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Functional MRI (fMRI) has become the most common method
for investigating the human brain. However, fMRI data present some
complications for statistical analysis and modeling. One recently de-
veloped approach to these data focuses on estimation of computa-
tional encoding models that describe how stimuli are transformed into
brain activity measured in individual voxels. Here we aim at building
encoding models for fMRI signals recorded in primary visual cortex
of the human brain. We use residual analyses to reveal systematic
nonlinearity across voxels not taken into account by previous mod-
els. We then show how a sparse nonparametric method (Ravikumar
et al., 2009b) can be used together with correlation screening to esti-
mate nonlinear encoding models effectively. Our approach produces
encoding models that predict about 25% more accurately than mod-
els estimated using other methods (Kay et al., 2008a). The estimated
nonlinearity impacts the inferred properties of individual voxels, and
it has a plausible biological interpretation. One benefit of quantita-
tive encoding models is that estimated models can be used to decode
brain activity, in order to identify which specific image was seen by an
observer. Encoding models estimated by our approach also improve
such image identification by about 12% when the correct image is
one of 11,500 possible images.

1. Introduction. One of the main differences between human brains
and those of other animals is the size of the neocortex (Frahm, Stephan and
Stephan, 1982; Hofman, 1989; Radic; Van Essen, 1997). Humans have one
of the largest neocortical sheets, relative to their body weight, in the entire
animal kingdom. The human neocortex is not a single undifferentiated func-
tional unit, but consists of several hundred individual processing modules
called areas. These areas are arranged in a highly interconnected, hierarchi-
cally organized network. The visual system alone consists of several dozen
different visual areas, each of which plays a distinct functional role in vision.
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2 V. Q. VU ET AL.

The largest visual area (indeed, the largest area in the entire neocortex)
is the primary visual cortex, area V1. Because of its central importance in
vision, area V1 has long been a primary target for computational modeling.

The most powerful tool available for measuring human brain activity is
functional MRI (fMRI). However, fMRI data provide a rather complicated
window on neural function. First, fMRI does not measure neuronal activ-
ity directly, but rather measures changes in blood oxygenation caused by
metabolic processes in neurons. Thus, fMRI provides an indirect and non-
linear measure of neuronal activity. Second, fMRI has fairly low temporal
and spatial resolution. The temporal resolution is determined by physical
changes in blood oxygenation, which are two orders of magnitude slower
than changes in neural activity. The spatial resolution is determined by the
physical constraints of the fMRI scanner (i.e, limits on the strength of the
magnetic fields that can be produced, and limits on the power of the ra-
dio frequency energy that can be deposited safely in the tissue). In practice
fMRI signals usually have a temporal resolution of 1–2 seconds, and a spa-
tial resolution of 2–4 millimeters. Thus, a typical fMRI experiment might
produce data from 30,000–60,000 individual voxels (i.e., volumetric pixels)
every 1–2 seconds. These data must first be filtered to remove nonstationary
noise due to subject movement and random changes in blood pressure. Then
they can be modeled and analyzed in order to address specific hypotheses
of interest.

One recent approach for modeling fMRI data is to use a training dataset
to estimate a separate model for each recorded voxel, and to test predic-
tions on a separate validation dataset. In computational neuroscience these
models are called encoding models, because they describe how information
about the sensory stimulus is encoded in measured brain activity. Alterna-
tive hypotheses about visual function can be tested by comparing prediction
accuracy of multiple encoding models that embody each hypothesis (Nase-
laris et al., 2010). Furthermore, estimated encoding models can be converted
directly into decoding models, which can in turn be used to classify, identify
or reconstruct the visual stimulus from brain activity measurements alone
(Naselaris et al., 2010). These decoding models can be used to measure how
much information about specific stimulus features can be extracted from
brain activity measurements, and to relate these measurement directly to
behavior (Raizada et al., 2010; Walther et al., 2009; Williams, Dang and
Kanwisher, 2007).

Most encoding and decoding models rely on parametric regression meth-
ods that assume the response is linearly related with stimulus features after
fixed parametric nonlinear transformation(s). These transformations may
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ENCODING AND DECODING V1 FMRI 3

be necessitated by nonlinearities in neural processes (e.g. Carandini, Heeger
and Movshon, 1997), and other potential sources inherent to fMRI such as
dynamics of blood flow and oxygenation in the brain (Buxton, Wong and
Frank, 1998; Buxton et al., 2004) and other biological factors (Lauritzen,
2005). However, it can be difficult to guess the most appropriate form of
the transformation(s), especially when there are thousands of voxels and
thousands of features, and when there may be different transformations for
different features and different voxels. Inappropriate transformations will
most likely adversely affect prediction accuracy and might also result in
incorrect inferences and interpretations of the fitted models.

