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To make progress in the face of failures, long-running parallel applica-

tions need to save their state, known as a checkpoint. Unfortunately, current

checkpointing techniques are becoming untenable on large-scale supercomput-

ers. Many applications checkpoint all processes simultaneously—a technique

that is easy to implement but often saturates the network and file system,

causing a significant increase in checkpoint overhead. This thesis introduces

compiler-assisted staggered checkpointing, where processes checkpoint at dif-

ferent places in the application text, thereby reducing contention for the net-

work and file system. This checkpointing technique is algorithmically chal-

lenging since the number of possible solutions is enormous and the number

of desirable solutions is small, but we have developed a compiler algorithm

that both places staggered checkpoints in an application and ensures that the

solution is desirable. This algorithm successfully places staggered checkpoints

in parallel applications configured to use tens of thousands of processes. For

our benchmarks, this algorithm successfully finds and places useful recovery
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lines that are up to 37% faster for all configurations than recovery lines where

all processes write their data at approximately the same time.

We also analyze the success of staggered checkpointing by investigating

sets of application and system characteristics for which it reduces network

and file system contention. We find that for many configurations, staggered

checkpointing reduces both checkpointing time and overall execution time.

To perform these analyses, we develop an event-driven simulator for

large-scale systems that estimates the behavior of the network, global file sys-

tem, and local hardware using predictive models. Our simulator allows us to

accurately study applications that have thousands of processes; it on average

predicts execution times as 83% of their measured value.
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Chapter 1

Introduction

Supercomputers are large-scale systems often composed of many thou-

sands of processors. These machines support long-running parallel applica-

tions that use many—sometimes tens of thousands—processes; each processor

can support one or more of these logical processes. Researchers create such

applications as research tools to explore many phenomena, including climate

change, protein folding, and the stability of the nuclear stockpile [171].

Unfortunately, these applications might encounter failures before they

complete, due to problems with the application itself, system software errors,

or hardware failures [125, 126, 185]. These hardware failures grow proportion-

ally with the number of sockets1 in a system [48]—a trend that will continue

[48, 158]. In addition, supercomputing centers are encouraging capability com-

puting [5, 71], which encourages developers to use more processes per applica-

tion to more fully exploit the available resources on the supercomputer. The

more processes an application uses, the greater the probability it will stop

prematurely due to hardware and system software failures.

To mitigate the effect of these early failures, many applications have

1Sockets are the hardware mechanism that connects processors to motherboards.
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each process periodically save an intermediate state, known as a checkpoint;

the application then uses this state to resume execution after a failure. The

saved state must be consistent [153], which means that it could have existed

during the execution of the application. Saving a consistent state in a parallel

application is difficult because parallel applications perform inter-process com-

munication, and if the saved state reflects a message as being received but does

not reflect that same message as being sent, the state could not have existed

and thus is not consistent. For any message m from process p to process q, if q

saves a checkpoint after m is received, then p must save its checkpoint after p

has sent m. To save the state of a parallel application, it must be determined

at what location each process should save its checkpoint and what data each

process should save. Each of these things may either be done manually by the

programmer or automatically by a software tool.

In many supercomputing applications today, programmer implement

manual checkpoints: that is, the application programmer specifies the data to

be saved, when it should be saved, and how the application should recover,

and then implements those choices directly in the application source code.

The advantage of this type of checkpoint is that it leverages the knowledge

of the application programmer to save a minimum amount of state. How-

ever, this technique requires effort by the application programmer and can

be error-prone, since testing is difficult and identifying necessary information

can be complex [69]. Manually identifying the information to be saved will

become even more difficult as application algorithms move towards implicit
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and adaptive methods. In addition, to ensure that a consistent state is saved,

processes typically synchronize immediately before and after the checkpoint,

and synchronization is becoming increasingly expensive [65].

Automatic techniques either aid the programmer or relieve the pro-

grammer of these decisions. Such techniques are welcomed by the application

programmers. A recent user survey at the Texas Advanced Computing Cen-

ter (TACC) [2] showed that over 65% of respondents would be interested in

completely automated checkpointing support [206]. However, current auto-

mated techniques result in large checkpoint sizes and every process writing its

checkpoint at approximately the same time. As a result, they can suffer from

overhead due to network and file system contention [146]. This contention can

be reduced by writing the data somewhere other than the global file system,

reducing the size of the data, or reducing the number of processes writing si-

multaneously. Unfortunately, the first two techniques have drawbacks, as we

will now explain.

Checkpointing methods that do not store checkpoint data on the global

file system typically write the data to either the memory of another process or

local storage [52, 107, 199, 218]. The former class works well for applications

that are not memory bound. However, most scientific applications use a large

fraction of available memory [147], and some use all available memory and

would like more [184]. The latter class of techniques applies to applications

executing on supercomputers with local storage, and many supercomputers

have no local storage. In addition, storing checkpoint data on local drives can
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make recovery more difficult since the checkpoint data does not reside in a

single location.

Some automatic checkpointing techniques reduce the size of the check-

point. However, these checkpoints are likely larger than those resulting from

manual checkpointing since they do not use the knowledge of the application

programmer.

Another possibility is to allow each process to checkpoint at will and

then require the recovery system to determine a correct state from the existing

checkpoints. However, it is then possible that an intermediate correct state

does not exist, and the application must restart from the beginning.

These stumbling blocks are among the myriad of reasons that only 2.5%

of the respondents to the TACC survey [206] use an existing checkpoint library.

Recall that 65% of the respondents are interested in completely automated

checkpointing.

To investigate this problem and its scale, we evaluate synchronous

checkpointing on two supercomputers, Lonestar [204] and Ranger [205], both

located at TACC [2]. In our results, we analyze the benefit of our technique for

five scientific applications: our results show all five of the applications could

benefit from a new checkpointing technique.

Our Solution. Our approach is a compiler-assisted checkpointing technique

that reduces programmer work, reduces network and file system contention,
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and does not require process synchronization. Our solution is a form of stag-

gered checkpointing that at compile-time places process checkpoint calls at

different locations in the application text while guaranteeing that the saved

checkpoints will form a consistent state. Our technique eliminates dynamic

inter-process coordination and creates a separation in time of each process’s

checkpoint, which reduces contention at the file system. The file system on

most supercomputers has some unreliability, so reducing its burden may result

in more overall reliability.

Identifying desirable checkpoint locations in an application is difficult

since there are many possible locations and the state saved must be consistent.

To ensure a consistent state, our solution considers recovery lines [153], which

are sets of application-level checkpoints that include exactly one checkpoint per

process. A recovery line is valid only if it saves a consistent state and invalid if

it does not. It is a challenge to statically differentiate the desired valid recovery

lines from those that are invalid because the solution space is enormous. The

number of possible recovery lines grows as LP , where L is the number of

possible checkpoint locations and P is the number of processes, and the number

of valid recovery lines is typically less than 1% of the total. Recovery lines

that are useful—a useful recovery line is both valid and sufficiently staggered

to reduce contention—are even more rare. Thus, any algorithm that reduces

the search space arbitrarily is unlikely to find enough useful recovery lines.

Our algorithm uses a number of techniques to intelligently reduce the search

space and introduces a static metric for evaluating the usefulness of a recovery
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line; this metric allows us to choose and place recovery lines that will reduce

contention at the file system when the processes save their checkpoints. It

successfully identifies useful recovery lines in applications configured to use

tens of thousands of processes.

By identifying valid recovery lines, our algorithm guarantees the saving

of a consistent state even for applications that use shared memory or non-

deterministic communication. In addition, this requirement ensures that our

algorithm guarantees a correct state for applications using non-deterministic

methods, such as many algorithms for partitioning, approximate matrix de-

compositions, and particle swarm optimization [111]. These algorithms include

codes used in research regarding ad hoc wireless networks [81], and probabilis-

tic search [216]. Allowing invalid recovery lines would significantly complicate

both the runtime and recovery systems for these applications. The runtime

system would need to log messages for each process from the time that process

takes a checkpoint until all processes have checkpointed and dynamic coordi-

nation would be required to identify when every process has finished writing

the checkpoint. For applications with large amounts of point-to-point commu-

nication, these message logs can become prohibitively large, especially if the

application is memory-bound. Our solution does not require message logging

or dynamic coordination at any time.

Scope. Our solution saves valid recovery lines, which give us the abil-

ity to allow non-determinism in both the communication and sequential code.
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However, communication non-determinism causes our algorithm to identify

more conservative communication dependences, which then limits its ability

to stagger the checkpoint locations.

Our solution best applies to applications that have many processes and

large checkpoints.

Our checkpointing approach reduces file system contention by separat-

ing process checkpoint locations among communication calls while considering

the constraints introduced by that communication, it works well when applied

to applications with large amounts of point-to-point communication. Stag-

gered checkpointing is trivial for applications with large communication-free

zones, and it not useful for applications with frequent synchronization or col-

lective communication.

For applications that are memory-bound, it is best not to store the

checkpoints in the memory of the local machines, but when there are enough

processes writing large enough checkpoints to the global file system simultane-

ously, contention occurs at the network and filesystem [146]. Our checkpoint

method reduces such contention. It also works well for applications executed

on supercomputers with no local storage, since in such a system checkpoints

must be stored on a global file system. For supercomputers with local stor-

age, our solution may not be the best option, since checkpointing to another

machine’s hard drive removes contention from the global file system entirely.

However, supercomputers are now often built without hard drives.
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Evaluation by Simulation. We use simulation to evaluate our solution.

We develop an event-driven simulator for large-scale systems that estimates

the behavior of the network, global file system, and local hardware using pre-

dictive models. Currently, each model is a formula that encapsulates the per-

formance of its respective component and thus provides the simulator with a

fast way to estimate that component’s behavior under a variety of workloads.

Thus, the simulator efficiently estimates the system consequences of a change

in checkpoint strategy and encourages experimentation with approaches to

checkpointing.

Thesis statement. Compiler-assisted staggered checkpointing can reduce

the burden of checkpoint implementation by the application developer, and

decrease checkpoint runtime overhead to improve significantly the performance

of parallel applications that checkpoint automatically.

Contributions. This dissertation makes three contributions:

• We investigate sets of application characteristics, including the number of

processes and checkpoint sizes, and system characteristics, including net-

work, file system, and processor speeds, where staggered checkpointing

is needed and effective. We identify situations where staggered check-

pointing is needed, which refer to as the problem space, by determining

sets of application and system characteristics where synchronous check-

pointing causes contention but the checkpointing of a single process does
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not. We identify situations where staggered checkpointing is effective,

or the solution space, by determining sets of characteristics for which

staggered checkpointing reduces such contention. We also analyze how

the solution space varies with machine characteristics such as the ratio

of network and file system speeds to processor speeds.

We identify the problem and solution spaces for Ranger [205] and Lones-

tar [204], supercomputers at the Texas Advanced Computing Center [2].

• We design and implement a new compile-time algorithm to generate and

place useful recovery lines in applications that use up to tens of thou-

sands of processes. We also devise a new metric to statically estimate

the usefulness of both complete recovery lines, those that include every

process, and partial recovery lines, those that only include some of the

processes. These estimates allow the algorithm to consider many fewer

possible solutions, thus improving its performance.

We show that our compilation system can place useful recovery lines in

applications that use tens of thousands of processes.

• We develop an event-driven simulator that efficiently estimates the per-

formance of large-scale parallel applications. In addition, it evaluates

the effectiveness of our staggered checkpointing technique.

We show that our simulator can simulate applications that use thousands

of processes, and it can do so with sufficient accuracy to evaluate the

effectiveness of our staggered checkpointing technique.
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Our analysis of synchronous checkpointing shows that it can take up

to an hour and 14 minutes for 8,192 processes on a particular supercomputer

to checkpoint 4 MB of data each. With three minutes over which to separate

the checkpoints, staggered checkpointing reduces this time by 12 minutes to

just over an hour. With fifteen minutes, staggered checkpointing reduces this

time to 1 minute. These results imply that staggered checkpointing is a useful

technique.

Our algorithm reduces the search space for one of our application bench-

marks from 381024 to 3(532)+ 21, or by 1,594 orders of magnitude before it be-

gins creating recovery lines. Our pruning policy enables the rapid sorting of the

created recovery lines, and thus the algorithm can quickly identify lines that

both save a consistent state and reduce network and file system contention.

For our benchmarks, our algorithm successfully finds and places useful

recovery lines in applications that use up to 65,536 processes. The staggered

recovery lines placed by our algorithm checkpoint an average of 37% faster for

all configurations than a recovery line performing simultaneous checkpointing

that writes an equivalent amount of data.

Our simulator on average predicts the execution time our application

benchmarks with checkpointing as 83% of their measured performance, which

provides sufficient accuracy to evaluate synchronous and staggered checkpoint-

ing.
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Chapter 2

Related Work

This chapter reviews work that investigates checkpointing parallel ap-

plications and the simulation of large-scale systems. This chapter places our

work in context and shows that previous work does not fully address key con-

cerns.

2.1 Checkpointing Parallel Applications

In this section, we review recent work related to the checkpointing of

parallel applications. For a full account of the evolution of checkpointing and

other rollback recovery protocols please see the survey developed by Elnozahy

et al. [66].

Much checkpointing research focuses on determining the location(s)

where processes should save their checkpoints. Here, the main concern is to

guarantee that the recovered state is consistent. There are two major ap-

proaches: 1) protocols that ensure a consistent state through dynamic coor-

dination of the processes, and 2) those that ensure a consistent state without

dynamic coordination. We discuss these general approaches in Sections 2.1.1

and 2.1.2.
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Our work is distinguished by its ability to reduce file system contention,

so throughout this section we pay particular attention to this aspect of other

solutions. In addition, our checkpointing method guarantees the consistency of

the checkpoint without: 1) dynamic coordination, which consumes execution

time, 2) message logging, which consumes local resources, or 3) input from the

user, which burdens the application programmer.

2.1.1 Coordinated Checkpointing

Coordinated checkpointing, in which processes dynamically coordinate

to ensure consistency, is one of the most popular checkpointing techniques.

Unfortunately, it results in all processes saving their checkpoints at approx-

imately the same time; when large numbers of processes are involved and

write their checkpoints to a central file system, this technique leads to high

checkpoint overhead due to contention [146]. There are a few methods to re-

duce this contention: 1) save checkpoints somewhere other than the global

file system, 2) reduce the size of the checkpoints, and 3) reduce the number

of processes checkpointing simultaneously. The first approach is taken by, for

example, an extension [218] of the Berkeley Lab Checkpoint/Restart (BLCR)

mechanism [181], which is implemented within the some MPI libraries; it saves

each checkpoint to the hard drive of another machine. While this approach

does eliminate contention at the file system, it does not work on the many

supercomputers without local storage.

The second approach, for example DejaVu [176], reduces the size of the
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checkpoint. Techniques that use this approach are typically unable to reduce

the size enough to avoid contention for large numbers of processes.

The third approach to reducing checkpoint overhead is to reduce the

number of processes that checkpoint simultaneously; this approach is the one

used by our staggered checkpointing. Our solution, however, scales to large

numbers of processes; other solutions that separate checkpoint locations do

not. For instance, Plank’s staggered checkpointing algorithm [159] reduces

the numbers of processes saving their checkpoints simultaneously but results

in limited separation of the checkpoint writes. Staggered consistent check-

pointing [211], separates checkpoints by only allowing a single process to write

its checkpoint at a time. While this protocol reduces file system contention, it

is inappropriate for large-scale applications because it linearizes checkpointing,

lengthening the time from the beginning of an application’s checkpoint to the

end. Other protocols reduce the number of simultaneously writing processes by

partitioning processes and then performing coordinated checkpointing within

the partitions [82, 98]; these protocols still suffer from dynamic coordination

and require message logging for communication between partitions. The draw-

backs of message logging are discussed in the next section, Section 2.1.2.

2.1.2 Checkpointing Without Dynamic Coordination

Some protocols aim to reduce checkpointing overhead by eliminating

dynamic coordination amongst processes. Since the coordination ensures a

consistent state, these protocols must do so through other means, such as
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through message logging or requiring the user to ensure correctness. We discuss

the drawbacks of these techniques next.

In message logging, processes write their messages to stable storage so

that, if necessary, the messages can be replayed during recovery to create a

consistent state. Checkpointing techniques that use message logging assume

that the application has enough unused memory on the local hardware to store

message logs, an assumption that is not true for many applications [158]. For

instance, both Adaptive MPI [52] and the protocol integrated with MPICH-

V2 [36] allow processes to checkpoint at any time but also require processes

to log their sent messages. Both the checkpoints and logs are initially saved

in memory.

Protocols that require the user to guarantee correctness place an un-

due burden on the application programmer, who often resorts to synchronous

checkpointing, during which all processes checkpoint at the same time and

thus generate file system contention. Many of the techniques that depend

on the user then try to reduce this contention through other means. For in-

stance, some of these techniques without dynamic coordination try to reduce

this contention by saving each process’s checkpoint to the hard drive of an-

other machine, as is done by the coordinated protocol BLCR. The protocol

developed by the Pittsburgh Supercomputing Center [199], for example, uses

this methodology. Such techniques are not applicable to systems without local

storage.

Another protocol, cooperative checkpointing [152], concentrates on re-
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ducing file system contention across all applications executing on the system,

by preventing an application from checkpointing when traffic on the network

or at the file system is already high. It allows the runtime system to skip the

checkpoints requested by the application based on various criteria, including

network and file system usage. Cooperative checkpointing does not, however,

reduce the contention caused by all processes checkpointing synchronously; it

makes no attempt to stagger the checkpoints.

