auction results (AB0): 24 sets, each containing 0 to 10s of cleared and

uncleared orders, and one market-position. Each order has 2 variables, so the

total number of variables is around 100s.

• Broker imbalance (IB0): 1 variable.

37



• Weather and forecast (W): 25 sets, each with 4 variables, describing the

current weather conditions and the conditions in the following 24 hours. There-

fore, the number of variables is 100.

• Cash balance ($B0): 1 variable.

• Game parameters (R): 24 variables (See Appendix B)

Based on these estimations, the number of state variables ranges between

100s to 10000s of variables. The action space is high-dimensional as well. A tariff

action contains 1-168 prices and 4 fee parameters, and a broker can publish any

number of tariffs at a given time. Historically, brokers have typically published a

single tariff at a time, so the number of tariff-action dimensions is practically 1-

172. A wholesale bid has two variables, and a broker can submit any number of

bids. Historically, brokers have typically published 0-10s of bids at each time, so the

number of variables of wholesale actions is around 10s.

3.3 Lookahead Policies as Approximate Solutions

The MDP’s solution is an optimal power-trading policy (a mapping from states to

actions). There are two problems that prevent solving the MDP exactly: first, the

high-dimensional states and actions and the complex reward makes it computation-

ally intractable, and second, some components of the transition and reward functions

are unknown to the broker. Therefore, brokers necessarily can only approximate the

solution.

Powell et al ([79]) identify four basic classes of approximate solutions to large

MDPs: policy function approximation, cost function approximation, value function

approximation, and lookahead policies. The effectiveness of each of these classes

varies based on specific problem properties. Furthermore, in practice it might not

be possible to test all of these policy classes for every problem, since some classes
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might not be applicable to some problems. Therefore [79] proposes general guidelines

for when to use each class, based on their experience:

• Policy function approximations are applicable when there is a clear relationship

between state and action, or when the policy function can be approximated

accurately.

• Cost function approximations are applicable when a deterministic model pro-

vides a good solution, where some adjustments are needed to make the solution

more robust.

• Value function approximations are applicable when the value of being in a

state is easy to approximate.

• Lookahead policies are needed in time-varying (i.e. non-stationary) settings,

and when the value of being in a state is hard to approximate.

Based on these guidelines lookahead policies seem suitable for our domain, which is

non-stationary due to factors like weather and other brokers’ policies, and where it is

unclear how to approximate a value function accurately due to the high-dimensional

state and action spaces and the complex reward function.

Lookahead policies are a class of partial solutions for MDPs and POMDPs

(Partially Observable MDPs) that can be effective in high-dimensional state-spaces [6,

39, 22, 20, 64, 97, 109]. Lookahead policies come in different variations, and include

brute-force tree-search policies, Monte-Carlo tree search policies, roll-out heuristics,

deterministic rolling-horizon procedures (also known as receding horizon procedures,

and model-predictive control), and stochastic rolling-horizon procedures [80].

Lookahead policies make a decision in a given state by solving an approxima-

tion of the problem over some horizon. Instead of computing the optimal policy over

the entire state-space, they approximate it by optimizing over simulated hypotheti-

cal lookahead trajectories st, rt, at, st+1, rt+1, at+1,... using generative models that
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predict action effects (next state and reward). In the trading problem’s MDP, the re-

ward is a deterministic function of st−1, at−1, st except for the bal(IB0,t) component.

Therefore a broker needs generative models for bal(IB0,t), for T \ TB0 ,SB0 ,QB0 (to

predict Qconst , pconst , Qprodt , pprodt ), and for AB0 (to predict Qaskt , paskt , Qbidt , pbidt ).

While lookahead policies reduce the complexity of finding approximate MDP

solutions in high-dimensional state-spaces, they can still be intractable in presence

of high-dimensional action-spaces, if they blindly search over (subsets of) high-

dimensional actions at every lookahead step. In our domain, while action effects can

be predicted independently for each action type (specifically Qconst pconst , Qprodt pprodt ,

Qaskt paskt , Qbidt pbidt for: consumption tariffs, production tariffs, wholesale sell, whole-

sale buy, respectively), (i) there is an innumerable set of possible (subsets of) high-

dimensional actions of each type, and (ii) different action-types cannot be optimized

independently: the bal(IB0,t) function is designed such that imbalance fees typically

result in negative reward when taking actions of a single type, while positive reward

can be achieved by taking actions of multiple types in parallel (to maintain low

imbalance). Therefore, any tractable lookahead policy is required to efficiently (i)

sample, and (ii) combine the actions to simulate.

3.4 Chapter Summary

In this chapter, we formalized the broker’s power trading problem as an MDP. Due

to the high-dimensional state and action spaces, it is computationally intractable

to solve this MDP exactly. Of the different classes of approximate MDP solutions,

lookahead policies seem appropriate for the power trading domain. In the next

chapter, we describe one of the main contributions of this dissertation: the LATTE

algorithm, which defines a general lookahead policy that approximates the MDP’s

solution. Later chapters (specifically Chapters 5, 6, and 7) will instantiate this

general algorithm in specific implementations that work effectively in practice.
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Chapter 4

The LATTE Algorithm:

Lookahead-policy for

Autonomous Time-constrained

Trading of Electricity

In the previous chapter, we asserted that lookahead policies have the potential to

perform effectively in the power trading domain, and we pointed out two challenges

that a tractable lookahead policy must address: efficiently (i) sampling, and (ii) com-

bining the actions to simulate in a lookahead trajectory. This chapter introduces

a general lookahead policy that approximates the power trading MDP’s solution,

and which is used throughout this dissertation by all our agents: the LATTE algo-

rithm (Lookahead-policy for Autonomous Time-constrained Trading of Electricity).

LATTE addresses (i) and (ii) by utilizing functional dependencies in the broker’s

action effects, and by utilizing the temporal structure of the power trading problem

(Figure 3.1). In that sense, LATTE is specific to the power trading problem. On
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the other hand, LATTE serves as a general template for power trading lookahead

policies, by leaving parts of its definition open for different implementations. In that

sense, LATTE is a general, flexible framework that can be instantiated in different

ways to address specific setups. We describe the principles used in LATTE’s design

(Section 4.1), followed by a detailed description of LATTE (Section 4.2).

4.1 The Design Principles of LATTE

Lookahead policies (also called Monte Carlo search policies) maximize the expected

sum of future one-step rewards over simulated trajectories. In the power trading

problem, the one-step reward is defined by Equation 3.1. In this dissertation we

avoid using periodic/signup/withdraw fees, since we believe their current imple-

mentation in the Power TAC simulator has some issues that need to be fixed, and

therefore we ignore the psw() component of the reward, which corresponds to these

fees. When ignoring psw(), the reward becomes a function of eight variables Qconst ,

pconst , Qprodt , pprodt , Qaskt , paskt , Qbidt , pbidt , as seen in Equation 3.1. LATTE utilizes

connections between these variables to address challenges (i) and (ii) and implement

an efficient lookahead policy.

We address challenge (i) (of sampling actions efficiently) differently in each

market. In the tariff market, LATTE samples the tariff action space in a reasonable

region around the best existing tariffs, considering only a single tariff publication

at a time rather than subsets of actions. The sampling resolution is determined

by a real-time constraint on computation and the time it takes to predict a single

action effect. Here an action effect consists of updates of state variables T ,SB0 ,QB0

(tariff subscriptions and consumption/production under each tariff), which in turn

determine Qconst , pconst , Qprodt , and pprodt over the simulated horizon.

To address (i) in the wholesale market, LATTE uses a hierarchical two-step

approach, based on the observation that each one-step reward Qbidt pbidt (or Qaskt paskt )
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is a return (sum of rewards) of a 24-step bidding policy π(Q) for buying (selling)

quantity Q for a minimal (maximal) price. First, LATTE assumes in its lookahead

that π is fixed and treats Q as an “action” (the decision to be made). LATTE uses

an “action”-effect predictor Qbidt
π7→ pbidt (or Qaskt

π7→ paskt ) that can be queried with

sampled energy quantities and predict their average prices in the wholesale market.

Using this predictor, LATTE predicts the reward components Qaskt , paskt , Qbidt , and

pbidt . Second, LATTE separates the subproblem of approximating a cost-optimizing

sequential bidding policy π(Q) for trading quantities Q. In our instantiations of

LATTE, this subproblem is solved using a small MDP isolated from the full MDP.

To address challenge (ii) (efficiently combining actions) we start by observing

that there is a functional relationship between energy quantity Q∗t and price p∗t of

each action type ∗ ∈ {cons, prod, ask, bid}: p∗t is typically an increasing/decreasing

function of Q∗t when buying/selling energy respectively. Therefore, we can focus

on controlling and combining the traded quantities Qconst , Qprodt , Qaskt , Qbidt . In the

tariff market, a broker has direct control only over prices (through tariff publication

actions), and the traded quantities are determined indirectly as a function of the

broker’s tariffs. In the wholesale market, a broker controls both quantity and price

in its bids, so it is convenient to think of the broker as first fixing a desired quantity

to trade and then optimizing the price for which it is traded.

The reason why actions need to be optimized in conjunction is the imbalance

fee bal(IB0,t) paid for any imbalance IB0,t = Qconst − Qprodt + Qaskt − Qbidt , which

typically dominates trading costs in the tariff and wholesale markets. In general, a

broker can benefit from imbalance (when it helps to counter-balance other brokers’

imbalanced portfolios). Given a balancing predictor which predicts bal(IB0,t) for

different imbalance values IB0,t, a lookahead policy can sample different imbalance

levels and predict their cost/benefit for the broker.1

1In our implementations we always aimed to constrain the imbalance to 0 both for computational
efficiency and since any imbalance does not seem beneficial in the current simulator.
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To achieve a desired imbalance level, a broker needs to adjust the difference

between the quantities it procures and sells. To do that efficiently, we take advan-

tage of the temporal structure of the trading problem (Figure 3.1). Since tariffs

result in repeated energy delivery and are published at low frequency, a single pub-

lication can (stochastically) determine Qconst , Qprodt throughout the horizon. Since

wholesale actions are for one-time delivery, and happen at high frequency, they

can adapt the traded amounts more flexibly than tariff publications, separately for

each timeslot. These properties gives rise to the following efficient combination of

actions. First, given a sampled candidate tariff, predict the resulting quantities

Qconst , pconst , Qprodt , pprodt throughout the lookahead horizon. Second, use these pre-

dicted quantities and the desired imbalance level to determine the (net) amount

needed in the wholesale market in each future timeslot Qbidt −Qaskt . Third, sample

combinations of Qbidt , Qaskt and predict their corresponding prices pbidt , paskt . Fourth,

combine the quantities Qconst , pconst , Qprodt , pprodt , Qbidt , Qaskt , pbidt , paskt to compute

the predicted utility (sum of rewards over the horizon) of this combination of actions.

LATTE uses this procedure to combine actions in its efficient lookahead pol-

icy, which repeatedly samples candidate tariffs and combines them with wholesale

actions as described, predicts the expected utility of each combination, and exe-

cutes the combination that maximizes the predicted utility. We note that such a

lookahead policy can be viewed as a best-response strategy which does not take into

account game-theoretic considerations: it assumes that the set of existing tariffs

in the market remains fixed throughout the horizon, and does not try to predict

opponents’ responses to publishing a new tariff. Due to the complexity of opponent

modeling in our domain, we leave it as an avenue for future work. We compensate

for the lack of opponent modeling by frequently replanning, i.e. by executing LATTE

frequently.
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4.2 The LATTE Algorithm

This section presents the details of the LATTE algorithm. Figure 4.1 provides a

visual overview of LATTE. A summary of the approach is as follows. When the

broker agent receives the most recent observations from the environment, it exe-

cutes LATTE. LATTE is a lookahead policy that generates and evaluates candidate

action combinations (box 1), and executes the combination that is predicted to max-

imize utility in the tariff and wholesale markets (box 2). To generate a combination

of actions, LATTE generates a candidate tariff action, which can be tariff publica-

tion, revocation or no-op (box 1.1); next, it predicts its effect on subscriptions and

demand/production (box 1.2); next, it generates corresponding wholesale energy

quantities to trade (box 1.4); next, it predicts the payments for trading these whole-

sale quantities (box 1.5); next, it combines these predictions to predict a utility

over the future horizon (box 1.6). This computation flow can be augmented with

an optional internal loop of generating and evaluating combinations with different

imbalance levels (see box 1.3), which affect the quantities traded in the wholesale

market. This step is currently unused in our implementation (See Section 4.1), but

may become important in future versions of the simulator.

Note how action generation is interleaved with action-effect predictions: boxes

1.1 and 1.4 are action generation stages, while boxes 1.2 and 1.5 are action-effect

prediction stages. Interleaving actions in this way allows for utilizing the temporal

structure of the problem and constraining the search space, by taking into account

the predicted tariff market quantities (and optionally the desired imbalance) when

generating wholesale actions.

In box (1), the broker agent treats wholesale actions as quantities to trade

(step (i) in the hierarchical approach described in Section 4.1). In box (2), wholesale

quantities are converted into bids using a wholesale bidding policy π (step (ii) in

the hierarchical approach).
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Figure 4.1: The LATTE algorithm. Thin (red) arrows indicate the computation
flow. Rounded boxes indicates computation stages, which may be nested. Wide
arrows indicate data read/write (yellow) and communication with the environment
(light blue).

Algorithm 1 presents the pseudo-code of LATTE. Numbered comments corre-

spond to computation states in Figure 4.1. Abstract functions that must be instan-

tiated in specific implementations of LATTE are underlined. In particular, different

implementations of these functions are specified in Chapters 5, 6, and 7 of this

dissertation. LATTE has two phases. In phase 1 (lines 2-24) it generates action

combinations and predicts their utilities. In phase 2 (lines 25-31) it executes the
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best combination of actions in the tariff and wholesale markets.

In phase 1, if there is still time and phase 1 has not finished (line 3), LATTE

generates and evaluates a combination of actions. First, a candidate tariff ac-

tion is generated (line 5). This action is one of: publishing a new consumption

or production tariff, revoking an existing tariff, and a no-op. Next, the tariff

action effect is predicted, specifically the changes in tariff subscriptions and con-

sumption/production under the new subscriptions. These predictions are used

for predicting the total quantities and prices traded by the broker with its cus-

tomers Qconst , pconst , Qprodt , pprodt and the quantities traded by the broker’s competi-

tors Q⊕const , Q⊕prodt (line 7).2 Next, there is an optional step of trying to benefit

from imbalance, by sampling imbalance quantities (line 9), and aiming for the sam-

pled imbalances (lines 11, 13). A default implementation of this step uses only zero

imbalance. Lines 10-20 generate wholesale actions and predict their effect through-

out the simulated horizon. Lines 13-20 describe a degenerate implementation which

does not separate wholesale buying and selling quantities in its optimization, but

rather uses just one of them at a time.3. Tariff market predictions and the desired

imbalance determine the amount to trade in the wholesale market (line 13). Using

the quantities it needs to trade in the wholesale market and the quantities predicted

to be traded by competitors in the wholesale market (line 14), LATTE predicts the

price of the traded amounts in the wholesale market (line 16). The reason it uses the

amount traded by competitors is that wholesale prices are typically a function of the

total amount traded by all brokers. Lines 17-20 assign values to one pair of variables

based on whether the traded quantity is procured or sold. Next, LATTE combines

all predictions into a utility prediction for the current combination of actions and

2We are using the symbol ⊕ throughout to indicate the competitors’ values of a variable.
3In the current simulator wholesale selling opportunities are much less frequent than wholesale

buying opportunities: wholesale selling typically happens when customers leave a broker for com-
petitors and the broker needs to sell any excess it had procured. Optimizing both wholesale buying
and selling quantities might become important in future versions of the simulator, and could be
addressed as we described in Section 4.1
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Algorithm 1 The LATTE Algorithm

. The main algorithm executed by TacTex. Abstract functions are denoted as FunctionName.
1: function LATTE

2: . (1) Sample combinations of actions in tariff/wholesale markets and predict their expected utility
3: while not Done() do
4: . (1.1) Generate candidate tariff
5: aτ ← ComputeNextCandidateTariffAction()

6: . (1.2) Predict quantities/prices based on subscriptions and consumption/production

7: {〈Qconst , pconst , Q⊕const , Qprodt , pprodt , Q⊕prodt 〉|t = +1, . . . ,+H} ← PredictTariffEffects(aτ )
8: . (1.3) Sample candidate imbalance levels
9: for I ∈ SampleImbalanceLevels() do

10: for t ∈ {+1, . . . ,+H} do
11: IB0,t ← I

12: . (1.4) Compute needed energy. (Qwholesalet is net wholesale quantity Qbidt −Qaskt ).

13: Qwholesalet ← Qconst −Qprodt − IB0,t . since IB0,t = Qconst −Qprodt +Qaskt −Qbidt
14: Q⊕wholesalet ← PredictCompetitorWholesaleQuantity(Q⊕const , Q⊕prodt )
15: . (1.5) predict costs of procuring needed energy

16: pwholesalet ← PredictWholesalePrice(Qwholesalet , Q⊕wholesalet , t)
. Degenerate implementation: either buy or sell in the wholesale market, but not both

17: if Qwholesalet > 0 then

18: Qaskt ← 0, paskt ← 0, Qbidt ← Qwholesalet , pbidt ← pwholesalet
19: else
20: Qbidt ← 0, pbidt ← 0, Qaskt ← Qwholesalet , paskt ← pwholesalet

. Record current action combination

21: aω ← 〈Qbid+1 , Q
ask
+1 , Q

bid
+2 , Q

ask
+2 , . . . , Q

bid
+H , Q

ask
+H〉

22: a← aτ ∪ aω

23: . (1.6) Combine predictions to an expected future utility

24: utilities[a] ←
∑+H
t=+1 Reward(Qconst , pconst , Qprodt , pprodt , Qaskt , paskt , Qbidt , pbidt , bal(IB0,t), a

τ )

25: . (2) Execute the combination of actions in tariff/wholesale markets that maximizes predicted utility
26: a∗ ← arg maxa utilities[a]
27: ExecuteActionInTariffMarket(a∗τ ) . tariff market actions
28: 〈Qbid+1 , Q

ask
+1 , Q

bid
+2 , Q

ask
+2 , . . . , Q

bid
+H , Q

ask
+H〉 ← a∗ω . wholesale market actions

29: for t in +1,+2,... do
30: WholesaleBiddingPolicy(Qbidt , t)

31: WholesaleBiddingPolicy(Qaskt , t)

. Function implementations common to all instantiations:

. Reward function from Equation 3.1

32: function Reward(Qconst , pconst , Qprodt , pprodt , Qaskt , paskt , Qbidt , pbidt , bal(IB0,t), a
τ )

33: rt ← Qconst pconst −Qprodt pprodt +Qaskt paskt −Qbidt pbidt +

bal(IB0,t)− dist(Qconst , Qprodt )− pub(aτ )− rev(aτ )
34: return rt

. Default implementation assuming competitors will be balanced (buy exactly what they need)

35: function PredictCompetitorWholesaleQuantity(Q⊕const , Q⊕prodt )

36: Q⊕wholesalet ← Q⊕const −Q⊕prodt

37: return Q⊕wholesalet
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records the mapping from actions to utility (lines 21-24).

In phase 2, LATTE selects the action combination that maximizes the pre-

dicted utility (line 26), executes the tariff action in the tariff market (line 27)4, and

trades the desired amounts in the wholesale market (lines 28-31) using a wholesale

bidding policy that aims to minimize their costs.5

There are two function implementations that are common to all our instantia-

tions of LATTE: the Reward() function and the PredictCompetitorWholesaleQuantity()

function. The Reward() function sums the predicted reward components into a

complete one-step reward (lines 32-34). The PredictCompetitorWholesaleQuantity()

predicts that competitors will trade in the wholesale market the quantity that will

result in zero imbalance in their portfolio (lines 35-37). This assumption does not

necessarily hold, and therefore more sophisticated implementations of this function

could be explored in future work.

