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Abstract. This paper reviews our recent work on applying inductive
logic programming to the construction of natural language processing
systems. We have developed a system, CHILL, that learns a parser from a
training corpus of parsed sentences by inducing heuristics that control an
initial overly-general shift-reduce parser. CHILL learns syntactic parsers
as well as ones that translate English database queries directly into exe-
cutable logical form. The ATIS corpus of airline information queries was
used to test the acquisition of syntactic parsers, and CHILL performed
competitively with recent statistical methods. English queries to a small
database on U.S. geography were used to test the acquisition of a com-
plete natural language interface, and the parser that CHILL acquired was
more accurate than an existing hand-coded system. The paper also in-
cludes a discussion of several issues this work has raised regarding the
capabilities and testing of ILP systems as well as a summary of our
current research directions.

1 Introduction

Developing a system capable of communicating in natural language is one of the
long-standing goals of computing research. Although significant progress has
been made in the last forty years (Allen, 1995), developing a natural language
processing (NLP) system for a particular application is still an extremely difficult
and laborious task. However, a promising approach is to use machine learning
techniques to help automate the development of NLP systems.

In recent years, there has been an increasing focus in computational lin-
guistics on empirical or corpus-based methods that obtain much of their knowl-
edge by training on large corpora of speech or text (Church & Mercer, 1993;
Charniak, 1993; Brill & Church, 1996). Almost all of this work has employed
statistical techniques such as n-gram models, hidden Markov models (HMMs),
and probabilistic context free grammars (PCFGs). The computational linguis-
tics community has focused on these techniques largely due to their successful
application in prior work on speech recognition (Waibel & TLee, 1990). There
has also been a fair amount of recent research on applying neural-network tech-
niques, such as simple recurrent networks, to natural language processing (Reilly
& Sharkey, 1992; Miikkulainen, 1993). However, there has been relatively little
recent work using symbolic machine learning techniques for language applica-
tions, although some recent systems have employed decision trees (Magerman,



1995; Anoe & Bennett, 1995), transformation rules (Brill, 1993, 1995), and other
symbolic methods (Wermter, Riloff, & Scheler, 1996).

However, all of these approaches are limited to examples represented as fixed-
length feature vectors and are therefore subject to the standard limitations of
propositional representations. Language processing, on the other hand, seems
to require a very rich knowledge representation language that includes rela-
tions, recursion, and unbounded structural representations. Current empirical
NLP systems employ carefully-engineered processing architectures and sets of
features laboriously constructed by the system developer in order to circum-
vent these issues. The richness of first-order logic employed in inductive logic
programming (ILP) can hopefully provide advantages for NLP applications by
increasing flexibility and limiting the amount of feature-engineering required.
Despite this fact, other than our own work, there has apparently been no appli-
cation of ILP methods to language processing, with one early exception (Wirth,
1988, 1989).

Over the last four years, we have explored the application of ILP to NLP.
In particular, we have developed and extended the CHILL system for acquiring
natural language parsers (Zelle & Mooney, 1993b, 1994b, 1996a, 1996b; Zelle,
1995). 1 This system has learned both syntactic and “semantic” parsers that
map a natural language database query directly into an executable Prolog query
that will answer the question. Specifically, CHILL uses a training corpus of parsed
sentences to induce heuristics that control and specialize an initial overly-general
shift-reduce parser. CHILL has learned syntactic parsers for the ATIS corpus of
airline information queries, and the results were comparable to current statistical
methods. It has also acquired semantic parsers that process and answer English
queries about a simple database on U.S. geography. The learned system was
more accurate than a hand-built program for this application. The current paper
reviews this previous research, attempts to draw some broader implications for
ILP, and discusses our directions for future research.

2 Using ILP for Parser Acquisition

The primary task of most natural language systems is parsing. In this paper,
the term “parser” should be interpreted broadly as any system for mapping a
natural language string into an internal representation that is useful for some
ultimate task, such as answering questions, translating to another natural lan-
guage, summarizing, etc.. Parsing can range from producing a syntactic parse
tree to mapping a sentence into unambiguous logical form. Figure 1 shows ex-
amples of three types of parses, a syntactic parse of a sentence from the ATIS
corpus, a case-role (agent, patient, instrument) analysis of a simple sentence, and
an executable logical form for a database query about U.S. geography. CHILL is
able to learn parsers that produce each of these types of analyses.