2.1.3 Compiler-Assisted Checkpointing

Compiler-assisted checkpointing techniques move some burden from the

user and/or the runtime environment to the compiler. This burden can include:

reducing the size of the checkpoint, identifying checkpoint locations, or ensur-

ing that a consistent state is saved. Many techniques exist to reduce the size

of the checkpoint, but they are largely orthogonal to the research discussed in

this section and thus are covered in Section 2.1.4. Other approaches, including

ours, move the latter two tasks to the compiler. For instance, compilers are

used to identify communication-free areas for processes to checkpoint [58, 174],

which both ensures a consistent state and identifies checkpoint locations. For

these checkpointing techniques to reduce contention at the file system, appli-

cations must have communication-free zones with sufficient room to separate

the process checkpoint locations in time. However, many applications do not

have sufficient communication-free zones.

Another checkpointing protocol, application-level coordinated non-blocking
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checkpointing [43], requires the user to choose potential checkpoint locations,

but the user can do so without regard to the consistency of the resulting state.

The chosen locations are annotated by the compiler so that a consistent state

is ensured at runtime through message logging. An extension to this approach

also identifies the data to be saved and saves only live data [228]. Regardless,

this approach requires message logging and results in all processes checkpoint-

ing at approximately the same time, which can lead to contention at the file

system [146].

Compilers can also ensure that the checkpoints from a consistent state

in the face of communication, our solution takes this approach. Another such

method uses the compiler to analyze application communication and then

adjusts the previously placed checkpoint locations to ensure a consistent state

is saved [14], but it makes no attempt to stagger the checkpoint locations and

results in all processes checkpointing at approximately the same time.

2.1.4 Other Techniques

There are some software packages that help the programmer save the

checkpoint data without addressing at what location(s) the processes should

save its checkpoint; they can be used in conjunction with techniques that

identify checkpoint locations. They include DMTCP [22], TICK [79], and

adaptive incremental checkpointing [12]. One such technique does reduce the

likelihood of contention at the file system, but it requires a lightweight storage

architecture and overlay network [147]; our method does not require particular

16



hardware.

2.2 Simulation of Large-Scale Systems

In this section, we review work related to simulation of large-scale par-

allel applications. Our infrastructure simulates long-running parallel applica-

tions that use many processes. In addition, our simulator shows the effects of

network and file system contention, which we care about since our goal is to

evaluate staggered checkpointing. It is unique in its ability to efficiently sim-

ulate applications using thousands of processes without detailed knowledge of

the execution environment or application. In this section, we evaluate other

solutions based on their ability to accomplish these goals.

There are simulators that can also simulate parallel applications, but

they are not scalable. For instance, the developers of the Structured Simulation

Toolkit [209] intend to allow the simulation of a system at many levels of gran-

ularity, but its current implementation uses SimpleScalar for cycle-accurate

simulation, which is too detailed for our goals. Susukita et al. [202] recently

introduced a simulator that can rapidly simulate applications on large-scale

systems using a network model, a cycle-accurate simulator, and detailed knowl-

edge of the application. PHANTOM [230] simulates applications a process at

a time by replaying message logs on a single node of the target machine—

a technique that does not scale well to applications using large numbers of

processes.

Many other simulators of large-scale systems are scalable but require
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intimate knowledge of the application [38], the target system [84, 168, 188], or

both [212]. For instance, simulators that use the LogGP framework to estimate

network performance require much detail about the network [27, 104].

Other simulators use models to estimate application performance, but

they use a single analytical model to predict the performance of the entire

application [28, 93, 112, 134]. This method is not appropriate for evaluating

checkpointing policies, since the interaction of the application, local hardware,

file system, and network is not exposed.

Parallel Simulators. Some simulators use parallelism to speed up simula-

tion. These parallel simulators require a large number of processors and low

memory usage per application process. For instance, MPI-SIM [165], a parallel

simulator, requires the privatization of global variables, which can use a large

amount of memory and thus limits the number of simulated processes that

can be mapped to each processor being used by the simulator. A simulator

based on MPI-SIM [11] has successfully reduced this memory usage through

static analysis techniques that eliminate some data structures, but this tech-

nique still requires a large number of processors. Parallel simulators built on

Charm++ [177, 234] estimate application performance by assigning many pro-

cesses to each node, thus reducing the number of processors necessary but still

requiring low memory usage. Another existing parallel simulator [154] can

simulate large-scale parallel applications but its simulation time is slower than

the application’s execution time.
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Table Lookups. Prior simulators estimate the performance of the super-

computing system inexpensively by using tables of collected data. Table

lookup limits the ability of the simulators to extrapolate for other configu-

rations and predict the effects of contention, unlike our method, which quickly

approximates the timing of application operations using models of the net-

work, file system, and local hardware that encapsulate the performance of

each component.

For instance, ChronosMix [198], a simulator built to estimate parallel

application performance on networks of workstations, uses table lookup to

approximate local machine and network performance. (It does not model

the file system.) Another such simulator is the one introduced by Snavely et

al. [193]. It also uses table lookups to estimate both local machine and network

performance and does not include file system performance. This simulator also

requires communication traces from the application, and those traces must

result from executions using the same number of processes as the simulation.

2.3 Summary

To summarize, many checkpointing techniques exist but none both

statically guarantee a correct state in the face of communication and sepa-

rate the process checkpoints to reduce network and file system contention.

Our compiler-assisted staggered checkpointing technique accomplishes both of

these goals.

In addition, many simulators address one or more of our concerns, but
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none addresses the simulation of large-scale applications with checkpointing

on supercomputers without user knowledge. Our simulator is capable of sim-

ulating these applications.
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Chapter 3

Simulation for Large-Scale Systems

The key to evaluating staggered checkpointing is the ability to simulate

long-running applications executing on large-scale supercomputing systems.

Simulation gives us the ability to assess staggered checkpointing on many

systems, including those which have not yet been implemented and those to

which we do not have access or have limited access.

To evaluate staggered checkpointing, the simulator must model the en-

tire system, which includes the local hardware, network, and global file system;

a representation of a supercomputing system is shown in Figure 3.1. In ad-

dition, we want a simulator that requires little to no information about the

application other than the source code itself. Existing simulators do not meet

these criteria and are thus unsuitable for our evaluation of staggered check-

pointing. For instance, cycle-accurate simulators, such as SimpleScalar [26]

and M5 [178], are appropriate for microarchitecture design of small applica-

tions but would require too much execution time for our analysis at our scale.

SimpleScalar requires approximately an hour to simulate one second of execu-

tion for a single process, and M5 needs approximately three hours to simulate
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that single second.1 The candidate that comes closest to meeting our needs

is a recently published simulator from the Institute of Systems, Information

Technologies, and Nanotechnologies in Japan [202]. This system can rapidly

simulate applications configured to use thousands of processes, but it requires

the user to identify the kernel of the application being simulated. In addition,

it does not model either the file system or contention on the network, both

of which must be considered to evaluate staggered checkpointing. Since no

existing simulator can perform our desired analysis, we must develop our own.

1We estimated these numbers using SimpleScalar’s simulation time for an instruction
profiling simulation and M5’s simulation time for a detailed, single core simulation.
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Solution. Our simulator uses models of the network, file system, and local

hardware to quickly approximate the timing of application operations. These

models are key to the scalability of our simulator: they encapsulate the per-

formance of these system components, including the effects of contention, into

a single calculation the provides a fast answer regarding the cost of an event.

Thus, our simulator estimates the system consequences of a change in check-

point strategy efficiently and encourages experimentation with approaches to

checkpointing. In addition, it can be used to analyze parallel program perfor-

mance and scalability on large parallel computing systems.

The remainder of this chapter further describes our simulator and why

it works. We present our design and implementation decisions and analyze its

efficiency and accuracy.

3.1 Overview of the Simulator

As shown in Figure 3.2, our simulation system has two parts:
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1. the translator, which translates the application source code into a se-

quence of events, and

2. the simulator, which accepts traces of events and simulates the applica-

tion at event-level granularity.

Our simulator estimates the execution time of an application by simu-

lating three pieces of the computing system: the file system, the network, and

the local hardware. Quickly approximating the performance of these compo-

nents is challenging because they perform complex tasks in a complex execu-

tion environment; we use closed-form expressions to represent the behaviors of

these components in the simulator. These expressions encapsulate each com-

ponent’s complexity into a single calculation: a formula that calculates the

performance of that component under a given workload. For instance, the

network model provides the simulator with performance information for the

entire network and thus eliminates the need to separately consider the perfor-

mance of each cable, switch, and router. Similarly, the local hardware model

encapsulates the performance of the processor(s), their cores, the memory sub-

system, and all other pieces of the local hardware. The local hardware model

represents the behavior of a particular application on that hardware, so a new

model is required for each application, though not for each configuration of

that application. These models are further discussed in Section 3.3.1.

Our translator is implemented in Broadway [90], a source-to-source C

compiler. It converts applications that are written in C and use the Message
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Event Arg1 Arg2 Arg3 Explanation

Send p2 p3 1MB p2 sends a 1 MB message to p3

Receive p3 p2 p3 receives a message from p2

Local All 12
All processes execute 12 local
operations

Local p1 45 p1 executes 45 local operations

File System Write p0 4MB
p0 writes 4 MB of data to the file
system

Table 3.1: An example of the representation of events in the trace file.

Passing Interface (MPI) [196] for all communication into representative traces.

Although our translator assumes C and MPI, our algorithms are extensible to

other languages and other explicit communication libraries. However, the ap-

plications do need to be written using a Single Process, Multiple Data (SPMD)

model. Our simulator is independent of the translation process and simulates

any application in the recognized trace format.

The next sections explore the translator and the simulator in detail.

3.2 Translator

The translator accepts the source code of an application written in

C, analyzes it, and converts it into a trace accepted by our simulation; the

generated trace is specific to that application and to the given number of

processes. Each event in the trace is specified by type, the processes that

execute it, and any additional necessary information, such as data size or the

number of instructions represented. Event types fall into three categories:
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1. network events, which are any type of communication event;

2. file system events, which are currently limited to writes since we focus

on the writing of checkpoints; and

3. local events, which consist of all other operations.

An example of a trace file can be seen in Table 3.1.

To convert an application to a trace, the translator performs a context-

sensitive analysis of the application source code. This analysis includes: cate-

gorizing each operation as a network, file system, or local event; identifying the

process(es) that executes each operation; and calculating how many times each

operation executes in each context. For this analysis, the translator requires

the application source code and the number of processes that are to be used in

the execution of that application. It represents the application internally as a

control flow graph, so every operation is in a basic block; in addition, the op-

erations in the blocks are represented in our compiler’s low-level intermediate

language. Each pass of our translator is over this control flow graph.

We now explain each step further.

Step One: Categorizing Operations. As the translator performs a context-

sensitive pass over the application source code, it categorizes each operation

into one of the three event types recognized by the simulator: 1) network, 2)

file system, or 3) local. Any MPI-like call, such as communication or process

synchronization, is classified as a network event. All checkpoint or file write
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operations are file system events, and all other operations are local events—

including all computation, library calls, and function calls.

Step Two: Identifying the Executing Process. As the translator an-

alyzes each operation, it must also determine which processes execute that

operation; in the parallel applications we consider, any number of processes

could execute each operation. Which processes execute an operation depends

on the control flow directing that operation. Thus, our translator identifies

each operation’s executing process by analyzing the control flow directing that

operation. Our translator collects all conditional statements that both rely on

the process identifier and affect a particular block. It symbolically executes

these conditions to determine which processes execute that block. It performs

this analysis for each block in each context; context is determined by the path

the execution takes to arrive at that block.

For any communication operations, the translator also uses symbolic

execution to determine any processes on the opposite end of the communica-

tion.

For both of these symbolic analyses, our translator is limited to knowl-

edge it can determine statically. Thus, our translator assumes that values

resulting from system calls or from communication do not appear in the con-

trol flow.
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Step Three: Calculating the Execution Count. To create an accurate

trace, the translator calculates the execution count for each operation in each

context. The analysis must account for loops, conditional statements, and

variation amongst different processes in the system. Like the analysis used to

identify executing processes, this analysis uses a form of symbolic execution.

Since this analysis is time and space intensive, we reduce the number of times

it must execute by dividing the blocks into two categories: those that are

process-specific, or whose execution count depends on which process performs

the execution, and those blocks that are process-independent, or whose execu-

tion count is the same for all blocks. Only the former category requires the

expensive algorithm to determine the execution count; we use profiling to cal-

culate this information for the latter category. We next discuss the symbolic

execution and profiling stages in more detail.

Symbolic Execution. Symbolic execution is used for all process-

specific blocks. The symbolic execution algorithm we use here is similar to

the algorithm used to identify the executing processes for each block. How-

ever, unlike the executing process algorithm, all control flow affecting a block

must be collected and analyzed, not just the control flow that relies on the

process identifier. For each process-specific block, then, the translator gathers

all affecting control flow and performs symbolic execution to determine the

execution count. It assumes that all loops in the gathered control flow have a

definite trip count.
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Since the control-flow affecting the block relies on the process iden-

tifier, it is likely that the execution count of the block is dependent on the

process executing it. To increase our accuracy while preserving our efficiency,

the translator randomly selects some number (e.g., 5) of the processes that

execute that block and determines that block’s execution count for each of

the processes. It keeps a running average and, if at the end of the calcula-

tion for that number of processes the average has a stable value, that average

is considered the execution count for the block. If the average is not stable,

more processes are added to the average until either the average is stable or

all processes have been included in the average.

Profiling. The translator uses a single profiling run to determine the

execution count for all process-independent blocks: since the execution count

for these blocks is independent of the process performing the execution, a

single execution that mimics that of a single process provides the execution

count for all processes. To conduct the profiling, the translator instruments

each process-independent block with code to track the number of times it

executes. It also analyzes the initial, end, and step conditions of each loop

and, if possible, increases the step to reduce the number of times the loop

executes. It writes all the instrumented blocks to a file. The translator then

compiles the file, executes it on the local machine, and collects the profiling

information. For each block, the execution count is divided by the number

of contexts in which that block executes, enabling the translator to determine

29



loop trip counts and how often each branch of a conditional statement executes.

Step Four: Creating the Trace. After calculating the execution count for

each block, our translator then performs a second context-sensitive pass over

the application source code, converting each operation into an event using the

information gathered during the first pass. The translator writes each event

to a trace file. This process is basically straight-forward, but we do employ

some optimizations, which we now describe.

Aggregating Local Operations. The translator aggregates consecutive lo-

cal operations executed by the same process into one event representing many

local operations. In fact, the translator eliminates function boundaries; thus,

it can aggregate local operations from a larger span of source code—and the

resulting trace is context-insensitive, which reduces the amount of work our

simulator must perform and increases its efficiency. This collapse reduces the

size of the trace file and maintains accuracy since each local operation is still

represented.

Optimizing Loops. Our translator recognizes two types of loops and han-

dles each differently: (1) loops containing process-specific operations or op-

erations of any type other than local and (2) those containing only process-

independent local operations. Loops of the former type are maintained and

represented in the trace file. Loops of the latter type are collapsed into a
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single local event representing all operations contained in the loop and their

execution count; the resulting event may be further aggregated with other

consecutive local operations. Recall that our translator determines the trip

counts for the loops when it calculates the execution count for each block in

its first pass.

Handling Conditionals. Blocks affected by conditional statements will be

handled in the same manner as other blocks: the events contained in the

affected blocks are weighted based on the execution count of that block. For

example, if the true block of an if statement executes 60 out of the 100 times

the condition is executed and the false block executes the other 40, the true

events are weighted by 60, the false events by 40, and the condition itself is

weighted by 100.

3.3 Simulator

The simulator, which executes with a single thread of control, esti-

mates the execution time for an application using a trace of that application

and models that estimate the performance of the network, global file system,

and local hardware for that application in the execution environment being

simulated. In this section, we present the simulator design and its implemen-

tation, beginning with the models.
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3.3.1 Modeling System Components

Our simulator uses models to approximate the costs of network, global

file system, and local hardware events. These models, which are closed-form

expressions, allow our simulator to perform coarse-grained simulations and

still approximate the complex behavior of the components of the execution

environment—including such behaviors as contention at the network, file sys-

tem, and memory hierarchy. In addition, these models provide the ability to

approximate the behavior under varying and unanticipated workloads.

Each model does represent all costs of the execution of an event of

its type. For example, the network model includes all interactions of the

network and the cost of any buffering on the local hardware. Similarly, the local

hardware model encapsulates the performance of the processor(s), any cores,

the memory subsystem, and all other pieces of the local hardware involved in

the execution of a local event.

These models are unique to their represented component, so if that

component is replaced, the model should be changed, either by the creation

of a new model or by modification of the existing model. The local hardware

model is also unique to a particular application on a particular hardware, so

a new model should be provided for each application on each local hardware

configuration.

We develop these models from data generated by performing experi-

ments measuring each event’s behavior under a wide range of workloads on
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a parallel machine. The experiments reported here are performed on two

systems, both at the Texas Advanced Computing Center (TACC): Lones-

tar [204], which uses Dell PowerEdge 1955 blades for its local hardware, and

Ranger [205], which uses SunBlade x6420 as its local hardware. Both sys-

tems have Infiniband interconnects [203] and use Lustre [144] for the global

file system.

We use regression analysis to separately analyze the data resulting from

each event type. We use Mathematica 7.0 [172] to determine the constant

values for a function we supply. We develop each function by identifying likely

variables and examining the resulting values to determine the significant ones,

and then we remove the insignificant ones and model the data again with the

new variables. The final function is the model we use for that event type.

Below, we further discuss the local hardware, network, and file system

models. We present an error analysis with each model, so we first discuss how

we calculate error.