4.3 Chapter Summary

In this chapter we introduced LATTE, which implements an approximate solution to

the energy trading MDP in the form of an efficient lookahead policy. Based on Pow-

ell’s characterization of lookahead policies [80], LATTE can be classified as a rolling-

horizon, Monte-Carlo search policy. We have described the principles used in the

design of LATTE as well as the algorithm itself, both graphically and in pseudo-code.

LATTE contains abstract methods that can be implemented in different ways in dif-

4In practice, while LATTE is invoked at every timeslot, our implementation allows it to publish
tariffs only once every 6 hours in the first four days (which is the minimal publication interval
in Power TAC), and thereafter only once every 24 hours. This implementation is equivalent to
running LATTE with an implementation of ComputeNextCandidateTariffAction that returns a no-op
in every timeslot in which tariff publications are not allowed. The reason we artificially limit tariff
publications is that our subscription predictors ignore customers’ inertia and this may lead to over
publishing in some cases.

5Since the wholesale market is a day-ahead market, WholesaleBiddingPolicy can only be called
for the next 24 timeslots, even if the horizon H is longer than 24 timeslots. However, since LATTE
runs at every timeslot, eventually it bids for every timeslot in the horizon.
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ferent setups. The following chapters will describe specific instantiations of LATTE

that were used effectively in practice. Specifically, these implementations consis-

tently achieved state-of-the-art performance, both in competitions and in controlled

experiments.
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Chapter 5

TacTex-13: A Champion

Adaptive Power Trading Agent

This chapter introduces TacTex-13, the champion broker agent from the inaugu-

ral Power TAC competition in 2013. TacTex-13 is a complete, fully implemented

broker agent that instantiates the LATTE algorithm with components that learn

online to predict the tariff and wholesale market action effects, and to bid in the

wholesale market. This chapter describes the constituent components of TacTex-13’s

instantiation of LATTE (Section 5.1), and examines TacTex-13’s success through

analysis of competition results and subsequent controlled experiments (Section 5.2).

TacTex-13’s binary is publicly available, along with source code of more recent ver-

sions, which can be configured through a text file with TacTex-13’s components (see

Appendix A).

0This chapter is based on a published conference paper [111] that I wrote with Professor Peter
Stone. Author contributions were as follows: I was a Ph.D. student and did the complete imple-
mentation, and Peter was my advisor and collaborated with me on deciding on research directions
and analyzing and interpreting results.
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5.1 TacTex-13 Description

TacTex-13 uses a restricted instantiation of LATTE that procures power in the whole-

sale market, sells power in the tariff market, and aims for zero imbalance. To sell

power in the tariff market, TacTex-13 uses only fixed-rate consumption tariffs and

does not use tariff-revoke actions. This instantiation restricts and simplifies LATTE

in multiple ways, and results in several reward components being zero throughout

the LATTE algorithm, as follows (see the complete reward specification in Algo-

rithm 1, lines 32-34):

• Since TacTex-13 does not use production tariffs, Qprodt = 0 and pprodt = 0.

• Since TacTex-13 aims for zero imbalance, IB0,t = 0 and bal(IB0,t) = 0.

• Since Qprodt = 0 and IB0,t = 0, we get that Qbidt = Qwholesalet = Qconst , and

that Qaskt = 0 and paskt = 0 (based on lines 13, 17, 18 of Algorithm 1).

• Since TacTex-13 never uses tariff-revoke actions, rev(aτ ) is always 0.

Next, we describe how TacTex-13 instantiates the abstract functions defined in

LATTE’s phase 1 (Section 5.1.1) and phase 2 (Section 5.1.2).

5.1.1 TacTex-13’s Instantiation of LATTE’s Phase 1

Instantiating ComputeNextCandidateTariffAction()

TacTex-13 instantiates the ComputeNextCandidateTariffAction() function as follows.

The first call to this function generates a set of candidate fixed-rate tariffs and

returns the first candidate; each subsequent call returns the next candidate in the

set. The set of candidate tariffs is generated as 100 fixed-rate tariffs with prices that

are equally spaced in a range that contains the currently best published tariff prices.

More specifically, let rng := [p1, p2] be the price range that lies between the rate
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of the best tariff published by TacTex-13 and the (average) rate of the best tariff

published by its competitors; then the candidate tariffs are generated in the range

[0.8p1, 1.2p2].

The numbers 0.8 and 1.2 were initially chosen heuristically, to allow for price

reduction or increase of up to 20%. Later, informal experimentation showed that

perturbing these values did not generally improve performance. Specifically we ob-

served that: (i) perturbing the upper bound of 1.2 by 0.1 did not significantly affect

performance; (ii) perturbing the lower bound of 0.8 by 0.1 affected performance only

when playing against a small number of cooperative competitors (which do not re-

duce prices aggressively): using a value of 0.9 or 0.95 instead of 0.8 resulted in milder

price reductions, and therefore in higher scores (profits) for all brokers, but reduced

the broker’s market share and thus increased the risk of losing the game; (iii) per-

turbing the lower bound of 0.8 to 0.7 did not significantly improve performance; and

(iv) perturbing the lower bound to 0.3 significantly reduced performance in games

where initial wholesale cost predictions under-estimated the actual wholesale costs,

since the broker reduced prices more than it should have, and its profit decreased

significantly.

This instantiation of ComputeNextCandidateTariffAction() has several benefits

for the broker. First, it simplifies the optimization: LATTE searches solely over one

type of tariff action, namely fixed-rate tariff publications, and therefore optimizes

only one selling-price rather than a separate price for each future timeslot. Moreover,

fixed-rate tariffs reduce stochasticity in action effects, since they do not encourage

customers to shift consumption, thus making customers’ behavior more predictable.

Second, customers in Power TAC prefer tariffs that do not cause any discomfort

(i.e. consumption shifts), so using fixed-rate tariffs makes it easier for TacTex-13 to

acquire customers.1

1Clearly, shifting consumption to follow energy supply is one of the primary goals of future smart
grids. Tariffs that encourage that are aligned with this goal. Chapter 7 investigates the usage of
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Instantiating PredictTariffEffects(aτ)

TacTex-13’s instantiation of PredictTariffEffects is presented in Algorithm 2. This

instantiation predicts only the Qconst and pconst variables, since the other predicted

variables from line 7 of LATTE (Algorithm 1) are unused by TacTex-13. The length

of the horizon H over which these variables are predicted is one week (7× 24 = 168

timeslots). We chose this length as a trade-off between shorter horizons, which

might not capture weekly consumption/production patterns, and longer horizons

which present higher uncertainty and require more computation.

At the core of Algorithm 2 lies the problem of estimating the demand re-

sulting from a tariff publication. We decompose this problem into two problems:

(1) predicting the resulting customer migration between tariffs (line 4), and (2) pre-

dicting the demand of each of the customers over the lookahead horizon (line 5).

The former is detailed below in Algorithm 3. The latter is addressed by maintain-

ing records with average past demand for each customer, in each of the 168 weekly

timeslots, and using these records to predict future demand. This implementation

ignores weather conditions and uses only the time of week to predict consumption.

It also ignores demand elasticity and does not consider customers’ adjustment of

demand based on the tariff they are subscribed to. While these simplifications may

fail to capture complex patterns in the data, they help the broker to learn online to

predict demand with little data. This tradeoff between the complexity of predictive

models and the amount of data needed for learning them is generally a key tradeoff

in machine learning (known as the bias-variance tradeoff ), and specifically a key

tradeoff in learning to predict customer demand. The small amounts of data avail-

able for online learning in Power TAC were the reason we used simplified predictive

models with strong generalization.

Using the information gathered in lines 4-5, the total demand and income are

such tariffs by self-interested brokers.
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computed by summing over all customer-tariff pairs (line 6-11). Lines 12-14 convert

the total demand and income into the Qconst and pconst variables which are returned

as the predicted action effects of the tariff publication aτ .

Algorithm 2 TacTex-13::PredictTariffEffects(aτ )

. Initializing variables
1: tariff ← aτ . Renaming for readability
2: totalDemand [1,...,168] ← [0,...,0]
3: totalIncome[1,...,168] ← [0,...,0]

. Predicting effects
4: subscriptions[·,·] ← PredictChangeInSubscriptions(tariff )
5: demandProfiles[·] ← PredictCustomerDemandProfiles()
6: for cust ∈ customerModels do
7: for tariff ∈ {tariff ∪ existingTariffs} do
8: n ← subscriptions[cust ,tariff ]
9: customerDemand [1 . . . 168] ← n × demandProfiles[cust]

10: totalDemand [1 . . . 168] ← totalDemand [1 . . . 168] + customerDemand [1 . . . 168]
11: totalIncome[1 . . . 168] ← totalIncome[1 . . . 168] + customerDemand [1 . . . 168] · tariff .rate()
12: for t ∈ {1, 2, ..., 168} do
13: Qconst ← totalDemand [t]

14: pconst ← totalIncome[t]
totalDemand[t]

return {〈Qconst , pconst , 0, 0, 0, 0〉|t = +1, . . . ,+168}

Algorithm 3 describes the function PredictChangeInSubscriptions(), which is

used in line 4 of Algorithm 2. PredictChangeInSubscriptions() predicts the changes

in subscriptions as a result of a new tariff publication. It starts with predicting all

customer demand profiles (line 1), similarly to line 5 of Algorithm 2.2 TacTex-13

predicts the change in subscriptions separately for each customer (line 2). Recall

that Power TAC customers represent whole populations and can subscribe subsets

of their population to different tariffs. For each tariff, the predicted weekly de-

mand of a single member of the population (line 3) is multiplied by this tariff’s

rate to compute the expected weekly charge for a single member under this tariff

(line 6, implemented similarly to the right term in line 11 of Algorithm 2); then

it is paired with the number of individuals currently subscribed to this tariff to

form a pair 〈charge,numSubs〉 that is added to a set of such pairs (line 8). The

pairs 〈charge, numSubs〉 are used as a training set for a supervised learning al-

2In practice, instead of repeating this function call in each of the algorithms, we cache results
and use them.
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gorithm, specifically Locally Weighted Linear Regression (LWR), that predicts the

subscribed-population size for the candidate tariff based on its expected charge (lines

9-12). LWR (see, e.g. [3]) was chosen since, being non-parametric, it requires very

few assumptions about the representation of the predicted function (the customer

preference function).3

Since new subscribers to the candidate tariff must migrate from other tariffs

(published by either TacTex-13 or its competitors), TacTex-13 uses a normalization

step after which all tariff subscriptions are scaled proportionally so that the to-

tal number of predicted subscriptions equals the customer’s population size (line

13). Typically, part of the population is subscribed to competitors. In line 10,

charge2subs must represent the entire customer population (e.g. to be able to predict

migration of customers from competitors to TacTex-13), even though subscriptions

to competitors are unobservable by TacTex-13. To represent the complete popula-

tion, a dummy subscription is added to charge2subs, which assigns the portion of

the population that is not subscribed to TacTex-13’s tariffs to the best competitor

tariff. Finally, all the predicted subscriptions for this customer are added to a map

(lines 14-15) that is returned by the algorithm.

Instantiating SampleImbalanceLevels()

TacTex-13 always aims for zero imbalance and therefore uses a degenerate instanti-

ation of SampleImbalanceLevels() that returns the set {0}.

Instantiating PredictWholesalePrice(Qwholesalet , Q⊕wholesalet , t)

TacTex-13 predicts energy costs similarly to how it predicts customer demand pro-

files: it maintains a record of past average costs in each of the 168 weekly times-

3This implementation ignores customer inertia, i.e. the tendency to stay with the current tariff.
Therefore, it predicts the eventual subscriptions if no further action is taken in the market by any
broker.
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Algorithm 3 TacTex-13::PredictChangeInSubscriptions(candidateTariff )

1: demandProfiles[·] ← PredictCustomerDemandProfiles()
2: for cust ∈ customers do
3: customerDemand [1 . . . 168] ← demandProfiles[cust ]
4: charge2subs ← {}
5: for tariff ∈ existingTariffs do
6: charge ← ExpectedTariffCharge(customerDemand , tariff )
7: numSubs ← currentSubscriptions[cust , tariff ]
8: charge2subs ← charge2subs ∪ 〈charge,numSubs〉
9: charge ← ExpectedTariffCharge(customerDemand , candidateTariff )

10: trainingSet ← charge2subs
11: numSubs ← PredictWithLWR(trainingSet , charge)
12: charge2subs ← charge2subs ∪ 〈charge,numSubs〉
13: charge2subs ← Normalize(charge2subs)
14: for tariff ∈ candidateTariff ∪ existingTariffs do
15: predSubs[cust ,tariff ] ← ExtractSubscriptions(charge2subs,tariff )

return predSubs

lots and use it to predict future costs based on the time of week t. Doing so as-

sumes that energy cost is independent of the quantity predicted to be procured by

TacTex-13 (Qwholesalet ) or its competitors (Q⊕wholesalet ), and that energy costs in a

given weekday/time-of-day combination are similar between different weeks. These

assumptions hold when customer weekly consumption patterns are similar between

different weeks (which can happen when weather is similar and when brokers use

only fixed rate tariffs which discourage consumption shifting), and when the energy

quantity procured in the wholesale market by all brokers is roughly equal to the

quantity consumed by all customers in every timeslot. These assumptions roughly

held in the Power TAC 2013 finals, where brokers mostly used fixed-rate tariffs, and

procured most of their energy in the wholesale market.

5.1.2 TacTex-13’s Instantiation of LATTE’s Phase 2

In phase 2, LATTE decides on the quantities to trade in the wholesale market

for future target timeslots t. These quantities (Qbidt or Qaskt ) are denoted here

as Qt. TacTex-13 sends these quantities to a wholesale bidding policy that is
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encapsulated in the abstract function WholesaleBiddingPolicy(Qt, t). This section

describesTacTex-13’s instantiation of WholesaleBiddingPolicy(Qt, t).

In the wholesale market TacTex-13 primarily procures energy (to satisfy the

demand of its customers), and only sells energy when it predicts that future demand

would be smaller than the quantity it had already procured (e.g. as a result of

customers migrating to competitors). Since TacTex-13 mostly procures energy in

the wholesale market, its wholesale bidding policy is designed to minimize the cost

of procuring a quantity Qt. When TacTex-13 needs to sell energy in the wholesale

market, it uses a default randomized policy that reduces its selling-price offers as

time gets closer to the target timeslot t.

To minimize the energy costs TacTex-13 needs to (1) minimize the rates for

which it procures energy in the wholesale market, and (2) minimize its imbalance

costs, by satisfying the future demand as accurately as possible. To do the latter, it

must (2.1) have accurate predictions of future demand (provided by LATTE), and

(2.2) be able to procure all the energy predicted to be demanded. For notational

convenience, we will denote here a target timeslot as ttar and a general timeslot as t.

The actions that affect the energy cost for a target timeslot ttar are the 24 bidding

(or not-bidding) actions in each of the 24 preceding timeslots, (ttar−24, ..., ttar−1),

which thus comprise a sequential bidding process with 24 steps. Thus, at each

timeslot t, TacTex-13 executes, respectively, steps 1, 2, . . . , 24 of 24 independent

bidding processes for timeslots t+ 24, . . . , t+ 1.

TacTex-13’s wholesale market bidding policy uses a modified version of Tesauro’s

bidding algorithm [105]. We model the sequential bidding process as a Markov De-

cision Process (MDP) [82] in a specific way that allows for computational efficiency,

and more importantly in the competitive environment that TacTex-13 operates in,

it allows for high reuse of data, and thus quick online learning with little data.

The bidding MDP is isolated from the complete power trading MDP, by using a
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subset of state variables and actions of the complete MDP to define the bidding

MDP. TacTex-13’s bidding MDP is defined next, followed by the rationale behind

its design:

• States: s ∈ {0, 1, . . . , 24, success}, s0 := 24

• Actions: limit-price ∈ R

• Transition: a state s ∈ {1, . . . , 24} transitions to one of two states. If a

bid is partially or fully cleared, it transitions to the terminal state success.

Otherwise, a state s transitions to state s − 1. The clearing (i.e. transition)

probability ρcleared(s, limit-price) is initially unknown.

• Reward: In state s = 0, the reward is the balancing-price per energy unit.

In states s ∈ {1, . . . , 24}, the reward is 0. In state success, the reward is the

limit-price of the successful bid. Both balancing-price and limit-price are taken as

negative, so maximizing the reward results in minimizing costs. balancing-price

is initially unknown.

• Terminal States: {0, success}

In a sequential bidding process for a target timeslot, the broker actions are

bids of the form bid(energy-amount,limit-price). Tesauro’s bidding MDP uses these

actions as the MDP actions. However, we excluded energy-amount from the decision

making; it is always set to the difference between predicted demand Qttar and the

energy that is already procured for the target timeslot (TacTex-13’s market-position,

represented in the complete MDP’s state variable MB0,ttar).

The solution to our MDP is a sequential bidding policy that minimizes the

expected energy unit-cost for the next fraction of the procured quantity. Note

that there is a transition to a terminal state success even in cases where the bid is

partially cleared. One implication of excluding energy-amount from the MDP’s state
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and action representations is that every sequential bidding process executes over the

same sequence of states, thus allowing for computational and data efficiency, as seen

next.

Since the MDP is acyclic (linear), solving it requires one back-sweep, starting

from state 0 back to state 24, applying the following backup operator to compute a

value function:

V (s) =

balancing-price if s = 0

minlimit-price{ρcleared × limit-price + (1− ρcleared)× V (s− 1)} if 1 ≤ s ≤ 24

The MDP’s solution determines an optimal (over this MDP which approximates the

real MDP) limit-price for each of the 24 states. Using our MDP model, TacTex-13 is

always in states 1, . . . , 24 of 24 concurrent bidding processes. Therefore, TacTex-13

solves the MDP once per timeslot, and submits the 24 optimal limit-prices to the 24

auctions.

Before solving this MDP, TacTex-13 needs to learn the MDP’s unknown quan-

tities, namely the expected balancing-price at s = 0 and the transition function

ρcleared. TacTex-13 learns the transition function from past data by recording, for

each state s ∈ {1, . . . , 24}, the wholesale trades executed in s into a set Ps (here P

stands for density). Each trade has the form (clearing-price,cleared-energy-amount)

(pc and qc from the complete MDP’s auction results AB0). The set Ps is treated

as a non-parametric density estimation and a transition probability is estimated

from it as ρcleared(s, limit-price) :=
∑
tr∈trades[s],tr.clearing-price<limit-price tr.cleared-energy-amount∑

tr∈trades[s] tr.cleared-energy-amount .

To estimate the mean balancing-price, TacTex-13 similarly maintains a set P0 of past

balancing data. Since every bidding MDP executes over the same sequence of states

s ∈ {0, . . . , 24}, every trade executed in state s can be used by all future bidding pro-

cesses as a part of Ps. Thus, our state representation allows TacTex-13 to efficiently

reuse data and thus speed-up learning. Clearly, our state representation relies on

the assumption that time-to-target-timeslot is a dominant feature in determining
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the transition function, i.e. the distribution of auction closing prices. Were that not

the case, other features would need to be added to the MDP’s state.

TacTex-13’s bidding policy is summarized in Algorithm 4 which is TacTex-13’s

main routine in the wholesale market, executed at every timeslot. It computes the

needed energy for the coming 24 timeslots using demand-predictions and market-

positions (line 1), then adds the previous timeslot’s wholesale market trades and

balancing information to the Ps sets (line 2). If not enough trades were recorded

for each state (specifically fewer than 6), a randomized bidding policy is executed,

otherwise the MDP-based bidding policy is executed (lines 3-7). The number 6 was

chosen to trade off quick learning with reasonable density estimations.