! These and additional papers, software, and data are available through our web site
at http://www.cs.utexas.edu/users/ml.



Syntactic Parse Tree
Show me the flights that served lunch departing from San Francisco on April 25th.

s:[np: [*],
vp: [show,
np: [me],
np: [np: [np:[the, flights],
sbar: [that,
g: [np: [t],

vp: [served,
np: [1unch]]]11],
vp: [departing,
pp: [from,
np: [san, franciscoll,
pp: [on,
np: [april, ’25th>11111]

Case-Role Analysis
The man ate the pasta with the fork.
[ate,agt:[man,det:the],pat: [pasta,det:the],inst: [fork,det:the]]

Executable Logical Form
What is the capital of the state with the largest population?
answer (C, (capital(S,C), largest(P, (state(S), population(5,P))))).

Fig. 1. Examples of Several Types of Parses

Frequently, language learning has been interpreted as simply acquiring a
syntactic recognizer, a unary predicate that simply returns “yes” or “no” to the
question: “Is this string a syntactically well-formed sentence in the language.”
However, such a syntactic recognizer is of limited use to an NLP system, except
perhaps a limited grammar checker or a speech recognizer entertaining several
word sequences as possible interpretations of an utterance. Language learning
has also been interpreted as acquiring a set of production rules (e.g. S — NP VP)
that define a formal grammar that recognizes the positive strings. This is more
useful than a black-box recognizer since i1t allows a standard syntactic parser to
produce parse trees that are useful for further processing. However, most natural
language grammars assign multiple parses to sentences, most of which do not
correspond to useful, meaningful interpretations. For example, any syntactic
grammar of English will produce an analysis of “The man ate the pasta with a
fork” that attaches the prepositional phrase “with a fork” to “pasta” as well as
to “ate” despite the fact that people generally do not consume eating utensils
(i.e. compare “The man ate the pasta with the cheese”). In fact, any standard
syntactic English grammar will produce more than 2" parses of sentences ending
in n prepositional phrases, most of which are usually spurious (Church & Patil,

1982).



A truly useful parser would produce a unique or limited number of parses that
correspond to meaningful interpretations of a sentence that a human would ac-
tually consider. As a result, the emerging standard for judging a syntactic parser
in computational linguistics 1s to measure its ability to produce a unique parse
tree for a sentence that agrees with the parse tree assigned by a human judge
(Periera & Shabes, 1992; Brill, 1993; Magerman, 1995; Collins, 1996; Goodman,
1996). This approach has been facilitated by the construction of large treebanks
of human-produced syntactic parse trees for thousands of sentences, such as the
Penn Treebank (Marcus, Santorini, & Marcinkiewicz, 1993) which consists pri-
marily of analyses of sentences from the Wall Street Journal. If ILP is to be
taken as a serious approach to constructing NLP systems, 1t must be tested on
such problems and compared to the existing statistical methods.

2.1 Parser Acquisition by Generic ILP

A straight-forward application of ILP to parser acquisition would be to give a
generic ILP system a corpus of sentences paired with representations as a set
of positive examples of the predicate parse(Sentence, Representation) that
takes a sentence asinput and produces a syntactic or semantic analysis as output.
However, it should be noticed that negative examples of sentence/representation
pairs will generally not be available and that using a closed-world assumption
to explicitly generate negative examples is intractable given the large space of
possible sentences and representations. ? In addition, it is generally agreed that
when children acquire language they are exposed to little if any negative feedback
(Bloom, 1994). Consequently, a method is needed for learning without explicit
negative tuples. Fortunately, several ILP methods have been proposed for learn-
ing from only positive tuples when the target predicate represents a function
(Bergadano & Gunetti, 1993; Quinlan, 1996) or when the training data is in
some sense complete (De Raedt & Bruynooghe, 1993; Zelle, Thompson, Califf,
& Mooney, 1995). If the goal is to construct a parser that produces a unique
analysis for each sentence, then the parse/2 predicate can be treated as a func-
tion and any outputs other than the preferred analysis of a training sentence
can be treated implicitly as negative examples. If it i1s desired that the parser
produce several preferred outputs for truly ambiguous sentences, a more gen-
eral assumption of output completeness can be used to specify that the analyses
provided for each training sentence are the only correct ones and that all other
potential outputs are implicitly negative (Zelle et al., 1995; Mooney & Califf,
1995). Using these techniques, a generic ILP system can be used to construct
parsers from only positive sentence/representation pairs.