3.3.1.1 Calculating Error

To assess the accuracy of our simulator, we use accepted statistical

methods for data distributed normally. We first calculate the ratio of the

time predicted by our simulator to the time we measure; this ratio is less

than 1 for times that are underpredicted and greater than 1 for numbers our

simulator overpredicts. These ratios are not normally distributed, but their

natural logs have a typical normal histogram, closely follow a straight line on
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normal probability paper, and easily pass goodness of fit tests for normality.

Thus, we use statistical methods regarding normal data on the natural logs of

these ratios.

For each data set, we calculate the average, standard deviation, 95%

confidence interval around the mean, and a tolerance interval indicating the

range for values of 95% of the population with 95% certainty. This accuracy

information applies to the natural logs of our ratios, so we take the anti-log

of each result. These anti-logs now represent the accuracy of our simulator in

the form of ratios.

When we report simulated times, we apply the average error to each

time; this number indicates the likely time given the error of that data set. In

addition, we calculate the confidence interval around each time using the lower

and upper bound ratios for confidence. We perform the same calculation with

the lower and upper bound ratios for tolerance to get the tolerance interval

around each time.

When we calculate the difference between two simulated times, we also

calculate the difference between the times with the average error applied, and

then we calculate the confidence interval. Our original confidence interval

applies to the simulated times and not the difference, so we calculate a new

confidence interval by deriving the standard deviations from the confidence

intervals surrounding the two times being compared, σ1 and σ2. Using these

standard deviations, we calculate the standard deviation of the difference, σ3,

using the following formula:
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σ3 =
√

σ2
1 + σ2

2 .

We multiply σ3 with the factor for the 95% confidence interval, which

is typically 1.96 for our sample sizes, to find the distance of the interval on

either side of the mean. Subtracting this distance from the mean provides

the confidence interval lower bound and adding it to the mean provides the

confidence interval upper bound. We calculate the tolerance interval similarly,

but we replace the confidence interval factor with the tolerance interval factor.

The tolerance interval factor varies for each data set based on the number of

elements, the average, and the standard deviation.

3.3.1.2 Local Hardware Model

Simulating local hardware performance is made challenging by the need

to simulate the memory system. Memory systems have complex behavior that

is dependent on the memory footprint and access actions of each application.

For example, an application whose memory references are mostly found in the

L1 cache has a different performance profile than an application whose mem-

ory references are mostly found in the L2 cache, even if the number of local

operations is identical. Here we make a tradeoff: to accurately represent such

behavior across applications, our simulator would need to track the state of

the memory system—a level of detail that would dramatically increase simula-

tion time. Instead, we create application-specific local hardware models that

estimate costs of local events, including those associated with the memory

system.
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The local hardware model is developed from experiments measuring

the performance of many data configurations of an application using a small

number of processes (say, 4). The model’s parameter is the application data

configuration. For many applications, the data configuration is related to the

problem size, but it can be any number that reflects the size of the data set

of each process; this number should relate to the memory footprint of the

application. In our methodology, we discuss how we determine this value for

our benchmarks. Using this parameter, the local hardware model calculates an

average cycle cost per local operation for a particular application; this result

is applied to all local operations in that application.

Assumptions. We assume that averaging the cycle cost for all local opera-

tions in the application reasonably estimates the cycle cost per local operation

for smaller segments of the application, which implies that the local hardware

performance for different segments of computation are uniform. This assump-

tion results in sufficient accuracy even though the dominant type of operation

may vary between different program segments since memory latency dominates

performance for these applications and overwhelms performance differences

between other hardware operations

Methodology. To create the local hardware model, we modify the applica-

tion source code to include only local operations and exclude any operations

that would be considered file system or network events, such as communication
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calls or file system writes. The modified source code is input to the transla-

tor, which creates the corresponding trace, from which we tally the number

of local operations executed by the application. The modified source code is

also compiled and executed on the target system, and the number of cycles

required for the execution to complete is measured. Using the number of local

operations and the number of cycles they require to execute, we calculate the

average number of cycles consumed for each operation. We gather this data

using a range of data configurations with a single system size, and we then use

regression analysis to generate a closed-form expression that correlates appli-

cation data configuration information with the average number of cycles per

operation.

For this methodology to succeed, it is important to correctly represent

the data configuration of the application. We determine this number for each

of our benchmarks by understanding how the major data structures scale as

the data configuration changes. For the NAS parallel benchmark LU [51],

the data structures scale directly with problem size. For BT and SP, also

NAS parallel benchmarks, and Ek-Simple, an application benchmark, the

data structures scale with the problem size divided by the square root of the

number of processes. These data configurations are used as parameters to

their respective models.

In addition, error can be introduced if the appropriate data configura-

tions are not considered in the model. The data configurations should repre-

sent the likely use of the application. For instance, if the data configurations
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are too small, and they do not properly tax the memory subsystem, then the

prediction will be less accurate for larger data configurations.

Resulting Model. For Lonestar and Ranger, the local hardware perfor-

mance data for our application benchmarks shows the functional form of ex-

ponential rise to a plateau—so the user-supplied seed equation to Mathematica

uses exponential rise to a plateau. To further aid Mathematica, we determined

the correct signs and perturbations for the equation to be in the correct quad-

rant and form the right shape. The resulting equation has the form:

a2 ∗ e−b∗data configuration+c + d

where data configuration is a parameter to the model, and a, b, c, and d

are values determined by Mathematica. An example model can be seen in

Figure 3.3, which shows the local hardware model we derived for the NAS

parallel benchmark BT [51] on Lonestar. This model has an average error of

1.02 for configurations requiring at least thirty seconds to execute.

For the local hardware models for our benchmarks on Lonestar, the

average error is 1.02. On Ranger, the average error is 1.0. A full reporting

of the errors for both Lonestar and Ranger is included in Tables 3.2 and 3.3.

These tables also report the confidence and tolerance intervals.

Predictive Power. To better understand the predictive power of our mod-

els, we use a subset of our measured data on Lonestar to form a model, and
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Figure 3.3: BT’s local hardware model compared with its measured average
cycles per operation for Lonestar. The dots represent the measured data and
the line represents the generated model.

Benchmark Average Confidence Tolerance

Error Interval Interval

BT 1.02 1.01-1.02 0.97-1.07
LU 1.01 1.00-1.01 0.99-1.03
SP 1.03 1.03-1.03 0.99-1.08

Ek-simple 1.03 1.03-1.04 0.99-1.08
Synthetic 1.02 1.02-1.02 0.98-1.07

Table 3.2: Error for the local hardware models on Lonestar.

then use that model to predict the application performance for the rest of the

measured data. For instance, for the benchmark BT, we use the first three-

quarters of configurations to create a model and then predict the last quarter.

The resulting average error is 1.02, and can be seen in Table 3.4. This low

error demonstrates the effectiveness our methodology.
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Benchmark Average Confidence Tolerance

Error Interval Interval

BT 1.00 1.00-1.01 0.95-1.05
LU 1.00 1.00-1.00 0.96-1.05
SP 1.02 1.01-1.03 0.91-1.15

Ek-simple 1.00 1.00-1.00 0.98-1.02
Synthetic 1.00 1.00-1.00 1.00-1.00

Table 3.3: Error for the local hardware models on Ranger.

Benchmark Average Confidence Tolerance

Error Interval Interval

BT 1.02 1.01-1.03 0.96-1.08
LU 1.00 1.00-1.00 1.00-1.00
SP 1.03 1.02-1.04 0.98-1.09

Ek-simple 1.02 1.02-1.03 0.99-1.05
Synthetic 1.07 1.06-1.10 0.97-0.99

Table 3.4: Error for the sub-models of the local hardware models.

3.3.1.3 Network Model

The simulator uses the network model to calculate the bandwidth avail-

able to each process for message sends. The model requires the specification

of number of processes sending messages simultaneously and the total amount

of data to be sent in order to calculate the bandwidth.

Assumptions. The network model assumes that all costs of a network send

can be calculated with the total amount of send data and the number of

processes sending. It also makes the simplifying assumption that bandwidth

is affected by the variance of those parameters regardless of how that data is

distributed amongst the processes. The latter assumption results in the same
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approximation for 16 processes sending 2 MB of data each as for 15 of those

16 processes sending 1 MB of data each and the single process sending 17 MB

of data.

The network model also assumes the contention model is asymptotic:

processes always make some amount of progress even when the network is

saturated.

Methodology. The network model is created using experimental data re-

sulting from the Intel MPI Benchmark Multi-PingPong [101]. We execute this

benchmark with many configurations: each configuration measures the num-

ber of microseconds required for a particular number of processes to send and

receive a single data size. Each process has a communication partner process;

as each primary process sends its data, its partnering process receives that

data and then returns it, allowing the primary process to complete its receive.

At the end of each experiment, the results from the individual process pairs are

gathered and the average and standard deviation calculated. If the standard

deviation is larger than a percentage of the average, any outlier results are

discarded and the average is recalculated until it converges. If the number of

results falls too low, the experiments are performed again. These experiments

are performed on a system simultaneously in use by other researchers, which

helps us ensure that our models reflect typical performance.

41



Resulting Models. To model each network, we use two sub-models. For

each machine, one sub-model represents all message sizes less than or equal

to 16KB and the other represents the message sizes larger than that. This

division represents the change in MVAPICH [7], which is the form of MPI

used on Lonestar and Ranger, from the Eager protocol to the Rendezvous

protocol. The equations representing the four sub-models are unique, but each

uses num sends and totalSize as parameters, where num sends represents the

number of sending processes, and totalSize represents the total amount of data

to be sent. The constant values are determined by Mathematica. An example

of the performance of our network models is shown in Figure 3.4, and the error

for these models can be seen in Table 3.5. This figure represents the network

model for Lonestar.

Predictive Power. The Lonestar network model is created using 128 pro-

cess configurations, each with many data sizes. We create a sub-model using

96 of those process configurations and use it to predict the remaining con-

figurations. This results in an average error of 1.03, a confidence interval of

1.00-1.06, and a tolerance interval of .70-1.39. The sub-model typically over-

predicts the measured values, but its low error demonstrates the effectiveness

our methodology.
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Figure 3.4: Network Model: This graph plots the measured (points) and pre-
dicted (line) time (y-axis) for processes (x-axis) sending a total data size of
2GB on Lonestar. The measured data ends at 128 processes, but the predicted
data continues to 256 processes.

3.3.1.4 File System Model

The simulator calculates the file system bandwidth available to each

process using the file system model, which uses the number of processes writing

simultaneously and the total amount of data as input parameters.

Machine Average Confidence Tolerance

Error Interval Interval

Lonestar 0.99 0.97-1.01 0.70-1.39
Ranger 1.16 1.12-1.20 0.70-1.94

Table 3.5: Error for the network models.

43



Assumptions. Our file system model assumes that all costs of a file system

operation can be modeled using the total amount of data being written and

the total number of processes writing that data. It also assumes that the file

system performance is independent of how the data is distributed among the

processes.

Like the network model, the file system model assumes the contention

model is asymptotic.

Methodology. The file system model results from the analysis of experi-

mental data collected using a benchmark that timed each process packing and

writing some amount of data to the global file system. In this benchmark, each

process writes to a unique file during each test. The rest of the methodology

follows that of the network model.

Resulting Models. The file system models each use two sub-models, one

for writes less than or equal to 4MB, and the other for larger writes. 4MB is

the measured optimal transfer size on the system and the transfer size we used

during the file system benchmark tests. As a result, all writes less than 4MB

require a single transfer and writes above that size require more transfers. Dur-

ing simulation, the simulator uses the file system sub-model that represents the

maximum data size being written by a single process. The equations are differ-

ent for each sub-model, but all function on the input parameters num writes

and totalSize, where num writes represents the number of writing processes,
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Figure 3.5: File system model: This graph plots the measured (points) and
predicted (line) amounts of time (y-axis) spent writing 64 MB messages by
various numbers of processes (x-axis) on Lonestar.

totalSize represents the total amount of data being written. The constant

values are determined by Mathematica.

Figure 3.5 shows the performance function of our large data size sub-

model for Lonestar. In this figure, the message size, 64 MB, remains constant

as the number of processes increases, so the total amount of data increases as

the number of processes increases. It indicates the accuracy of our file system

model, which is less accurate for smaller numbers of processes than for larger

but is quite accurate overall.

The average error for the Lonestar file system models is 0.97 over all

data and process sizes. On Ranger, the average error is 1.03. A full reporting
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Machine Average Confidence Tolerance

Error Interval Interval

Lonestar 0.97 0.92-1.01 0.70-1.34
Ranger 1.03 1.00-1.06 0.98-1.26

Table 3.6: Error for the file system models.

of the errors can be seen in Table 3.6.

Predictive Power. We use the measured data on Lonestar up to and in-

cluding 160 processes to develop a model, and then we predict the performance

of the file system up to and including 256 processes. The average prediction

error is 0.84. The confidence interval is 0.76-0.94, and the tolerance interval is

0.39-1.83. This manageable error gives us confidence in our methodology.

3.3.2 Event Simulation

Here, we present the simulation details of local events, some message

sends and receives, file system writes, and process synchronization.

Initialization. At the beginning of a simulation, the simulator reads the

events in the trace file into an event queue. The simulator also maintains

state throughout the simulation for each simulated process. Each process state

includes: a clock, which represents elapsed cycles in the simulated execution;

an index into the event queue, which acts as a program counter; and a status,

which is either ready or waiting. Ready indicates the process’s next event

can be simulated. Waiting indicates the process is waiting for a network or
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Figure 3.6: Simulation Example: Slice of Execution

file system event to complete or on an event from another process.

For each simulation step, the simulator identifies the process with the

earliest clock value that has a ready status. It finds the next event that process

executes and simulates it. The engine’s next action depends on the type of

event to be simulated.

Example: Initial State. Figure 3.6 presents the state for an exam-

ple simulation. It shows a representative slice of an application’s event queue,

beginning at event 23, and the state of each of four simulated processes. In

this example, all processes are ready to execute event 23, where the slice of

the event queue shown begins. Process 0’s clock is less than 23, so perhaps it
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Figure 3.7: Simulation Example, Step 1: The state after p0’s local event at
index 25 has been simulated. po does not execute the events at indices 23 and
24. Notice p0’s clock and index have been updated.

did not execute all the preceding events.

Local Events. Local events are the easiest events to simulate, since their

execution is local to and thus only affects the simulated process. To simulate a

local event, the simulator uses the local hardware model, which is explained is

Section 3.3.1.2, to calculate the cycles spent executing that event. It adds that

number of cycles to the executing process’s clock and increments its index.

Example: Local Event. In our example in Figure 3.6, process 0,

or p0, has the lowest clock value and its status is ready. So the next event
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executed by p0 is simulated now. For this example, it is the local event at index

25, because p0 is not involved in the events at indices 23 and 24. The event at

index 25 is executed by all processes and represents 12 local operations from

the application source code. However, at this time, p0’s execution is the only

execution being simulated.

For the purposes of this example, we assume that each local operation

averages five cycles of execution time. So, for 12 local operations, the local

hardware model returns 60 cycles. Those 60 cycles are added to p0’s clock, so

it becomes 82. p0’s index is incremented to 26. This new state is represented

in Figure 3.7.

Network and File System Events. Network events represent any action

that takes place over the network. These actions include message sends, re-

ceives, and process synchronization. File system events, which represent ac-

tions on the global file system, are currently limited to writes. This choice

assumes that reads equally affect all checkpointing policies and thus do not

affect the evaluation of those policies. Here, we present the simulation details

of message sends and receives, file system writes, and process synchronization

events.

Network Event: Send. When the simulator encounters a network

send event, it places the message in a global send queue. For simulation

efficiency, we only simulate message transmission periodically, since that limits
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Figure 3.8: Simulation Example, Step 2: The state after p2’s network send at
index 23 has been initiated. The send has been placed in the appropriate send
queue and is waiting to be sent.

how often the bandwidth available to each process varies and allows sends to

make progress with a minimal number of bandwidth recalculations. The global

send queue is a collection of buffers, each associated with a single send time.

The simulator adds the message to be sent to the buffer representing the next

send opportunity, which is calculated based on the sending process’s clock. If

the send is a blocking send, the sending process’s state is changed to waiting;

otherwise, the process’s index is incremented and the effect of the send on the

sending process is complete.

Each send buffer’s messages are sent when every process has either ad-
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vanced past the associated time or has a status of waiting. When the message

send completes, the simulator places the message receipt information, which

includes the sender and the time of receipt, in the receiving process’s incoming

queue, and the receiving process’s state is set to ready. For a blocking send,

the sending process’s state is returned to ready, its index is incremented, and

its clock is adjusted to reflect the time the message finished sending.

Example: Encountering a Network Send. In our example sim-

ulation in Figure 3.7, the simulator next executes p2’s event 23, a blocking

network send of a 1 MB message to p3. When the simulator encounters this

event, it calculates the next send time and places p2’s message in the appro-

priate send buffer. The simulator then changes p2’s status to waiting. In this

example, the network and file system queues are being processed every 100

cycles. Since p2’s clock is 56, the next opportunity to send will be at time 100,

so p2’s message is placed in the appropriate buffer. The new state is shown in

Figure 3.8.

Network Event: Receive. When the simulator encounters a mes-

sage receive event, it checks the receiving process’s incoming message queue

for the expected message. If the message is not present, the process’s index

remains unchanged, its status is changed to waiting, and the receive simula-

tion is attempted again the next time that process’s execution is simulated. If

the message is present in the incoming queue, then the receive completes. To
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Figure 3.9: Simulation Example: Step 3 Network Receive

complete the receive, the simulator increments the receiving process’s index

and sets that process’s clock to the maximum of its current time and the time

of the message receipt.