Algorithm 4 Online RL Wholesale Market Strategy

1: neededEnergy [1 . . . 24] = ComputeNeededEnergy()
2: densities[0 . . . 24] ← AddRecentTradesAndBalancing()
3: if HasEnoughData(densities) then
4: limitPrices[1 . . . 24] = SolveMDP(densities)
5: else
6: limitPrices[1 . . . 24] = RandomizedBiddingPolicy()
7: SubmitBids(neededEnergy [1 . . . 24], limitprices[1 . . . 24])

To summarize, TacTex-13 starts a game with no data and learns to bid online,

while acting. Its estimates are refined during the game as it collects more data. At

each timeslot, it solves the MDP with all the data collected so far. The result is

an online reinforcement learning (RL) bidding algorithm that allows TacTex-13 to

adapt and optimize its bidding policy to each game’s specific market conditions.

5.2 Results

This section examines the success of TacTex-13 through analysis of the competition

and controlled experiments.
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5.2.1 Competition Results: Power TAC 2013 Finals Analysis

The Power TAC 2013 finals were held in conjunction with the AAAI’13 conference.

The qualifying competitors were 7 brokers developed by research groups from Europe

and the USA. The competition included all possible combinations of 2-broker and

4-broker games (21 and 35 games respectively), and 4 7-broker games. Table 5.1

shows the final cumulative scores in each of the game sizes, the final z-scores in each

of the game sizes, and competition totals. The final ranking is determined by the

rightmost column, which sums the z-scores of all game sizes. TacTex-13 had both

the highest total z-scores and the highest cumulative scores. In the 2-broker games

TacTex-13 won all of its 6 games. In the 4-broker games, TacTex-13 won 15 out of

the 16 games it completed successfully (TacTex-13 got disconnected from 4 games

due to technical issues with the infrastructure we used). TacTex-13 did not win the

7-broker games despite having the largest volume of customers. Next, we analyze

these results.

Table 5.1: Results of the Power TAC 2013 finals

Cumulative Scores Z-Scores
Broker 7-broker 4-broker 2-broker Total 7-broker 4-broker 2-broker Total

TacTex-13 -705248 13493825 17853189 30641766 0.386 0.449 0.691 1.526
cwiBroker 647400 12197772 13476434 26321606 0.437 0.442 0.536 1.415

MLLBroker 8533 3305131 9482400 12796064 0.413 0.391 0.395 1.199
CrocodileAgent -361939 1592764 7105236 8336061 0.399 0.381 0.311 1.091

AstonTAC 345300 5977354 5484780 11807435 0.425 0.406 0.254 1.086
Mertacor -621040 1279380 4919087 5577427 0.389 0.380 0.234 1.003

INAOEBroker02 -76112159 -497131383 -70255037 -643498580 -2.449 -2.449 -2.421 -7.319

Figure 5.1 shows averages of the main components of the brokers’ cash flow,

for each of the game sizes.4 Brokers are ordered based on their final ranking in

the competition, from left to right. For each broker, the bars show (from left to

right) its average (1) profit (2) income from consumption tariff subscribers (3) tariff

publication fees (proportional the number of tariffs published) (4) wholesale market

costs (5) balancing costs, and (6) energy distribution costs (proportional to the

4We excluded INAOEBroker; its large negative scores, caused by large tariff-publication fees,
affected the readability of the plots.
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amount of traded energy).

Ta
cT
ex

cw
iBr
ok
er

ML
LB
ro
ke
r

Cr
oc
od
ile
Ag
en
t

As
to
nT
AC

Me
rta
co
r−2000000

−1000000
0

1000000
2000000
3000000
4000000
5000000
6000000
7000000

ca
sh

Ta
cT
ex

cw
iBr
ok
er

ML
LB
ro
ke
r

Cr
oc
od
ile
Ag
en
t

As
to
nT
AC

Me
rta
co
r−2000000

−1000000

0

1000000

2000000

3000000

4000000

ca
sh

Profit

Tariff-Cons

Pub. Fees

Wholesale

Balancing

Distribution

Ta
cT
ex

cw
iBr
ok
er

ML
LB
ro
ke
r

Cr
oc
od
ile
Ag
en
t

As
to
nT
AC

Me
rta
co
r−1500000

−1000000
−500000

0
500000
1000000
1500000
2000000
2500000

ca
sh

Figure 5.1: Power TAC 2013 finals: average income and costs in 2-broker (top-left),
4-broker (top-right), and 7-broker games (bottom-right)

At a high level, TacTex-13’s wholesale market bidding policy and the tariff

market strategy induced by LATTE were responsible for TacTex-13’s success in the

finals. The wholesale market policy maintained low-costs, while the tariff market

strategy balanced its offered tariff prices with the resulting predicted demand to

optimize profits given the costs achieved by the wholesale policy. More specifically, in

the 2-broker games TacTex-13 made 32.4% and 88.2% more profits than the 2nd (cwi)

and 3rd (MLL) place brokers while maintaining similar levels of income-to-costs
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ratio (1.97), compared to cwi’s (2.07) and MLL’s (2.26). In Power TAC’s wholesale

market, energy unit-cost is typically an increasing function of the procured amount.

Despite that, TacTex-13 sold 50.5% and 72.5% more energy then cwi and MLL with

a competitive cost-per-kWh (4.4 cents/kWh) compared to cwi’s and MLL’s (4.6, 3.1

cents/kWh)5. It can be seen that the majority of TacTex-13’s costs were spent on

wholesale market procurement and (non-controllable) distribution fees. Therefore,

TacTex-13’s low cost-per-kWh is attributed to its wholesale market policy. At the

same time, given these costs, its tariff market strategy published tariffs at an average

rate that is slightly lower than cwi’s and slightly higher than MLL’s (8.8, vs 9.5 and

7.1 cents/kWh), which resulted in 39.0% and 113.6% more income compared to

cwi and MLL. In the 4-broker games, TacTex-13 traded 9% less energy comparing

to the 2-broker games, while maintaining similar average wholesale market costs.

Due to the stronger competition, TacTex-13’s income decreased by 61%, since its

tariff market strategy recognized it had to reduce prices (by 66.6%) to maximize its

profits. TacTex-13’s profits (and income) were higher by 38.1% (139.9%) and 404.5%

(542.2%) compared to cwi’s and MLL’s, while its income-to-cost ratio decreased to

1.28 compared to 1.62 and 1.39 of cwi and MLL. In the 7-broker games, TacTex-13’s

tariff strategy had to lower prices further, but also recognized a stopping point

beyond which it did not decrease rates. However, due to an underestimation of

the predicted costs, TacTex-13 ended up with losses despite having large customer

volume and income.

5.2.2 Controlled Experiments

We performed controlled experiments to identify the contribution of each of TacTex-13’s

major components. To do that, we generated test agents by disabling compo-

nents of TacTex-13 and comparing the resulting performance. Specifically, agent

5Not shown in the figure.
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U9 MDP LWR was the full TacTex-13 agent. Agent U9 MDP was generated from

U9 MDP LWR by removing the LWR-based customer-subscriptions prediction com-

ponent and replacing it with linear interpolation and conservative extrapolation,

thus modifying the implementation of PredictTariffEffects(). Agent U9 was gener-

ated from U9 MDP by disabling TacTex-13’s MDP-based instantiation of the func-

tion WholesaleBiddingPolicy() and replacing it with a baseline, randomized policy

that starts by trying lower buying prices and increasing them as time gets closer

to target timeslot. Agent U1 was generated from U9 by publishing 1, instead of

9, initial sample tariffs for probing customer tariff subscriptions, used by Algo-

rithm 3. Finally, a baseline agent B was generated from U1 by disabling LATTE’s

lookahead-based tariff market strategy and replacing it with a strategy that re-

acted to competitor tariffs by publishing slightly better rates. Specifically, LATTE’s

pseudo-code was degenerated by: (a) executing the code in the while loop (lines 3-20)

only once, (b) using the reactive tariff strategy to instantiate the abstract function

ComputeNextCandidateTariffAction(), (c) eliminating lines 23-24 which record utility,

and (d) replacing line 26 with a∗ ← a. The result was publishing tariffs based on

the reactive tariff strategy, and determining wholesale quantities to procure using

(the above modified implementation of) PredictTariffEffects() for these tariffs.

Table 5.2: Round-Robin ablation analysis.

B U1 U9 MDP
U9 MDP LWR 1278.3 (43.2) 708.9 (35.6) 34.2 (23.2)

U9 MDP 966.4 (40.5) 592.6 (22.2)
U1 547.4 (27.7))

We compared the above agents in two groups of experiments. The first group

was a 2-broker round-robin tournament between U9 MDP LWR, U9 MDP, U1 and

B. The second group compared the performance of all versions in 4-broker games

against a fixed set of opponents, composed of the 3 finalist broker binaries that were

available to us: cwiBroker, CrocodileAgent and Mertacor. In all of our experiments,
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Table 5.3: Ablation analysis using 3 finalist broker agents.

Broker Cash

cwiBroker 340.9 (8.4)
Mertacor -276.2 (40.2)

CrocodileAgent -287.1 (14.5)
B -334.6 (8.0)

Broker Cash

cwiBroker 315.4 (9.3)
U1 135.3 (12.3)

CrocodileAgent -372.1 (17.0)
Mertacor -485.5 (28.1)

Broker Cash

cwiBroker 316.2 (9.1)
U9 182.8 (12.4)

CrocodileAgent -338.2 (17.0)
Mertacor -476.6 (28.6)

Broker Cash

U9 MDP 389.9 (13.3)
cwiBroker 138.3 (8.7)

CrocodileAgent -333.3 (17.0)
Mertacor -494.1 (29.6)

Broker Cash

U9 MDP LWR 350.8 (13.3)
cwiBroker 132.4 (9.0)

CrocodileAgent -336.9 (17.3)
Mertacor -566.1 (26.8)

each given combination of agents was tested over a fixed set of 200 full games.

Each game took about 2 hours of real-time (about 60 days of simulated time),

and was generated by loading a set of random-number seeds that initialized the

random number generators of the simulation, and a weather data file that completely

determined the simulated weather. We note that even after loading weather and

seeds, there was still some randomness of unknown source in the simulation. Each

weather file contained around 3 months of real-world weather, recorded in the default

location simulated by Power TAC. We used 8 different weather files (each file used

by 25 out of the 200 games), using the recording start dates of January, April, July,

October of 2009 and 2010, thus covering a period of 2 years. The simulator version

used in the experiments in this section is specified in Appendix A. The results of

the first group of experiments are reported in Table 5.2. Each entry in the table is

the mean score-difference (in 1000s) over the set of 200 games. The results of the

second group of experiments is reported in Table 5.3. Each of the 5 two-column
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sub-tables shows the results when playing one of our agent versions against the 3

finalist agents over the set of 200 games. Each entry shows the average score of each

agent, and rows are ordered by ranking.

In both groups, adding the tariff market strategy and the wholesale market

strategies resulted in significant improvements. Specifically, adding the tariff market

strategy resulted in the largest improvements (agent U1). The next largest improve-

ments were achieved when adding the wholesale market strategy (agent U9 MDP).

Adding the LWR-based prediction (U9 MDP LWR) seems to be beneficial only for

2-broker games, possibly since its less conservative extrapolations work better with

small number of competitors.

5.3 Chapter Summary

This chapter introduced TacTex-13, the champion power trading agent from the

Power TAC 2013 finals. TacTex-13 uses an instantiation of LATTE that works ef-

fectively in practice. This instantiation is restricted to selling energy in the tariff

market using fixed-rate tariffs, procuring energy solely in the wholesale market, and

aiming for zero imbalance. These restrictions result in a computationally efficient

implementation. TacTex-13 learns online to predict customer demand and wholesale

costs and to bid in the wholesale market, using representations that allow it to learn

with little data. In the 2013 finals, TacTex-13 won all of its 2-broker games and 15

out of the 16 4-broker games it completed successfully. Our experimental evaluation

showed that two of TacTex-13’s components were mainly responsible for its success:

its tariff market strategy, induced by LATTE’s lookahead, and its wholesale bidding

policy. We have released the binary of TacTex-13, and in can be found at the fol-

lowing webpage: http://www.cs.utexas.edu/users/TacTex/. The next chapter

introduces TacTex-15, which improves upon TacTex-13’s demand prediction, cost

prediction, and wholesale bidding policy.
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Chapter 6

TacTex-15: A Winning Power

Trading Agent

This chapter presents TacTex-151, which is by many metrics the best Power TAC

broker at the current time. Compared with TacTex-13, TacTex-15 presents three

strategic improvements in its instantiation of LATTE, specifically in (a) demand

prediction, (b) cost prediction, and (c) wholesale bidding policy. The first two

improvements enhance the approximate transition and reward functions used by

LATTE, and the third improvement enhances the implementation of the abstract

wholesale action used in LATTE’s lookahead. The strategic improvements are rel-

atively minor on the surface but result in large performance improvements. We

start with describing the TacTex-15 agent (Section 6.1). Next, in the results section

0This chapter is based on a conference paper [112] (to appear) that I wrote with Professor
Peter Stone. Author contributions were as follows: I was a Ph.D. student and did the complete
implementation, and Peter was my advisor and collaborated with me on deciding on research
directions and analyzing and interpreting results.

1TacTex-14 is not covered in this dissertation, since we consider it an exploratory work in
progress towards TacTex-15. TacTex-14 extends TacTex-13 with different demand and cost predic-
tors, specifically polynomial regression for customer subscription predictions and a non-parametric
cost-predictor. TacTex-14 used early withdraw penalties, which were effective in the 2014 ver-
sion of the simulator and became less effective in 2015. TacTex-14 is available to download from
http://www.cs.utexas.edu/users/TacTex/
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(Section 6.2) we report TacTex-15’s performance in competitions (Section 6.2.1) and

in controlled experiments (Section 6.2.2), where using thousands of experiments we

analyze the performance of TacTex-15 and the reasons for its success. TacTex-15’s

binary and source code are publicly available (see Appendix A).

6.1 TacTex-15 Agent Description

TacTex-15 uses a restricted instantiation of LATTE that is similar to TacTex-13’s.

Similarly to TacTex-13, TacTex-15 procures power in the wholesale market, sells

power in the tariff market using fixed-rate tariffs, and aims for zero imbalance. Sim-

ilarly to TacTex-13’s case, the reward components Qprodt , pprodt , IB0,t, bal(IB0,t), Q
ask
t ,

and paskt are all zero, and Qbidt = Qwholesalet = Qconst . Therefore TacTex-15’s instanti-

ation of LATTE is quite similar to TacTex-13’s. On the other hand, TacTex-15 intro-

duces three main improvements over TacTex-13, specifically in the instantiations of

LATTE’s abstract functions (a) PredictTariffEffects, (b) PredictWholesalePrice, and

(c) WholesaleBiddingPolicy. Improvements (a) and (b) result in a better transi-

tion and reward function models used by LATTE’s lookahead, and improvement

(c) enhances the implementation of an abstract action used by LATTE’s lookahead,

namely procuring a given energy quantity in the wholesale market. The function

PredictTariffEffects is instantiated using a new demand-predictor, and the function

PredictWholesalePrice is instantiated using a new cost-predictor, both are described

next along with TacTex-15’s new wholesale bidding policy.

6.1.1 Instantiating PredictTariffEffects: a New Demand-Predictor

TacTex-15 instantiates LATTE’s PredictTariffEffects function using a new demand-

predictor. This demand-predictor predicts customer subscription changes and fu-
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ture demand, which determine Qconst , pconst , and Q⊕const in line 7 of Algorithm 1.2

TacTex-13 learned a demand-predictor from data. In general, learning a demand-

predictor helps in adapting to new or changing environments, but in Power TAC

there is no need to do so: these complex stochastic customer behaviors are coded

in Power TAC’s open-source simulator. Instead, TacTex-15 uses the simulator’s

customer code as a basis for its demand-predictor. However, this code does not

provide a complete demand-predictor: it relies on information hidden from brokers.

TacTex-15 heuristically seeds this information to reasonable values: customers of

other brokers are assumed to be subscribed to the best tariffs, customer subscrip-

tions changes are predicted in the limit (expected values after infinite time, thus

ignoring customer inertia and limited-time tariff-binding fees), and customer de-

mand parameters are set to expected values. Using the customers’ code as a basis

for TacTex-15’s demand-predictor allows us to examine the importance of having an

accurate demand-prediction to the LATTE’s overall performance (see Section 6.2.2).

6.1.2 Instantiating PredictWholesalePrice: a New Cost-Predictor

As we have seen at the beginning of this chapter, in TacTex-15’s implementation

of LATTE Qbidt = Qwholesalet = Qconst (to remind, Qbidt is the quantity procured in

the wholesale market, Qwholesalet is the net quantity traded in the wholesale market,

and Qconst is the quantity consumed by TacTex-15’s customers; here we overload

notation and treat these variables as actual values when t is a past timeslot and as

predicted values when t is a future timeslot). This means that TacTex-15 predicts

its abstract wholesale actions to be procurement actions. Therefore, TacTex-15

implements PredictWholesalePrice(Qwholesalet , Q⊕wholesalet , t) using a wholesale cost-

predictor, which is described in this section.

TacTex-15’s cost-predictor needs to be learned, since costs are determined by

2TacTex-13 did not predict Q⊕const since it did not need it for its instantiation of LATTE.
TacTex-15 needs this information for predicting wholesale costs (see below).
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brokers’ bidding strategies and traded quantities, which are unknown in advance and

may change dynamically. Therefore, TacTex-15 learns and adapts a cost-predictor

online. A cost predictor ultimately needs to predict the price pbidt of procuring

a quantity Qbidt in the wholesale market. In a monopoly setup, where a single

broker bids to procure energy from generation companies, Qbidt is predictive of pbidt .

However, in a competitive environment with multiple brokers, using Qbidt by itself

does not provide enough information to reliably predict pbidt : pbidt is determined by

additional features such as the total quantities traded by other brokers; how each

of these quantities is divided between the 24 auctions in which energy is traded for

the target timeslot t; which brokers participate in each of the 24 auctions (since

each broker has its own bidding policy); whether some brokers resell energy they

had procured in earlier auctions due to customers migrating to their competitors;

and how customer subscriptions are divided among brokers (since it determines the

quantities brokers need to trade). This information is encapsulated in the state

variables S and A, and is hidden from TacTex-15.

To bypass the problem of predicting pbidt from unobserved features, TacTex-15

predicts pbidt from observable information that is assumed to be correlated with un-

observed information that causally affect these unobserved features and therefore

pbidt . Specifically, TacTex-15 assumes that given brokers’ bidding strategies: (i) most

of these unobserved features are causally determined by brokers’ predictions of their

customers’ consumption and production (one exception is customer subscriptions,

which likely determine brokers’ predictions), (ii) brokers’ predictions are correlated

with the actual consumption and production of their customers, and (iii) the ac-

tual consumption and production of competitors’ customers are correlated with

TacTex-15’s prediction of them. Therefore, TacTex-15’s cost-predictor predicts pbidt

from TacTex-15’s predictions of competitors’ production and consumption and of its

own customers’ consumption.
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TacTex-15 needs to learn such a cost-predictor from past data of actual con-

sumption, production and prices, but individual past consumption and production

of competitors’ customers are unobserved by TacTex-15. However, their past to-

tal consumption and total production are observed by TacTex-15: every broker

receives a report on the total consumption and production in each timeslot, so

TacTex-15 subtracts its customers’ consumption and production from these totals

to figure out competitors’ totals. Therefore, TacTex-15 learns to predict whole-

sale costs from its own and from competitors’ past total consumption and produc-

tion. Specifically, TacTex-15 learns a cost-predictor from past data of the form

〈Qconst , Q⊕const − Q⊕prodt 〉 → pbidt (which is 〈Qconst − Qprodt , Q⊕const − Q⊕prodt 〉 → pbidt

with Qprodt = 0). To use this predictor to predict pbidt for a future timeslot t,

TacTex-15 needs to provide the features 〈Qconst , Q⊕const − Q⊕prodt 〉 for this future

timeslot; it does so using the predictions coming from the demand predictor. We

note that using informal experimentation, we confirmed that while Qbidt (and the cor-

respondingQconst ) is uncorrelated with pbidt , the combination 〈Qconst , Q⊕const −Q⊕prodt 〉

is correlated with pbidt .