However, it seems unlikely that an uninformed ILP system could produce a
program that generalizes well to novel sentences. Parsers are complex programs,
the space of possible logic programs is very large, and providing the appropri-
ate set of background predicates is difficult. It 1s generally agreed that human

2 Explicit generation of negative examples using a closed-world assumption is per-
formed automatically in many systems such as FoIL (Quinlan, 1990).



language acquisition exploits fairly restrictive constraints or biases in order to
learn complex natural languages from limited data (Pinker, 1994). Of course,
evaluating the success of this approach is, ultimately, an empirical question. In
this paper, we compare the generic approach with a specific alternative, namely
CHILL, which acquires parsers by specializing a general parsing architecture by
learning control rules.

2.2 Parser Acquisition as Control-Rule Learning

Rather than using ILP techniques to directly learn a complete parser, CHILL be-
gins with a well-defined parsing framework and uses ILP to learn control strate-
gies within this framework. Treating language acquisition as a control learning
problem is not in itself a new idea. Berwick (1985) used this approach to learn
control rules for a Marcus-style deterministic parser (Marcus, 1980). When the
system came to a parsing impasse, a new rule was created by inferring the
correct parsing action and creating a new rule using certain properties of the
current parser state as trigger conditions for its application. In a similar vein,
Simmons and Yu (1992) controlled a simple shift-reduce parser by storing ex-
ample contexts consisting of the syntactic categories of a fixed number of stack
and input buffer locations. New sentences were parsed by matching the current
parse state to the stored examples and performing the action performed in the
best matching training context. Finally, Miikkulainen (1996) presents a connec-
tionist approach to language acquisition that learns to control a neural-network
parsing architecture that employs a continuous stack. Like the statistical ap-
proaches mentioned above, these control acquisition systems used feature-vector
representations. CHILL 1s the first system to use ILP techniques rather than less
flexible propositional approaches.

The input to CHILL is a set of training instances consisting of sentences paired
with the desired parses. The output is a shift-reduce parser in Prolog that maps
sentences into parses. Figure 2 shows the basic components of the system. CHILL
employs a simple deterministic, shift-reduce parser with the current parse state
represented by the content of the stack and the remaining portion of the input
buffer (Tomita, 1986). Consider producing a case-role analysis (Fillmore, 1968)
of the sentence: “The man ate the pasta.” Parsing begins with an empty stack
and an input buffer containing the entire sentence. At each step of the parse,
either a word is shifted from the front of the input buffer onto the stack, or the
top two elements on the stack are popped and combined to form a new element
that is pushed back onto the stack. The sequence of actions and stack states for
our simple example is shown Figure 3. The action notation (z label), indicates
that the stack items are combined via the role label with the item from stack
position ¢ being the head.

In the Prolog parsing shell, parsing operators are program clauses that take
the current stack and input buffer as input arguments and return a modified
stack and buffer as outputs. During Parser Operator Generation, the train-
ing examples are analyzed to extract all of the general operators that are re-
quired to produce the the analyses. For example, an operator to reduce the
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Fig. 3. Shift-Reduce Case-Role Parsing of “The man ate the pasta.”



top two items on the stack by attaching the second item as an agent of the
top is represented by the clause op([Top,Second|Rest],In, [NewTop|Rest],In) :-
reduce(Top,agt,Second,NewTop). The reduce/4 predicate simply combines Top
and Second using the role agt to produce the new structure for the top of the
stack. In general, one such operator clause is constructed for each case-role slot
in the training examples. The resulting parser is severely over-general, as the op-
erators contain no conditions specifying when they should be used; any operator
may be applied to virtually any parse state resulting in many spurious parses.