Example: Encountering a Network Receive. In Figure 3.8, p3

is the ready process with the lowest time clock, so its execution is simulated

next. p3’s next event is a blocking message receive from p2 at index 24. The

simulator executes this event by checking p3’s message queue, which, as seen

in the status of Figure 3.8, is empty. So the simulator changes p3’s status to

waiting (Figure 3.9) and continues the simulation.
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Figure 3.10: Simulation Example, Step 4: The state following the post of p0’s
file system write at index 27.

File System Event: Write. The simulator treats file system writes

similarly to network sends: it periodically allows writes to proceed and the

global write queue is also a collection of buffers representing potential write

times. When a write is encountered, the simulator places it in the appropriate

write buffer based on the writing process’s clock and simulates the write when

all processes have either advanced past the time associated with that buffer or

are waiting.

Example: Encountering a File System Write. In Figure 3.9,

p0’s execution of event 27, a file system write, is ready to be simulated: event
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Figure 3.11: Simulation Example, Step 5: The state following the simulation
of p1’s local event at index 25.

26 is skipped because p0 does not execute it. The simulator places the write in

the write buffer associated with time 100, since p0’s clock is 82, and changes

p0’s status to waiting. Figure 3.10 displays the resulting state.

The simulation continues with p1’s execution of event 25; p1’s clock is

adjusted to reflect the number of cycles spent, as seen in Figure 3.11.

Queue Processing. When all processes have either a simulated execution

time exceeding the next buffer processing time or a status of waiting, the

simulator performs any network sends or file system writes contained in the

buffers associated with that processing time. Here we explain how that simu-
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Figure 3.12: Simulation Example, Step 6: Network Sends and File System
Writes Progress

lation occurs.

Send Queue. To simulate message sends waiting in a send buffer,

the simulator determines the number of messages to be sent and the total

amount of data. It then uses the network model to calculate the number of

cycles needed for each send to complete. Any of the waiting messages that can

complete before the time associated with the next send buffer do so and are

added to the incoming message queues of the receiving process(es). Messages

that require more cycles to complete progress as far as possible and then the

remaining data is sent at the next send time.
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Write Queue. The write queue is processed identically to the send

queue, except the bandwidth available to each process is determined by the

file system model and not the network model.

Example: Queue Processing. In the example simulation, the cur-

rent system state (Figure 3.11) reflects three waiting processes and one ready

process with a clock over 100, which indicates that any network sends and file

system writes in the buffers associated with time 100 are ready to be simu-

lated. This example shows one pending message send, a 1 MB message from

p2 to p3, and one pending file system write, a 4 MB write from p0.

Suppose the network model calculates 50 cycles to send a 1 MB mes-

sage, so in this case the message from p2 to p3 takes 50 cycles. Since the send

is a blocking send, the simulator updates p2’s clock to 150, increments p2’s

index, and changes p2’s status to ready. The simulator places the message

receive information in p3’s incoming message queue and changes p3’s state to

ready.

For the write queue, let’s suppose that the file system model approxi-

mates that this write takes 400 cycles, or 100 cycles per megabyte. The write,

then, progresses for 100 cycles and the remaining 3 MB of data must be pro-

cessed with any other writes pending in the buffer for time step 200. p0’s status

remains as waiting, but its clock is updated to 200, as seen in Figure 3.12.
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Figure 3.13: Simulation Example, Step 7: The state following the completion
of p3’s network receive at index 24.

Example: Network Receive Completes. As the queue processing

finishes, p3 is ready and has the lowest clock value. Since p3 has yet to

complete event 24, the simulator executes that message receive by removing

the message from p3’s incoming message queue, updating p3’s clock to the

time of the message receipt, changing p3’s state to ready, and incrementing

p3’s index (Figure 3.13).

As the example execution proceeds, p2’s event 25 is simulated, its clock

updated, and its index incremented (Figure 3.14).
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Figure 3.14: Simulation Example, Step 8: The state following the execution
of p2’s local event at index 25.

Synchronization Events. A synchronization event is simulated as

a send from every process to every other process. When all sends have been

received, all process clocks are updated to the time of the last receipt, and all

processes continue to the next event.

3.4 Evaluation

Our simulator can convert an application using thousands of processes

into a trace and then estimate its execution time. To better appreciate the

results generated by our simulator, we must understand how the components

interact and how the error from each model affects the results. We have
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presented the error for each model in isolation, and now we analyze how the

models perform together.

Our simulator accurately predicts the performance of our application

benchmarks (with no checkpointing). To derive this conclusion, we compare

each benchmark’s measured execution times on the target system with its

simulated execution times. This analysis includes the local hardware and the

network models but not the file system model as it does not include check-

pointing, so these results show how the local hardware model works with the

network model. The full results can be seen in Tables 3.7 and 3.8; all errors

are reported for configurations using greater than 16 processes and executing

for longer than thirty seconds. In these results, the source of the error is the

local hardware model. The effects of the network error are negligible.

We also use our sub-models, which we create from a smaller set of

experimental results than our other models, to predict the performance of

each component and for BT in its entirety. These results show low error when

we compare the resulting predictions to our measured times; this result gives

us confidence in our methodology. The BT result was, for instance, an average

error of 0.94.

The simulator predicts the performance of our synthetic benchmarks

with low error, which shows how the local hardware model interacts with

the file system model. To arrive at this result, we compare the measured

execution time of the synthetic benchmark with two checkpointing policies to

the simulated execution time. The average error for both benchmarks on both
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Benchmark Average Confidence Tolerance

Error Interval Interval

BT 1.00 0.98-1.02 0.83-1.21
LU 0.77 0.73-0.80 0.59-0.98
SP 0.74 0.68-0.81 0.27-2.06

Ek-simple 0.93 0.89-0.97 0.65-1.34

Table 3.7: Error for the benchmarks with message passing on Lonestar.

Benchmark Average Confidence Tolerance

Error Interval Interval

BT 1.23 1.21-1.25 1.09-1.39
LU 0.97 0.91-1.03 0.69-1.37
SP 0.71 0.70-0.73 0.57-0.88

Ek-simple 1.14 1.09-1.19 0.62-2.10

Table 3.8: Error for the benchmarks with message passing on Ranger.

systems is small: 1.27 for Staggered and 1.00 for Synchronous on Lonestar,

and 1.0 for Staggered and 0.98 for Synchronous on Ranger. The full results can

be seen in Tables 3.9 and 3.10. The errors on Lonestar are much higher than

those on Ranger; this difference stems from the variability of the Lonestar

file system and our model creation methodology. To create the model, we

eliminate the results of any experiments that are too far from the average.

We then eliminate any averages that appear high in relation to the other

configurations. These decisions are the best way to represent the file system

since otherwise we would represent a falsely slow file system; but it does result

in a model that can underpredict the effects of contention. The Ranger file

system is faster than the Lonestar file system and thus the same phenomenon

is not visible in those results.
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Checkpointing Average Confidence Tolerance

Policy Error Interval Interval

Staggered 1.27 1.21-1.33 0.80-2.01
Synchronous 1.00 0.89-1.12 0.40-2.51

Table 3.9: Error for the synthetic benchmarks with checkpointing on Lonestar.

Checkpointing Average Confidence Tolerance

Policy Error Interval Interval

Staggered 1.00 0.97-1.02 0.73-1.38
Synchronous 0.98 0.96-1.01 0.71-1.35

Table 3.10: Error for the synthetic benchmarks with checkpointing on Ranger.

In addition, we compare the measured execution times of the bench-

marks with checkpointing to their simulated execution times, which provides

information about how the simulator works as a whole. The overall error for

the application benchmarks with checkpointing is also small: the average error

is .85 for Lonestar and .80 for Ranger. The errors are reported in Tables 3.11

and 3.12.

Benchmark Average Confidence Tolerance

Error Interval Interval

BT 1.03 1.02-1.04 0.62-1.71
LU 0.81 0.81-0.82 0.55-1.19
SP 0.89 0.89-0.90 0.64-1.24

Ek-simple 0.67 0.66-0.68 0.36-1.25

Table 3.11: Error for the benchmarks with message passing and checkpointing
on Lonestar.
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Benchmark Average Confidence Tolerance

Error Interval Interval

BT 0.87 0.85-0.90 0.67-1.12
LU 0.87 0.83-0.91 0.59-1.27
SP 0.83 0.79-0.88 0.54-1.26

Ek-simple 0.64 0.60-0.69 0.37-1.10

Table 3.12: Error for the benchmarks with message passing and checkpointing
on Ranger.

3.5 Conclusions

We have developed a scalable simulator that successfully simulates

checkpointing parallel applications configured to use many processes. Our sim-

ulator estimates the system consequences of a change in checkpoint strategy

efficiently and thus allows us to study staggered checkpointing. Our simulator

consistently results in low error, which shows that our methodology is sound.

In addition, when we created sub-models to test the predictive performance of

our simulator, we found that these models predicted our measured data with

low error. Thus, our simulator demonstrates predictive ability.
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Chapter 4

Problem and Solution Spaces for Staggered

Checkpointing

In this chapter, we identify the parameters under which staggered

checkpointing is useful. We define a problem space where synchronous check-

pointing causes avoidable file system and network contention. Avoidable con-

tention occurs when all processes checkpointing b bytes simultaneously con-

sume more time than a single process writing b bytes. We also define a solution

space, which is where staggered checkpointing reduces or alleviates the avoid-

able contention resulting from synchronous checkpointing. We use two exam-

ple supercomputing systems, Lonestar [204] and Ranger [205], both located at

the Texas Advanced Computing Center (TACC) [2].

As we identify the problem and solution spaces, we also describe how

file system performance and application characteristics, such as the number of

processes, checkpoint sizes, and number of local operations, affect these spaces.

4.1 Methodology

To identify the problem and solution spaces for staggered checkpoint-

ing, we develop a synthetic benchmark that simulates a parallel application
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executing local operations. This synthetic benchmark contains no communica-

tion, so it tests the checkpointing policy without the effects of communication.

We implement two checkpointing polices: staggered and synchronous.

Our synchronous policy forces all processes to synchronize and then check-

point. Our staggered policy allows N checkpointing locations; these locations

are placed evenly throughout the local operations. An approximately equiva-

lent number of processes checkpoints at each location.

To define these spaces, we simulate our synthetic benchmark with a

variety of configurations:

• on each machine, Ranger and Lonestar

• with each checkpointing policy, staggered and synchronous,

• from 16 to 16,384 processes,

• with per process checkpoint sizes of 4 MB to 1 GB, and

• for local instruction execution times from 1 second to several days.

N is currently set to 12, a number chosen based on the properties of the

application benchmarks (Table 5.6). For the staggered policy, the processes

checkpoint throughout the local execution time, so the local execution time

represents the interval during which the process checkpoint locations can be

staggered.
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Our synthetic benchmark can be related to real-world application bench-

marks through the number of processes used by the application. In partic-

ular, we relate these results to five real-world applications that investigate

tides [114], turbulence [6, 23], earthquakes [60], and combustion [55].

In our analysis, we indicate when staggered checkpointing makes check-

pointing feasible. When we conduct experiments at TACC, we are only able

to write to the file system for fifteen minutes of time, so we consider check-

pointing feasible when it requires less than fifteen minutes of time. Staggered

checkpointing causes checkpointing a configuration to become feasible when

the synchronous checkpoint time is over 15 minutes but the staggered check-

point time is below fifteen minutes.

4.2 Evaluation

In this section, we first identify the problem and solution spaces for

Lonestar and Ranger in detail and perform preliminary analysis. We draw

larger conclusions at the end of the chapter. In particular, we explore how these

spaces change as the characteristics of the systems and applications change,

and what these trends imply for staggered checkpointing in the future.

We present two problem definition tables for each machine. In the first

problem definition table, the numbers represent the time difference in minutes

between the time required for a single process to write a certain amount of data

and multiple processes to each synchronously write that amount of data. This

difference represents the maximum improvement that staggered checkpointing
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can achieve over synchronous checkpointing: staggered checkpointing cannot

enable multiple processes to write a checkpoint faster than a single process

can write a checkpoint of the same size. The second problem definition table

reports the number of minutes required for many different numbers of processes

to synchronously checkpoint various amounts of data.

The solution space is presented as a series of graphs, where each graph

represents the results for a range of process sizes, with each process writing

several amounts of data over a particular interval size. For both machines,

for interval sizes of 20 seconds and smaller, staggered checkpointing consumes

essentially the same amount of time as synchronous checkpointing: the interval

size is too small for the checkpoints to be sufficiently staggered to noticeably

reduce file system contention. Increasing the interval size allows the processes

to checkpoint farther apart and thus increases the benefits of staggering. To

maximize the benefits of staggering, checkpoint locations must be separated by

enough time for the checkpoint data to be fully written before the next set of

checkpoints begins. The number of seconds necessary for a perfectly staggered

line to achieve maximum benefit can be calculated with the following formula:

ceiling(number of processes

checkpoint locations
) ∗ data per checkpoint

maximum write rate of the system

Although our experiments include a large range of interval sizes and

process sizes as small as 16, here we present data for only the larger process

sizes three interval sizes. For Lonestar, we present process sizes of 256 pro-

cesses and larger with the exception of Tables 4.2 and 4.10, which present data
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beginning at 16 processes. For Ranger, the problem space results also present

process sizes of 256 processes and larger; the solution space results omit the 256

and 512 process cases. For these cases, synchronous checkpointing performs

very well and staggered checkpointing is uninteresting.

In this chapter, we present results and analysis for interval sizes of three,

fifteen, and thirty minutes. For our synthetic benchmark, this interval repre-

sents the total amount of local execution time. In applications, this interval

is determined by the time between barriers and collective communication. In

today’s applications, three minutes is closest to the expected available interval,

though the intervals are often much smaller. Fifteen minutes represents what

we consider a reasonable amount of time for a process to be checkpointing;

thirty minutes is a large amount of time in which to checkpoint, but we include

the results here to better understand the trends of the solution spaces.

Our simulator performs optimistically in the face of network and file

system saturation, so we do not present the results for configurations that

cause both staggered and simultaneous checkpointing to saturate the file sys-

tem. The configurations that are presented in the figures and tables are con-

figurations that are inside the fidelity of our simulator. Empty spaces in our

figures represent configurations removed for this reason.

In the solution space graphs displaying checkpoint times, each stacked

bar reflects three times: 1) the amount of time required for one process to

write that amount of data, which represents the ceiling of improvement for

staggered checkpointing; 2) the amount of time required for that amount of
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checkpoint data to be written by that number of processes using the stag-

gered checkpointing policy; 3) the amount of time required for that amount

of checkpoint data to be written by that number of processes using the syn-

chronous checkpointing policy. The graphs displaying total execution times

report similarly, but their data represents the total execution time rather than

the checkpoint time. Since our synthetic benchmark does not contain com-

munication, the total time improvement typically reflect the improvement in

checkpointing time. For both sets of graphs, the exposed synchronous time

indicates the benefit of staggered checkpointing.

Each graph representing checkpoint time displays time ranging from

zero to just over an hour; bars that extend into the top of the graph indi-

cate total checkpointing time of longer than the time shown. In addition,

each graph displays horizontal lines at 15 minutes, 30 minutes, and an hour.

The total execution time graphs display times from just below the expected

execution time without checkpointing to just over an hour after that.

We also include statistical analysis tables. The tables displaying check-

point time improvement highlight the sweet spot, or the configurations for

which synchronous checkpointing consumes more than five minutes, staggered

checkpointing reduces checkpoint time to 30 minutes or less, and the overall re-

duction is at least 25%. The numbers in these tables are the raw improvement

of staggered checkpointing in light of the accuracy of our simulator. The bold

numbers indicate configurations made feasible by staggered checkpointing. In

these tables, removed configurations are indicated in tables by a “–”.
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Checkpoint Number of Processes

Size 256 512 1,024 2,048 4,096 8,192 16,384

4 MB 0 1 2 7 24 90 349
8 MB 1 4 15 57 221 868 3,444

16 MB 2 8 29 110 434 1,722 6,858
32 MB 4 14 55 217 861 3,429 13,686
64 MB 7 28 109 430 1,714 6,843 27,342

128 MB 14 54 215 857 3,421 13,671 54,654
256 MB 27 108 429 1,711 6,836 27,327 109,279
512 MB 54 214 855 3,418 13,664 54,639 218,528

1 GB 107 428 1,709 6,832 27,320 109,264 437,026

Table 4.1: Lonestar Problem Space: This table identifies the problem space by
comparing the performance of synchronous checkpointing to the performance
of a single process checkpointing the same amount of data. The numbers re-
flect the difference in minutes between one process checkpointing and multiple
processes checkpointing and show the upper bound for improvement by stag-
gered checkpointing. So, this table shows that one process can checkpoint 16
MB 110 minutes faster than the 2,048 processes can each checkpoint 16 MB.
Below the red (or dark gray) line synchronous checkpointing saturates the file
system. One process writing the amounts of data shown in this table does not
saturate the file system.

4.2.1 Lonestar

Lonestar is a supercomputer that was installed in 2004 and is currently

ranked number 123 in the Top 500 list [8]. It includes local hardware with

2.66 GHz processors, a Myrinet network for communication, and a Lustre

file system featuring 4.6 GB/s throughput [204]. Our simulator assumes that

applications executing on Lonestar use one process per local hardware machine,

or node.