TacTex-15’s instantiation of PredictWholesalePrice(Qwholesalet , Q⊕wholesalet , t)

is described in Algorithm 5. Recall that in TacTex-15’s instantiation of LATTE,

Qwholesalet = Qconst and Q⊕wholesalet = Q⊕const − Q⊕prodt . Therefore the function

PredictWholesalePrice receives the features 〈Qconst , Q⊕const −Q⊕prodt 〉 as parameters.

TacTex-15 implements PredictWholesalePrice using an adaptive cost-predictor, which

has two components: a linear regression predictor trained on boot data (created once

in line 2 and used in line 6), and a real-time correction factor constructed from the

last 24 hours’ prediction errors (line 7). The boot data is sent by the simulator

at game start, and contains wholesale transactions made by a default simulated

broker as a single buyer in the market. This boot data serves as a basis for a

1-dimensional regression that maps wholesale quantities to prices (trained in line
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2). To be able to use this 1-dimensional regression, we construct a 1-dimensional

feature from Qwholesalet , Q⊕wholesalet by summing them. Since the correction factor

is constructed from little data (to ensure responsiveness), we limit it to bias correc-

tion. The boot data is larger (336 instances) so we use it to determine the slope.

TacTex-13’s cost-predictor ignored traded quantities, and predicted past average

prices based on time. We compare the two predictors in Section 6.2.2.

Algorithm 5 TacTex-15::PredictWholesalePrice(Qwholesalet , Q⊕wholesalet , t)

1: if firstTime then
2: cost-predictor.trainLinearRegression({〈Qbidt′ , pbidt′ 〉}t′∈bootdata)
3: firstTime ← false
4: return cost-predictor.predict(Qwholesalet +Q⊕wholesalet )

. The cost-predictor function used by PredictWholesalePrice

5: function cost-predictor.predict(Q)
6: price ← cost-predictor.getLinearRegression.predict(Q)
7: correctionFactor ← cost-predictor.averagePredictionErrorInLast24Hours()
8: return price - correctionFactor

6.1.3 Instantiating WholesaleBiddingPolicy

In the wholesale market, TacTex-15 hedges between truthful and strategic (i.e. non-

truthful) bidding. TacTex-15’s value of procured energy unit in the wholesale market

is the imbalance fee, which is the price TacTex-15 would pay if it takes no procure-

ment action. Therefore, a truthful bid by TacTex-15 would have a limit price of

the predicted imbalance fee, denoted here as p. By bidding truthfully, TacTex-15

would get the highest priority among competitors who bid less than p and would

never pay more than p. However, since the sequential double-auction mechanism is

not incentive compatible, truthful bidding is suboptimal in some situations. For in-

stance, when the truthful bid is setting the clearing price (i.e. when it is lowest-priced

cleared bid), bidding lower could be better (as long as it is above the highest-cleared

ask), since it reduces the clearing price.
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TacTex-13 used an optimistic strategic (i.e. non-truthful) sequential bidding

policy π(Q): it assumed that any bid with limit price higher than the clearing price

would result in procurement of the complete quantity specified in the bid. Therefore,

this policy set its limit prices to be slightly higher than the highest clearing price

it was willing to pay in each of the 24 MDP states. This policy is optimal in

some situations (e.g. single-buyer or cooperative setups), but can be exploited by

competitors who learn to bid slightly higher: such competitors could benefit from the

low prices this policy sets, while getting higher priority in the auction and therefore

getting a larger fraction of cheap energy than the user of this policy, whose bids

may end up being only partially cleared.

Since each of the two strategies is beneficial in different situations, TacTex-15

hedges between them. Let p be the limit price suggested by TacTex-13’s policy, and

ε be the minimum amount that can be traded (0.01 MWh in Power TAC). To bid

for a quantity Qbidt , TacTex-15 submits the following 25 orders (each order is of the

form 〈energyAmount , limitPrice, targetTime〉): 〈Qbidt −24ε, p, t〉, {〈ε, p+i
p−p
24 , t〉}

23
i=0.

This policy benefits from both worlds: if TacTex-15 sets the price, it will either be

the strategic price p returned by π(Q), or the lowest among its higher bids. If

another broker sets the price, TacTex-15 will have a higher priority and benefit from

the lower price as long as it is not higher than p.

6.2 Results

We analyze TacTex-15’s performance in competitions (Section 6.2.1) and controlled

experiments (Section 6.2.2).

6.2.1 Competition Results: Power TAC 2015 Finals Analysis

The Power TAC 2015 Finals included 11 teams from universities in America, Eu-

rope and Asia. 230 games were played continually over a week, in three different
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sizes: 3-brokers, 9-brokers, and 11-brokers. A day after the finals ended, 8 of the

teams competed in a post-finals, demo-competition with 70 4-broker games. While

being unofficial, this competition was run similarly to the finals with one important

difference: a simulator-loophole that was exploited during the finals, was fixed. Due

to the proximity to the finals, and a parallel workshop, we believe that teams used

the same brokers they used in the finals.

Table 6.1 summarizes the 2015 finals results. While TacTex-15 was officially

ranked 2nd, it was the best broker that did not exploit a simulator-loophole: the

1st-ranked broker gained the highest overall score by exploiting a simulator loophole

in 3-broker games, which resulted in unrealistic dynamics and an unrealistically high

score that biased the final ranking (see dark gray cells in Table 6.1).3 Specifically,

Maxon15 subscribed customers to inflated tariffs which promised customers large

payments if customers unsubscribed from them after a period shorter than a single

timeslot. However, customers had no way to unsubscribe quickly enough (specifically

after less than a single timeslot) to collect the promised payments. Nevertheless, due

to the loophole, customers subscribed to these tariffs assuming they could collect

the payments, and paid inflated prices to Maxon15.

After the finals, the loophole was fixed. When replaying 3-broker competition

games without the loophole, Maxon15 no longer won by a large gap, but instead

lost by a large gap to TacTex-15. When taking into account only 11- and 9-broker

games from the finals (where the loophole had no impact), TacTex-15 ended 1st with

a total z-score of 0.142 ahead of CUHKTac and 0.551 ahead of Maxon15, finishing

slightly behind CUHKTac in 11-broker games (by 0.065) and ahead of CUHKTac

in 9-broker games (by 0.207). In the post-finals demo competition with a repaired

simulator, TacTex-15 won by a large gap ahead of the others (Table 6.2), making

50% more profits than the 2nd place (Maxon15). Maxon15 used the same strategy

3Maxon was not disqualified: they explained it as an unintended result of automatic parameter
tuning right before the finals.
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Table 6.1: Power TAC 2015 finals results. Ranking is determined by the “Total”
score, which is a sum of individual z-scores in each game size, displayed in the
columns “11-brokers” (10 games played by all brokers), “9-brokers” (45 games played
by each broker) and “3-brokers” (45 games played by each broker).

Broker 11-brokers 9-brokers 3-brokers Total

Maxon15 0.611 0.801 1.990 3.402
TacTex-15 0.897 1.066 0.258 2.221
CUHKTac 0.962 0.859 0.106 1.927
AgentUDE 0.421 0.367 0.809 1.597

Sharpy 0.429 0.614 0.521 1.564
COLDPower 0.726 0.397 -0.751 0.371

cwiBroker -0.002 -0.120 0.465 0.343
Mertacor 0.413 0.142 -1.341 -0.786

NTUTacAgent -1.017 -1.638 0.453 -2.202
SPOT -1.052 -0.243 -1.032 -2.327

CrocodileAgent -2.387 -2.244 -1.479 -6.111

Table 6.2: Power TAC 2015 post-finals demo competition results. 70 games
were played in a single game-size (4-brokers). Ranking is determined by z-score.

Broker 4-brokers (profits) 4-brokers (z-score)

TacTex-15 15.0M 1.122
Maxon15 10.7M 0.627

CUHKTac 10.0M 0.537
AgentUDE 9.7M 0.509

cwiBroker2015 7.9M 0.297
Sharpy 4.6M -0.092

COLDPower -0.8M -0.724
SPOT -14.0M -2.276
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as before, but it was not as effective with the loophole fixed.4

Figure 6.1 shows an analysis of TacTex-15’s performance in the 2015 finals and

in the post-finals competition. In 11-broker games CUHKTac (1st) and TacTex-15

(2nd) won by a large gap over the other brokers, where most brokers ended with

losses. In 9-broker games TacTex-15 won by a large gap, making 30% more profit

than the 2nd place broker in this category (CUHKTac), despite missing 3 out of

45 games due to network connection problems. The revenue and costs plots show

that in 11- and 9-broker games TacTex-15 chose to reduce its market share, likely

due to the fierce competition, so that its revenue and costs were lower compared

with other top brokers, while its profit remained high. In 3-broker games TacTex-15

typically performed the best, although this is harder to see in the figure, due to

several events that biased the final averages: (a) Maxon15’s loophole-exploitation,

discussed above; (b) About 1/2 of AgentUDE’s, Sharpy’s and cwiBroker’s 3-broker

game scores come from single outlier games in which they played against a non-

functioning broker (Mertacor) and/or a competitor’s crash in a monopoly/duopoly

situation; (c) while NTUTacAgent did not exploit the simulator’s loophole, the

loophole indirectly inflated its final score (d) TacTex-15 missed 5 out of its 45 3-

broker games due to network connection problems, resulting in a score of 0 in these

games, and a reduction of 4.3% in TacTex-15’s average profit. In the 4-broker games

of the post-finals competition TacTex-15 made about 50% more profit than the 2nd

place broker. The revenue and costs plots show that it had a similar revenue to

the 2nd and 3rd place brokers, but much lower costs; higher revenue and lower

costs than the 5th, 6th brokers; and almost double the revenue of each of the other

brokers.

4To be fair, one should note that they did not retune their parameters to the repaired simulator.
On the other hand, it’s not clear that other parameters would have done particularly better in the
absence of the loophole.
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Figure 6.1: 2015 competition analysis: average profit, revenue and costs.
The top 3 lines respectively summarize 11-, 9-, 3-broker games from Power TAC
2015 finals; the bottom line summarizes the 4-broker games of the post-finals demo
competition. Each line shows average profit (left), revenue (middle), and costs
(right). 3-broker game results are biased due to (a) a simulator-loophole exploitation
by Maxon15; (b) an outlier game for AgentUDE, cwiBroker and Sharpy; (c) a
simulator-bug (NTUTacAgent); and (d) TacTex-15 missing 5 games due to network
problems. More details are in the text.
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6.2.2 Controlled Experiments

While the competition is motivating and its results are illustrative, it cannot isolate

specific broker components in a statistically significant way. We therefore subse-

quently tested TacTex-15 in thousands of games, in two types of controlled exper-

iments: (a) performance tests, and (b) ablation analysis tests, which evaluate the

contribution of TacTex-15’s main components to its overall performance. The sim-

ulator version used in the experiments in this section is specified in Appendix A.

Experimental Setup

Each experiment consisted of running 56 games against a set of opponent brokers,

using broker binaries of 2015 finalists. To better evaluate statistical significance, we

held most of the random factors in the simulation fixed across experiments (random

seeds, weather conditions). To fix weather conditions, we used weather files con-

taining 3 months of real-world weather. To cover year-round weather conditions we

used 8 weather files (each file used by 1/8 of the games) with start-dates of January,

April, July, October of 2009 and 2010.

Performance Tests

A successful broker should perform well in expectation against every set of op-

ponents, under different stochastic conditions (here weather/random seeds). At

the time of running the experiments, five 2015 finalists had released their brokers’

binaries. We used these binaries to test TacTex-15’s performance in 2, 3, 4, 5, 6-

broker games. We generated combinations of brokers for each game size, and tested

each combination in 56 games, as described above. Figure 6.2 presents the results.

TacTex-15 significantly won against every combination of opponents, typically by a

large gap.
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Figure 6.2: Performance of TacTex-15 against Power TAC 2015 finalists in
controlled experiments of game-sizes of 2-5. Each line represents the average
scores of a combination of brokers playing each other under a variety of conditions
(note the small error bars). Results are shown for game-sizes of 2-, 3-, 4-, 5-brokers
(top-left, top-right, bottom-left, bottom-right, respectively). Similar results for 6-
brokers are omitted. TacTex-15 consistently won against all combinations of brokers,
in all game-sizes.
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Ablation Analysis

To understand the reasons for TacTex-15’s success, we tested the contribution of

TacTex-15’s main components to its overall performance, in all possible game-sizes

(2,...,6). We created three ablated versions of TacTex-15 by disabling each of its

main components. For each game size, we selected the “strongest” combination of

opponents, against which TacTex-15 had the lowest score. We tested each ablated

version against these opponents in a 56-game experiment, holding random seeds

and weather conditions fixed to the same values used against TacTex-15. When

disabling a component, we used as a baseline the corresponding component used by

TacTex-13 (since TacTex-15’s ablated version must have some component in place of

a disabled one to run properly). Figure 6.3 shows the results of our ablation analysis.

Disabling the cost-predictor (Abl-cost) did not have significant impact on TacTex-15’s

performance (however it can reduce performance, see Figure 6.8). Disabling the

wholesale-bidding policy (Abl-bid) significantly hurts TacTex-15’s performance: it

reduces TacTex-15’s score in game sizes 2, 4, 5, 6, and it causes TacTex-15 to either

lose its lead (in game sizes 2, 3) or have a smaller victory margin (in game sizes 4,

5, 6). Disabling the demand-predictor (Abl-demand) significantly hurts TacTex-15’s

performance: it drops TacTex-15’s score in all game sizes, and causes TacTex-15 to

either lose its lead (in game sizes 3, 5, 6) or have a smaller victory margin (in game

sizes 2, 4).

Ablation Analysis Extensions

To gain more insight into the importance of TacTex-15’s main components, we ex-

tended each ablation experiment. First, we extended TacTex-15’s demand-predictor

ablation analysis from a binary ablation test (disabled/enabled, see Abl-demand in

Figure 6.3) to a continuum of ablation-levels, thus testing TacTex-15’s sensitivity

to demand prediction errors. Figure 6.4 shows the performance-degradation as a
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Figure 6.3: Ablation analysis for 2-6 broker games. The performance of
TacTex-15 is compared with three of its ablated versions, when playing against the
strongest combination of opponents in each game size. Ablated versions are con-
structed from TacTex-15 by disabling cost predictor (Abl-cost), wholesale-bidding
policy (Abl-bid), and demand-predictor (Abl-demand). The left figure shows the av-
erage scores of each version in each game size; the right figure shows the average
score-differences of each version from opponents’ average score (y-axes’ scales are
the same).

function of ablation-level. We see that TacTex-15’s degrades quickly even for small

levels of ablation. We conclude that having an accurate demand-predictor is crucial

for the success of TacTex-15’s implementation of LATTE.

To better understand why the broker’s performance degraded when ablating

the demand-predictor, we examined more closely the games played by TacTex-15

(left-most point in Figure 6.4) and by Abl-demand (right-most point in Figure 6.4).

Figure 6.5 shows the revenue and cost components that compose the brokers’ score

(cash). In this figure, we see that: (a) Abl-demand pays more tariff publication fees

than TacTex-15 (by about 148K), (b) Abl-demand distributes (sells) more energy

than TacTex-15 , thus paying more distribution fees than TacTex-15 (by about 33K),

(c) energy selling income (from consumption tariffs, denoted ConsTariff) is similar

between TacTex-15 and Abl-demand, (d) energy procurement costs (wholesale and

balancing) are similar between TacTex-15 and Abl-demand. In addition, TacTex-15’s

average energy selling price was 4.3% higher than that of Abl-demand (7.45 vs. 7.14

82



Figure 6.4: Performance as a function of ablation level of the demand-
predictor in 3-agent games. The plot shows the degradation in TacTex-15’s
performance as the ablation level of its demand predictor increases. To change
ablation level along a continuum, TacTex-15 uses a weighted combination of two
demand-predictors: (1) its own predictor, and (2) TacTex-13’s demand-predictor,
which was used by the ablated agent Abl-demand in Figure 6.3. Ablation level is
then represented as the relative weight given to predictor (2), so that a weight of 0
means “no-ablation”, and a weight of 1 means “full-ablation”.
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cents/kWh, not seen in the figure). We conclude that ablating the demand-predictor

(and using TacTex-13’s demand-predictor instead) causes the broker to publish too

many tariffs, at too low prices. This conclusion is confirmed by examining the

broker’s actions in a single game: Figure 6.6 shows how TacTex-15 stops publishing

tariffs early in the game, while Abl-demand keeps publishing tariffs and reducing

prices until the end of the game. Figure 6.7 shows that Abl-demand typically has a

larger number of customers than TacTex-15, however its profit is lower and flattens

toward the end of the game, while TacTex-15’s profit keeps increasing. We conclude

that ablating TacTex-15’s demand-predictor results in over-estimation of the utility

predicted for tariff price reductions, compared with the utility predicted for taking

no action.

Next, we extended the ablation analysis of TacTex-15’s wholesale-bidding

policy with additional comparisons against its ablated version (used by Abl-bid, see

Figure 6.3). Abl-bid’s policy (which is TacTex-13’s policy) can be viewed as more

cooperative than TacTex-15’s, since it submits lower bids, and thus may result in

lower costs against an opponent using a similar policy. To understand whether

Abl-bid’s cooperative policy is preferable in some situations, we created a payoff

matrix (Table 6.3) by running 2-broker games, testing both TacTex-15 and Abl-bid

in self-play and against each other. While Abl-bid’s cooperative policy indeed re-

sulted in lower costs in self-play (40 $/MWh vs. 57 $/MWh, a 29.8% reduction),

Abl-bid’s total scores in self-play were not higher than TacTex-15’s, since the com-

petitive selling policy reduced selling-prices further than TacTex-15’s, such that the

profit remained similar to TacTex-15’s. As a result, TacTex-15’s competitive policy

dominated Abl-bid’s cooperative policy in Table 6.3’s experiments.

We ran additional self-play experiments using 3-, 4-, 5-broker games. In

these cases Abl-bid’s more cooperative bidding policy resulted in higher scores than

TacTex-15, mainly since Abl-bid’s lower energy costs enabled a longer price-reduction
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Figure 6.5: Demand-predictor ablation: revenue and cost components. The
bar charts show the average revenue and cost components when each of TacTex-15
(top) and its demand-predictor ablated version, (Abl-demand, bottom), played 3-
broker games against AgentUDE15 and cwiBroker15. The top bar chart corresponds
to the left-most point in Figure 6.4 and the bottom bar chart corresponds to the
right-most point in Figure 6.4.
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Figure 6.6: Demand-predictor ablation: broker behavior in an example
game. The plots show tariff publications throughout the game, in two repetitions of
a game using the same opponents, random seeds, and weather conditions, first with
TacTex-15 (top) and then with its demand-predictor ablated version (Abl-demand,
bottom). A tariff action is represented by the timeslot in which it took place (x-
axis), and by the tariff’s selling price (y-axis). A game normally starts at timeslot
360 (since timeslots 0-359 are “bootstrap” period).
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Figure 6.7: Demand-predictor ablation: customers and profits in an ex-
ample game. The plot shows customer subscriptions (top row) and profits (cash,
bottom row) throughout a game, in the game-repetitions described in Figure 6.6.
The plots from the game played with TacTex-15 (top plot in Figure 6.6) are in the
left column, and the plots from the game played with Abl-demand (bottom plot in
Figure 6.6) are in the right column.
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period after game-start, during which selling-prices where higher than the eventual

equilibrium after which the profit of all brokers increased in the same pace.