In Example Analysis, the overly-general parser is used to parse the training
examples to extract contexts in which the various parsing operators should and
should not be employed. These contexts form sets of positive and negative control
eramples from which the appropriate control rules can be subsequently induced.
A control example is a “snapshot” of the subgoal to which a particular operator
clause may be applied in the course of parsing an example. Examples of correct
operator applications are generated by finding the first correct parsing of each
training pair with the overly-general parser; any subgoal to which an operator
is applied in this successful parse becomes a positive control example for that
operator.

For the agent operator shown above, the sentence “the man ate the pasta,”
would produce a single positive control example: op([ate, [man, det:thel],
[the,pastal, A, B). Thisis the only subgoal to which this operator is applied
in the correct parsing of the sentence. A and B are uninstantiated variables since
they are outputs from the op/4 clause and are not yet bound at the time the
clause is being applied. The sentence generates the following negative control
examples for this operator:

op([man,the], [ate,the,pastal ,A,B)

op([the, [ate,agt: [man,det:the]l]l], [pastal,A,B)
op([pasta,the, [ate,agt: [man,det:the]l], []1,4,B)
op([[pasta,det:thel, [ate,agt: [man,det:thel]],[]1,4,B)

Note that there are additional parse states such as op([], [the,man,ate,the,
pastal, A, B) that do not appear in this list. This is because the agent clause
of op/4 requires that its first argument be a list containing at least two items.
Since the clause cannot match these other subgoals, they will not be included as
negative examples.

The Control-Rule Induction phase uses a general ILP system to learn a con-
trol rule for each operator. This control rule comprises a definite-clause definition
that covers the positive control examples for the operator but not the negative.
CHILL’s ILP algorithm combines elements from bottom-up techniques found in
systems such as CicoL (Muggleton & Buntine, 1988) and GoLEM (Muggleton &
Feng, 1992) and top-down methods from systems like FoIr (Quinlan, 1990), and
is able to invent new predicates in a manner analogous to CHAMP (Kijsirikul,
Numao, & Shimura, 1992). Details of the CHILL induction algorithm together
with experimental comparisons to GOLEM and FOIL are presented by Zelle and
Mooney (1994a) and Zelle (1995). Given our simple example, a control rule that
can be learned for the agent operator is



op([X,[Y,det:the]], [thelZ], A, B) :- animate(Y).
animate(man). animate(boy). animate(girl) ....

Here the system has invented a new predicate to help explain the parsing deci-
sions. Of course, the new predicate would have a system generated name. It is
called “animate” here for clarity. This rule may be roughly interpreted as stat-
ing: “the agent reduction applies when the stack contains two items, the second
of which is a completed noun phrase whose head is animate.” The output of the
Control-Rule Induction phase is a suitable control-rule for each clause of op/4.
These control rules are then passed on to the Program Specialization phase.

The final step, Program Specialization, “folds” the control information back
into the overly-general parser. A control rule is easily incorporated into the
overly-general program by unifying the head of an operator clause with the head
of the control rule for the clause and adding the induced conditions to the clause
body. The definitions of any invented predicates are simply appended to the
program. Given the program clause:

op([Top,Second|Rest],In, [NewTop|Rest],In) :-
reduce(Top,agt,Second,NewTop) .

and the control rule:

op([X,[Y,det:the]], [thelZ], A, B) :- animate(Y).
animate(man). animate(boy). animate(girl) ....

the resulting clause is

op([A,[B,det:thel], [thelC],[D], [thelC]) :-
animate(B), reduce(4,agt,[B,det:the],D).
animate(boy). animate(girl). animate(man)...

The final parser is just the overly-general parser with each operator clause suit-
ably constrained. This specialized parser is guaranteed to produce all and only
the preferred parses for each of the training examples.