In this paper we use a new, sparse, and flexible nonparametric approach
to more adequately model the nonlinearity in encoding models for fMRI
voxels in human area V1. The data were collected in an earlier study (Kay
et al., 2008a). The stimuli were grayscale natural images (see Figure 1). The
original analysis focused on a class of models that included a fixed para-
metric nonlinear transformation of the stimuli, followed by linear weighting.
Here we show by residual analysis that this model does not account for a
substantial nonlinear response component (Section 4). We therefore model
these data by a sparse nonparametric method (Ravikumar et al., 2009b)
after preselection of features by marginal correlation. The resulting model
qualitatively affects inferred tuning properties of V1 voxels (Section 6), and
it substantially improves response prediction (Section 4.2). The sparse non-
parametric model also improves decoding accuracy (Section 5). We conclude
that the nonlinearities found in the responses of voxels measured using fMRI
impact both model performance and model interpretation. Although our
paper focuses entirely on area V1, our approach can be extended easily to
voxels recorded in other areas of the brain.

2. Background on V1. Brain area V1 is located in the occipital cor-
tex and is an early processing area of the visual pathway. It receives much
of its input from the lateral geniculate nucleus—a small cluster of cells in
the thalamus that is the brain’s primary relay center for visual information
from the eye. Many of the properties of V1 neurons have been described
by visual neuroscientists (see De Valois and De Valois, 1990, for a sum-
mary). In most cases these neurons are described as spatio-temporal filters
that respond whenever the stimulus matches the tuning properties of the
filter. The important spatial tuning properties for V1 neurons are related
to spatial position, orientation and spatial frequency. Thus, each V1 neuron
responds maximally to stimuli that appear at a particular spatial location
within the visual field, with a particular orientation and spatial frequency.
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4 V. Q. VU ET AL.

Fig 1: Examples of natural image stimuli. The natural images used in the
experiment were sampled from a large database of images obtained from a
commercial digital library (Corel Stock Photo Libraries from Corel Corpo-
ration). The images covered 20 × 20 degrees of the field of view, and were
cropped to a circular aperture and blended into the background to reduce
edge effects.
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ENCODING AND DECODING V1 FMRI 5

Stimuli at different spatial positions, orientations and frequencies will elicit
lower responses from the neuron. Because V1 neurons are tuned for spatial
position, orientation and spatial frequency they are often modeled as Gabor
filters (whose impulse response is the product of a harmonic function and a
Gaussian kernel) (De Valois and De Valois, 1990).

Although tuning for orientation and spatial frequency can be described
using a linear filter model, it is well-established that individual V1 neurons
do not behave exactly like linear filters. Studies using white noise stim-
uli have reported a nonlinear relationship between linear filter outputs and
measured neural responses (e.g. Sharpee, Miller and Stryker, 2008; Touryan,
Lau and Dan, 2002). Furthermore, it is known that the responses of V1 neu-
rons saturate (like

√
x or log x) with increasing contrast (e.g. Albrecht and

Hamilton, 1982; Sclar, Maunsell and Lennie, 1990). Finally, there is evidence
that the responses of V1 neurons are normalized by the activity of other neu-
rons in their spatial or functional neighborhood. This phenomenon—known
as divisive normalization—can account for a variety of nonlinear behaviors
exhibited by V1 neurons (Carandini, Heeger and Movshon, 1997; Heeger,
1992). It is reasonable to expect that the nonlinearities at the neural level
will affect voxel responses evoked by natural images, so a statistical model
should describe adequately these nonlinearities.

3. The fMRI Data. The data consist of fMRI measurements of blood
oxygen level-dependent activity (or BOLD response) at m = 1, 331 voxels
in area V1 of a single human subject (see Kay et al., 2008a). The voxels,
measuring 2×2×2.5 millimeters, were acquired in coronal slices using a 4T
INOVA MR (Varian, Inc., Palo Alto, CA) scanner, at a rate of 1Hz, over
multiple sessions. Two sets of data were collected during the experiment:
training and validation. During the training stage the subject viewed n =
1, 750 grayscale natural images randomly selected from an image database,
each presented twice (but not consecutively) in a pseudorandom sequence;
see Figure 1. Each image was presented in an ON-OFF-ON-OFF-ON pattern
for 1 second with an additional 3 seconds OFF between presentations. For
the validation data the subject viewed 120 novel natural images presented in
the same way as in the training stage, but with a total of 13 presentations of
each image. Data collection required approximately 10 hours in the scanner,
distributed across 5 two hour sessions.

Data preprocessing is necessary to correct several sampling artifacts that
are intrinsic to fMRI. First, volumes were manually co-registered (in-house
software) to correct for differences in head positioning across sessions. Slice-
timing and automated motion correction (SPM99, http://www.fil.ion.
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6 V. Q. VU ET AL.

ucl.ac.uk/spm) was applied to volumes acquired within the same session.
These corrections are standard and their details are explained in the sup-
plementary information of Kay et al. (2008a).