Table 6.3: Payoff matrix of two wholesale-bidding strategies in 2-agent
games. The matrix shows a game-theoretic payoff matrix of two wholesale bidding
strategies: (a) Comp-Bid is TacTex-15’s competitive bidding policy, and (b) Coop-Bid
is Abl-bid’s (and TacTex-13’s) cooperative bidding policy from Figure 6.3. The ma-
trix entries show the average scores of agents using these strategies (TacTex-15 and
Abl-bid, respectively) in self-play and against each other.

Payoff Matrix
Coop-Bid Comp-Bid

Coop-Bid 1.0M
1.0M

1.6M
0.8M

Comp-Bid 0.8M
1.6M

1.0M
1.0M

Finally, we extended TacTex-15’s cost-predictor ablation analysis. Even

though ablating TacTex-15’s cost predictor did not reduce performance against the

2015 finalists (Figure 6.3), we expect it to reduce performance when wholesale

costs change more dynamically. Figure 6.8 shows the result of such an experi-

ment, where TacTex-15 played against its cost-predictor ablated version (Abl-cost

from Figure 6.3), and was quicker to react to a drop in wholesale costs and thus

significantly won against Abl-cost.

6.3 Chapter Summary

This chapter introduced TacTex-15, which extends TacTex-13’s implementation of

LATTE. TacTex-15 consistently achieved top performance in Power TAC 2015 com-

petitions and in extensive controlled experiments. Specifically, (i) in the Power TAC

2015 finals it was the best agent that did not exploit a simulator loophole, (ii) in the

post-finals demo competition it won by a large gap over the rest of the agents, mak-

ing 50% more profit than the second place agent, and (iii) in controlled experiments
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Figure 6.8: Cost-predictor ablation in presence of abruptly changing
market-costs. The plot shows the average cumulative profit (with confidence
bounds) as a function of time in head-to-head games of TacTex-15 vs. its cost-
predictor ablated version (Abl-cost from Figure 6.3), when market costs abruptly
dropped in timeslot 1080 (mid-game). TacTex-15 was quicker to react due to its
more adaptive cost-predictor: it reduced selling prices, and thus gained market-
share and increased its profits. To create a market-cost drop effect, we could reduce
either the sellers’ asks, or the brokers’ bids. We implemented the latter (to avoid
changing the simulator), by making both brokers switch their bidding policies in
timeslot 1080 from competitive policies (of TacTex-15) to a cooperative policy (of
TacTex-13).

it significantly won against every combination of competitors. TacTex-15 improves

upon TacTex-13’s instantiation of LATTE in three main ways, where two of them

improve the predictive model used in LATTE’s lookahead (its demand-predictor and

cost-predictor) and one of them improves an implementation of an abstract action

used by LATTE (its wholesale bidding policy). These improvements turn out to

be critical to TacTex’s performance. Specifically, disabling its demand-predictor

and wholesale bidding policy reduced its performance in 2,3,4,5-broker games, and

disabling its cost-predictor reduced performance in games in which wholesale costs

changed abruptly. The next chapter describes an extension of TacTex-15’s implemen-

tation of LATTE, which searches over a superset of tariff actions that includes Time-

Of-Use tariffs, which are a proposed method for implementing demand-response in
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future electricity markets (i.e. affecting customer demand to adapt to supply condi-

tions).
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Chapter 7

Autonomous Electricity Trading

using Time-Of-Use Tariffs in a

Competitive Market

One of the milestones in the smart grid vision is “customer participation in power

markets through demand-side-management” [114]. Demand-side management (DSM)

refers to adapting customer demand to supply conditions. One of the main meth-

ods proposed for implementing DSM is Time-Of-Use (TOU) pricing [34, 49], which

specifies time-of-day-based electricity prices (e.g. hourly prices), in contrast to the

fixed prices that currently dominate retail electricity markets. As of the current

date, TOU pricing schemes are proposed to take effect in California starting Jan-

uary 2019 [91]. TOU pricing incentivizes customers to adapt their consumption and

shift portions of it to cheaper times. Shifting consumption can reduce customers’

costs while potentially increasing their discomfort.

0This chapter is based on a published conference paper [113] that I wrote with Professor Peter
Stone. Author contributions were as follows: I was a Ph.D. student and did the complete imple-
mentation, and Peter was my advisor and collaborated with me on deciding on research directions
and analyzing and interpreting results.
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In Power TAC, fixed pricing is implemented through fixed-rate tariffs, and

TOU pricing is implemented through TOU tariffs. Chapters 5 and 6 described two

successful instantiations of LATTE used by TacTex-13 and TacTex-15, which achieved

top performance in competitions and controlled experiments. These instantiations

sold electricity to retail consumers only through fixed-rate tariffs, in large part be-

cause the Power TAC simulator did not have demand-shifting customers until early

2015. This chapter describes a third instantiation of LATTE, called LATTE-TOU,

which extends these previous instantiations of LATTE by allowing the broker to use

TOU tariffs in the tariff market. The broker binaries and simulator versions used

in this chapter are publicly available, along with source code that can be configured

through text files to run LATTE-TOU and behave like these released binaries (see

Appendix A). This chapter’s primary contributions are:

• We enhance the Power TAC simulator’s consumers with demand-shifting ca-

pabilities, and enable demand-shifting for about 50,000 simulated consumers.

Specifically, we enhance Power TAC’s factored-customer models (Section 2.2.2)

(a) to evaluate a TOU tariff’s utility based on the cost and discomfort of the

predicted shifted-consumption under this TOU tariff, and (b) to allow for

different consumption profiles for different members of the population, each

based on the tariff the member is subscribed to.

• We extend LATTE to reason effectively about TOU Tariffs.

• We show that the problem of optimizing TOU tariffs in competitive markets is

intractable, and propose an efficient optimization algorithm that approximates

its solution. Our algorithm is fully implemented in a new instantiation of

LATTE, called LATTE-TOU, which is used by our broker agent.

• LATTE-TOU leads to 15% peak-demand reduction. To the best of our knowl-

edge, our work is the first to show that TOU can achieve the primary goal
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of peak-flattening in competitive markets in a large-scale, realistic simulation

such as Power TAC. Our agent’s peak-flattening results in greater profits

and/or profit-share and allows it to beat fixed-rate brokers, specifically the

1st and 2nd place agents from the 2014 Power TAC finals, while reducing the

electricity costs of both its customers and its competitors’ customers.

• Using extensive experimentation, we analyze several economic implications of

using TOU in competitive retail markets. For instance, while previous research

warned that TOU tariffs could induce customer-herding, our TOU broker pre-

vented it by implicitly coordinating flattening through profit-maximizing tar-

iffs. Our broker’s prevention of customer herding underlines a potential benefit

of employing autonomous TOU brokers in competitive power markets.

7.1 Background

This section elaborates on the motivation for DSM and TOU tariffs (Section 7.1.1),

and describes how Power TAC customers react to DSM using TOU tariffs (Sec-

tion 7.1.2).

7.1.1 Motivation: DSM and TOU Tariffs

A main motivator for DSM in general, and for TOU tariffs in particular, is the vari-

ability in electricity generation prices. Electricity generation prices depend on the

types of electricity generators used, which frequently depend on energy availabil-

ity and predicted daily demand patterns. Figure 7.1 shows the marginal electricity

generation costs as a function of generated power and generation type in three large

US wholesale markets: ERCOT, PJM, and CAISO. Since these marginal electric-

ity generation costs are the wholesale offer prices (asks) of generators, Figure 7.1

shows the costs of procuring electricity in the wholesale market. The figure demon-
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Figure 7.1: Generation-cost curves of three wholesale markets: ERCOT, PJM,
CAISO. Source: Brattle Report, pg. 18 http://www.ercot.com/content/news/

presentations/2013/Brattle%20ERCOT%20Resource%20Adequacy%20Review%

20-%202012-06-01.pdf

strates how increased generation results in more sharply increasing costs. Typical

daily customer demand has peaks, which thus result in high costs. One of the main

goals of DSM is reducing these peaks by flattening customer demand throughout the

day [96]. Demand-flattening (also called peak-flattening) can reduce both generation

costs, infrastructure costs, and CO2 emissions.

TOU tariffs, which specify different prices for different times of day, were

proposed for implementing DSM. Here we define a TOU tariff T to be a tuple

T := 〈p0, p1, · · · , p23〉, where pi is the electricity price in cents/kWh during hour-

of-day i. We refer to pi as hourly rate. A TOU tariff with varying hourly rates

incentivizes customers to adapt their consumption away from times of peak demand

in order to reduce their electricity costs.
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7.1.2 DSM in Power TAC

In Power TAC [87] as in real-world markets [1], when a tariff is published to the

market, customers respond in 3 ways.1 Responses 1 and 2 take place for any (fixed-

rate or non-fixed-rate) tariff publication, while response 3 takes place for non-fixed-

rate tariffs, such as TOU, as follows:

1. subscription changes: a portion of the customer population may change their

tariff subscriptions.

2. consumption elasticity : customers elastically adapt their total consumption

based on prices.

3. consumption shifting : customers may shift consumption from expensive to

cheap hours.

In competitive retail markets, TOU tariffs may need to compete with fixed-

rate tariffs, which sell energy for a fixed price per unit. Fixed-rate tariffs do not

affect customers’ comfort, since customer payments are determined solely by the

total energy consumed, regardless of when it is consumed. In contrast, under TOU

tariffs customers face a trade-off between cost and comfort: to save costs, they may

need to change their consumption patterns. Customers will subscribe to a TOU

tariff and change consumption if the potential cost saving compared with competing

fixed-rate tariffs is large enough to compensate for the extra discomfort.

In Power TAC, about 90% of the consumption is done by factored-customer

models, which represent populations of customers (See Section 2.2.2). Factored-

customers model the cost-comfort trade-off as follows [87]. A customer has a default

energy profile eH , which is a vector of desired consumption values up to some horizon

1Since Power TAC customers are autonomous agents representing their human owners, they
respond at a higher frequency than a typical human. This setup is expected to reflect future mar-
kets with high penetration of home automation systems, and with autonomous agents optimizing
residential consumption.
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H. Let ēH be a modified energy profile defined by some admissible permutation of

eH . Intuitively, an admissible permutation is a modified energy profile that satisfies

the customer’s constraints on how energy can be shifted, for instance not consuming

below a customer’s minimum required demand at any time, and shifting only por-

tions of demand that are flexible. The discomfort implied by an admissible permu-

tation ēH is quantified using a distance metric defined on profile vectors: d (eH , ēH).

Power TAC currently uses the L2 distance metric d (eH , ēH) :=
∑

t=1:H (et − ēt)2,

and we find that it has desirable strategic effects, which we elaborate on later. Let

cost (T, ēH) be the cost paid by a customer consuming energy according to ēH un-

der a tariff T . Let w be a constant weighting the importance of cost vs. discomfort.

Then the customer’s utility of subscribing to tariff T and consuming according to

ēH is ucust (T, ēH) := − (cost (T, ēH) + w × d (eH , ēH)).

Customers optimize ēH to maximize their utility under a given tariff to which

they are subscribed. This formulation assumes a baseline maximum utility of 0

corresponding to the customer using energy for free and consuming according to its

desired energy profile. For a customer cust subscribed to a tariff T , the optimal

consumption profile is e∗H := arg maxēH ucust (T, ēH), and the utility of tariff T as

(overloading notation) ucust (T ) := ucust (T, e∗H). For any fixed-rate tariff Tfixed,

all permutations have the same price, so by the above definitions e∗H = eH , and

ucust (Tfixed) := −cost (Tfixed, eH). Therefore, for a given TOU tariff Ttou and a

fixed-rate tariff Tfixed, the utility of Ttou for a customer cust is higher than that of

Tfixed (i.e. ucust (Ttou) > ucust (Tfixed)), when − (cost (Ttou, e
∗
H) + w × d (eH , e

∗
H)) >

−cost (Tfixed, eH), i.e. when it saves enough cost to overcome the extra discomfort.

7.2 Our Contribution to DSM in Power TAC

Section 7.1.2 described how Power TAC’s factored-customer consumers currently

respond to tariff publications and specifically to DSM using TOU tariffs. Part of
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this implementation was contributed by us, as follows. Until early in the year 2015,

the consumers’ demand-shifting code was disabled in the Power TAC simulator.

This code was implemented as described in [87] and could work in a restricted

setup, but needed several enhancements to work in a full game in the way described

in the previous section. We enhanced the code to work in a full game, as follows.

First, consumers originally evaluated the utility of candidate tariffs using

their default consumption profile, thus implicitly assuming that they would not

shift their consumption. We enhanced consumers to evaluate each TOU tariff using

their utility-maximizing shifted consumption profile under this tariff. To find a

utility-maximizing shifted consumption profile, customers use the same code that

they use for shifting consumption under an actual submission.

Second, customers originally treated all TOU tariffs as equally uncomfortable

(using a fixed constant to account for the discomfort of any TOU tariff). However,

a TOU tariff that requires small consumption-shifting should be considered less

uncomfortable than a TOU tariff that requires large consumption-shifting. We en-

hanced consumers to account for a TOU tariff’s discomfort based on the amount of

shifting in their utility-maximizing shifted profile under this tariff. The amount of

shifting is measured as the L2 distance between a consumer’s desired and shifted

consumption profiles, as was described in Section 7.1.2.

Third, factored-customer models that represent large populations can sub-

scribe subsets of their populations to different tariffs. The original implementation

of demand-shifting found a single shifted consumption profile per factored-customer,

which maximized utility over all tariffs subscribed by the population. As a result,

different population members consumed according to the same consumption pro-

file, even if they were subscribed to radically different TOU tariffs. We enhanced

factored-customers to allow different population members to have different consump-

tion profiles, where each profile is optimized based on a single tariff to which the
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member is subscribed.

Finally, we enabled the corrected demand-shifting for about 50,000 residential

customers and 25 office buildings in the simulation, tested it thoroughly, and fixed

a few small issues to achieve the behavior described in Section 7.1.2.

7.3 Challenges of Using TOU Tariffs in Competitive

Markets

Section 7.1.1 stated that TOU could help to flatten demand, and thus reduce in-

frastructure costs, generation costs, and CO2 emissions. While reduced-costs and

emissions could increase social welfare, it is interesting to ask whether TOU tar-

iffs can benefit a self-interested autonomous broker agent, and explore the broker’s

incentives to use them. This section characterizes the incentives and challenges in

using TOU by a broker in a competitive market.

Since TOU tariffs are less attractive for customers than fixed-rate tariffs,

they are not expected to increase the broker’s revenue; instead, they can benefit the

broker by reducing its costs, thus making the broker more competitive so that the

broker could potentially increase its profit. Therefore, there are two basic conditions

that need to be met for a TOU tariff to be more beneficial for a broker than the

best fixed-rate tariff:

Condition 1 TOU tariff should reduce the broker’s expected costs compared with

the best fixed-rate tariff this broker could publish.

Condition 2 TOU tariff’s reduced costs should result in larger expected profit than

the best fixed-rate tariff this broker could publish.

Note that the second condition is necessary, since a broker might design TOU tariffs

that reduce costs and revenue, such that the profit does not necessarily increase

compared with the best fixed-rate tariff.
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In monopolistic retail markets the surplus resulting from reduced wholesale

electricity costs directly benefits the monopoly and possibly the customers. In con-

trast, in competitive markets this surplus might benefit the competitors (even if

they do not use TOU tariffs), since wholesale electricity costs are typically a func-

tion of the total quantity bought, due to the wholesale auction structure. As a

result, brokers using fixed-rate tariffs can enjoy the reduced prices resulting from

peak-flattening by another broker using TOU tariffs, while at the same time gaining

market share from this TOU broker due to the extra discomfort that TOU tariffs

incur on customers.

This chapter focuses on two questions. First, how should an autonomous

broker optimize TOU tariffs that are both 1) attractive to customers in a competitive

retail market with fixed-rate tariffs and 2) more profitable for the broker than the

best fixed-rate tariffs? Second, what is the economic impact of TOU tariffs in a

competitive market?

7.4 LATTE-TOU

This section views LATTE as executing a black-box optimization, and describes our

instantiation of LATTE that uses TOU tariffs, called LATTE-TOU.

7.4.1 LATTE as a Black-Box Optimization

LATTE can be viewed as executing a black-box optimization problem at every step:

the inputs to this optimization problem are tariff and wholesale action combinations;

the optimized objective is the predicted utility over the lookahead horizon; and an

objective evaluation is computed using a lookahead trajectory that uses the transi-

tion and reward function models, implemented in the functions predictTariffEffects

and PredictWholesalePrice. The black-box refers to the lookahead computation that

returns a predicted utility for a given action-combination input.
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In all of our instantiations, an action-combination input to LATTE’s black-

box evaluation is completely determined by the tariff action in the combination:

since our LATTE instantiations aim for zero supply-demand imbalance, wholesale

actions (quantities to procure) are determined to be the predicted demand for the

candidate tariff action. Therefore, our instantiations of LATTE’s black-box opti-

mization is actually performed over candidate tariff actions, which are determined

by the function ComputeNextCandidateTariffAction.

In our previous instantiations of LATTE (Algorithm 1 in Chapter 4), the

function ComputeNextCandidateTariffAction generated a set of fixed-rate candidate

tariffs (line 5 of LATTE), which were evaluated (along with the corresponding whole-

sale actions) by LATTE’s black-box optimization (lines 6-24 of LATTE) to determine

the best tariff action to execute. Here we would like to extend LATTE’s lookahead

to search over TOU tariff actions in addition to fixed-rate tariffs.

From an optimization perspective, TOU tariffs present at least three chal-

lenges. First, optimizing a TOU tariff requires searching over a multi-dimensional

space: while a fixed-rate tariff has only one continuous price to optimize, a TOU tar-

iff is composed of 24 continuous prices. Moreover, these 24 prices must be optimized

in conjunction: changing a single price can affect customer-demand throughout the

lookahead horizon due to subscription changes and demand-shifting effects (rather

than changing demand just in the timeslot for which this price is effective). Sec-

ond, a broker can only evaluate a limited number of candidates, due to a real-time

constraint on computation. Third, this 24-dimensional optimization is generally

intractable: effects such as subscription-changes and consumption-shifting create

discontinuities and local maxima in the predicted-utility objective, so that finding

a global optimum is generally intractable.
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7.4.2 LATTE-TOU

Due to the real-time constraint on computation, an instantiation of LATTE that

uses TOU tariffs needs to efficiently and effectively sample 24-dimensional TOU

tariff candidates to evaluate (addressing challenge (i) from Chapter 3). Due to

intractability, we resort to finding a local optimum. Our instantiation of LATTE

that uses TOU tariffs is called LATTE-TOU. LATTE-TOU is mostly identical to

TacTex-15’s instantiation of LATTE, with two exceptions. First, it can reason about

TOU tariffs by using the shifting consumers models (described in Section 7.1.2) to

predict customer subscription changes and future consumption. Second, it intro-

duces a new instantiation of the function ComputeNextCandidateTariffAction, which

generates candidate TOU tariffs based on a local search that uses LATTE’s black-box

evaluation.

Before describing the instantiation of ComputeNextCandidateTariffAction used

by LATTE-TOU, we note that we tried other instantiations by plugging-in well-

known local search methods such as Amoeba, BOBYQA, and Powell’s method. All

these methods failed to converge under the real-time constraint on computation, and

resulted in ineffective TOU tariffs published to the market. Therefore, we designed

an empirical gradient-ascent algorithm, which efficiently found a local optimum in

our experiments.