3 Learning Syntactic Parsers for the ATIS Corpus

In section 2.1, we noted that the generic application of ILP to parser acquisition
would induce a program directly from the examples of the parse/2 relation. The
advantage gained by the control-rule framework can be assessed by comparing
CHILL to the performance achieved by CHILL’s ILP component trying to learn
the parse/2 relation directly. These two approaches were compared by choosing
a random set of test examples and learning and evaluating parsers trained on
increasingly larger subsets of the remaining examples. Since only positive tuples
of parse/2 are available, the generic ILP approach employed a version of the
induction algorithm that exploits the output-completeness assumption to learn
in the context of implicit negative examples (Zelle et al., 1995) as outlined in
section 2.1.



The experiment was carried out using a portion of the ATIS corpus from a
preliminary version of the Penn Treebank. The first example in Figure 1 1s taken
from this corpus. We chose this particular data because it represents realistic in-
put from human-computer interaction, and because it has been used in a number
of other studies on automated parser acquisition (Brill, 1993; Periera & Shabes,
1992) that can serve as a basis for comparison to CHILL. The corpus contains 729
sentences with an average length of 10.3 words. The experiments reported here
were performed using strings of lexical categories rather than words as input.
Tagging words with their appropriate part of speech can be performed with high
accuracy using various techniques (Church, 1988; Brill, 1995). Zelle and Mooney
(1994a) and Zelle (1995) present results both with and without part-of-speech
information.

Our initial experiments used a straightforward set of syntactic shift-reduce
parsing operators (Zelle & Mooney, 1994b). However, better results were ob-
tained by making the operators more specific, effectively increasing the number
of operators, but reducing the complexity of the control-rule induction task for
each operator. The basic idea was to index the operators based on some relevant
portion of the parsing context. In these experiments, the operators were indexed
according to the syntactic category at the front of the input buffer. For ex-
ample, the general “shift” operator op(Stack, [Word|Words], [Word|Stack],
Words) becomes multiple operators in slightly differing contexts such as:

op(Stack, [det|Ws], [det|Stackl, Ws)
op(Stack, [nn|Ws], [nn|Stack], Ws)
op(Stack, [np|Ws], [np|Stack], Ws)

The operators in the initial parser were placed in order of increasing frequency
of use as indicated by the training set. This allows the learning of control rules
to take advantage of “default” effects where specific exceptions are learned first
before control falls through to the more generally applicable operators.

Obviously, the most stringent measure of accuracy is the proportion of test
sentences for which the produced parse tree exactly matches the human parse
for the sentence. Sometimes, however, a parse can be useful even if it is not
perfectly accurate; the treebank itself is not completely consistent in the handling
of various constructs.

To better gauge the partial accuracy of the parser, we adopted a procedure for
returning and scoring partial parses. If the parser runs into a “dead-end” while
parsing a novel test sentence, the contents of the stack at the time of impasse is
returned as a single, flat constituent labeled S. Since the parsing operators are
ordered and the shift operator is invariably the most frequently used operator in
the training set, shift serves as a sort of default when no reduction action applies.
Therefore, at the time of impasse, all of the words of the sentence will be on the
stack, and partial constituents will have been built. The contents of the stack
therefore reflect the partial progress of the parser in finding constituents.

Partial scoring of trees is based on the overlap between the computed parse
and the correct parse as recorded in the treebank. Two constituents are said
to match if they span exactly the same words in the sentence. If constituents



match and have the same label, then they are identical. The overlap between
the computed parse and the correct parse is computed by trying to match each
constituent of the computed parse with some constituent in the correct parse.
If an identical constituent is found, the score is 1.0, a matching constituent
with an incorrect label scores 0.5. The sum of the scores for all constituents is
the overlap score for the parse. The accuracy of the parse is then computed as
Acecuracy = (% + %)/2 where O is the overlap score, Found is the
number of constituents in the computed parse, and Correct is the number of
constituents in the correct tree. The result is an average of the proportion of the
computed parse that is correct and the proportion of the correct parse that was
actually found.