Our encoding and decoding analyses depend upon defining a single scalar
fMRI voxel response to each image. The procedures used to extract this
scalar response from the BOLD time series measurements acquired during
the fMRI experiment are described in Appendix A. In short, we assume that
each distinct image evokes a fixed timecourse response, and that the response
timecourses evoked by different images differ by only a scale factor. We use
a model in which the response timecourses and scale factors are treated as
separable parameters, and then use these scale factors as the scalar voxel
responses to each image. By extracting a single scalar response from the
entire timecourse, we effectively separate the salient image-evoked attributes
of the BOLD measurements from those attributes due to the BOLD effect
itself (Kay et al., 2008b).

4. Encoding the V1 Voxel Response. An encoding model that pre-
dicts brain activity in response to stimuli is important for neuroscientists
who can use the model predictions to investigate and test hypotheses about
the transformation from stimulus to response. In the context of fMRI, the
voxel response is a proxy for brain activity, and so an fMRI encoding model
predicts voxel responses. Let Yv be the response of voxel v to an image
stimulus S. We follow the approach of Kay et al. (2008a) and model the
conditional mean response,

µv(s) := E(Yv|S = s) ,

as a function of local contrast energy features derived from projecting the
image onto a 2D Gabor wavelet basis. These features are inspired by the
known properties of neurons in V1, and are well-established in visual neuro-
science (see for instance Adelson and Bergen, 1985; Jones and Palmer, 1987;
Olshausen and Field, 1996). A 2D Gabor wavelet g is the pointwise product
of a complex 2D Fourier basis function and a Gaussian kernel:

g(a, b) ∝ exp (2πiωã)× exp

(
− ã2

2σ21
− b̃2

2σ22

)
, where

ã = (a− a0) cos θ + (a− a0) sin θ

b̃ = (b− b0) cos θ − (b− b0) sin θ .

The basis we use is organized into 6 spatial scales/frequencies (ω, σ1, σ2),
where wavelets tile spatial locations (a0, b0) and 8 possible orientations θ,
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ENCODING AND DECODING V1 FMRI 7

Fig 2: Examples of Gabor wavelets. The basis used by the encoding model
is organized into 6 spatial scales (rows) and 8 orientations (columns). The
imaginary part of the wavelets is not shown.

for a total of p = (12 + 22 + 42 + 82 + 162 + 322) × 8 = 10, 920 wavelets.
Figure 2 shows all of the possible scale and orientation pairs.

Let gj denote a wavelet in the basis. The local contrast energy feature is
defined as

Xj(s) :=

[∑
a,b

Re gj(a, b)s(a, b)

]2
+

[∑
a,b

Im gj(a, b)s(a, b)

]2
,

for j = 1, . . . , p = 10, 920. The feature set is essentially a localized version
of the (estimated) Fourier power spectrum of the image. Each feature mea-
sures the amount of contrast energy in the image at a particular frequency,
orientation, and location.

4.1. Sparse linear models. The model proposed in Kay et al. (2008a)
assumes that µv(s) is a weighted sum of a fixed transformation of the local
contrast energy features. They applied a square root transformation to Xj

to make the relationship between µv(s) and the transformed features more
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8 V. Q. VU ET AL.

linear. Thus, their model is

(4.1) µv(s) = βv0 +

p∑
j=1

βvj

√
Xj(s) .

We refer to (4.1) as the sqrt(X) model. Kay et al. (2008a) fit this model
separately for each of the 1, 331 voxels, using gradient descent on the squared
error loss with early stopping (see, e.g., Friedman and Popescu, 2004), and
demonstrated that the fitted models could be used to identify, from a large
set of novel images, which specific image had been viewed by the subject.
They used a simple decoding method that selects, from a set of candidates,
the image s whose predicted voxel response pattern (µ̂v(s) : v = 1, 2, . . .) is
most correlated with the observed voxel response pattern (Yv : v = 1, 2, . . .).
Although Kay et al. (2008a) focused on decoding, the encoding model is
clearly an integral part of their approach. We found a substantial nonlinear
aspect of the voxel response that their encoding sqrt(X) model does not take
into account.

Since the gradient descent method with early stopping is closely related to
the Lasso method (Friedman and Popescu, 2004), we fit the model (4.1) sep-
arately to each voxel (as in Kay et al., 2008a) using Lasso (Tibshirani, 1996),
and selected the regularization parameters with BIC (using the number of
nonzero coefficients in a Lasso model as the degrees of freedom). Figure 3
shows plots of the residuals and fitted values for four different voxels. With
the aid of a LOESS smoother (Cleveland and Devlin, 1988), we see a nonlin-
ear relationship between the residual and the fitted values. This pattern is
not unique to these four voxels. We extended this analysis to all 1, 331 vox-
els. By standardizing the fitted values we can overlay the smoothers for all
1, 331 voxels and inspect for systematic deviations from the sqrt(X) model
across all voxels. Figure 4 shows the result. Nonlinearity beyond the sqrt(X)
model is present in almost all voxels, and, moreover, the residuals appear to
be heteroskedastic.

Composing the square root transformation with an additional nonlinear
transformation could absorb some of the residual nonlinearity in the sqrt(X)
model. Instead of the square root, log(1 +

√
x) was used by Naselaris et al.