Algorithm 6 describes the instantiation of ComputeNextCandidateTariffAction

as a gradient-ascent algorithm, used by LATTE-TOU. Line 1 maintains a counter

counting the number of calls to ComputeNextCandidateTariffAction. The algorithm

has three phases, where the current phase is determined by the number of calls to the

function. Phase 1 (lines 2-4) returns fixed-rate candidates similarly to TacTex-13’s

and TacTex-15’s instantiations of LATTE. The goal of this phase is to find the best

fixed-rate candidate to serve as a seed for the local TOU optimization phase. Phase

2 (lines 5-20) returns candidates for computing a 2-sided, empirical gradient. Lines
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Algorithm 6 LATTE-TOU::ComputeNextCandidateTariffAction()

. numCalls counts the number of calls to this function
1: numCalls ← numCalls + 1

. Phase 1: return fixed-rate tariffs, like TacTex-13 and TacTex-15
2: if numCalls < numFixedRateCandidates then
3: fixedRateCandidate ← TacTex-13::ComputeNextCandidateTariffAction()
4: return fixedRateCandidate

. Phase 2: the next 48 calls generate candidates for 2-sided gradient estimation
5: if numCalls == numFixedRateCandidates then
6: fixedRateSeed ← FindBestFixedRateTariff()
7: 〈p, p, · · · , p〉 ← ConvertToTOUTariff(fixedRateSeed) . vector of length 24

8: numTOUCalls ← numCalls − numFixedRateCandidates
9: if numTOUCalls < 48 then

10: i← bnumTOUCalls
2 c

11: if numTOUCalls is even then
12: return (〈p, .., p, p+ ε, p, .., p〉) . ε added to i’th entry
13: else
14: return (〈p, .., p, p− ε, p, .., p〉) . ε subtracted from i’th entry

. Estimate 2-sided empirical gradient (once)
15: if numTOUCalls == 48 then
16: for i in 1, . . . , 24 do
17: u+

i ← RetrieveUtility(〈p, .., p, p+ ε, p, .., p〉) . ε added to i’th entry
18: u−i ← RetrieveUtility(〈p, .., p, p− ε, p, .., p〉) . ε subtracted from i’th entry

19: 〈ε1, ε2, .., ε24〉 ← NormalizeGradient(〈u
+
1 −u

−
1

2 ,
u+

2 −u
−
2

2 , ..,
u+

24−u
−
24

2 〉)
20: P ← 〈p, p, · · · , p〉

. Phase 3: walk along gradient
21: P ← P + 〈ε1, ε2, · · · , ε24〉
22: return P
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5-7 find the fixed-rate candidate with the highest utility (as computed and stored in

line 24 of LATTE), and use it as a seed for the local optimization, converting it into a

TOU tariff with 24 identical prices. Lines 9-14 generate one of the 48 candidates for

gradient-estimation, by perturbing each of the 24 prices by ±ε (in our experiments

ε = 0.5cents/kWh, selected based on informal testing to be of a similar scale to

price changes during a game). Next, a 2-sided gradient is computed from the 48

perturbations and is normalized to a length of ε (lines 15-19). In line 20, we initialize

the current point in the gradient-ascent P to the fixed-rate seed. In phase 3 (lines

21-22), each following candidate is generated by taking a step along the computed

gradient. This phase is ended externally, by LATTE’s Done() function, either after

a local minimum has been reached, or when time is up.

Ideally, we would compute a new gradient before every step taken during

phase 3. However, the real-time constraint on computation time prevents us from

doing so: it allows us to evaluate a total of about 70 candidate tariffs, while each

gradient estimation requires 48 evaluations. A more sample-efficient gradient esti-

mation method such as the policy gradient employed by [51] could be explored in

the future. Due to the limitation of about 70 evaluations we also had to reduce

the number of evaluated fixed-rate candidates: we did it by using a binary-search

over fixed-rate prices, so that instead of evaluating all 100 candidates generated by

TacTex-13’s instantiation, we evaluated about 8 fixed-rate candidates.

7.5 Results

We evaluated our TOU broker which uses LATTE-TOU using paired tests. We

measured the impact of modifying a component of the broker by testing the original

and the modified version in a set of games, in which the opponents and most random

factors in the simulation were held fixed (random seeds, weather conditions). Paired

testing improves our ability to evaluate the statistical significance of the results,
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by allowing us to use the Wilcoxon matched-pairs signed-ranks test instead of an

unpaired test. To fix weather conditions, we used weather files containing 3 months

of real-world weather. To cover year-round weather conditions we used 8 weather

files (each file used by 1/8 of the games) with start-dates of January, April, July,

October of 2009 and 2010. Opponents were fixed to be one of the top brokers

played in the Power TAC 2014 finals: AgentUDE (1st place), and CWIBroker (2nd

place). The simulator version used in the experiments in this section is specified in

Appendix A.

7.5.1 Impact of LATTE-TOU on Broker’s Performance and on the

Economy

We tested how using TOU tariffs optimized with LATTE-TOU affected 1) the bro-

ker’s performance. and 2) the economy. We compared our TOU Broker which uses

LATTE-TOU with two variations: one that uses fixed-rate tariffs and another that

uses a naive TOU tariff optimization. We refer to these brokers as TacTex-TOU,

FixedRate, and TOUNaive. FixedRate was created from TacTex-TOU by disabling

phase 2 and 3 of ComputeNextCandidateTariffAction, and using the fixed-rate tar-

iff returned by phase 1 (line 1). TOUNaive was created from TacTex-TOU as

follows. Phase 2 and 3 of ComputeNextCandidateTariffAction were replaced with

a phase that naively assigns higher rates to hours with higher predicted costs,

by adding a fixed margin to these predicted costs. Specifically, given a fixed-

rate tariff with rate p returned by phase 1, and given a predicted cost vector

for the next 24 hours (c+1, . . . , c+24), the naive algorithm computes an average

margin m := 1
24

∑+24
i=+1(p − ci), and publishes a TOU tariff with the price vector

P = (c+1 + m, . . . , c+24 + m). All other broker components remained identical

between the three brokers. We compared these three brokers in 2 different exper-

iments of 200 games each: (1) playing against AgentUDE and (2) playing against
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CWIBroker, both of which use only fixed-rate tariffs.

Table 7.1 shows the results of these two experiments. Each row shows

a measured quantity averaged over games played by FixedRate, TOUNaive and

TacTex-TOU, as well as the relative change in this quantity when using TacTex-TOU

instead of FixedRate. All results are statistically significant with p = 0.01 (many

with p � 0.01), using the Wilcoxon matched-pairs signed-ranks test. TacTex-TOU

was the only agent that earned a higher score than both competitors (by 9% and

70% gaps against CWIBroker and AgentUDE respectively). TOUNaive was domi-

nated by TacTex-TOU in the sense that it made less profit against both opponents,

and lost to CWIBroker.

Compared with FixedRate, TacTex-TOU either earned more profit (against

AgentUDE), or increased its profit-share from losing to winning (against CWIBro-

ker, although with lower profits), while reducing peak demand by around 15%.

TacTex-TOU’s peak reduction reduced the electricity costs for both brokers and cus-

tomers (including competitors’), and therefore increased social welfare. The surplus

resulting from peak-reduction benefited either brokers or customers, depending on

broker strategies. When playing against CWIBroker, customers enjoyed a 9.5%

cost reduction, and brokers’ suffered profit reduction, due to a fierce price-reduction

competition. On the other hand, when playing against AgentUDE, brokers did not

reduce prices as much; customers’ cost reduction was only 1%, while brokers’ profits

increased. Since our broker plays a best-response strategy, the difference depends

on how cooperative the other broker is.

Table 7.2 shows the results of running TacTex-TOU against itself. It achieved

the best flattening (around 20% and 5% peak reduction compared with FixedRate

and TacTex-TOU), and the lowest price for customers (around 5%-20% savings

compared with FixedRate and TacTex-TOU). However, in this case TacTex-TOU

achieved the lowest profit of all brokers due to a fierce price-reduction competition.
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Table 7.1: FixedRate, TOUNaive and TacTex-TOU competing in 2-broker games
against AgentUDE, CWIBroker (TacTex-TOU is denoted TOU).

(a) Fixed-Rate-vs-UDE (b) TOUNaive-vs-UDE (c) TOU-vs-UDE Change (c)/(a)

score: our-agent (M$) 1.893 1.689 1.922 1.016 (+1.6%)
score: UDE (M$) 0.895 0.578 1.122 1.253 (+25.3%)
market-share: our-agent (%) 64.0 73.3 61.4 0.959 (-4.1%)
(our) avg electricity-buy price 0.053 0.051 0.051 0.963 (-3.7%)
(our) avg electricity-sell price 0.105 0.098 0.105 1.000 (-0.0%)
(all) avg electricity-buy price 0.051 0.049 0.049 0.961 (-3.9%)
(all) avg electricity-sell price 0.105 0.099 0.104 0.990 (-1.0%)
peak-demand (MW) 86.771 71.882 73.519 0.847 (-15.3%)

(a) Fixed-Rate-vs-CWI (b) TOUNaive-vs-CWI (c) TOU-vs-CWI Change: (c)/(a)

score: our-agent (M$) 0.677 0.524 0.622 0.919 (-8.1%)
score: CWI (M$) 0.771 0.620 0.558 0.724 (-27.6%)
market-share: our-agent (%) 44.2 54.3 54.7 1.238 (+23.8%)
(our) avg electricity-buy price 0.057 0.054 0.054 0.947 (-5.3%)
(our) avg electricity-sell price 0.095 0.087 0.086 0.905 (-9.5%)
(all) avg electricity-buy price 0.057 0.055 0.053 0.930 (-7.0%)
(all) avg electricity-sell price 0.094 0.086 0.086 0.915 (-8.5%)
peak-demand (MW) 86.701 74.720 73.651 0.849 (-15.1%)

Table 7.2: Self-play (TacTex-TOU vs TacTex-TOU), compared with TacTex-TOU vs
AgentUDE, and TacTex-TOU vs CWIBroker (TacTex-TOU is denoted TOU).

(d) TOU-vs-TOU Change (d)/(c) (UDE) Change (d)/(c) (CWI)

score: our-agent (M$) 0.493 0.257 (-74.3%) 0.791 (-20.9%)
score: agent-copy (M$) 0.482 – –
market-share: our-agent (%) 50.5 0.823 (-17.7%) 0.927 (-7.3%)
(our) avg electricity-buy price 0.051 1.000 (-0.0%) 0.944 (-5.6%)
(our) avg electricity-sell price 0.083 0.790 (-21.0%) 0.954 (-4.6%)
(all) avg electricity-buy price 0.051 1.041 (+4.1%) 0.944 (-5.6%)
(all) avg electricity-sell price 0.083 0.798 (-20.2%) 0.954 (-4.6%)
peak-demand (MW) 70.101 0.954 (-4.6%) 0.947 (-5.3%)

TacTex-TOU’s best-response self-play benefited customers but not the broker. This

illustrates game-theoretic considerations pointed out by [63], whereby cooperative

brokers could make higher profits, in this case by enjoying more of the surplus

created by peak-reduction, at the expense of customers.

Figure 7.2 shows how the market power of a TOU broker affects its ability

to flatten demand. All plots show consumption over 24 simulated hours. The left,

middle, right columns show FixedRate, TOUNaive and TacTex-TOU playing against

CWIBroker. Peak demand is around 90MW, 80MW, and 70MW respectively (top

row). TacTex-TOU’s large market share allowed it to counter-balance CWIBroker’s

customers’ peaked-demand, while TOUNaive was only partially successful in doing so
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due to both lower market share (middle row), and suboptimal TOU pricing (bottom

row).

TacTex-TOU’s frequent replanning using LATTE-TOU prevented customer

herding (many customers shifting consumption to times with the lowest price, caus-

ing a new peak [83]). Even though we disabled two main customer-components

for addressing herding (bundle-based optimization and stochastic shifting [87]) and

let customers shift greedily to their utility-maximizing electricity profile, no herding

was observed, due to a combination of (1) a TOU broker that implicitly coordinated

flattening through profit-maximizing tariffs (Figure 7.2c, right), and (2) a smooth

discomfort metric dist (eH , e
∗
H). This coordinated flattening underlines a potential

benefit of employing TOU brokers in competitive markets.

7.5.2 Robustness of TOU to Prediction Errors

We tested the robustness of TacTex-TOU to errors in its consumption-shifting pre-

dictions. Table 7.3 compares profits and peak-demand when testing 2 variations

of TacTex-TOU against CWIBroker. We chose CWIBroker as an opponent against

which TacTex-TOU had smaller profit margins (see Table 7.1), so accurate predic-

tions seem important. The left column shows the results of TacTex-TOU, copied

from Table 7.1, as a reference. The NoShift broker was created from TacTex-TOU

by disabling the consumption-shifting prediction module, and the FlatCost broker

was created by adding noise to cost-prediction, making it predict a flatter cost-curve

slope. Based on Table 7.3, the consumption-shifting prediction module is critical to

both earning profits and peak-flattening: without it TacTex-TOU lost to CWIBroker

by about a 10% gap, and peak-demand was barely reduced compared to FixedRate.

Similarly, when the predicted cost-curve was too flat, TacTex-TOU lost with negative

profit and almost no flattening.
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(a) Total consumption over 24 hours.
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(b) Per-broker consumption over 24 hours.
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(c) Active tariffs over 24 hours.

Figure 7.2: Consumption flattening: FixedRate (left column), TOUNaive (middle),
TacTex-TOU (right).

Table 7.3: Ablation analysis: erratic-predictions

TacTex-TOU NoShift FlatCost

score: our-agent (M$) 0.622 0.507 -0.007
score: CWI (M$) 0.558 0.550 0.210
peak-demand (MW) 73.651 83.728 82.779
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7.6 Chapter Summary

We formalized the problem of TOU tariff optimization in competitive retail markets,

and proposed a real-time gradient-based, utility-optimization (profit-maximization)

algorithm that approximates its solution. Our algorithm is fully implemented and

tested extensively in the Power TAC simulator. Our gradient algorithm is currently

the only TOU algorithm that performs robustly in Power TAC’s complex, realistic

environment: both a naive approach (TOUNaive) and well-known optimization al-

gorithms failed to improve upon our fixed-rate broker and/or to outperform the top

2014 brokers.We have shown that TOU tariffs can compete successfully with fixed-

rate tariffs: our TOU broker agent outperformed the top 2 broker agents of the

Power TAC 2014 finals, reduced peak-demand by 15% compared with using only

fixed-rate tariffs, increased its profits and/or profit-share, and saved costs for all

customers (including competitors’). Our ablation analysis showed the importance

of having accurate customers shifting-predictions and cost-curve predictions.

While TOU tariffs can induce customer-herding, our TOU broker prevented

it by implicitly coordinating flattening through profit-maximizing tariffs. This co-

ordinated flattening underlines a potential benefit of employing autonomous TOU

brokers in competitive power markets. In addition, we have seen that a TOU bro-

ker’s customer share is an important factor in its ability to flatten demand: to

counter-balance peaked consumption of fixed-rate brokers’ customers, it needs to

gain large customer-share by creating attractive TOU tariffs that are still prof-

itable. Finally, our experiments demonstrated game-theoretic issues that affect the

distribution of surplus created by reduced costs. An important direction for future

work is exploring the market efficiency when many broker agents are competing

against each other.
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Chapter 8

Related Work

This main motivation for this dissertation is exploring how modern artificial in-

telligence (AI) techniques can contribute to society’s shift towards wide scale de-

ployment of smart grids, which make electricity power distribution more efficient

and flexible. As such, this dissertation makes contributions within both the general

field of AI, and to the literature on smart grids and electricity markets. Within

AI, it is particularly situated with in the subfield of multiagent systems (MAS).

Figure 8.1 illustrates how Power TAC, the substrate domain of this dissertation,

fits into these research areas: it lies at their intersection, and inside the Trading

Agent Competitions (TAC) area, which lies inside the Agent-based Computational

Economics (ACE) area, which lies inside MAS. This section reviews research that

is most related to this dissertation within these fields.

Before reviewing related work, we note that this dissertation also contributes

to the broad field of computational sustainability. The call for starting a new re-

search area of computational sustainability was made by Gomes [23]. In this paper,

the author described the need to harness computational resources to address envi-

ronmental issues, including management of natural resources such as energy, for the

benefit of current and future generations. Power TAC’s research goals include using
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Figure 8.1: Dissertation contribution areas.

autonomous agents for the benefit of sustainable energy, and therefore, in addition

to the areas shown in Figure 1, it also falls within the area of computational sus-

tainability. The literature on computational energy sustainability has been growing

rapidly and includes applications such as smart home heating, micro-storage man-

agement, wind forecasting, wind turbine optimization, energy disaggregation, solar

tracking, electric vehicle charging and others [89, 122, 121, 40, 119, 21, 128, 61, 60,

59, 38, 129, 54, 53, 55, 52, 70, 41, 117].

In the rest of this section we overview related work based on the numbered

regions in Figure 8.1. Specifically, we overview research in smart grid and electricity

markets, with a special focus on Time-Of-Use tariffs and demand-side management

(Region 1, Section 8.1); MAS applications for the smart grid (Region 2, Section 8.2);

Agent-based Computational Economics (ACE) in the context of electricity markets

(Region 3, Section 8.3); other Trading Agent Competitions (TAC) (Region 4, Sec-

tion 8.4); and Power TAC (Region 5, Section 8.5).

8.1 Smart Grid and Electricity Markets

The need for a smart grid and its potential benefits have been laid out in official

policy documents [114, 108] as well as academic research (e.g. [2]). Basic background
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on power market economics can be found in the book Power System Economics [99].

Electricity markets are going through a major transition from traditional, regulated

monopolies into deregulated, competitive markets [35]. At the same time, customers

are being engaged in power markets, to incentivize flexible demand that adapts

to supply conditions [114]. These major changes create new challenges in power

markets design. In the context of these challenges, we have especially focused on

Time-Of-Use tariffs (Chapter 7). We survey related work in this area next.

8.1.1 Time-Of-Use Tariffs and Demand-Side Management

Adapting electricity demand to supply conditions can be beneficial from different

reasons, some of them were listed back in the 1980s [96]. An analysis of the California

Energy Crisis concluded that the risk of such a crisis could be greatly mitigated by

customer demand that responds to electricity prices [7]. Demand-side management

(DSM) is viewed as an important component of future smart grids [114]. Until

recently, the technological infrastructure that is needed for implementing DSM was

missing, but with recent advances, such as smart-meter installations at customer

homes, different forms of DSM are expected to be implemented in the relatively near

future. A taxonomy of DSM is provided by Palensky et al. [68], which additionally

overviews several demonstration projects. DSM can be implemented through (a)

direct load control methods (e.g. [8]), in which customers give electric utilities direct

control over their devices and the option to turn them off to reduce load; or (b)

indirect methods, such as pricing-based incentives.

In recent years, two types of pricing-based DSM have attracted growing

attention both in academia and in industry: Time-Of-Use (TOU) tariffs, and Real-

Time-Pricing (RTP) tariffs [130, 15, 16, 127, 10, 95, 65, 11]. TOU tariffs were

used for a long time in various countries for large customers, e.g. by Electricite de

France as far back as 1956 [12]. With recent advances, such as demand-side smart-
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metering for residential customers, TOU pricing schemes have been considered for

residential use. For example, as of the current date, residential TOU pricing schemes

are proposed to take effect in California starting January 2019 [91]. Existing work

on TOU tariffs either has not considered competitive retail markets or has used

more abstract, smaller-scale simulations compared with Power TAC [130, 127, 10,

14, 118, 1, 107, 131, 19]. In Power TAC, to the best of our knowledge the first

broker that used TOU tariffs was Mertacor13 [66] (see Section 8.5). Mertacor13

used TOU tariffs with 2 or 3 daily rates. However, at that time the Power TAC

simulator included only non-shifting customers, so that the impact of TOU tariffs in

presence of demand-shifting customers could not be tested. Other than Mertacor13,

Power TAC broker agents used fixed-rate tariffs [67, 31, 111, 63, 4, 56, 57].