Another accuracy measure that has been used in evaluating systems that
bracket the input sentence into unlabeled constituents, is the proportion of con-
stituents in the parse that do not cross any constituent boundaries in the correct
tree (Black & et. al., 1991; Goodman, 1996). We have computed the number of
sentences with parses containing no crossing constituents, as well as the pro-
portion of constituents that are non-crossing over all test sentences. This gives
a basis of comparison with previous bracketing results, although it should be
emphasized that CHILL is designed for the harder task of actually producing
labeled parses, and is not optimized for bracketing.

Learning curves averaged over 5 random trials using independent testing sets
of 204 sentences are shown in Figure 4. Correctis the percentage of test sentences
with parses that matched the treebanked parse exactly. Partial is partial correct-
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ness using the overlap metric. 0-Crossis the proportion of test sentences having
no constituents that cross constituent boundaries in the correct parsing. Finally,
Consistent shows the overall percentage of constituents that are consistent with
the treebank (i.e. cross no constituents in the correct parse).

The results are quite encouraging. After training on 525 sentences, CHILL
constructed completely correct parses for 41% of the novel testing sentences.
Using the partial scoring metric, CHILL’s parses garnered an average accuracy
of over 84%. The figures for O-cross and consistent compare favorably with those
reported in previous studies of automated bracketing for the ATIS corpus. Brill
(1993) reports 60% and 91.12%, respectively. CHILL scores higher on the per-
centage of sentences with no crossing violations (64%) and slightly lower (90%)
on the total percentage of non-crossing constituents. This is understandable as
Brill’s transformation learner tries to optimize the latter value, while CHILL’s
preference for complete sentence accuracy tends to improve the former.

Figure 5 shows the results for the partial accuracy metric for both CHILL
and generic ILP. CHILL has an overwhelming advantage, achieving 84% accuracy
compared to the 20% accuracy of generic ILP. Clearly, providing the shift-reduce
parsing framework significantly eases the task of the inductive component. Try-
ing to learn a complete parser from scratch is obviously much more difficult.
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4 Learning a Complete Natural-Language Interface

The previous experiment demonstrates that ILP techniques as implemented in
CHILL can produce results comparable to other empirical approaches for con-
structing syntactic parsers using a standard treebank. However, syntactic parsing
is only a small part of the larger problem of natural language understanding.
Consequently, parsers are usually compared on the “artificial” metrics presented
above. Unfortunately, it is unclear how well these metrics translate to perfor-
mance on actual language processing tasks.

As argued in the introduction, one of the major attractions of the ILP ap-
proach is its flexibility. The type of representation produced by CHILL’S parsers
is controlled only by the parsing operators employed. In an effort to assess the
utility of CHILL in constructing a complete natural language application, an
operator framework was devised that allows the parsing of natural language
queries directly into executable Prolog queries. The input to CHILL in this case
task consists of sentences paired with executable database queries, where the
query language used is a logical form similar to the meaning representation typ-
ically produced by logic grammars (Warren & Pereira, 1982; Abramson & Dahl,
1989). The semantics of the representation is grounded in a query interpreter
that executes queries and retrieves relevant information from the database.

The chosen database concerns United States geography for which a hand-
coded natural-language interface already exists. The system, called Geobase was
supplied as a sample application with a commercial Prolog, specifically Turbo
Prolog 2.0 (Borland International, 1988). This system provides a database al-
ready coded in Prolog and also serves as a convenient benchmark against which
CHILL’s performance can be compared. The database contains about 800 Prolog
facts asserting relational tables for basic information about U.S. states, includ-
ing: population, area, capital city, neighboring states, major rivers, major cities,
and highest and lowest points along with their elevation. Figure 6 shows some
sample questions and associated query representations in addition to the exam-
ple already presented in Figure 1.

What is the highest point of the state with the largest area?
answer (P, (high-point(S,P), largest(A, (state(S), area(S,A4))))).

What are the major cities in Kansas?
answer (C, (major(C), city(C), loc(C,S), equal(S,stateid(kansas)))).