(2009) to analyze the same dataset as we do in this paper and it has also
been used in other applications (see Kafadar and Wegman, 2006, for an
example in the analysis of internet traffic data). The resulting model is

(4.2) µv(s) = βv0 +

p∑
j=1

βvj log

(
1 +

√
Xj(s)

)
,
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Fig 3: Residual and fitted values of model (4.1) for four different voxels
(labeled above). The solid curves show a LOESS fit of the residual on the
fitted values.
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Fig 4: Residual and standardized fitted values of model (4.1) blended across
all 1, 331 voxels. The solid curves show the LOESS fits of the residuals on
the fitted values for each voxel.
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10 V. Q. VU ET AL.

and we refer to it as the log(1 + sqrt(X)) model.
We fit model (4.2) using Lasso with BIC, and compared its prediction

performance with model (4.1) by evaluating the squared correlation (pre-
dictive R2) between the predicted and actual response across all 120 images
in the validation set. Figure 5 shows the difference in predictive R2 values
of the two models for each voxel. There is an improvement in prediction
performance (median 5.5% for voxels where both models have an R2 > 0.1)
with model (4.2). However, examination of residual plots (not shown) reveals
that there is still residual nonlinearity.

Predictive R2 of model (4.1) − "sqrt(X)"
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Fig 5: Comparison of voxel-wise predictive R2 (based on the validation data)
of models (4.2) and (4.1). The vertical axis shows the difference R2 of (4.2)
- R2 of (4.1). The median improvement of model (4.2) is 5.5% for voxels
where both models have a predictive R2 > 0.1.

4.2. Sparse additive (nonparametric) models. The
√
x and log(1 +

√
x)

transformations were used in previous work to approximate the contrast
saturation of the BOLD response. Rather than trying other fixed transfor-
mations to account for the nonlinearities in the voxel response, we employed
a sparse nonparametric approach that is based on the additive model. The
additive model (cf. Hastie and Tibshirani, 1999) is a useful generalization
of the linear model that allows the feature transformations to be estimated
from the data. Rather than assuming that the conditional mean µ is a linear
function (of fixed transformations) of the features, the additive (nonpara-
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ENCODING AND DECODING V1 FMRI 11

metric) model assumes that

(4.3) µ = β0 +

p∑
j=1

fj(Xj) ,

where fj ∈ Hj are unknown, mean 0 predictor functions in some Hilbert
spaces Hj . The linear model is a special case where the predictor functions
are assumed to be of the form fj(x) = βjx. The monograph of Hastie and
Tibshirani describes methods of estimation and algorithms for fitting (4.3),
however the setting there is more classical in that the methods are most
appropriate for low-dimensional problems (small p, large n).

Ravikumar et al. (2009b) extended the additive model methodology to
the high-dimensional setting by incorporating ideas from the Lasso. Their
sparse additive model (SPAM) adds a sparsity assumption to (4.3) by as-
suming that the set of active predictors {j : fj 6= 0} is sparse. They propose
fitting (4.3) under this sparsity assumption by minimization of the penalized
squared error loss

(4.4) min
fj∈Ĥj ,β0

∥∥Y − β01− p∑
j=1

fj(Xj)
∥∥2 + λ

p∑
j=1

∥∥fj(Xj)
∥∥ ,

where ‖·‖ is the Euclidean norm in Rn, Y is the n-vector of sample responses,
1 is the vector of 1’s, fj(Xj) is the vector obtained by applying fj to each
sample of Xj , and λ ≥ 0. The penalty term, λ

∑p
j=1‖fj(Xj)‖, is the func-

tional equivalent of the Lasso penalty. It simultaneously encourages sparsity
(setting many fj to zero) and shrinkage of the estimated predictor functions
by acting as an L1 penalty on the empirical L2 function norms ‖fj(Xj)‖,
j = 1, . . . , p. The algorithm proposed by Ravikumar et al. (2009b) for solv-
ing the sample version of the SPAM optimization problem (4.4) is shown in
Figure 6. It generalizes the well-known backfitting algorithm (Friedman and
Stuetzle, 1981) by incorporating an additional soft-thresholding step. The
main bottleneck of the algorithm is the complexity of the smoothing step.

We did not apply SPAM directly to the feature Xj(s), but instead applied
it to the transformed feature, log(1 +

√
Xj(s)). We refer to the model

(4.5) µv(s) = βv0 +

p∑
j=1

fvj

(
log
(
1 +

√
Xj(s)

))
.

as V-SPAM — ‘V’ for visual cortex and V1 neuron-inspired features. There
is no loss in generality of this model when compared with (4.3), but there
is a practical benefit because the log(1 +

√
Xj(s)) feature tends to be
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12 V. Q. VU ET AL.