Problem Space. The Lonestar problem space shows that staggered check-

pointing has the potential to greatly reduce the overhead caused by syn-

chronous checkpointing. In the problem definition table for Lonestar, Ta-
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Checkpoint Number of Processes

Size 16 32 64 128 256 512 1,024 2,048 4,096 8,192 16,384

4 MB 0 0 0 0 0 0 2 7 24 90 349
8 MB 0 0 0 1 1 4 15 57 221 868 3,444

16 MB 1 1 1 1 3 8 29 111 435 1,723 6,858
32 MB 2 2 2 3 6 16 57 219 863 3,431 13,688
64 MB 4 4 4 6 11 31 112 434 1,718 6,847 27,346

128 MB 8 8 9 12 22 63 223 865 3,430 13,679 54,662
256 MB 17 17 19 24 44 125 446 1,728 6,852 27,344 109,296
512 MB 35 35 38 48 88 249 890 3,452 13,698 54,674 218,562

1 GB 70 71 76 96 176 497 1,778 6,901 27,389 109,333 437,095

Table 4.2: Lonestar Problem Space: This table reports the number of minutes
needed for a number of processes to each synchronously checkpoint an amount
of data. So 2,048 processes synchronously checkpointing 16 MB of data re-
quires approximately 111 minutes. Note that its configurations begin at 16
rather than 256.

ble 4.1, we see that for the smaller configurations in the upper left hand cor-

ner, such as 256 processes each writing 4 MB of data, there is no room for

improvement since synchronous checkpointing performs well. For the larger

configurations on the right hand side of the table, such as 16,384 processes

each writing 4 MB of data, and even the middle-sized configurations in the

middle of the table, such as 2,048 processes each writing 16 MB of data, there

is much room for improvement because synchronous checkpointing causes con-

tention at the file system. Table 4.3 displays the problem space with statistical

information.
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Figure 4.1: Lonestar Solution Space (Checkpoint Time in 3 Minute Interval).
This figure displays the time spent checkpointing for various numbers of pro-
cesses writing various per process checkpoint sizes in a three minute interval
size.

Solution Space. Our Lonestar solution space results show that staggered

checkpointing reduces the checkpoint and total execution times over those of

synchronous checkpointing for many configurations.

With just a three minute interval size, staggered checkpointing begins

to reduce checkpoint time. Three minutes is sufficient for improvement since

the three minute interval separates the checkpoints such that a new set of

checkpoints begins every fifteen seconds. However, at this interval size, stag-

gered checkpointing only shows large percentages of improvement for small

numbers of processes checkpointing small amounts of data, as we see in Fig-

ure 4.1 and Table 4.4. Staggered checkpointing reduces the checkpoint time

by at least 50% for the following configurations: up to 2,048 processes writing
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Figure 4.2: Lonestar Solution Space (Total Time in 3 Minute Interval). This
figure displays the total execution time for various numbers of processes writing
various per process checkpoint sizes in a three minute interval size.

Figure 4.3: Lonestar Solution Space, 3 minutes, Total Time

4 MB each, and up to 512 processes writing up to 16 MB each. Since these

are smaller configurations, the time consumed by synchronous checkpointing

is smaller, so the absolute savings is smaller. For the larger configurations,

staggered checkpointing shows a small amount of improvement.

The three minute interval has a sweet spot of six configurations, and it

converts two configurations from infeasible to feasible: 1,024 processes writing

8 MB of data each and 512 processes writing 32 MB of data each.

Figure 4.3 and Table 4.5 display the total execution time information

for the three minute interval size.
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Checkpoint Number of Processes
Size 256 512 1,024 2,048 4,096 8,192 16,384

4 MB

0(50%)
0(50%)
c:0-0
t:0-0

1(70%)
1(70%)
c:1-1
t:1-1

2(80%)
2(80%)
c:2-2
t:2-2

6(80%)
6(80%)
c:5-6
t:5-6

9(40%)
9(40%)
c:8-11
t:8-11

13(10%)
13(10%)
c:7-19
t:6-20

–

8 MB

1(60%)
1(60%)
c:1-1
t:1-1

3(70%)
4(70%)
c:3-4
t:3-4

7(40%)
7(40%)
c:6-8
t:6-8

11(20%)
11(20%)
c:7-15
t:6-16

14(10%)
15(10%)
c:0-29
t:-4-33

– –

16 MB

2(50%)
2(50%)
c:1-2
t:1-2

4(50%)
4(50%)
c:4-5
t:3-5

7(30%)
8(30%)
c:6-9
t:5-10

12(10%)
12(10%)
c:5-19
t:3-21

– – –

32 MB

2(30%)
2(30%)
c:1-2
t:1-2

4(20%)
4(20%)
c:3-5
t:3-5

8(10%)
8(10%)
c:4-12
t:3-13

– – – –

64 MB

2(10%)
2(10%)
c:1-3
t:1-3

4(10%)
4(10%)
c:2-6
t:2-7

– – – – –

128 MB

2(10%)
2(10%)
c:0-3
t:0-4

– – – – – –

256 MB – – – – – – –

512 MB – – – – – – –

1 GB – – – – – – –

Table 4.4: Lonestar Solution Space (Checkpoint Time in 3 Minute Interval),
Statistical Information: This table shows the improvement in time spent check-
pointing between staggered checkpointing and synchronous checkpointing in
minutes for checkpoints staggered across approximately three minutes of local
execution. So 2,048 processes checkpointing 16 MB of data can checkpoint
approximately 11 minutes faster using staggered checkpointing rather than
using synchronous checkpointing. Below the green (or light gray) synchronous
checkpointing saturates the file system. Below the red (or dark gray) line
staggered checkpointing saturates the file system. A bold number indicates
that staggered checkpointing makes checkpointing that configuration feasible,
or reduces checkpoint time to under 15 minutes. “c:” and “t:” indicate the
confidence and tolerance intervals, respectively.
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Checkpoint Number of Processes
Size 256 512 1,024 2,048 4,096 8,192 16,384

4 MB

0(10%)
1(30%)
c:1-1
t:0-2

1(20%)
1(30%)
c:1-2
t:1-2

2(40%)
3(50%)
c:2-3
t:2-3

5(50%)
6(60%)
c:5-7
t:5-8

7(30%)
11(40%)
c:8-15
t:7-15

10(10%)
28(30%)
c:16-39
t:14-41

–

8 MB

1(20%)
2(40%)
c:1-3
t:1-3

3(40%)
4(50%)
c:3-5
t:3-5

5(30%)
8(40%)
c:6-11
t:6-11

8(10%)
20(30%)
c:12-27
t:11-28

11(0%)
56(30%)
c:29-84
t:23-90

– –

16 MB

1(20%)
2(40%)
c:2-3
t:2-3

3(30%)
5(40%)
c:4-6
t:3-7

6(20%)
12(40%)
c:8-16
t:7-16

9(10%)
32(30%)
c:18-45
t:14-49

– – –

32 MB

1(20%)
3(30%)
c:2-4
t:2-4

3(20%)
7(30%)
c:4-9
t:4-10

6(10%)
18(30%)
c:11-25
t:9-27

– – – –

64 MB

1(10%)
4(30%)
c:2-6
t:2-6

3(10%)
10(30%)
c:6-14
t:5-15

– – – – –

128 MB

1(10%)
7(30%)
c:3-10
t:3-10

– – – – – –

256 MB – – – – – – –

512 MB – – – – – – –

1 GB – – – – – – –

Table 4.5: Lonestar Solution Space (Total Time in 3 Minute Interval), Statisti-
cal Information: This table shows the execution time improvement in minutes
between staggered checkpointing and synchronous checkpointing for processes
executing approximately three minutes of local instructions. The number in
parentheses represents the percentage improvement. The table shows that for
2,048 processes checkpointing 16 MB of data the execution time is reduced by
nine minutes or 10% using staggered checkpointing rather than synchronous
checkpointing. Below the green (or light gray) synchronous checkpointing
saturates the file system. Below the red (or dark gray) line staggered check-
pointing saturates the file system. “c:” and “t:” indicate the confidence and
tolerance intervals, respectively.
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Figure 4.4: Lonestar Solution Space (Checkpoint Time in 15 Minute Interval).
This figure displays the time spent checkpointing for various numbers of pro-
cesses writing various per process checkpoint sizes in a fifteen minute interval
size.

Staggered checkpointing performs well when the interval size increases

to fifteen minutes. In Figures 4.4 and 4.5, the interval size is approximately

fifteen minutes. In comparison to Figure 4.1, the area of improvement grows

to include larger numbers of processes and larger data sizes. In fact, staggered

checkpointing achieves maximum improvement in all process configurations

with 2,048 processes or fewer writing 4 MB of data each, with 512 processes

or fewer writing 8 MB of data, and with 256 processes or fewer writing 32 MB

of data. Staggered checkpointing now reduces checkpointing time by at least

50% for all configurations included in the graph except 256 processes writing

128 MB of data and 4,096 processes writing 8 MB of data. The improvements

in those configurations are 40% and 30%, respectively.
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Figure 4.5: Lonestar Solution Space (Total Time in 15 Minute Interval). This
figure displays the total execution time for various numbers of processes writing
various per process checkpoint sizes in a fifteen minute interval size.

As we can see in Figure 4.4 and the sweet spot displayed in Table 4.6,

for many of the configurations this percent savings also represents a significant

time savings—only three of our configurations are not yet feasible. The table

shows that the sweet spot has increased to include larger process and data

sizes and is now thirteen configurations.

A concern is how checkpointing influences the overall execution time.

Figure 4.5 shows that total execution time is less than twenty minutes in the

staggered case for up to 4,096 processes writing 4 MB, 2,048 processes writing

8 MB, 1,024 processes writing 16 MB, and 512 processes writing 32 MB. For

these fourteen configurations, then, checkpointing adds less than five minutes

of execution time. The total execution time only remains under twenty minutes
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Checkpoint Number of Processes
Size 256 512 1,024 2,048 4,096 8,192 16,384

4 MB

0(50%)
0(50%)
c:0-0
t:0-0

1(70%)
1(70%)
c:1-1
t:1-1

2(80%)
2(90%)
c:2-2
t:2-2

7(90%)
7(90%)
c:6-7
t:6-7

24(100%)
24(100%)
c:23-26
t:23-26

77(80%)
79(80%)
c:74-83
t:73-85

–

8 MB

1(70%)
1(70%)
c:1-1
t:1-1

4(90%)
4(90%)
c:4-5
t:4-5

15(90%)
15(90%)
c:15-16
t:14-16

56(100%)
58(100%)
c:55-61
t:55-62

72(30%)
74(30%)
c:61-87
t:58-91

– –

16 MB

2(60%)
2(60%)
c:2-2
t:2-2

7(90%)
8(90%)
c:7-8
t:7-8

28(90%)
29(90%)
c:27-30
t:27-31

60(50%)
62(50%)
c:56-68
t:55-70

– – –

32 MB

4(60%)
4(60%)
c:3-4
t:3-4

14(80%)
14(80%)
c:13-15
t:13-15

39(70%)
41(70%)
c:38-44
t:37-44

– – – –

64 MB

6(60%)
7(60%)
c:6-7
t:6-7

20(60%)
21(60%)
c:19-23
t:19-23

– – – – –

128 MB

8(40%)
9(40%)
c:7-10
t:7-10

– – – – – –

256 MB – – – – – – –

512 MB – – – – – – –

1 GB – – – – – – –

Table 4.6: Lonestar Solution Space (Checkpoint Time in 15 Minute Inter-
val), Statistical Information: This table shows the improvement in time spent
checkpointing between staggered checkpointing and synchronous checkpoint-
ing in minutes for checkpoints staggered across approximately fifteen min-
utes of local execution. So 2,048 processes checkpointing 16 MB of data can
checkpoint 60 minutes faster using staggered checkpointing than they can us-
ing synchronous checkpointing. Below the green (or light gray) synchronous
checkpointing saturates the file system. Below the red (or dark gray) line
staggered checkpointing saturates the file system. A bold number indicates
that staggered checkpointing makes checkpointing that configuration feasible,
or reduces checkpoint time to under 15 minutes. “c:” and “t:” indicate the
confidence and tolerance intervals, respectively.
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Checkpoint Number of Processes
Size 256 512 1,024 2,048 4,096 8,192 16,384

4 MB

0(0%)
4(20%)
c:2-6
t:1-6

1(0%)
4(20%)
c:2-6
t:2-6

2(10%)
5(30%)
c:3-7
t:3-8

7(30%)
10(40%)
c:7-13
t:7-13

24(60%)
27(70%)
c:22-32
t:21-33

67(60%)
75(70%)
c:63-88
t:60-91

–

8 MB

1(10%)
5(30%)
c:3-7
t:2-7

4(20%)
8(40%)
c:5-10
t:5-11

15(50%)
18(60%)
c:15-22
t:14-23

56(80%)
60(80%)
c:51-68
t:49-70

55(20%)
94(40%)
c:66-122
t:59-129

– –

16 MB

2(10%)
6(30%)
c:3-8
t:3-8

7(30%)
11(50%)
c:8-14
t:7-15

28(60%)
32(70%)
c:26-37
t:25-38

49(40%)
65(50%)
c:50-80
t:47-84

– – –

32 MB

4(20%)
7(30%)
c:5-10
t:4-11

14(40%)
17(50%)
c:14-21
t:13-22

34(50%)
42(60%)
c:33-51
t:31-53

– – – –

64 MB

6(20%)
11(40%)
c:7-14
t:7-15

18(40%)
24(50%)
c:18-30
t:17-31

– – – – –

128 MB

7(20%)
14(40%)
c:9-18
t:8-19

– – – – – –

256 MB – – – – – – –

512 MB – – – – – – –

1 GB – – – – – – –

Table 4.7: Lonestar Solution Space (Total Time in 15 minute Interval), Statis-
tical Information: This table shows the execution time improvement in minutes
between staggered checkpointing and synchronous checkpointing for processes
executing approximately fifteen minutes of local instructions. The number in
parentheses represents the percentage improvement. The table shows that for
2,048 processes checkpointing 16 MB of data the execution time is reduced
by 48 minutes or 40% using staggered checkpointing rather than using syn-
chronous checkpointing. Below the green (or light gray) synchronous check-
pointing saturates the file system. Below the red (or dark gray) line staggered
checkpointing saturates the file system. “c:” and “t:” indicate the confidence
and tolerance intervals, respectively.
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Figure 4.6: Lonestar Solution Space (Checkpoint Time in 30 Minute Interval).
This figure displays the time spent checkpointing for various numbers of pro-
cesses writing various per process checkpoint sizes in a thirty minute interval
size.

in the synchronous case for five configurations. Table 4.7 presents the

numbers related to the total execution time.

As the interval size increases to thirty minutes, the space where stag-

gered checkpointing achieves maximum benefit expands to even larger config-

urations. In Figure 4.6, we see that all configurations are now feasible except

for one—4,096 processes writing 8 MB of data each. This configuration is also

not included in the sweet spot shown in Table 4.8. This results seems odd

given the improvement in 8,192 processes checkpointing 4 MB each and 2,048

processes checkpointing 16 MB each. But in fact, we see similar jumps in the

other configurations as the amount of data increases from 4 MB to 8 MB per

process. This effect is most likely an artifact of the file system, which uses a
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Figure 4.7: Lonestar Solution Space (Total Time in 30 Minute Interval). This
figure displays the total execution time for various numbers of processes writing
various per process checkpoint sizes in a thirty minute interval size.

more efficient protocol for sizes less than or equal to 4 MB.

In Table 4.8, we see that the sweet spot expands to include one config-

uration.

Table 4.9 presents the numbers related to the total execution time.

Checkpoint Locations. Recall that our synthetic benchmark allows

N checkpoint locations for the staggered policy. Effectively, then, in the stag-

gered policy 1/N th of the total processes checkpoint at each location. So when

N is set to 12, as it is for these experiments, and the total number of processes

is 1024, there are 85 or 86 processes checkpointing at each location, effectively

making the staggered case equivalent to the synchronous case for 85 or 86 pro-

cesses. We can see this effect by comparing Table 4.2 and Table 4.10, where
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Checkpoint Number of Processes
Size 256 512 1,024 2,048 4,096 8,192 16,384

4 MB

0(50%)
0(50%)
c:0-0
t:0-0

1(70%)
1(70%)
c:1-1
t:1-1

2(80%)
2(90%)
c:2-2
t:2-2

7(90%)
7(90%)
c:6-7
t:6-7

24(100%)
24(100%)
c:23-26
t:23-26

89(100%)
92(100%)
c:88-96
t:86-97

–

8 MB

1(70%)
1(70%)
c:1-1
t:1-1

4(90%)
4(90%)
c:4-5
t:4-5

15(90%)
15(90%)
c:15-16
t:14-16

56(100%)
58(100%)
c:55-61
t:55-62

184(80%)
189(80%)
c:178-200
t:176-203

– –

16 MB

2(60%)
2(60%)
c:2-2
t:2-2

7(90%)
8(90%)
c:7-8
t:7-8

28(100%)
29(100%)
c:28-30
t:27-31

109(100%)
113(100%)
c:107-118
t:106-120

– – –

32 MB

4(60%)
4(60%)
c:4-4
t:3-4

14(90%)
15(90%)
c:14-15
t:14-16

54(90%)
56(90%)
c:53-59
t:53-60

– – – –

64 MB

7(60%)
7(60%)
c:7-8
t:6-8

27(80%)
28(80%)
c:26-29
t:26-30

– – – – –

128 MB

12(60%)
13(60%)
c:12-14
t:11-14

– – – – – –

256 MB – – – – – – –
512 MB – – – – – – –

1 GB – – – – – – –

Table 4.8: Lonestar Solution Space (Checkpoint Time in 30 Minute Interval),
Statistical Information: This table shows the improvement in time spent check-
pointing between staggered checkpointing and synchronous checkpointing in
minutes for checkpoints staggered across approximately thirty minutes of local
execution. So 2,048 processes checkpointing 16 MB of data can checkpoint 109
minutes faster using staggered checkpointing than they can using synchronous
checkpointing. Below the green (or light gray) synchronous checkpointing satu-
rates the file system. Below the red (or dark gray) line staggered checkpointing
saturates the file system. A bold number indicates that staggered checkpoint-
ing makes checkpointing that configuration feasible, or reduces checkpoint time
to under 15 minutes. “c:” and “t:” indicate the confidence and tolerance in-
tervals, respectively.