Fig. 6. Sample Database Queries

The language data for the experiment was gathered by asking uninformed
subjects to generate sample questions for the system. An analyst then paired the
questions with appropriate logical queries to generate an experimental corpus of
250 examples. Experiments were then performed by training on subsets of the
corpus and evaluating the resulting parser on the unseen examples. The parser



was judged to have parsed a new sentence correctly when the generated query
produced exactly the same final answer from the database as the query provided
by the analyst. Hence, the metric is a true measure of the performance for a
complete database-query application in this domain.
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Figure 7 shows the accuracy of CHILL’s parsers over a 10 trial average. The
line labeled “Geobase” shows the average accuracy of the hand-coded system.
The curves show that CHILL outperforms the existing system when trained on
175 or more examples. In the best trial, CHILL induced a parser from 225 ex-
amples comprising 1100 lines of Prolog code in approximately 25 minutes on a
SPARCstation 5 and achieved 84% accuracy in answering novel queries. Most of
the “errors” CHILL makes on novel questions are due to an inability to parse the
query rather than generation of an incorrect answer. After 225 training exam-
ples, only slightly over 2% of novel questions on average are actually answered
incorrectly. Zelle and Mooney (1996b) and Zelle (1995) provide additional details
on the Geobase application and results.

5 Lessons and Challenges for ILP

Applying ILP to natural language processing has highlighted several broader
issues in developing and evaluating ILP systems. Natural language problems
present a number of interesting challenges for ILP systems, many of which may
have counterparts in other complex applications. In addition to parser acquisi-
tion, we have also applied ILP to natural language morphology, specifically to



generating the past tense of English verbs. English past-tense generation has be-
come a benchmark problem in the computational modeling of human language
acquisition (Rumelhart & McClelland, 1986; Ling & Marinov, 1993). Mooney
and Califf (1995) showed that a particular ILP system, FoIDL, could learn this
transformation more effectively than previous neural-network and decision-tree
methods. This section discusses several issues in ILP that our work on CHILL
and FoIDL have uncovered.

5.1 Learning to Control Existing Programs

Inducing a complex logic program completely from examples is a difficult task.
The standard way of easing the problem has been to supply an ILP system
with relevant background knowledge (subroutines) and induce only the top-level
clauses (Lavraé & Dizeroski, 1994). Another approach has been to revise an
existing program that is partially correct (De Raedt, 1992; Richards & Mooney,
1995). CHILL illustrates a third approach: specializing an existing program by
learning control rules that restrict the application of specific clauses.

Induction of control rules has a fairly long history in learning and problem
solving (Mitchell, 1983; Langley, 1985) and more recent work has applied TLP
to this task (Cohen, 1990; Leckie & Zuckerman, 1993; Zelle & Mooney, 1993a;
Estlin & Mooney, 1996). These systems focus on learning control rules that
improve the efficiency of an existing program, such as transforming an O(n!)
naive sorting program into an O(n?) insertion sort (Zelle & Mooney, 1993a).
CHILL illustrates that this approach can also be used to improve the accuracy
of an initial (extremely) overly-general program. Other problems may also lend
themselves to providing or constructing an initial overly-general program that
can be appropriately specialized by inducing control rules.

5.2 Improving Generic ILP Systems

Initial attempts to apply existing ILP systems such as FOIL and GOLEM to parser
construction and past-tense generation met with important difficulties. Limita-
tions such as requiring extensional background and negative examples, lack of
predicate invention, inability to handle functions or cuts (1), and search limita-
tions (e.g. local minima, combinatorial explosions) prevented existing systems
from performing well or even being applicable to these problems. Consequently,
we had to develop new ILP systems such as CHILLIN (Zelle & Mooney, 1994a)
and Foipt, (Mooney & Califf, 1995) to overcome these limitations by using tech-
niques that integrate bottom-up and top-down search, incorporate predicate
invention, eliminate the need for explicit negative examples; and allow restricted
use of cuts. Existing techniques had to be improved and integrated in order to
build ILP systems that could handle natural language problems.

Consequently, there is still an need for flexible, robust, efficient ILP systems
that incorporate a range of abilities and features. Generic ILP systems are still
unable to handle many large, complex problems such as those that arise in NLP.
Statistical language learning systems have been trained on real corpora of up to



40,000 sentences (Magerman, 1995; Collins, 1996). Current ILP techniques are
incapable of handling such large problems.