Input: Sample vectors (Y, X1, . . . ,Xp), smoothers (smooth1, . . . , smoothp), and regular-
ization parameter (λ ≥ 0)
β̂0 ← Ȳ
f̂j ← 0 for j = 1, . . . , p
repeat

for j = 1 to p do
Rj ← Y − β̂01−

∑
k 6=j f̂k(Xk) — compute the partial residual

sj ← smoothj(Rj)
f̂j ← sj(1− λ/‖sj‖)+ — soft-threshold

end for
until RSS = ‖Y − β̂01−

∑
j f̂j(Xj)‖2 converges

return estimated intercept β̂0 and predictor functions f̂1, f̂2, . . . , f̂p

Fig 6: The SPAM backfitting algorithm.

better spread out than the Xj(s) feature. This has a direct effect on the
smoothness of fvj . Although we did not try other transformations, we found
that applying the SPAM model directly to the Xj(s) features rather than
log(1 +

√
Xj(s)) resulted in poorer fitting models.

We fit the V-SPAM model separately to each voxel, using cubic spline
smoothers for the fvj . We placed knots at the deciles of the log(1 +

√
Xj)

feature distributions and fixed the effective degrees of freedom to 4 for each
smoother (trace of the corresponding smoothing matrix; cf. Hastie and Tib-
shirani 1999). This choice was based on examination of a few partial residual
plots from model (4.2) and comparison of smooths for different effective de-
grees of freedoms. We felt that optimizing the smoothing parameters across
features and voxels (with generalized cross-validation or some other crite-
rion) would add too much complexity and computational burden to the
fitting procedure.

The amount of time required to fit the V-SPAM model for a single voxel
with 10, 920 features is considerably longer than for fitting a linear model,
because of the complexity of the smoothing step. So for computational rea-
sons we reduced the number of features to 500 by screening out those that
have low marginal correlation with the response, which reduced the time to
fit one voxel to about 10 seconds1. We selected the regularization parameter
λ using BIC with the degrees of freedom of a candidate model defined to be
the sum of the effective degrees of freedom of the active smoothers (those
corresponding to nonzero estimates of fj).

1Timing for an 8-core, 2.8GHz Intel Xeon-based computer using a multithreaded linear
algebra library with software written in R.
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Fig 7: Residual and fitted values of V-SPAM (4.5) for four different voxels
(labeled above). The solid curves show a LOESS fit of the residual on the
fitted values. Compare with Figure 3. The linear trend in the residuals is
due to the shrinkage effect of the penalty in the SPAM criterion (4.4).

Fig 8: Residual and standardized fitted values of V-SPAM (4.5) for all 1, 331
voxels. The solid curves show the LOESS fits of the residuals on the fitted
values for each voxel. Compare with Figure 4.
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14 V. Q. VU ET AL.

Figure 7 shows residual and fitted value plots for the four voxels that we
examined in the previous section. Little residual nonlinearity remains in this
aspect of the V-SPAM fit. The residual linear trend in the LOESS curve is
due to the shrinkage effect of the SPAM penalty—the residuals of a penalized
least squares fit are necessarily correlated with the fitted values. Figure 8
shows the residuals and fitted values of V-SPAM for all 1, 331 voxels. In
contrast to Figure 4, there is neither a visible pattern of nonlinearity, nor a
visible pattern of heteroskedasticity.

The V-SPAM model better addresses nonlinearities in the voxel response.
To determine if this model leads to improved prediction performance, we ex-
amined the squared correlation (predictive R2) between the predicted and
actual response across all 120 images in the validation set. Figure 9 com-
pares the predictive R2 of the V-SPAM model for each voxel with those of
the sqrt(X) model (4.1) and the log(1 + sqrt(X)) model (4.2). Across most
voxels, there is a substantial improvement in prediction performance. The
median (across voxels where both models have a predictive R2 > 0.1) is
26.4% over the sqrt(X) model, and 19.9% over the log(1 + sqrt(X)) model.
Thus, the additional nonlinear aspects of the response revealed in the resid-
ual plots (Figures 3 and 4) for the parametric sqrt(X) and log(1+sqrt(X))
models are real and they account for a substantial part of the prediction of
the voxel response.

5. Decoding the V1 Voxel Response. Decoding models have re-
ceived a great deal of attention recently because of their role in potential
‘mind reading’ devices. Decoding models are also useful from a statistical
point of view because their results can be judged directly in the known and
controlled stimulus space. Here we show that accurately characterizing non-
linearities with the V-SPAM encoding model (presented in the preceding
section) leads to substantially improved decoding.

We used a Naive Bayes approach similar to that proposed by Naselaris
et al. (2009) to derive a decoding model from the V-SPAM encoding model.
Recall that Yv (v = 1, . . . ,m and m = 1, 331) is the response of voxel
v to image S. A simple model for Yv that is compatible with the least
squares fitting in Section 4 assumes that the conditional distribution of Yv
given S is Normal with mean µv(S) and variance σ2v , and that Y1, . . . , Ym
are conditionally independent given S. To complete the specification of the
joint distribution of the stimulus and response we take an empirical approach
(Naselaris et al., 2009) by considering a large collection of images B similar
to those used to acquire training and validation data. The bag of images
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(b) Difference of predictive R2 values of V-SPAM (4.5) and: (left) sqrt(X) model (4.1);
(right) log(1 + sqrt(X)) model (4.2).