1024 processes writing 16 MB in the staggered case require the same amount

of checkpointing time, 1 minute, as 85 processes writing 16 MB in the syn-
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Checkpoint Number of Processes
Size 256 512 1,024 2,048 4,096 8,192 16,384

4 MB

0(0%)
7(20%)
c:3-11
t:2-12

1(0%)
7(20%)
c:3-11
t:3-12

2(10%)
9(30%)
c:5-13
t:4-14

7(20%)
13(30%)
c:9-18
t:8-19

24(40%)
30(50%)
c:24-37
t:22-38

89(70%)
96(80%)
c:82-110
t:79-113

–

8 MB

1(0%)
8(20%)
c:4-12
t:3-13

4(10%)
11(30%)
c:7-15
t:6-16

15(30%)
22(50%)
c:16-27
t:15-29

56(60%)
63(70%)
c:53-74
t:51-76

159(60%)
179(70%)
c:150-208
t:143-215

– –

16 MB

2(10%)
9(30%)
c:5-13
t:4-14

7(20%)
14(40%)
c:10-19
t:8-20

28(50%)
35(60%)
c:28-42
t:26-44

109(80%)
116(80%)
c:100-133
t:96-137

– – –

32 MB

4(10%)
11(30%)
c:6-15
t:5-16

14(30%)
21(40%)
c:16-27
t:14-28

54(60%)
62(70%)
c:51-72
t:49-74

– – – –

64 MB

7(20%)
14(30%)
c:9-20
t:8-21

27(40%)
34(50%)
c:27-42
t:25-43

– – – – –

128 MB

12(20%)
21(40%)
c:15-27
t:13-29

– – – – – –

256 MB – – – – – – –

512 MB – – – – – – –

1 GB – – – – – – –

Table 4.9: Lonestar Solution Space (Total Time in 30 Minute Interval), Statis-
tical Information: This table shows the execution time improvement in minutes
between staggered checkpointing and synchronous checkpointing for processes
executing approximately thirty minutes of local instructions. The number in
parentheses represents the percentage improvement. The table shows that for
2,048 processes checkpointing 16 MB of data the execution time is reduced by
109 minutes or 80% using staggered checkpointing rather than synchronous
checkpointing. Below the green (or light gray) synchronous checkpointing
saturates the file system. Below the red (or dark gray) line staggered check-
pointing saturates the file system. “c:” and “t:” indicate the confidence and
tolerance intervals, respectively.

chronous case, which would fall between 64 processes and 128 processes. As

long as each set of checkpoints finishes before the next set starts, this effect

will continue. When a set of checkpoints does not complete before the next set
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Checkpoint Number of Processes

Size 16 32 64 128 256 512 1,024 2,048 4,096 8,192 16,384

4 MB 0 0 0 0 0 0 0 0 0 13 271
8 MB 0 0 0 0 0 0 0 1 149 784 3,352

16 MB 1 1 1 1 1 1 1 51 358 1,634 6,765
32 MB 2 2 2 2 2 2 18 158 782 3,340 13,592
64 MB 4 4 4 4 5 11 72 372 1,636 6,755 27,209

128 MB 8 8 8 9 14 41 183 802 3,347 13,579 54,526
256 MB 17 17 18 21 36 103 405 1,664 6,767 27,243 109,159
512 MB 35 35 37 45 80 227 849 3,387 13,612 54,573 218,425

1 GB 70 71 75 93 168 476 1,737 6,836 27,303 109,232 436,958

Table 4.10: Lonestar Solution Space (Staggered Checkpoint Time in 15 Minute
Interval): This table shows the number of minutes spent checkpointing for the
staggered policy with approximately fifteen minutes of local execution time.
Note that the data in this table begins at 16 processes.

starts, staggered checkpointing does not achieve the maximum improvement,

but it can still improve the checkpointing time. For instance, when we com-

pare 1,024 processes writing 32 MB in Table 4.10 and 1,024 processes writing

32 MB in Table 4.2, the staggered case, which requires 18 minutes, is much

faster than the synchronous case, which requires 57 minutes. However, the

staggered case is significantly slower than the 85 process synchronous case,

which only requires 2-3 minutes. If our synthetic benchmark were to allow

more checkpoint locations, we would likely see more improvement at larger

interval sizes.

Error Analysis. Our results for Lonestar show that staggered check-

pointing is still beneficial even when we consider the error margins for our

simulator. Let 1.0 represent the measured execution time of our synthetic

benchmarks with checkpointing. Then from Chapter 3, we know that the av-
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erage error for our synthetic benchmark with synchronous checkpointing is a

factor of 1.0 of the measured execution time, and the average error for the

synthetic benchmark with staggered checkpointing is 1.27. These errors mean

that the simulator consistently overpredicts the execution time of staggered

checkpointing on Lonestar. Thus, our results are conservative, and staggered

checkpointing should produce more benefit than we see here.

4.2.2 Ranger

Ranger [205] consists of local hardware with four 2.3 GHz processors

with four cores each, an Infiniband network for communication, and a Lustre

file system featuring 40 GB/s throughput [186]. Ranger is a newer, more

modern supercomputer than Lonestar. It was installed in 2008 and is currently

ranked 11 in the Top 500 list [8]. We use Ranger differently than Lonestar:

our simulator assumes that each application on Ranger executes with sixteen

processes per node, which is quite different from the one process per node

configuration we use on Lonestar.

Problem Space. The Ranger problem space results show that staggered

checkpointing has great potential to reduce the overhead caused by synchronous

checkpointing. In the problem definition table for Ranger, Table 4.11, smaller

configurations, such as 256 processes each writing 4 MB of data, and even up

to 1,024 processes each writing 16 MB of data, show little to no room for im-

provement; synchronous checkpointing performs well for these configurations.
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Checkpoint Number of Processes
Size 256 512 1,024 2,048 4,096 8,192 16,384 32,768 65,536

4 MB 0 0 1 5 19 74 296 1,184 4,736
8 MB 0 0 1 6 23 89 356 1,420 5,673

16 MB 0 1 3 11 45 178 710 2,837 11,340
32 MB 0 1 6 22 89 355 1,418 5,670 22,673
64 MB 1 3 11 44 178 709 2,835 11,338 45,341

128 MB 1 6 22 89 355 1,418 5,669 22,672 90,675
256 MB 3 11 44 177 709 2,834 11,336 45,341 181,343
512 MB 6 22 89 354 1,417 5,668 22,671 90,679 362,680

1 GB 11 44 177 709 2,834 11,335 45,340 181,355 725,354

Table 4.11: Ranger Problem Space: This table identifies the problem space and
compares the performance of synchronous checkpointing to the performance
of a single process checkpointing the same amount of data. So, one process
can checkpoint 16 MB 11 minutes faster than the 2,048 processes can each
checkpoint 16 MB. The numbers reflect the difference in minutes between
one process checkpointing and multiple processes checkpointing and show the
upper bound for improvement by staggered checkpointing. Below the red
(or dark gray) line synchronous checkpointing saturates the file system. One
process writing the amounts of data shown in this table does not saturate the
file system.

For larger configurations such as 16,384 processes each writing 4 MB of data,

there is much room for improvement. For the middle-sized configurations,

such as 2,048 processes writing 32 MB of data, staggered checkpointing can

improve checkpointing time, but the maximum improvement is a small number

of minutes. Ranger’s file system can write 40 GB/s, so the time needed for

processes to synchronously checkpoint is smaller than that of Lonestar, and

thus the potential benefit of staggering is smaller.
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Checkpoint Number of Processes
Size 256 512 1,024 2,048 4,096 8,192 16,384 32,768 65,536

4 MB 0 0 1 5 19 74 296 1,184 4,736
8 MB 1 1 2 6 23 90 356 1,421 5,674

16 MB 2 3 5 13 46 180 712 2,839 11,342
32 MB 4 6 10 26 93 359 1,423 5,675 22,678
64 MB 9 12 20 53 186 718 2,844 11,346 45,349

128 MB 19 23 40 107 373 1,436 5,687 22,690 90,693
256 MB 39 47 81 214 745 2,871 11,373 45,377 181,380
512 MB 79 95 162 428 1,490 5,741 22,744 90,752 362,753

1 GB 158 191 324 855 2,981 11,482 45,487 181,502 725,501

Table 4.13: Ranger Problem Space: This table reports the number of minutes
needed for a number of processes to each synchronously checkpoint an amount
of data. So 2,048 processes checkpointing 16 MB of data requires 13 minutes.
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Figure 4.8: Ranger Solution Space (Checkpoint Time in 3 Minute Interval).
This figure displays the time spent checkpointing for various numbers of pro-
cesses writing various per process checkpoint sizes in a three minute interval
size.

Solution Space. As in our Lonestar analysis, our solution space results show

that staggered checkpointing reduces checkpoint overhead for many configura-

tions. Since the Ranger file system is faster than that of Lonestar, staggered

checkpointing is able to benefit a larger number of process configurations and

data sizes than it could on Lonestar. However, it has less benefit for the small

configurations. This result applies to every interval size.

On Ranger, staggering the checkpoints over even a small interval size

can improve checkpoint time, but the time is only improved by a small amount.

For example, Figures 4.8 and 4.9 and Tables 4.14 and 4.15, show improvement
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Figure 4.9: Ranger Solution Space (Checkpoint Time in 3 Minute Interval).
This figure displays the total execution time for various numbers of processes
writing various per process checkpoint sizes in a three minute interval size.

for checkpoints staggered within the three minute interval size. Staggered

checkpointing does improve the checkpointing time by at least 50% for three

configurations: 1,024 processes and 2,048 processes each writing 4 MB of data,

and 2,048 processes writing 8 MB of data. However, in each case, the total

improvement is four minutes or less. For these small configurations in this

small interval size, staggered checkpointing is useful but shows small absolute

savings. For larger configurations, the improvement is negligible.

The sweet spot, shown in Table 4.14, only contains four configurations

for this interval size. Only a single configuration, 4,096 processes writing 4

MB of data each, is converted from infeasible to feasible; its checkpoint time
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Checkpoint Number of Processes
Size 256 512 1,024 2,048 4,096 8,192 16,384 32,768 65,536

4 MB

0(10%)
0(10%)
c:0-0
t:0-0

0(40%)
0(40%)
c:0-0
t:0-0

1(70%)
1(70%)
c:1-1
t:1-1

4(80%)
4(80%)
c:4-4
t:4-4

8(40%)
8(40%)
c:7-9
t:7-9

12(20%)
12(20%)
c:9-15
t:9-16

15(10%)
15(10%)
c:3-27
t:0-30

17(0%)
16(0%)
c:-31-63
t:-44-77

17(0%)
16(0%)
c:-173-205
t:-227-260

8 MB

0(10%)
0(10%)
c:0-0
t:0-0

0(20%)
0(20%)
c:0-0
t:0-0

1(40%)
1(40%)
c:1-1
t:1-1

3(50%)
3(50%)
c:3-3
t:3-3

6(30%)
6(30%)
c:5-7
t:5-7

10(10%)
10(10%)
c:7-14
t:6-14

14(0%)
14(0%)
c:0-28
t:-4-32

16(0%)
16(0%)
c:-41-72
t:-57-88

–

16 MB

0(0%)
0(0%)
c:0-0
t:0-0

0(10%)
0(10%)
c:0-0
t:0-1

1(20%)
1(20%)
c:1-1
t:1-1

3(20%)
3(20%)
c:3-4
t:3-4

6(10%)
6(10%)
c:5-8
t:4-9

11(10%)
10(10%)
c:3-17
t:1-19

14(0%)
14(0%)
c:-14-42
t:-23-50

– –

32 MB

0(0%)
0(0%)
c:0-0
t:0-0

0(10%)
0(10%)
c:0-1
t:0-1

1(10%)
1(10%)
c:1-2
t:1-2

3(10%)
3(10%)
c:2-4
t:2-4

7(10%)
6(10%)
c:3-10
t:2-11

11(0%)
10(0%)
c:-4-24
t:-8-29

– – –

64 MB

0(0%)
0(0%)
c:0-0
t:0-1

0(0%)
0(0%)
c:0-1
t:0-1

1(10%)
1(10%)
c:0-2
t:0-2

3(10%)
3(10%)
c:1-5
t:0-6

7(0%)
6(0%)
c:-1-14
t:-3-16

– – – –

128 MB

0(0%)
0(0%)
c:-1-1
t:-1-1

0(0%)
0(0%)
c:-1-1
t:-1-2

1(0%)
1(0%)
c:0-3
t:-1-3

3(0%)
3(0%)
c:-1-7
t:-2-9

– – – – –

256 MB

0(0%)
0(0%)
c:-1-2
t:-2-2

0(0%)
0(0%)
c:-2-2
t:-2-3

1(0%)
1(0%)
c:-2-4
t:-3-5

– – – – – –

512 MB

0(0%)
0(0%)
c:-3-3
t:-4-4

0(0%)
0(0%)
c:-3-4
t:-5-5

– – – – – – –

1 GB

0(0%)
0(0%)
c:-6-6
t:-8-8

– – – – – – – –

Table 4.14: Ranger Solution Space (Checkpoint Time in 3 Minute Interval),
Statistical Information: This table shows the improvement in time spent check-
pointing between staggered checkpointing and synchronous checkpointing in
minutes for checkpoints staggered across approximately three minutes of local
execution. So 2,048 processes checkpointing 16 MB of data can checkpoint 3
minutes faster using staggered checkpointing than they can using synchronous
checkpointing. Below the green (or light gray) synchronous checkpointing satu-
rates the file system. Below the red (or dark gray) line staggered checkpointing
saturates the file system. A bold number indicates that staggered checkpoint-
ing makes checkpointing that configuration feasible, or reduces checkpoint time
to under 15 minutes. “c:” and “t:” indicate the confidence and tolerance in-
tervals, respectively.
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Checkpoint Number of Processes
Size 256 512 1,024 2,048 4,096 8,192 16,384 32,768 65,536

4 MB

0(0%)
0(0%)
c:0-0
t:0-0

0(10%)
0(10%)
c:0-0
t:0-0

1(20%)
1(30%)
c:1-1
t:1-1

4(50%)
4(50%)
c:4-4
t:4-4

7(30%)
7(30%)
c:6-8
t:6-8

10(10%)
11(10%)
c:9-14
t:9-14

12(0%)
18(10%)
c:8-27
t:7-28

13(0%)
37(0%)
c:-2-76
t:-5-79

13(0%)
109(0%)
c:-46-264
t:-60-279

8 MB

0(0%)
0(0%)
c:0-0
t:0-0

0(10%)
0(10%)
c:0-1
t:0-1

1(20%)
1(20%)
c:1-1
t:1-1

3(30%)
3(30%)
c:3-3
t:3-3

5(20%)
6(20%)
c:5-7
t:5-7

8(10%)
10(10%)
c:7-13
t:7-13

11(0%)
18(0%)
c:7-30
t:6-31

12(0%)
41(0%)
c:-5-88
t:-9-92

–

16 MB

0(0%)
0(0%)
c:0-0
t:0-0

0(10%)
0(10%)
c:0-1
t:0-1

1(10%)
1(20%)
c:1-1
t:1-1

3(20%)
3(20%)
c:3-4
t:2-4

5(10%)
6(10%)
c:5-8
t:5-8

8(0%)
12(10%)
c:6-18
t:6-18

11(0%)
25(0%)
c:2-49
t:0-51

– –

32 MB

0(0%)
0(0%)
c:0-0
t:0-1

0(0%)
0(10%)
c:0-1
t:0-1

1(10%)
1(10%)
c:1-2
t:1-2

3(10%)
3(10%)
c:2-4
t:2-4

5(10%)
7(10%)
c:4-10
t:4-11

8(0%)
16(0%)
c:4-27
t:3-28

– – –

64 MB

0(0%)
0(0%)
c:0-1
t:0-1

0(0%)
1(0%)
c:0-1
t:0-1

1(0%)
2(10%)
c:1-2
t:1-2

3(0%)
4(10%)
c:2-6
t:2-6

5(0%)
9(0%)
c:3-15
t:2-16

– – – –

128 MB

0(0%)
1(0%)
c:0-1
t:0-1

0(0%)
1(0%)
c:0-2
t:0-2

1(0%)
2(0%)
c:1-3
t:0-3

3(0%)
5(0%)
c:1-8
t:1-9

– – – – –

256 MB

0(0%)
1(0%)
c:0-2
t:-1-2

0(0%)
1(0%)
c:0-3
t:0-3

1(0%)
3(0%)
c:0-5
t:0-6

– – – – – –

512 MB

0(0%)
2(0%)
c:-1-4
t:-1-5

0(0%)
2(0%)
c:-1-6
t:-1-6

– – – – – – –

1 GB

0(0%)
3(0%)
c:-2-9
t:-2-9

– – – – – – – –

Table 4.15: Ranger Solution Space (Total Time in 3 Minute Interval), Statisti-
cal Information: This table shows the execution time improvement in minutes
between staggered checkpointing and synchronous checkpointing for processes
executing approximately three minutes of local instructions. The number in
parentheses represents the percentage improvement. The table shows that for
2,048 processes checkpointing 16 MB of data the execution time is reduced by 3
minutes or 20% using staggered checkpointing rather than synchronous check-
pointing. Below the green (or light gray) synchronous checkpointing saturates
the file system. Below the red (or dark gray) line staggered checkpointing
saturates the file system. “c:” and “t:” indicate the confidence and tolerance
intervals, respectively.
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Figure 4.10: Ranger Solution Space (Checkpoint Time in 15 Minute Interval).
This figure displays the time spent checkpointing for various numbers of pro-
cesses writing various per process checkpoint sizes in a fifteen minute interval
size.

is reduced from 19 minutes to 10 minutes.