5.3 Training and Testing for Programs that Generate Output

Most ILP systems have been tested on their accuracy of classifying ground tuples
as positive or negative examples of the target predicate. However, many appli-
cations such as parsing and morphological analysis require computing outputs
rather than testing ground tuples. In these applications, ILP systems need to be
tested on their ability to generate correct outputs from novel inputs.

With respect to training, an ILP system needs to guarantee that it will
generate a program that will terminate and generate ground outputs when it is
queried with the outputs uninstantiated. Most ILP systems cannot provide these
guarantees; those that guarantee termination (Quinlan, 1990) do not guarantee
ground outputs. The use of an output completeness assumption and implicit
negatives is one way to guarantee ground outputs (Zelle et al., 1995).

With respect to testing, experiments need to specifically evaluate the ability
of the learned program to generate correct outputs given only novel inputs.
Unlike evaluations of other ILP systems, experiments with CHILL and FoIDL
specifically tested this ability. Also, in many applications, exactly matching the
output specified in the test data may not be the best measure of performance.
Induced programs may generate complex outputs that are more or less similar
to the “correct” output (as with parse trees) or there may be multiple correct
outputs that are semantically equivalent (as with database queries). Therefore,
one may want to measure various types of partial correctness of outputs, such
as the number of bracketing errors for parse trees, or use some other procedure
for judging the correctness of the output, such as whether it produces the same
answer from a database as the “correct” output. In general, appropriate testing
of logic programs generated for complex applications may require measuring
something other than their accuracy at classifying ground tuples.

6 Ongoing Research

Our current research concerns using learning techniques such as ILP to develop a
larger natural language application. We hope to field an application on the world-
wide-web that will attract a significant number of users and therefore serve as
an automatic source of larger amounts of language data. The specific application
we are considering is a system that can process the computer job announcements
posted to the USENET newsgroup misc. jobs.offered, extract a database of
available jobs, and then answer natural language queries such as “What jobs are
available in California for C++ programmers paying over $100,0000 a year?”
This application will involve using learning techniques to build two major
components. The first 1s an information extraction system that processes in-
dividual messages and extracts specific pieces of information for the database
such as the type of job, the location, the salary, the starting date; etc.. Such



natural-language information extraction systems have been hand-built as part of
ARPA’s MUC (Message Understanding Conference) program (Lehnert & Sund-
heim, 1991; ARPA, 1993) and several projects have used learning techniques
to automatically acquire rules for this task (Riloff, 1993; Soderland & Lehnert,
1994; Huffman, 1996). We plan to develop a system that uses ideas from ILP to
learn patterns for extracting information from newsgroup postings. Examples of
messages paired with filled templates will be used to train the system, and the
learned rules will then be used to extract a database of information from the
newsgroup postings.

The second major component is a query system for answering natural-language
questions about the database built by the information extraction module. CHILL
will be used to learn this component by training on sample pairs of English /Prolog
job queries in the same manner used to construct the geography database in-
terface discussed in section 4. After building a prototype system from an initial
training set, we plan to put it on line and collect additional query examples.
Questions that the system cannot parse will be collected, annotated, and used
to retrain the system to improve its coverage. In this way, learning techniques can
be used to automatically improve and extend a system based on data collected
during actual use.

7 Conclusions

Constructing natural language systems is a complex task, and machine learning
is becoming an increasingly important tool in aiding their development. This pa-
per has summarized research on employing inductive logic programming to learn
natural language parsers, and presented results illustrating that such methods
can successfully learn syntactic parsers as well as complete natural language in-
terfaces. In addition, the ILP-constructed systems were shown to perform as well
as if not better than existing hand-built and statistically-trained systems.

Unfortunately, current learning research in computational linguistics is fo-
cused on alternative statistical methods. Convincing computational linguists of
the utility of ILP for constructing NLP systems will not be an easy task. How-
ever, by clearly demonstrating the ability of ILP systems to easily and flexibly
build real systems from large amounts of real language data without laborious
feature engineering, a convincing case for ILP can be made. The research re-
viewed in this paper is a first step in this direction, and will hopefully encourage
and assist additional research in the area.
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