Fig 9: Comparison of voxel-wise predictive R2 (based on the validation data)
of V-SPAM (4.5), model (4.1), and model (4.2).
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prior places equal probability on each image in B:

P(S = s) =

{
1
|B| if s ∈ B
0 otherwise .

This distribution only implicitly specifies the statistical structure of natural
images. With Bayes’ rule we arrive at the decoding model

p(s|y1, . . . , ys) ∝ exp

{
−

m∑
v=1

(yv − µv(s))2

2σ2v

}
× P(S = s) .

This model suggests that we can identify the image s that most closely
matches a given voxel response pattern (Y1, . . . , Ym) by the rule

(5.1) arg max
s

p(s|y1, . . . , ys) = arg min
s∈B

m∑
v=1

1

σ2v
(yv − µv(s))2 .

The fitted models from Section 4 provide estimates of µv. Given µ̂v, the
variance σ2v can be estimated by

σ̂2v =
‖Yv − µ̂v(S)‖2

n− df(µ̂v)
,

where df(µ̂v) is the degrees of freedom of the estimate µ̂v (the number of
nonzero coefficients in the case of linear models, or 4 times the number of
nonzero functions in the case of V-SPAM; cf. Section 4.2). Substituting these
estimates into (5.1) gives the decoding rule

arg min
s∈B

m∑
v=1

1

σ̂2v
(yv − µ̂v(s))2 .

Although we have estimates for every voxel, not every voxel may be useful
for decoding—µ̂v may be a poor estimate of µv or µv(s) may be close to
constant for every s. In that case, we may want to select a subset of voxels
V ⊆ {1, . . . ,m} and restrict the summation in the above display to V. Thus,
we propose the decoding rule

(5.2) ŜV(y1, . . . , ym|B) = arg min
s∈B

∑
v∈V

1

σ̂2v
(yv − µ̂v(s))2 .

One strategy for voxel selection is to set a threshold α for entry to V based
on the usual R2 computed with the training data,

(5.3) training R2(v) = 1− ‖Yv − µ̂v(S)‖2

‖Yv − Ȳv‖2
,
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so that Vα = {v : training R2(v) > α}. We will examine this strategy later
in the section.

To use (5.2) as a general purpose decoder, the collection of images B
should ideally be large enough so that every natural image S is “well-
approximated” by some image in B. This requires a distance function over
natural images in order to formalize “well-approximate,” but it is not clear
what the distance function should be. We consider instead the following
paradigm. Suppose that the image stimulus S that evoked the voxel re-
sponse pattern is actually contained in B. Then it may be possible for (5.2)
to recover S exactly. This is the basic premise of the identification problem
where we ask if the decoding rule can correctly identify S from a set of can-
didates B ∪ {S}. Within this paradigm, we assess (5.2) by its identification
error rate,

(5.4) id error rate := P
(
ŜV(Y ′1 , . . . , Y

′
m|B ∪ {S′}) 6= S′

∣∣ ŜV(· · · )
)
,

on a future stimulus and voxel response pair {S′, (Y ′1 , . . . , Y ′m)} that is inde-
pendent of the training data.

The identification error rate should increase as |B| = b increases. However,
the rate at which it increases will depend on the model used for estimating
µ̂v. We investigated this by starting with a database D of 11, 499 images
(as in Figure 1) that are similar to, but do not include the images in the
training data or validation data, and then repeating the following experiment
for different choices of b:

1. Form B by drawing a sample of size b without replacement from D.
2. Estimate the identification error rate (5.4) using the 120 stimulus and

voxel response pairs {S′, (Y ′1 , . . . , Y ′m)} in the validation data.
3. Average the estimated identification error rate over all possible B ⊆ D

of size b.

The average identification error rate can be computed without resorting to
Monte Carlo. Given {S′, (Y ′1 , . . . , Y ′m)},

(5.5) ŜV(Y ′1 , . . . , Y
′
m|B ∪ {S′}) = S′

if and only if

(5.6)
∑
v∈V

1

σ̂2v
(Y ′v − µ̂v(S))2 <

∑
v∈V

1

σ̂2v
(Y ′v − µ̂v(s))2

for every s ∈ B. Since B is drawn by a simple random sample, the number
of times that event (5.6) occurs follows a hypergeometric distribution. So
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Fig 10: Estimated average identification error rate (5.4) as a function of the
number of possible images (|B|+1). The error rates were estimated using the
validation data and B randomly sampled from a database of 11, 499 images.

the conditional probability that (5.5) occurs is just the probability that
a hypergeometric random variable is equal to b. The parameters of this
hypergeometric distribution are given by the number of images in D that
satisfy (5.6), the number of images in D that do not satisfy (5.6), and b.
Counting the number of images in D that satisfy/do not satisfy (5.6) is easy
and only has to be done once for each S in the validation data, regardless of
b. Thus, the computation involves evaluating (5.6) 120×11, 499 times (since
there are 120 images in the validation data and 11, 499 images in D), and
then evaluating 120 hypergeometric probabilities for each b.