Therefore, to the best of our knowledge, our research is the first to investigate

the usage of TOU tariffs by autonomous brokers in a large-scale, detailed, realistic

simulation of competitive retail power markets with autonomous, demand-shifting

customer agents.

The issue of free-riding customers was described in several references. Free-

riding customers are customers who benefit from reduced costs due to demand-

shifting of other customers without changing their own demand. According to Hol-

land et al. [30], such customers could attain up to 90% of the benefit of RTP (real-

time pricing) adoption by other customers. Other research analyzed the potential

savings of shifting customers and free-riders as a function of the percentage of shifted

quantity [98]. Some solutions that discourage free-riding were offered by Horowitz

et al. [32]. These solutions aim at rolling the savings due to demand-shifting more

fairly on customers, based on each customer’s contribution to peak-flattening. How-

ever, their proposed methods use hypothetical, non-shifted customer consumption

profiles as a basis for their computation. They offer to construct such profiles from

historical data, but this may be challenging to do over the long run, since hypo-
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thetical, non-shifted consumption patterns may change over time without being

observed (since only the actual, potentially shifted, consumption can be observed).

In Power TAC’s competitive retail market, free-riding can occur among fixed-rate

brokers who benefit from peak-reduction of non-fixed-rate brokers, and thus can

offer their customers attractive fixed-rate tariffs.

8.2 MAS for the Smart Grid

The need and the potential benefits of employing artificial intelligence (AI) for the

benefit of the smart grid have been laid out by Ramchurn et al. [84]. In this paper,

the authors have argued that the smart grid vision, as laid out by the U.S. Depart-

ment of Energy [114], not only presents challenges for power systems engineering,

telecommunications and cyber-security, but also embodies concepts that have long

been investigated in the computer science and AI communities, such as distributed

intelligence, automation and information exchange. The authors have argued that

the smart grid provides new challenges to be solved by the AI community. Therefore,

they have proposed the foundations of a new research agenda of using AI for solving

challenges of the smart grid. Some of these challenges require algorithms that solve

problems involving large number of heterogeneous, self-interested participants (such

as different types of consumers and generation facilities), under high-levels of uncer-

tainty and dynamism. The authors have highlighted how such issues appear in key

components of the future smart grid: demand-side management, electric vehicles,

virtual power plants, the emergence of prosumers (customers that both consume

and produce energy), and self-healing networks. Power TAC addresses many of

these challenges by providing a rich, multiagent simulation environment that in-

cludes prosumers (consumers and renewable producers), demand-side management

capabilities (both pricing based and direct load-control based), and electric vehicles.

Power TAC investigates economically motivated decisions of large number of actors,
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which are at the core of the challenges laid out by Ramchurn et al. [45].

In the recent years multiagent systems were proposed to address different

challenges in the smart grid. Some examples follow next. A multiagent system

was proposed for managing micro-grid operations [78]; this system facilitated seam-

less transition of the micro-grid from a grid-connected state into an isolated island

mode, upon detection of upstream outages. This type of research is complemen-

tary to Power TAC, since it models the distribution network in more detail then

Power TAC, but lacks Power TAC’s large-scale, detailed customer models.

Vytelingum et al. explored the theoretical and practical foundations of agent-

based micro storage implementation in the smart grid [123]. They developed a game-

theoretic framework to analyze strategic choices made by agents controlling micro-

storage in the smart grid, and devised a novel micro-storage strategy that allowed

an agent to maximize its owner’s savings. This dissertation focuses on a different

problem of designing a broker agent that acts effectively in a future smart grid

electricity markets in the presence of autonomous customer agents. However, this

research can complement Power TAC, since such storage-controlling agents could

be incorporated into the Power TAC simulator’s customer models.

Ramchurn et al. proposed an agent-based system for decentralized demand-

side management [83]. Their research focused on using agents for managing cus-

tomers’ demand. Therefore this research can be incorporated into Power TAC’s

customer models. Their experiments showed a herding phenomenon, which oc-

curred when many customer agents shifted their consumption to low-price times,

thus creating new peaks. This dissertation focuses on a related but different topic

of designing broker agents that operate in presence of autonomous customers, and

shows that autonomous utility-maximizing brokers can prevent herding, by implic-

itly coordinating customers’ consumption through Time-Of-Use (TOU) tariffs that

are designed to optimize the brokers’ profits.
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Agent-based systems were proposed for coordinating energy procurement by

a customer-cooperative [118]. This research focused on the customers’ perspective,

rather than on the retail brokers’ perspective which is the focus of this dissertation:

they assumed that a coordinator represented a consumer cooperative in procurement

of energy for minimal costs. This coordinator has not set energy prices or aimed to

incur profits by selling electricity, as our autonomous broker agent do.

Agent-based systems were proposed for automating energy savings in build-

ings [90, 109, 110, 58, 69]. Such research could be incorporated into Power TAC’s

customer models, by modeling different aspects of customer energy-savings behav-

iors in detail.

Recent publications related to Power TAC described novel customer agent

models such as electric vehicles that optimized charging based on prices [116], electric

vehicle based Virtual Power Plants (VPP) [36, 37], and negotiated learning for

autonomous customer agents [88]. Such models are being gradually incorporated

into Power TAC.

Other research investigated the use mechanisms and trading strategies for

the smart grid and modeled smart grid operations [120, 119]. Related research in-

vestigated autonomous trading brokers [85, 86, 77] (described in more detail in sec-

tion 8.5). While the results of this research were promising, as was pointed out, this

research was limited in two important ways [45]: (a) limited scope, and/or (b) lim-

ited competitiveness and comparability. In contrast, a major benefit of Power TAC

is that it is an open platform that is available as a test bed and a benchmark for

any research group.

8.3 Agent-Based Power Market Simulations

The complexity of electricity markets calls for rich modeling techniques that can help

to understand and analyze their dynamics. Traditional modeling methods are usu-

115



ally not able to capture the complex dynamics of electricity markets. Agent-Based

Computational Economics (ACE) [106] is a computational study of economies mod-

eled as evolving systems of autonomous interacting agents. ACE can offer methods

for realistic electricity market modeling. Indeed, different electricity market simula-

tions has been developed using the ACE paradigm (e.g. AMES [62], NEMSIM [28],

EMCAS [13], MASCEM [81], and others), many of which focus on wholesale market

modeling. Surveys of these simulations and many others were done by Weidlich et

al. and Zhou et al. [125, 132].

Power TAC extends the ACE paradigm by creating a rich retail power market

simulation and inviting research teams to develop agents that act as retail brokers

in the simulation and enter them to an annual competition. Power TAC is therefore

a flexible, competitive platform that is easy to use for research and benchmarking

purposes by teams from different research groups.

8.4 Autonomous Trading Agents and TAC

Autonomous trading agents has been an active research area in the AI community,

and there is an immense body of literature in this area. Therefore, we will focus on

approaches that are directly related to LATTE, and refer the reader to surveys of

approaches that are less directly related.

To the best of our knowledge, the earliest research on autonomous trading

agents introduced shopbots, which collect information about price and quality of

goods, and pricebots, which automate the price-setting process for sellers [27, 25,

43, 26, 42].

Power TAC is a specific instance of a Trading Agent Competition (TAC)1.

Trading agent competitions were held annually since 2000. Trading agent competi-

tions other than Power TAC were in domains such as autonomous bidding for multi-

1http://tac.sics.se
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ple interacting goods [126], autonomous supply-chain management (TAC-SCM) [94],

ad-auctions (TAC-AA) [33], and ad exchange (TAC-Adx) [104].

LATTE is a lookahead policy that optimizes the predicted utility of action

combinations. Utility-optimization approaches were used in prior trading agent com-

petitions, however the game setups and the problems they solved, and consequently

the methods used, were different than LATTE. For example, decision-theoretic

bidding using Monte-Carlo estimation of the clearing price distribution was used

for one-sided auctions [102, 101]. A predictive-planning approach in the supply-

chain management was introduced by Pardoe et al. [72, 73], in which planning and

scheduling were executed based on estimations of future resource availability and

constraints. Such an approach can be viewed as a lookahead policy over the underly-

ing domain’s MDP (such as LATTE), although it was not described in that way. This

approach executed interdependent optimization, optimizing supply inventories and

procurement given demand predictions, and optimizing production and sales, given

predictions of supply inventories and future deliveries. The TAC-SCM domain has

some similarities to Power TAC: in both competitions autonomous trading agents

compete for maximizing profit by buying goods from suppliers and selling them

to consumers. However, the trading mechanisms used in TAC-SCM were request

for quotes, in market structures different then the electricity market structures in

Power TAC. Consequently, the specific problems solved and the methods used were

different that LATTE.

In TAC-AA, another utility optimization approach was used [71]: the agent

operated by estimating the full game state from limited information using methods

such as particle filter [75], used these estimates to make predictions, and optimized

its actions (daily bids, ads, and spending limits) with respect to these predictions.

Descriptions of these methods can be found in Pardoe’s Ph.D. dissertation [76], or

in a shorter version [74].
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Some other competitors in trading agent competitions used methods other

than utility-optimization. A survey of 22 agent strategies used in the first trading

agent competition (in 2000) is provided by Stone et al. [100], and a survey of strate-

gies from the 2002 trading agent competition is provided by Greenwald et al. [24].

Examples of other proposed approaches to agent design included a game theoretic

analysis of the economy [48] and fuzzy reasoning [29].

8.5 Power TAC Broker Agents

The research that is most directly related to ours is that of other Power TAC broker

developers. Our work differs from this research along two dimensions: problem-

formulation, and broker-strategy. This section summarizes the differences along

each of these dimensions as applicable, first in general and then in more detail.

Along the problem formulation dimension, this dissertation is the first to

formalize the complete MDP defined by the underlying broker electricity trading

problem. Previous research either did not formulate the trading problem explicitly,

or used an MDP to model either a more abstract trading problem [85, 86], or a

subproblem of the complete trading problem [77, 57, 111, 56, 4, 67]. Moreover, all

these MDP models were heuristically and manually constructed. In contrast, our

MDP is defined by the underlying problem. Along the broker-strategy dimension,

related research either did not explicitly optimize the actions’ predicted utility, or

used tariff optimization strategies that can be viewed as special cases of LATTE and

which were developed in parallel to LATTE. A detailed comparison follows next.

8.5.1 Early Power TAC Brokers

To the best of our knowledge, the first work that developed strategies for autonomous

electricity-trading retail broker agents was that of [86] and its subsequent [85]. This

work modeled a more abstract broker trading problem, which did not include whole-
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sale trading, and assumed fixed customer consumption instead of the variable daily

load profile of Power TAC customers. Their broker approximated this abstract

trading problem as an MDP using manually-constructed state features on top of a

state-space discretization, and using a fixed set of 6 manually defined pricing tactics

that were used as MDP actions. This broker used a Q-learning [124] based strategy

on top of this approximate MDP model. Therefore, along the problem formulation

dimension, the work in [86, 85] modeled a more abstract trading problem than ours,

and used a manually constructed, heuristic MDP model instead of the complete

MDP of the underlying domain that we use. Along the broker strategy dimension,

similarly to our work, this work optimized the predicted expected utility; however

it did so over approximate, manually constructed models rather than over the com-

plete, underlying MDP. Their smaller, approximate MDP model allowed for using

Q-learning, while in our complete MDP model Q-learning would be computationally

intractable.

SELF [77] was a broker strategy developed in an early, simplified simulation

environment (compared with Power TAC), in which (a) a small number of 50 cus-

tomers was used, (b) daily wholesale markets where randomly sampled from past

price-data, so that a broker did not impact wholesale prices, (c) any wholesale order

of broker was fulfilled, (d) imbalance fee was a fixed-price per-unit (rather than a

function of all brokers’ imbalances). SELF modeled the tariff selection problem as

an MDP using manually constructed state features and a set of 6 pre-defined tariff

actions, and used the SARSA RL algorithm [92] with function approximation and

feature-selection/regularization to select tariff market actions. Therefore, along the

problem formulation dimension, SELF used an MDP to model the tariff strategy

subproblem of a more abstract trading problem, using manually constructed, heuris-

tic state and action spaces. Along the broker strategy dimension, similarly to our

work, SELF optimized the predicted expected utility; however it did so over ap-
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proximate, manually constructed models rather than over the complete, underlying

MDP. Their smaller, approximate MDP model allowed for using SARSA, while in

our complete MDP model SARSA would be computationally intractable.

8.5.2 Power TAC 2013 agents

CwiBroker13 [63] (2nd place, 2013) used two different tariff strategies. For duopoly

markets, it used a tariff strategy inspired by Tit-for-Tat. For oligopoly markets

it used a tariff strategy that generated candidate fixed-rate tariffs and estimated

their future profits. The idea of estimating tariff profits has similarities to LATTE’s

utility-optimization, although it seems to have been implemented differently. They

report that this oligopoly strategy did not work well, and that a fallback heuristic

strategy was responsible for improving its performance in the oligopoly setup. Later

versions of CwiBroker (see below) abandoned this profit-estimation based oligopoly

strategy and moved to a new heuristic-based strategy. CwiBroker13’s wholesale

strategy introduced the idea of multiple bids among Power TAC brokers, but was

based on equilibria in continuous auctions, rather than TacTex-15’s hedging between

optimistic strategic bidding and truthful bidding. Therefore, along the problem for-

mulation dimension, we are not aware of any MDP models used by CwiBroker13.

Along the broker strategy dimension, CwiBroker13’s Tit-for-Tat strategy is differ-

ent than our utility-estimation based strategy; CwiBroker13’s oligopoly strategy

has similarities with our utility-based strategy, but was implemented differently;

CwiBroker13’s equilibrium-based wholesale bidding strategy was different than our

MDP-based wholesale bidding.

CrocodileAgent13 [4] (4th place, 2013) used a variant Roth-Erev reinforce-

ment learning algorithm to coordinate wholesale bidding across different markets by

choosing among one of four pre-implemented wholesale strategies. Therefore, along

the problem formulation dimension, CrocodileAgent13 used an MDP to model a
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subproblem of the complete trading problem, using manually constructed, heuristic

state and action spaces.

The 2013 AstonTAC agent [57, 56] (5th place, 2013) used an MDP to model

the wholesale bidding process and a separate SMDP [103] to model the tariff se-

lection process. In its bidding MDP, AstonTAC assumed an underlying discrete

model for wholesale clearing prices (HMM), where 20 possible states were built of-

fline from a game’s bootstrap data. It used a discrete set of manually constructed

reward values to represent wholesale bidding performance. In its tariff selection

SMDP, AstonTAC used manually selected sets of finite states and actions. There-

fore, along the problem formulation dimension, AstonTAC used an MDP and an

SMDP to model subproblems of the complete trading problem, using discrete, man-

ually constructed, heuristic state and action spaces. In addition, AstonTAC’s MDP

differs from our bidding MDP (Chapter 5), in that (i) our bidding MDP does not

assume an underlying model of the market, but rather uses a more flexible, non-

parametric model of clearing prices at every state, (ii) our reward is determined by

actual prices rather than by a manually constructed set of reward signals. Along

the broker-strategy dimension, similarly to our work, AstonTAC optimized the pre-

dicted expected utility; however it did so over approximate, manually constructed

models rather than over the complete, underlying MDP.

Mertacor13 [66] used two types of tariff strategies: (i) a tariff formulation

strategy, and (ii) a tariff update strategy. Both strategies were treated as optimiza-

tion problems, where the broker’s objectives were both maximizing its profit and

maintaining an acceptable customer market share. Mertacor13’s general approach

was to create a set of 4-6 dimensional particles, each representing a tariff, and use the

predicted broker profit as an objective and a Particle Swarm Optimization (PSO)

algorithm to search for a tariff with a highest predicted profit. Mertacor13’s market

share affected the particle search space boundaries. The 4-6 particle parameters
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represented (i) a signup fee, (ii) a periodic fee, (iii) an early withdraw penalty, and

(iv) either one fixed-rate price, or three Time-Of-Use rates specifying different prices

for three periods that together cover a 24-hour period. Along the problem formu-

lation dimension, Mertacor13 did not explicitly define an MDP model. Along the

broker-strategy dimension, similarly to our approach, Mertacor13’s strategy aimed

at optimizing the predicted tariff profits. In contrast to our approach, Mertacor13

(1) generated candidates using the Particle Swarm Optimization algorithm, and (2)

did not seem to incorporate into its utility predictions the effect of publishing a

tariff on the profits of its existing tariffs.

To the best of our knowledge, Mertacor13 was that first broker that used

Time-Of-Use tariffs. In contrast to LATTE-TOU which uses 24 hourly rates and a

gradient-ascent optimization algorithm, Mertacor13 used three rates and a PSO op-

timization algorithm. Mertacor13’s Time-Of-Use tariffs’ performance was reported

to be slightly lower than its fixed-rate tariffs’ performance. We hypothesize that

this lower performance was due to the fact that customers did not have shifting ca-

pabilities at that time, and therefore viewed a Time-Of-Use tariff as having higher

discomfort (based on a fixed discomfort factor that was implemented in this earlier

version of the Power TAC simulator) without reducing their costs.

8.5.3 Power TAC 2014 agents

AgentUDE14 [67] (1st place, 2014) used an empirically tuned, heuristic tariff strat-

egy that bound customers with early withdraw penalties and provoked competitors

to reduce prices, so that customers would withdraw and pay withdraw-penalties. In

the wholesale market AgentUDE14 used Q-learning. Therefore, along the problem

formulation dimension, AgentUDE14 used an MDP to model a subproblem of the

complete trading problem. Along the broker-strategy dimension, AgentUDE14’s

empirically-tuned heuristic strategy differs from our utility-optimization approach.
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CwiBroker14 (2nd place, 2014) [31] used tuned heuristics based on domain

knowledge: in the wholesale market, it adapted its bids towards bids that would have

been cleared in recent auctions, and in the tariff market it reduced prices in a pace

that is inversely proportional to its market share. Along the problem formulation

dimension, to the best of our knowledge CwiBroker14 did not use an MDP model.

Along the broker strategy dimension, CwiBroker14’s strategy differs from our utility-

optimization approach in that it did not explicitly optimized a utility measure. A

detailed analysis of the 2014 Power TAC finals can be found at Babic et al. [5].

8.5.4 Power TAC 2015

In our experiments, we have used broker agent binaries that were released after the

2015 Power TAC finals. However, at the time of this writing, we are not aware of

any publications describing these 2015 agents: the most recent publications that we

know of describe the 2014 agents.

8.6 Chapter Summary

This section provided an overview of related work in the areas of smart grid and

electricity markets, multiagent systems for the smart grid, agent-based electric-

ity market simulations, autonomous trading agents inside and outside the Trading

Agent Competitions (TAC), and Power TAC. Based on this literature review, this

dissertation makes several contributions to the state-of-the-art.

Smart grid electricity markets were studied inside and outside the context of

multiagent systems. However, past research has not investigated the dynamics of

future retail electricity markets in a large-scale, realistic, detailed simulation such

as Power TAC, specifically in presence of real-time smart-metering and autonomous

agents acting on behalf of customers and retailers.

Using Power TAC as a substrate domain, this dissertation is the first to for-
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malize the complete autonomous electricity trading problem faced by a broker agent

in future electricity markets. This dissertation then introduces LATTE. LATTE is

a lookahead-policy that optimizes the broker’s predicted utility and approximates

the solution of the autonomous electricity trading problem. Previous research in

other trading agent competitions (TAC) used utility-optimization approaches, how-

ever the domains, and consequently the methods used were different than LATTE.