In Figures 4.10 and 4.11 and Tables 4.16 and 4.17, the interval size

increases to approximately fifteen minutes and we see improvement in a larger

number of configurations with larger numbers of processes and larger data sizes

than those that were improved in the three minute interval size. In Table 4.16,

the number of configurations in the sweet spot has almost tripled to 11. In

addition, staggered checkpointing exhibits significant time savings. It achieves

maximum improvement six configurations: up to 2,048 processes writing up

to 16 MB of data each. In addition, it reduces checkpointing time by at least

50% for an additional six configurations: 1,024 and 2,048 processes writing 32

MB, 4,096 processes writing up to 16 MB, and 8,192 processes writing up to
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Figure 4.11: Ranger Solution Space (Total Time in 15 Minute Interval). This
figure displays the total execution time for various numbers of processes writing
various per process checkpoint sizes in a fifteen minute interval size.

8 MB. As Figures 4.10 and 4.11 show, many of these configurations show a

significant absolute time improvement as well.

Five configurations are converted from infeasible to feasible in this in-

terval size. This small number of conversions represents a significant drop

from the Lonestar results, where all but three configurations were feasible in

the fifteen minute interval size. However, our Ranger simulations are able to

consider much larger configurations, and all the configurations represented in

the Lonestar results are feasible with staggered checkpointing on Ranger in

the fifteen minute interval size.

In Figure 4.11, total execution time is less than twenty minutes in the

staggered case for ten configurations; the total execution time only remains
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Checkpoint Number of Processes
Size 256 512 1,024 2,048 4,096 8,192 16,384 32,768 65,536

4
MB

0(10%)
0(10%)
c:0-0
t:0-0

0(40%)
0(40%)
c:0-0
t:0-0

1(70%)
1(70%)
c:1-1
t:1-1

5(90%)
4(90%)
c:4-5
t:4-5

18(100%)
18(100%)
c:17-18
t:17-19

73(100%)
71(100%)
c:69-73
t:69-74

77(30%)
75(30%)
c:65-86
t:62-89

84(10%)
81(10%)
c:36-127
t:23-140

85(0%)
83(0%)
c:-105-271
t:-159-325

8
MB

0(10%)
0(10%)
c:0-0
t:0-0

0(30%)
0(30%)
c:0-0
t:0-0

1(60%)
1(60%)
c:1-1
t:1-2

6(80%)
5(80%)
c:5-6
t:5-6

22(90%)
21(90%)
c:21-22
t:21-22

54(60%)
53(60%)
c:50-56
t:49-56

70(20%)
68(20%)
c:55-81
t:52-85

81(10%)
78(10%)
c:23-134
t:7-150

–

16
MB

0(10%)
0(10%)
c:0-0
t:0-0

1(20%)
1(20%)
c:1-1
t:1-1

3(50%)
3(50%)
c:3-3
t:2-3

11(80%)
10(80%)
c:10-11
t:10-11

33(70%)
32(70%)
c:30-33
t:30-34

53(30%)
51(30%)
c:45-57
t:43-59

71(10%)
69(10%)
c:42-96
t:34-104

– –

32
MB

0(10%)
0(10%)
c:0-1
t:0-1

1(20%)
1(20%)
c:1-1
t:1-2

5(50%)
5(50%)
c:4-5
t:4-5

16(60%)
15(60%)
c:15-16
t:14-17

33(30%)
32(30%)
c:29-35
t:28-36

53(10%)
51(10%)
c:38-65
t:34-69

– – –

64
MB

0(0%)
0(0%)
c:0-1
t:0-1

2(20%)
2(20%)
c:1-2
t:1-2

6(30%)
6(30%)
c:5-7
t:5-7

16(30%)
16(30%)
c:14-18
t:13-18

33(20%)
32(20%)
c:25-39
t:23-41

– – – –

128
MB

1(0%)
0(0%)
c:0-1
t:-1-2

2(10%)
2(10%)
c:1-3
t:1-3

6(20%)
6(20%)
c:5-8
t:4-8

16(20%)
16(20%)
c:12-20
t:11-21

– – – – –

256
MB

0(0%)
0(0%)
c:-1-2
t:-2-3

2(0%)
2(0%)
c:0-4
t:-1-4

6(10%)
6(10%)
c:3-9
t:2-10

– – – – – –

512
MB

0(0%)
0(0%)
c:-3-4
t:-4-5

2(0%)
2(0%)
c:-2-6
t:-3-7

– – – – – – –

1
GB

1(0%)
0(0%)
c:-6-7
t:-8-9

– – – – – – – –

Table 4.16: Ranger Solution Space (Checkpoint Time in 15 Minute Inter-
val), Statistical Information: This table shows the improvement in time spent
checkpointing between staggered checkpointing and synchronous checkpoint-
ing in minutes for checkpoints staggered across approximately fifteen min-
utes of local execution. So 2,048 processes checkpointing 16 MB of data can
checkpoint 11 minutes faster using staggered checkpointing than they can us-
ing synchronous checkpointing. Below the green (or light gray) synchronous
checkpointing saturates the file system. Below the red (or dark gray) line
staggered checkpointing saturates the file system. A bold number indicates
that staggered checkpointing makes checkpointing that configuration feasible,
or reduces checkpoint time to under 15 minutes. “c:” and “t:” indicate the
confidence and tolerance intervals, respectively.
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Checkpoint Number of Processes
Size 256 512 1,024 2,048 4,096 8,192 16,384 32,768 65,536

4 MB

0(0%)
0(0%)
c:0-1
t:0-1

0(0%)
1(0%)
c:0-1
t:0-1

1(10%)
1(10%)
c:1-2
t:1-2

5(20%)
5(30%)
c:4-6
t:4-6

18(60%)
19(60%)
c:18-20
t:18-20

73(80%)
75(80%)
c:73-77
t:73-77

59(20%)
65(20%)
c:56-75
t:56-75

64(10%)
88(10%)
c:50-126
t:47-130

65(0%)
162(0%)
c:7-316
t:-7-330

8 MB

0(0%)
0(0%)
c:0-1
t:0-1

0(0%)
1(0%)
c:0-1
t:0-1

1(10%)
2(10%)
c:1-2
t:1-2

6(30%)
6(30%)
c:6-7
t:5-7

22(60%)
23(60%)
c:22-24
t:22-24

44(40%)
46(40%)
c:44-49
t:43-49

54(10%)
62(20%)
c:51-73
t:50-74

61(0%)
91(10%)
c:45-137
t:41-141

–

16 MB

0(0%)
1(0%)
c:0-1
t:0-1

1(0%)
1(10%)
c:1-2
t:0-2

3(10%)
3(20%)
c:3-4
t:3-4

11(40%)
11(40%)
c:11-12
t:10-12

28(50%)
29(50%)
c:28-31
t:28-31

41(20%)
45(20%)
c:40-51
t:39-51

55(10%)
69(10%)
c:47-92
t:45-94

– –

32 MB

0(0%)
1(0%)
c:0-1
t:0-1

1(10%)
2(10%)
c:1-2
t:1-2

5(20%)
5(20%)
c:4-6
t:4-6

14(30%)
15(40%)
c:14-16
t:13-16

26(20%)
29(30%)
c:26-32
t:25-32

42(10%)
49(10%)
c:38-61
t:37-62

– – –

64 MB

0(0%)
1(0%)
c:0-2
t:0-2

2(10%)
2(10%)
c:1-3
t:1-3

5(20%)
6(20%)
c:5-7
t:5-7

14(20%)
15(20%)
c:13-17
t:13-17

27(10%)
31(10%)
c:25-37
t:24-37

– – – –

128 MB

0(0%)
1(0%)
c:0-2
t:0-2

2(0%)
2(10%)
c:1-4
t:1-4

5(10%)
6(10%)
c:5-8
t:5-8

14(10%)
16(10%)
c:12-20
t:12-20

– – – – –

256 MB

0(0%)
2(0%)
c:0-3
t:0-3

2(0%)
3(0%)
c:1-5
t:1-5

5(10%)
7(10%)
c:4-10
t:4-10

– – – – – –

512 MB

0(0%)
2(0%)
c:-1-5
t:-1-6

2(0%)
4(0%)
c:0-7
t:0-8

– – – – – – –

1 GB

0(0%)
4(0%)
c:-2-10
t:-2-10

– – – – – – – –

Table 4.17: Ranger Solution Space (Total Time in 15 Minute Interval), Statis-
tical Information: This table shows the execution time improvement in minutes
between staggered checkpointing and synchronous checkpointing for processes
executing approximately fifteen minutes of local instructions. The number in
parentheses represents the percentage improvement. The table shows that for
2,048 processes checkpointing 16 MB of data the execution time is reduced
by 11 minutes or 40% using staggered checkpointing rather than synchronous
checkpointing. Below the green (or light gray) synchronous checkpointing
saturates the file system. Below the red (or dark gray) line staggered check-
pointing saturates the file system. “c:” and “t:” indicate the confidence and
tolerance intervals, respectively.
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Figure 4.12: Ranger Solution Space (Checkpoint Time in 30 Minute Interval).
This figure displays the time spent checkpointing for various numbers of pro-
cesses writing various per process checkpoint sizes in a thirty minute interval
size.

under twenty minutes in the synchronous case for four configurations.

The configurations under twenty minutes for staggered checkpointing are: up

to 8,192 processes writing 4 MB, 4,096 processes writing 8 MB, 2,048 processes

writing 16 MB, and 1,024 processes writing 32 MB. For these configurations,

checkpointing adds less than five minutes of execution time.

Figures 4.12 and 4.13 and Tables 4.18 and 4.19 show a larger benefit

than the previous figures and tables, and the sweet spot has further expanded

to include sixteen configurations. However, staggered checkpointing is still un-

able to reduce the checkpointing time to under an hour for the largest configu-

rations. This result shows that, for checkpointing these large configurations to

be viable, staggered checkpointing will need to be combined with other tech-
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Figure 4.13: Ranger Solution Space (Total Time in 30 Minute Interval). This
figure displays the total execution time for various numbers of processes writing
various per process checkpoint sizes in a thirty minute interval size.

niques, such as those that reduce checkpoint size through compression or by

careful choice of file format.

Error Analysis. Our results for Ranger show that staggered check-

pointing is still beneficial even when we consider the error margins for our

simulator. Let 1.0 represent the measured execution time of our synthetic

benchmarks with checkpointing. Then from Chapter 3, we know that the

average predicted error for our synthetic benchmark with synchronous check-

pointing is a factor of 0.98 of the measured execution time, and the average

predicted error for the synthetic benchmark with staggered checkpointing is

1.0. These errors mean that the simulator consistently underpredicts the exe-

cution time of synchronous checkpointing on Ranger. Thus, our results are
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Checkpoint Number of Processes
Size 256 512 1,024 2,048 4,096 8,192 16,384 32,768 65,536

4
MB

0(10%)
0(10%)
c:0-0
t:0-0

0(40%)
0(40%)
c:0-0
t:0-0

1(70%)
1(70%)
c:1-1
t:1-1

5(90%)
4(90%)
c:4-5
t:4-5

18(100%)
18(100%)
c:17-18
t:17-19

73(100%)
71(100%)
c:69-73
t:69-74

180(60%)
175(60%)
c:166-184
t:163-186

167(10%)
163(10%)
c:118-207
t:106-219

171(0%)
166(0%)
c:-20-352
t:-74-406

8
MB

0(10%)
0(10%)
c:0-0
t:0-0

0(30%)
0(30%)
c:0-0
t:0-0

1(60%)
1(60%)
c:1-1
t:1-2

6(80%)
6(80%)
c:5-6
t:5-6

22(90%)
22(90%)
c:21-22
t:21-23

89(100%)
86(100%)
c:84-89
t:83-89

142(40%)
138(40%)
c:126-149
t:122-153

161(10%)
156(10%)
c:103-210
t:87-226

–

16
MB

0(10%)
0(10%)
c:0-0
t:0-0

1(20%)
1(20%)
c:1-1
t:1-1

3(50%)
3(50%)
c:3-3
t:3-3

11(80%)
11(80%)
c:10-11
t:10-11

44(90%)
43(90%)
c:41-44
t:41-44

110(60%)
107(60%)
c:101-112
t:100-114

142(20%)
138(20%)
c:112-164
t:105-171

– –

32
MB

0(10%)
0(10%)
c:0-1
t:0-1

1(20%)
1(20%)
c:1-2
t:1-2

5(50%)
5(50%)
c:5-6
t:5-6

21(80%)
21(80%)
c:20-22
t:20-22

66(70%)
64(70%)
c:61-66
t:60-67

106(30%)
103(30%)
c:90-115
t:87-119

– – –

64
MB

1(10%)
1(10%)
c:0-1
t:0-1

3(20%)
2(20%)
c:2-3
t:2-3

10(50%)
9(50%)
c:9-10
t:9-10

32(60%)
31(60%)
c:29-33
t:29-33

65(40%)
64(40%)
c:57-70
t:55-72

– – – –

128
MB

1(0%)
1(0%)
c:0-2
t:0-2

4(20%)
4(20%)
c:3-4
t:2-5

12(30%)
12(30%)
c:11-14
t:10-14

33(30%)
32(30%)
c:28-35
t:27-36

– – – – –

256
MB

1(0%)
1(0%)
c:-1-3
t:-1-3

4(10%)
4(10%)
c:2-5
t:1-6

12(20%)
12(20%)
c:9-15
t:8-16

– – – – – –

512
MB

1(0%)
1(0%)
c:-2-4
t:-3-5

4(0%)
4(0%)
c:0-7
t:-1-8

– – – – – – –

1
GB

1(0%)
1(0%)
c:-5-7
t:-7-9

– – – – – – – –

Table 4.18: Ranger Solution Space (Checkpoint Time in 30 Minute Interval),
Statistical Information: This table shows the improvement in time spent check-
pointing between staggered checkpointing and synchronous checkpointing in
minutes for checkpoints staggered across approximately thirty minutes of local
execution. So 2,048 processes checkpointing 16 MB of data can checkpoint 11
minutes faster using staggered checkpointing than they can using synchronous
checkpointing. Below the green (or light gray) synchronous checkpointing satu-
rates the file system. Below the red (or dark gray) line staggered checkpointing
saturates the file system. A bold number indicates that staggered checkpoint-
ing makes checkpointing that configuration feasible, or reduces checkpoint time
to under 15 minutes. “c:” and “t:” indicate the confidence and tolerance in-
tervals, respectively.
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Checkpoint Number of Processes
Size 256 512 1,024 2,048 4,096 8,192 16,384 32,768 65,536

4 MB

0(0%)
1(0%)
c:0-2
t:0-2

0(0%)
1(0%)
c:0-2
t:0-2

1(0%)
2(10%)
c:1-3
t:1-3

5(10%)
5(20%)
c:4-6
t:4-6

18(40%)
19(40%)
c:18-21
t:18-21

73(70%)
76(70%)
c:73-78
t:73-78

145(40%)
152(50%)
c:144-160
t:143-161

127(10%)
152(10%)
c:115-189
t:111-193

129(0%)
227(0%)
c:73-380
t:59-394

8 MB

0(0%)
1(0%)
c:0-2
t:0-2

0(0%)
1(0%)
c:0-2
t:0-2

1(0%)
2(10%)
c:1-3
t:1-3

6(20%)
6(20%)
c:5-7
t:5-7

22(40%)
23(40%)
c:22-25
t:22-25

89(80%)
91(80%)
c:89-94
t:88-94

111(30%)
118(30%)
c:108-129
t:107-130

123(10%)
152(10%)
c:107-197
t:103-201

–

16
MB

0(0%)
1(0%)
c:0-2
t:0-2

1(0%)
1(0%)
c:0-2
t:0-2

3(10%)
3(10%)
c:2-5
t:2-5

11(30%)
12(30%)
c:11-13
t:11-13

44(60%)
45(60%)
c:44-47
t:44-47

90(40%)
94(40%)
c:89-99
t:88-100

109(10%)
124(20%)
c:102-146
t:100-148

– –

32
MB

0(0%)
1(0%)
c:0-2
t:0-2

1(0%)
2(10%)
c:1-3
t:1-3

5(10%)
6(20%)
c:5-7
t:5-7

21(40%)
22(40%)
c:21-24
t:21-24

57(50%)
59(50%)
c:56-62
t:56-62

83(20%)
91(20%)
c:80-102
t:79-103

– – –

64
MB

1(0%)
1(0%)
c:0-3
t:0-3

2(10%)
3(10%)
c:2-4
t:2-5

9(20%)
10(20%)
c:9-12
t:9-12

28(30%)
29(40%)
c:27-31
t:27-32

53(20%)
57(30%)
c:51-63
t:51-64

– – – –

128
MB

1(0%)
2(0%)
c:0-3
t:0-3

3(10%)
4(10%)
c:3-6
t:2-6

10(20%)
12(20%)
c:10-14
t:10-14

27(20%)
30(20%)
c:26-34
t:26-34

– – – – –

256
MB

1(0%)
2(0%)
c:0-4
t:0-5

3(0%)
5(10%)
c:2-7
t:2-7

10(10%)
13(10%)
c:9-16
t:9-16

– – – – – –

512
MB

1(0%)
3(0%)
c:0-6
t:-1-7

3(0%)
6(0%)
c:2-10
t:1-10

– – – – – – –

1 GB

1(0%)
5(0%)
c:-1-11
t:-2-11

– – – – – – – –

Table 4.19: Ranger Solution Space (Total Time in 30 Minute Interval), Statis-
tical Information: This table shows the execution time improvement in minutes
between staggered checkpointing and synchronous checkpointing for processes
executing approximately thirty minutes of local instructions. The number in
parentheses represents the percentage improvement. The table shows that for
2,048 processes checkpointing 16 MB of data the execution time is reduced
by 11 minutes or 30% using staggered checkpointing rather than synchronous
checkpointing. Below the green (or light gray) synchronous checkpointing
saturates the file system. Below the red (or dark gray) line staggered check-
pointing saturates the file system. “c:” and “t:” indicate the confidence and
tolerance intervals, respectively.
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conservative, and staggered checkpointing should produce more benefit

than we see here.