Figure 10 shows the results of applying the preceding analysis to the fixed
transformation models (4.1) and (4.2) and the V-SPAM model (4.5). Each
model has its own subset of voxels V used by the decoding rule. We set the
training R2 thresholds (5.3) so that the corresponding decoding rule used
|V| = 400 voxels for each model. When |B| is small, identification is easy and
all three models have very low error rates. As the number of possible images
increases, the error rates of all three models increase but at different rates.
At maximum, when B = D and there are 11, 499 + 1 = 11, 500 candidate
images (11, 499 images in D plus 1 correct image not in D) for the decoding
rule to choose from, the fixed transformation models have an error rate of
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about 40%, while the V-SPAM model has an error rate of about 28%.
The ordering of and large gap between the fixed transformation models

and V-SPAM at maximum does not depend on our choice of |V| = 400 vox-
els. Fixing B = D so that the number of possible images is maximal, we
examined how the identification error rate varies as the training R2 thresh-
old is varied. Figure 11 shows our results. The threshold corresponding to
400 voxels is larger for V-SPAM than the fixed transformation models. It
is about 0.1 for V-SPAM and 0.05 the fixed transformation models. When
the threshold is below .05, the error rates of the three models are indistin-
guishable. Above .05, V-SPAM generally has a much lower error rate than
the fixed transformation models. In panel (a) of Figure 11 we also see that
V-SPAM can achieve an error rate lower than the best of the fixed trans-
formation models with half as many voxels (≤ 200 versus ≥ 400). These
results show that the substantial improvements in voxel response prediction
by V-SPAM can lead to substantial improvements in decoding accuracy.

6. Nonlinearity and Inferred Tuning Properties. In computational
neuroscience, the tuning function describes how the output of a neuron or
voxel varies as a function of some specific stimulus feature (Zhang and Se-
jnowski, 1999). As such, the tuning function is a special case of an encoding
model, and once an encoding model has been estimated, a tuning function
can be extracted from the model by integrating out all of the stimulus fea-
tures except for those of interest. In practice this extraction is achieved by
using an encoding model to predict responses to parametrized, synthetic
stimuli. One way to assess the quality of an encoding model is to inspect
the tuning functions that are derived from it (Kay et al., 2008a).

For vision, the most fundamental and important kind of tuning function
is the spatial receptive field. Each neuron (or voxel) in each visual area is
sensitive to stimulus energy presented in a limited region of visual space,
and spatial receptive fields describe how the response of the neuron or voxel
is modulated over this region. In the primary visual cortex, response mod-
ulation is typically strongest at the center of the receptive field. Response
modulation is much weaker at the periphery, but has been shown to have
functionally significant effects on the output of the neuron (or voxel) (Vinje
and Gallant, 2000).

The panels in Figure 12 show estimated spatial receptive fields for voxel
717 using the three different models considered here (we chose this voxel
because its predictive R2 varied greatly among the three models: 0.26 for
the sqrt(X) model (4.1), 0.42 for the log(1 + sqrt(X)) (4.2), and 0.57 for V-
SPAM (4.5)). These estimated receptive fields indicate the locations within
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Fig 11: Identification error rate (5.4) as a function of the training R2 thresh-
old (5.3) when the number of possible images is 11, 499 + 1.
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Fig 12: Estimated spatial receptive field for voxel 717. The contours show
the predicted response to a point stimulus placed at various locations across
the field of view. They indicate the sensitivity of the voxel to different spatial
locations.
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Fig 13: Estimated frequency and orientation tuning for voxel 717. The con-
tours show the predicted response to a 2D cosine stimulus (a 2D Fourier
basis function) parameterized by frequency and orientation. Darker regions
correspond to greater predicted responses. The plot reveals sensitivity of the
voxel to different spectral components.
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Fig 14: Estimated contrast tuning function for voxel 717. This is the pre-
dicted response to a pink noise stimulus at different levels of RMS contrast
t. The tick marks indicate the deciles of RMS contrast in the training images
(e.g., fewer than 10% of training images have contrast between 2 and 4).

the spatial field of view that are predicted to modulate the response of the
voxel by each model. All three models agree that the voxel is tuned to a
region in the lower-right quadrant of the field of view; however, for V-SPAM
the receptive field is more expansive, and is thus able to capture the weak
but potentially important responses at the far periphery of the visual field.

Like spatial tuning, orientation and frequency tuning are fundamental
properties of V1, so it essential to inspect the orientation and frequency
tuning functions that are derived from encoding models for this area. As
seen in the panels of Figure 13, the V-SPAM model is better able to capture
the weaker responses to orientations and spatial frequencies away from the
peaks of the tuning.