Other approaches to Power TAC broker design either did not explicitly optimize

the actions’ predicted utility, or used tariff optimization strategies that could be

viewed as restricted cases of LATTE. The TacTex agents, which achieved state-of-

the-art performance in international competitions and controlled experiments, are a

unique contribution of this dissertation. The empirical analysis of the importance of

different components of broker agents using LATTE is another unique contribution

of this dissertation. Finally, this dissertation is the first to investigate the impact

of Time-Of-Use (TOU) tariffs used by autonomous brokers in competitive markets

with autonomous customer agents, in a detailed, large-scale, realistic retail-market

simulation such as Power TAC.
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Chapter 9

Conclusions and Future Work

Motivated by the Power TAC domain, and by the potential contribution of au-

tonomous retail broker agents to future smart grids, this dissertation contributes a

general algorithm for autonomous trading in modern electricity markets and ana-

lyzes its impact on autonomous brokers and on the economy. This chapter reviews

the dissertation’s scientific contributions to the areas of artificial intelligence, smart

grids, and electricity markets (Section 9.1), and then discusses promising directions

for future work in the challenging domain of autonomous electricity trading (Sec-

tion 9.2).

9.1 Contributions

The five main contributions of this dissertation are summarized as follows.

1. The problem formalization of autonomous retail broker trading in modern

electricity markets presented in Chapter 3 is suitable when (a) a broker trades

in the retail market by publishing tariff contracts, (b) a broker trades in the

wholesale market by bidding for future contracts in a sequence of auctions,

and (c) electricity supply-demand imbalance results in payments to or by the
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broker. This problem is a Partially Observable Markov Decision Process,

however for computational tractability and modeling clarity, we formalize it

as a Markov Decision Process, which due to its complexity is intractable to

solve exactly. Therefore, this problem formalization provides a guideline for

approximate solutions to the trading problem.

2. LATTE (Chapter 4) is a general algorithm for real-time autonomous trading

in modern electricity markets. LATTE, (Lookahead-policy for Autonomous

Time-constrained Trading of Electricity) approximates the solution to the au-

tonomous broker trading problem using a lookahead policy that efficiently

samples action combinations and predicts their expected utility over a future

horizon. LATTE interleaves action sampling with action-effect predictions to

constrain the number of action-combinations that it examines. LATTE is a

general framework that can be instantiated in different ways that tailor it to

specific setups.

3. The TacTex agents are fully implemented and operational agents that per-

formed successfully at international tournaments and controlled experiments.

This dissertation contributes their binaries, as well as their source code and

other related resources (see Appendix A). The TacTex agents use different

instantiations of LATTE (Chapters 5, 6, 7) and can serve as benchmarks for

future research in the power trading domain.

4. Extensive empirical analysis (Chapters 5, 6, 7) validates the effectiveness

and robustness of the instantiations of LATTE to different competition levels

and under a variety of environmental conditions, shedding light on the main

reasons for LATTE’s success by examining the importance of its constituent

components.

5. The impact of Time-Of-Use tariffs in competitive markets on an au-
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tonomous broker and on the economy was analyzed empirically. Time-Of-Use

tariffs are a main method proposed for demand-side management both in the

literature and in real-markets. One of the instantiations of LATTE contributes

a principled, gradient-ascent algorithm for optimizing Time-Of-Use tariffs by

an autonomous broker in competitive markets.

Empirical analysis shows that a self-interested broker can use Time-Of-Use

tariffs to benefit itself, and by doing so it benefits its customers and the econ-

omy. While Time-Of-Use tariffs can induce customer-herding, our Time-Of-

Use broker prevented it by implicitly coordinating flattening through profit-

maximizing tariffs. This coordinated flattening underlines a potential benefit

of employing autonomous Time-Of-Use brokers in competitive power markets.

In addition, we have seen that a Time-Of-Use broker’s customer share is an

important factor in its ability to flatten demand: to counter-balance peaked

consumption of fixed-rate brokers’ customers, it needs to gain large customer-

share by creating attractive Time-Of-Use tariffs that are still profitable.

9.2 Future Work

While the TacTex agents performed successfully in competitions and controlled ex-

periments using LATTE, there are still many important challenges to be addressed

in the autonomous electricity trading domain. This chapter surveys promising di-

rections for future work of extending LATTE within Power TAC (Section 9.2.1), of

extending Power TAC to encourage productive future work on real-world problems,

(Section 9.2.2), and of extending LATTE towards working in real-world markets

(Section 9.2.3).
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9.2.1 Directions for Extending LATTE within Power TAC

This section surveys promising directions for extending LATTE within the Power TAC

domain.

Using production tariffs for renewable energy: production tariffs are contracts

for procuring energy from renewable producers, and as such they are the main

tool for acquiring clean energy resources. While our instantiations of LATTE

have not sampled production tariff actions, LATTE includes the framework to

use them. The only change that needs to be made is to sample production

tariff actions is a new instantiation of the ComputeNextCandidateTariffAction()

function. Our initial instantiation of LATTE with production tariffs shows

promising results. This instantiation executes at any given timeslot either

lookahead trajectories with consumption tariff actions, or lookahead trajecto-

ries with production tariff actions, interleaving between the two across different

timeslots. In this way, the observed effect of one type of tariff action is taken

into account in the lookahead with the other type of tariff action, forming an

incremental local optimization procedure.

Optimizing supply-demand imbalance: While in general a broker should aim

to perfectly balance the supply and demand in its portfolio, in some situations

a broker can benefit from having an imbalanced portfolio, for instance when

such an imbalance contributes to lower the total imbalance of all brokers.

Referring back to the Reward() function in LATTE (lines 32-34), the bal(IB0,t)

term which determines the imbalance payments can be positive in such cases.

By sampling non-zero imbalance levels in the SampleImbalanceLevels() function

(line 9 of LATTE), and by learning the bal(IB0,t) function online, a broker

could predict the compensation for different imbalance levels and use them in

its lookahead inside the Reward() function.
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Direct Load Control (DLC): Direct load control is a demand-side management

method that presents an alternative to pricing-based demand-side manage-

ment. In Power TAC direct load control can be achieved by balancing-market

actions that curtail consumption and control storage devices. Extending LATTE

to use such actions would equip it with an important class of demand-side

management actions. To use such actions, LATTE will have to examine com-

binations of wholesale-, tariff- and balancing-market actions in its lookahead,

which may increase its lookahead complexity by an order of magnitude. Find-

ing an efficient way to incorporate such actions into LATTE’s lookahead is an

important research direction. An initial implementation could treat balancing

actions hierarchically (similarly to how LATTE treats wholesale actions), sam-

ple imbalance levels to aim for (see previous item), and then examine combi-

nations of wholesale-procurement and curtailment quantities that achieve the

desired imbalance. The curtailment orders’ limit prices could be optimized at

a lower level similarly to LATTE’s wholesale bidding algorithm.

Real-Time Pricing (RTP) tariffs: Real-Time Pricing (RTP) tariffs have been

proposed as a pricing-based demand-side management method. While LATTE

could be extended to sample such tariffs in its lookahead, the decision-making

process of setting these prices in real-time is outside the scope of LATTE, and

would required extending LATTE’s framework. A possible first step in this

direction could be parameterizing and sampling RTP tariffs by their expected

prices in ComputeNextCandidateTariffAction(), then publishing a tariff based

on LATTE’s lookahead, and then setting real-time prices using a lookahead

thread that executes between tariff publications. This lookahead thread will

need to select a real-time price at each timeslot, and each such selection will

affect customers’ consumption in the following timeslots. Even with price

discretization, the lookahead search will increase combinatorially. To keep
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the complexity of search within practical bounds, Monte-Carlo Tree-Search

methods such as UCT [50] may turn out useful.

Time-Of-Use (TOU) free riders: Time-Of-Use tariffs can create a free-rider phe-

nomenon, in which brokers who use fixed-rate tariffs and do not contribute

to peak-flattening, enjoy the reduced prices caused by Time-Of-Use brokers.

An interesting direction for future research is the question of how to incen-

tivize brokers more fairly, such that brokers’ contribution to peak-flattening

would affect their compensation. A first step in this direction is quantifying

the monetary impact of a broker’s contribution to peak-flattening and use it

to derive a broker’s compensation for its contribution.

Theoretical analysis of Time-Of-Use (TOU) tariffs: This dissertation has an-

alyzed Time-Of-Use tariffs empirically. An important and interesting direction

for future research is to augment the empirical results with a theoretical anal-

ysis of the properties and impact of Time-Of-Use tariffs used by autonomous

brokers in competitive retail markets. Such an analysis could characterize

when TOU tariffs would be beneficial for the broker and for the economy,

characterize how a broker’s market-share affect TOU tariffs’ benefit for the

broker and for the economy, and provide theoretical guarantees on the quality

of approximate solutions such as LATTE-TOU’s.

Time-Of-Use tariffs in presence of renewable generation: We investigated the

usage of Time-Of-Use tariffs by brokers to reduce the peak-demand. An im-

portant potential use for Time-Of-Use tariffs is adapting demand to match

the availability of intermittent, renewable resources such as solar and wind.

LATTE-TOU has all the required components in place; in our code, all that is

needed is to turn on the flag that enables production tariff publications, and

investigate LATTE-TOU’s behavior in presence of these production tariffs.
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Time-Of-Use tariffs in presence of many competing brokers: Investigating

the impact of Time-Of-Use tariffs on brokers and on the economy in the pres-

ence of highly competitive markets is an important direction for future re-

search. Electricity markets are gradually being opened to competition, and

Time-Of-Use pricing is one of the main methods proposed for demand-side

management. Therefore, the combination of Time-Of-Use tariffs and a highly

competitive market scenario that could be of interest to power market design-

ers. An interesting first step in this direction would be running different mixes

of TacTex-TOU with FixedRate brokers (see Chapter 7), at different compe-

tition levels, e.g. 4-, 6-, 8-broker games. For example, in 4-agent games, it

would be interesting to test 4 brokers of the same type, then 3 brokers of one

type and 1 broker of the other type, and 2 brokers of each type. It would be

interesting to examine whether increased competition solves the problem of

free-riders, and whether there are stronger or weaker financial incentives for

brokers to use TOU tariffs.

Contract hedging: In Power TAC, a broker can hedge itself in the tariff market by

using early withdraw penalties and periodic fees. Although not covered in this

dissertation, one of our brokers1 uses a version of LATTE that samples fixed-

rate tariffs with fixed early-withdraw fees. A more general implementation

would optimize the early-withdraw fees based on risk considerations.

Bayesian estimation of hidden information: LATTE uses heuristics and expected

values to estimate hidden information, such as the number of subscriptions to

competing tariffs. Pardoe et al. used a particle filter for estimating hidden

information [75] in the TAC Ad Auctions competition. Such an approach

may turn out to be useful for achieving better transition function predictions,

i.e. predicting customer responses, future demand, and auction results.

1TacTex-14 which was not covered in this dissertation, see Chapter 6.
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9.2.2 Directions for Extending Power TAC

This section surveys promising directions for extending Power TAC to encourage

productive future work on real-world problems.

Tightening the development feedback loop - faster simulations: To accel-

erate development progress in Power TAC it would be useful to tighten the

development feedback loop, at different levels. At the simulation level, it would

be useful to shorten the simulation time from the current time of 2 hours. Hav-

ing shorter simulations would allow for running more experiments and getting

insights more quickly. Shortening the simulation time is a challenging task:

out of the 5 seconds allocated per timeslot, the simulator typically uses less

then 2 seconds, leaving brokers 3 seconds for computation. To shorten the

time allocated per timeslot, the simulator, and potentially brokers, will have

to cut computation time significantly. This cut would require either profiling

the code and finding opportunities for increased efficiency, or abstracting pro-

cesses. The former is more desirable, but it is unclear if there is significant

room for improvement.

Tightening the development feedback loop - frequent benchmarking: The

Power TAC competition is an effective way to encourage research progress.

Typically, progress is fastest around competition time, due to the opportu-

nities to test broker agents against the most recent versions of competitors

(rather than against previous year’s competitors). To accelerate progress, we

suggest a setup in which all teams get to test their agent against the most

recent, state-of-the-art brokers that would be available to play against. Such

a setup could be a continual web-based tournament where everyone can up-

load binaries and test them against others at any time. Such a setup would

accelerate research, development, and could take even better advantage of the
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Power TAC simulation.

Increased realism - customer rationality: Power TAC customers are modeled

as being imperfectly rational, and as having inertia that makes them reluc-

tant to switch tariffs too frequently. These two properties model the effects

of imperfect information, and human decision making. It is reasonable to

believe that as autonomous customer agents become more widespread, infor-

mation flow will improve, autonomous customer agents will be able to make

more rational decisions, and they will not be inhibited by inertia. Power TAC

supports different customer rationality and inertia levels, which are easily con-

figurable. It would be interesting to test the dynamics of markets in presence

of more or less rational customers.

Past research in this domain included the work of [66], and some preliminary

research that we have done. In our experiments, we observed that with full

rationality and no inertia there are large fluctuations in customer subscrip-

tions, since customers always subscribe to the best tariff as soon as it was

published. Such phenomena could affect the stability of the electricity grid;

there is interesting research to be done in investigating methods to mitigate

this effect.

Increased realism - cost-comfort trade-off: In Power TAC, customer discom-

fort is an L2 norm of the difference between their desired consumption and

the actual consumption. In the real-world the discomfort model is more com-

plex, incorporating different hard constraints. Incorporating more complex

discomfort functions into Power TAC and into LATTE’s models will open an

interesting research direction, which will test the generality of LATTE across

different discomfort functions, and prepare it to operate in the real-world.

Increased realism - strong incentives to balance supply and demand: Strengthening
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the financial incentives to balance supply and demand in the simulator would

encourage brokers to use balancing actions more frequently, and come up with

new balancing strategies. Supply-demand balance is an important issue in the

real-world, and becomes more challenging with renewable, intermittent gen-

eration. Therefore, developing balancing strategies could have a significant

real-world impact.

Increased realism - running experiments in equilibrium mode: Broker prof-

its are bounded by the default tariffs proposed to customers by the simulator.

Currently, these default tariffs provide room for brokers to cooperate and sell

high above their marginal costs. Such cooperation has happened mainly in low

competition levels, such as 2-broker games, and is an artifact of Power TAC

simulating market liberalization at each game. In the real-world, the more

common situation is that prices settle around some equilibrium starting some

point in time. We believe that testing games with prices around price equilib-

riums (by narrowing the margin of the default simulation tariffs) can provide

interesting, useful insights on real-world dynamics.

Increased realism - line capacity limitation: With larger populations of dis-

tributed generation and distributed storage customers, line capacity limita-

tions may come into effect. Modeling line capacity limitations in Power TAC

is a challenging task, but could contribute to further advance the simulated

dynamics towards the real-world dynamics.

Increased realism - power factor effects: A customer’s power factor affects en-

ergy losses, and could therefore affect brokers’ decisions on how to charge cus-

tomers with high energy losses. Adding power factor effects into Power TAC

will increase the realism of the retail market dynamics.

Increased realism - simulation time resolution: Power TAC’s simulation time
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progresses in discrete, 1-hour steps. While this allows to model period of

months, it limits the resolution in which electrical and market events can be

simulated. Increasing the resolution of the simulation is a challenging task,

however if it were to be done, it would further advance the simulator towards

real-world dynamics.

9.2.3 Directions for Extending LATTE to Real Markets

An important goal for future research is extending LATTE to being usable in real-

world markets. The previous two sections laid out two groups of future directions,

one for extending LATTE within Power TAC (Section 9.2.1), and the other for fur-

ther increasing the realism of Power TAC (Section 9.2.2). Both groups of future

directions should get LATTE closer to being operational in real-markets, by encour-

aging extended and refined instantiations of LATTE. This section lists steps that we

view as important milestones for deploying LATTE in real-world markets:

Real-time smart-meter readings: The Power TAC simulator assumes that all

customers have smart-meters that report their readings to the broker once

per hour, in real-time. In many real-world regions, smart-meters are not in-

stalled yet. Moreover, in many of the regions where smart-meters are installed,

readings are not sent in real-time to the retailer, but rather with some delay,

e.g. once per day and delayed by 48 hours. The ability of a broker to ob-

serve customer readings in real-time is important for acting and responding in

real-time. While LATTE could still work with delayed readings, it would work

more accurately with real-time readings.

Autonomous customer agents: In Power TAC, autonomous agents optimize cus-

tomers’ cost and comfort by subscribing to tariffs and adapting customers’

consumption. These autonomous agents are more efficient and reactive than

human customers. To get the most benefit out of LATTE, it would be useful to
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use it in retail markets where such autonomous customer agents are installed.

Therefore, deploying autonomous customer agents in buildings can facilitate

the testing of LATTE in the real-world. LATTE does not inherently depend on

the existence of such agents, however their increased responsiveness will give

LATTE a larger space of actions to optimize over.

Small field tests: Following up on the previous item, an important step towards

deploying LATTE in the real-world would be to test it in small field tests, with

tens, then hundreds of homes that employ autonomous customer agents. Since

the resulting environment would include tens or hundreds of agents, such tests

may be able to reveal potential destructive combinations of agent behaviors,

and refine/constrain both LATTE and the autonomous customers behaviors.

Worst-case behavior: While in Power TAC the goal of a broker is to maximize

its expected profit, in the real-world customer agreement to participate in

automated markets would probably also depend on their level of exposure to

worst-case events. Therefore, an important direction for future research is

extending LATTE to incorporate worst-case and risk considerations.

Learning predictors from data: Our empirical analysis revealed the importance

of having accurate demand-predictions to LATTE’s performance. In the real-

world, customer subscription behavior, consumption elasticity, and consump-

tion shifting may have complex functional patterns. These behaviors will have

to be learned effectively from real-world data. Similarly, cost-predictions will

have to be learned from real-world data. Learning predictors from real-world

data will likely require new instantiations of LATTE, with new implementa-

tions of the PredictTariffEffects() (line 7 of LATTE) and PredictWholesalePrice()

(line 16 of LATTE) functions.
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9.3 Concluding Remarks

This dissertation lays a foundation for understanding how autonomous electricity

trading broker agents should operate in real-time modern electricity markets, by

contributing a general decision-making framework for such brokers. Based on this

foundation, effective and robust autonomous brokers can be designed. Such brokers

could be used as a basis for research on how to design electricity markets that would

utilize such brokers most effectively to the benefit of clean, reliable, and sustainable

energy. I believe that AI will increasingly be used for the benefit of the smart grid,

and I hope that this dissertation will contribute to a better understanding of how

to build intelligent agents that will take part in addressing the complex challenges

faced by future energy delivery systems.
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Appendix A

TacTex Agents Source Code,

Binaries, and Resources

The source code and binaries of the TacTex agents, as well as related resources are

an online appendix. The online appendix additionally includes links to official sim-

ulator versions, as well as source code of specific versions used for experimentation

in this dissertation. The online appendix is located in the following URL:

http://www.cs.utexas.edu/~urieli/thesis
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Appendix B

Power TAC Game Parameters

Table B.1: Parameters used in Power TAC tournament games. Source: The
Power TAC game specification [46].

Parameter Standard Game Setting
Length of pre-game bootstrap period 14 days
Nominal length of game 60 days

Probability of game end for each time slot after time slot
1320 (start of day 55)

1
121

Minimum game length 1320
Expected game length 1440
Timeslot length 60 minutes
Time compression ratio 720 (5 seconds/time slot)
Open time slots on wholesale market 24
Market closing time 1 time slot ahead
Minimum order quantity 0.1 kWh
Distribution fee [0.003 - 0.03]e/kWh
Balancing price basis most recent clearing price
Balancing cost [0.02 - 0.06]e/kWh
Slope of regulating market price 10−6, 10−6 e/kWh
Default broker’s min and max bid order prices -100, -5
Default broker’s min and max ask order prices 0.1, 30
Tariff publication fee [1000 - 5000] e
Tariff revocation fee [100 - 500] e
Tariff publication interval 6 time slots
Daily bank debt interest rate 4.0%/365 · · · 12.0%/365
Daily bank deposit interest rate 0.5β
Weather report interval 1 hour
Weather forecast interval 1 hour
Weather forecast horizon 24 hours
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