Finally, we examine tuning to image contrast, which is another critical
property of V1. Image contrast strongly modulates responses in V1 and is
also perceptually salient, so contrast tuning functions are frequently used to
study the relationship between activity and perception (Olman et al., 2004).
The contrast tuning function describes how a voxel is predicted to respond
to different contrast levels. It is constructed by computing the predicted
response to a stimulus of the form t · w, where w is standardized 2D pink
noise (whose power spectral density is of the form 1/|ω|), and t ≥ 0 is the
root-mean-square (RMS) contrast. At zero contrast the noise is invisible and
only the background can be seen; as contrast increases the noise becomes
more visible and distinguishable from the background. Figure 14 shows the
contrast response function for the voxel as estimated by the three models.
The first two, the sqrt(X) and log(1 + sqrt(X)), look nearly linear and
relatively flat over the range of contrasts present in the training images.
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The V-SPAM prediction tapers off as contrast increases, and it is much more
negative for low contrasts than predicted by sqrt(X) and log(1 + sqrt(X)).
The V-SPAM prediction is closer to what is expected based on previous
direct measurements (Olman et al., 2004), and suggests that V-SPAM is
more sensitive to responses evoked by lower contrast stimulus energy.

The relatively more sensitive tuning functions derived from the V-SPAM
model of voxel 717 has a simple explanation. The models selected by BIC
for this voxel included different numbers of features: 7 for sqrt(X), 29 for
log(1 + sqrt(X)), and 53 for V-SPAM. Since the features are localized in
space, frequency, and orientation, the number of features in the selected
model is related to the sensitivity of the estimated tuning functions in the
periphery. BIC forces a trade-off between the residual sum of squares (RSS)
and number of features. The models with fixed transformations have much
larger RSS values than V-SPAM, and the trade-off (see Figure 15) favors
fewer features for them because the residual nonlinearity (as shown in Fig-
ure 3) does not go away with increased numbers of features. This suggests
that the sensitivity of a voxel to weaker stimulus energy is not detected by
the sqrt(X) and log(1 + sqrt(X)) models, because it is masked by residual
nonlinearity. So the tuning function of a voxel can be much broader than
inferred by the model when the model is incorrect.

number of selected features

B
IC

12400

12600

12800

13000

13200

sqrt(X
)

log(1+sqrt(X
))

V−SPAM

0 20 40 60 80

Fig 15: Comparison of BIC paths for different models of voxel 717: the
sqrt(X) model (4.1), the log(1 + sqrt(X)) model (4.2), and V-SPAM (4.5).

7. Conclusion. Using residual analysis and a start-of-the-art sparse ad-
ditive nonparametric method (SPAM), we have derived V-SPAM encoding
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models for V1 fMRI BOLD responses to natural images and demonstrated
the presence of an important nonlinearity in V1 fMRI response that has not
been accounted for by previous models based on fixed parametric nonlinear
transforms. This nonlinearity could be caused by several different mecha-
nisms including the dynamics of blood flow and oxygenation in the brain
and the underlying neural processes. By comparing V-SPAM models with
the previous models, we showed that V-SPAM models can both improve
substantially prediction accuracy for encoding and decrease substantially
identification error when decoding from very large collections of images. We
also showed that the deficiency of the previous encoding models with fixed
parametric nonlinear transformations also affects tuning functions derived
from the fitted models.

Since encoding and decoding models are becoming more prevalent in fMRI
studies, it is important to have methods to adequately characterize the non-
linear aspects of the response-stimulus relationship. Failure to address non-
linearity effectively can lead to suboptimal predictions and incorrect infer-
ences. The methods used here, combining residual analysis and sparse non-
parametric modeling, can easily be adopted by neuroscientists studying any
part of the brain with encoding and decoding models.
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APPENDIX A: EXTRACTING THE FMRI BOLD RESPONSE

The fMRI signal Zv(t) measured at voxel v can be modeled as a sum of
three components: the BOLD signal Bv(t), a nuisance signal Nv(t) (consist-
ing of low frequency fluctuations due to scanner drift, physiological noise,
and other nuisances), and noise εv(t).

Zv(t) = Bv(t) +Nv(t) + εv(t) .

The BOLD signal is a mixture of evoked responses to image stimuli. This
reflects the underlying hemodynamic response that results from neuronal
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and vascular changes triggered by an image presentation. The hemodynamic
response function hv(t) characterizes the shape of the BOLD response (see
Figure 16), and is related to the BOLD signal by the linear time invariant
system model (Friston, Jezzard and Turner, 1994),

Bv(t) =

n∑
k=1

∑
τ∈Tk

Av(k)hv(t− τ) ,

where n is the number of images, Tk is set of times at which image k is
presented to the subject, and Av(k) is the amplitude of the voxel’s response
to image k.
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Fig 16: A model hemodynamic response function.

To extract Av(·) from the fMRI signal it is necessary to estimate the hemo-
dynamic response function and the nuisance signal. We used the method
described in Kay et al. (2008b), modeling hv(t) as a linear combination of
Fourier basis functions covering a period of 16 seconds following stimulus
onset, Nv(t) as a degree 3 polynomial, and εv(t) as a first-order autoregres-
sive process. The resulting estimates Âv(·) are the voxel responses for each
image.
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