4.2.3 The Effects of Interval Size

In our results, we identify the sweet spot for each interval size. As

the interval size increases, the sweet spot expands so that it covers configura-

tions with larger numbers of processes checkpointing larger amounts of data.

Configurations above and to the left of the sweet spot typically have a very

fast synchronous checkpoint time and staggered checkpointing is not neces-

sary. Configurations below and to the right of the sweet spot are so large that

staggered checkpointing cannot reduce checkpoint time to under 30 minutes.

As the interval size increases, the space where staggered checkpoint-

ing achieves maximum benefit expands to include larger configurations. On

Ranger, we see that only four configurations are in the sweet spot for the three

minute interval size. This number almost triples for the fifteen minute interval

size, and then increases by just over a third for the thirty minute configuration.

On Lonestar, we see that the three minute interval size provides a sweet spot

of six configurations and that the size of the sweet spot doubles for the fifteen

minute interval size. However, the size of the sweet spot has stabilized for

the sixteen minute interval size. This effect occurs since once the processes at

one checkpoint location can complete their checkpoints before the processes at

the next checkpoint location start, more time separating the checkpoints does

not provide more opportunity to reduce contention. For instance, on Lonestar
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for 256 processes writing 8 MB we achieve maximum benefit staggering over

just three minutes of local execution time (Figure 4.1). For larger configura-

tions, such as 256 processes writing 32 MB and 512 processes writing 16 MB,

we achieve maximum benefit when checkpoints are staggered through fifteen

minutes of local execution time (Figure 4.4), and 1,024 processes writing 16

MB need thirty minutes of local execution time to achieve maximum benefit

(Figure 4.6). We also see this effect in Table ??, where the sweet spot only

increases by one configuration from the 15 minute interval.

4.2.4 Comparison Between Systems

The Ranger file system is faster than that of Lonestar, so the Ranger

results show that improvement is realized in larger configurations at smaller

time scales. However, the effect of contention from synchronous checkpoint-

ing on Ranger is greatly reduced from its effect on Lonestar, so there is less

room for improvement through staggered checkpointing. Thus, Lonestar shows

more improvement in these figures and tables, but if we compare the amount

of checkpointing time required for staggered checkpointing to write the check-

points for each configuration, staggered checkpointing on Ranger makes check-

pointing viable for more, and larger, configurations than staggered checkpoint-

ing on Lonestar.

We can use the staggered checkpointing performance trends between

Lonestar, the older supercomputer, and Ranger, the newer supercomputer, to

predict how staggered checkpointing will behave on future systems. We see
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that better file system performance delays the need for staggered checkpoint-

ing, but, once staggered checkpointing is necessary, it also extends the area

where it is beneficial. We can see this effect in the sweet spots of our tables.

While the sweet spots do not differ much in terms of size, the Ranger sweet

spots include many more configurations with at least 1,024 processes. As file

systems become faster, staggered checkpointing will become more beneficial

to larger numbers of processes each writing larger amounts of data than it is

currently.

As systems grow larger, the applications running on them will also grow

larger, so staggered checkpointing will continue to be useful. We expect the ap-

plications will continue to grow larger due to the current support for capability

computing, which encourages application developers to use more processes per

application. For instance, the original RedStorm allocation policies set aside

80% of the compute-node hours to be used by applications using a minimum

of 40% of the computer nodes [147]. RedStorm initially had 10,880 processors,

and now has 38,400. In addition, many large-scale applications use weak scal-

ing, so enough work exists for each process even when process counts are large.

However, our results show that as staggered checkpointing is applied to larger

configurations, it also needs a larger interval size to show improvement. In

addition, to checkpoint large configurations such as 16,384 processes writing 4

MB of data each in a reasonable amount of time, staggered checkpointing will

need to be combined with other techniques, such as data compression.

103



4.2.5 Relationship to Application Characteristics

Using the approximate local execution time and the number of pro-

cesses, we can relate these spaces to our application benchmarks, BT, SP, LU,

which are NAS parallel benchmarks [51], and Ek-simple, a well-known CFD

benchmark, for various checkpoint sizes. The characteristics for a single phase

of each of our benchmarks are reported in Table 4.20. Recall that the pro-

cesses checkpoint throughout the execution time, so the local execution time

corresponds with the times represented by our tables. Comparing these char-

acteristics to our results, we see that the benchmarks most closely relate to

the results presented for the three minute interval size (Figures 4.1, 4.3), 4.10,

and 4.11). To achieve these per-phase execution times, which are much longer

than the standard execution times for these benchmarks, we assume very high

problem sizes. As a result, the live data sizes for these benchmarks with these

configurations are higher than the expected amount of checkpoint data and,

for BT and Ek-Simple, higher than the amount of memory available on most

systems.

In addition, Table 4.21 displays the characteristics of five scientific ap-

plications. Comparing these applications to our problem and solution spaces,

we see that the first two applications, modeling tides [114] and supersonic tur-

bulence [6], could perform synchronous checkpointing on Ranger for the data

sizes we investigate. On Lonestar, both applications are likely to benefit from

staggered checkpointing for data sizes over 64 MB for the tide modeling appli-

cation and 32 MB of the supersonic turbulence application. The earthquake
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Benchmark Processes Approximate Local Execution Time (s) Liveness

Lonestar Ranger Size

BT
1,024 3m20s 2m21s 62 GB
4,096 5m47s 4m6s 98 GB

16,384 4m32s 3m13s 114 GB

Ek-simple
1,024 3m6s 2m44s 534 GB
4,096 3m6s 2m44s 534 GB

16,384 3m6s 2m44s 534 GB

LU
1,024 3m31s 3m11s 14 GB
4,096 2m55s 2m38s 15 GB

16,384 4m6s 3m43s 23 GB

SP
1,024 2m41s 3m4s 21 GB
4,096 2m57s 3m20s 26 GB

16,384 2m50s 3m18s 31 GB

Table 4.20: Liveness sizes and instructions in a single phase for a subset of
the NAS parallel benchmarks [51], BT, LU, and SP, and a well-known CFD
benchmark, Ek-simple.

Application Approximate
Subject Processes Execution Time

Modeling Tides [114] 256 45 days
Supersonic Turbulence [6] 512 41 days
Earthquakes [60] 2,000 35 hours
Turbulent Combustion [55] 10,000 10 days
Turbulence [23] 65,536 1 week

Table 4.21: Characteristics of Real-World Applications

simulation [60] would benefit from staggered checkpointing for checkpoint sizes

over 32 MB on Ranger and 4 MB on Lonestar. The fourth application, which

studies turbulent combustion [55], would benefit from staggered checkpoint-

ing on Ranger, but for the checkpointing time to be feasible it would need to

checkpoint less than 8 MB of data in at least a fifteen minute interval. The

last application also could benefit from staggered checkpointing on Ranger,

but staggered checkpointing cannot decrease the checkpoint time below and

hour with an interval size of thirty minutes or less.
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4.3 Conclusions

Within the solution spaces, staggered checkpointing reduces both check-

pointing time and overall execution time. The solution spaces as presented are

significant for both Lonestar and Ranger; staggered checkpointing is a useful

technique for both these systems. Checkpoint locations only need to be sep-

arated by approximately three minutes for improvements to be realized in

some configurations on both Lonestar and Ranger. As the time separating the

checkpoints increases, the amount of improvement shown increases for both

machines.

An important result of staggered checkpointing is its ability to make

checkpointing feasible for some configurations when it was not before. As

expected, the number of converted configurations increases as the amount of

time in which to stagger increases. However, some configurations require over

an hour to checkpoint for even the thirty minute interval size. To checkpoint

these configurations, staggered checkpointing should be combined with other

techniques, such as data compression.

Since Ranger is ranked 11 in the Top 500 Supercomputer Sites [8] and

Lonestar is ranked 123, these techniques will extend to a large range of super-

computers.
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Chapter 5

Algorithm for Compiler-Assisted Staggered

Checkpointing

This chapter describes our algorithm and set of heuristics that allow

the compiler to place staggered checkpoints in parallel applications. Placing

staggered checkpoints is challenging because of the large solution search space,

which grows as LP , where L is the number of possible checkpoint locations and

P is the number of processes executing the checkpoint locations. Moreover,

we have observed that the number of valid solutions grows more slowly than

the number of invalid solutions, making the search space extremely sparse.

Since the search space is large and sparse, our algorithm must effi-

ciently prune the parts of the space that are least likely to contain valid solu-

tions. Thus, our algorithm performs a constrained search [208] that exploits

dependences among processes to prune large portions of the search space that

cannot contain valid solutions. Our algorithm reduces the space by grouping

processes into sets that checkpoint together; the sets are determined by depen-

dences introduced by the application’s communication. The use of these sets

may eliminate some valid solutions from the search space, but we explain how

it will eliminate orders of magnitude more invalid solutions. Our algorithm
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quantifies the quality of a solution using the Wide and Flat (WAF) metric,

which identifies the interval of a solution’s checkpoint locations (width) and

the number of processes that checkpoint at each (flatness). As we’ll see, it also

applies this metric to partial solutions so that undesired ones may be pruned

earlier in the algorithm. This pruning further reduces the search space but

often eliminates both valid and invalid solutions.

We evaluate our techniques on a set of four commonly used parallel

benchmarks: BT, SP, and LU from the NAS Parallel Benchmark Suite [51], and

Ek-simple a well-known computational fluid dynamics benchmark. For 16,384

processes, our simulations show that our compiler-based staggered checkpoint-

ing reduces checkpoint time by up to 52% when compared against the time

necessary for that number of processes to simultaneously write an equivalent

amount of data. We also show that our WAF metric correlates well with actual

checkpoint overhead and overall execution time.

5.1 Background

In this section, we define terms and concepts that we need to explain

our algorithm.

A recovery line is a set of checkpoints, one checkpoint per process. A

valid recovery line represents a consistent state, or a state that could have

existed in the execution of the program [67], so it disallows the save of a

message receive if the corresponding send of the message is not also saved.

By ensuring that data shared amongst processes is the same data everywhere,
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Figure 5.1: Examples of invalid (a) and valid (b) recovery lines. The arrows
represent message sends. The source is the sending process and the target is
the receiving process. The X’s mark checkpoint locations.

valid recovery lines save a consistent state even in the face of non-determinism

in applications. For example, recovery line a in Figure 5.1 is invalid because

it saves a message as received on process 1 while process 0 does not save the

corresponding send. Thus, the state represented by a could not exist in an

actual execution of the system. By contrast, recovery line b is valid because it

could have existed in a possible execution.

Our algorithm specifies a recovery line as set of {process, checkpoint

location} pairs; it has a pair for each process executing the application. Since

our algorithm builds each recovery line over time, we define a partial recovery

line as a set of {process, checkpoint location} pairs for a subset of the processes

in the system; a partial valid recovery line is a partial recovery line that rep-

resents a state that could have existed in the execution of the program when

only the represented processes are considered.
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Valid recovery lines can differ in the number of processes that check-

point at approximately the same time, and thus they differ in terms of the

network and file system congestion that they induce. Thus, we refer to one

recovery line as being better than another if it reduces that contention and

thus has lower checkpoint overhead.

5.2 Algorithm Overview

The goal of our algorithm is to stagger the checkpoints and thus create

a useful recovery line, which is a line that is both valid and sufficiently stag-

gered to reduce contention. However, you could imagine a case where process

dependences interact to disallow staggered checkpoints. Thus, our algorithm

guarantees the placement of a valid recovery line, but it does not guaran-

tee that the checkpoints will be staggered. Our algorithm, has three phases:

the first identifies all communication, the second determines inter-process de-

pendences, and the third generates the recovery lines. All phases perform a

context-sensitive analysis.

In this chapter, we present the components of our algorithm in the

order in which they analyze the application. Phase One is a straightforward

application of known technology. Phase Two applies our novel use of vector

clocks to statically track process dependences. However, our most novel and

important contributions, such as the techniques we use to prune the search

space and our metric for identifying useful recovery lines, occur in Phase Three

and are presented in Section 5.5.
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5.3 Algorithm Phase One: Identifying Communication

This phase of our algorithm identifies an application’s communica-

tion events, identifies each event’s communicating processes, and matches the

sends with their corresponding receives. Identifying communication events is

straightforward; identifying the communicating processes is more complex.

Two factors determine which processes are communicating: the pro-

cess(es) that executes the communication call and the neighbor process(es)

that is indicated in the arguments to that call. The algorithm uses symbolic

expression analysis to identify these processes. Symbolic expression analysis is

a form of backwards constant propagation where values are expressed in terms

of the variables, constants, and operations that created them. We assume that

these expressions consist of arithmetic operations on constants, the number of

processes executing the application, and the identifier of the process where the

call is occurring. For now, the latter two do not need to be constants.

Figure 5.2 shows a snippet of code including a communication event,

MPI Irecv() and the resulting symbolic expression analysis performed on the

argument to the call that identifies the communicating process, from process.

In this example, node represents the process identifier and no nodes represents

the number of processes executing the application. The symbolic expression

analysis first identifies the definition of from process immediately preceding

the call; in this example, the definition occurs in line 6. We see that the arith-

metic expression on the right hand side of the definition includes the variables

i, p, and j. The analysis next identifies the most recent definitions of those
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variables (found in lines 5, 1, and 4, respectively). The analysis continues until

each variable’s value can be represented by arithmetic operations on node or

no nodes. It then combines these definitions into a single arithmetic expression

representing the value of from process. The final expression can be seen in

the lower box of Figure 5.2. The compiler also performs a control-dependence

analysis to detect when a communication event’s execution or communicating

processes depend on a preceding control structure(s); this information is used

to further identify the communicating processes.

To match the sends to their respective receives and the non-blocking

calls to their respective waits, we assume that the number of processes the ap-

plication will use to execute is statically known. For each communication call,

our algorithm evaluates the control-dependence information for each process

identifier and, in doing so, determines which processes execute the call. For

each process that executes the call, the compiler evaluates the relevant sym-

bolic expressions for each process identifier and then matches the calls based

on their communicating processes, message identifiers, and location in the ap-

plication text. Previous research has presented more complex algorithms that

allow for loop unrolling to match calls and other complications [117, 118], but

we have implemented a simpler algorithm that is successful for our bench-

marks.
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4. j = cell_coord[0][0] − 1

2. cell_coord[0][0] = node % p
3. cell_coord[1][0] = node /p 

1. p = sqrt(no_nodes)

5. i = cell_coord[1][0] − 1
6. from_process = (i −1 + p) % p + p * j
7. MPI_Irecv( x, x, x, from_process, ...)

               
                           sqrt(no_nodes)) % sqrt(no_nodes) +
from_process = (node / (sqrt(no_nodes)) −1 −1 +

                           sqrt(no_nodes) * (node % sqrt(no_nodes) −1)

Figure 5.2: A code example from the NAS parallel benchmark BT and its
corresponding result from symbolic expression analysis. In this example, node
represents the process identifier and no nodes represents the number of pro-
cesses executing the application.

5.4 Algorithm Phase Two: Determining Inter-Process

Dependences

Our algorithm identifies inter-process dependences using vector clocks [72,

136]. To do so, it uses the communication information generated in the first

phase and assumes that the number of processes the application will use is

statically known. The vector clocks are generated and maintained statically;

to our knowledge, we are the first to apply them in this manner.

Vector clocks extend Lamport’s logical clocks [121] in which each pro-

cess maintains its own clock, so that each process maintains its logical clock

as well as a vector representing the events in the system on which it depends.

The vector has an element for each process in the system, and when a pro-

cess receives a message, it sets each of the vector elements to the maximum
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Figure 5.3: An example of Lamport’s logical clocks. Each process’s clock value
is indicated by the [#], where # is the value of the clock.
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Figure 5.4: An example of vector clocks.

of that element’s present value and the value of the corresponding element

in the sending process’s vector clock; in this way, the process’s vector clock

represents the events on which it relies. A vector clock is maintained locally

by each process i as follows:
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V C(ei)[i] := V C[i] + 1
if ei is an internal or send event

V C(ei) := max{V C(ei), V C(ej)}
V C(ei)[i] := V C[i] + 1
if ei is receive from process j
where the send was event ej

where ei is an event e on process i, V C(ei) is its vector clock, and

V C(ei)[i] is the element for process i in that vector clock.

In our algorithm, each process increments its clock for dependence-

generating events and only those events. An example showing each process’s

logical clock can be seen in Figure 5.3; in this example, each process increments

its clock at a send or a receive event. Figure 5.4 extends this example to show

the resulting vector clocks. In this figure, process 0 begins by sending two

messages. For each, it increments its element in its vector clock, so after

sending the message to process 2, its vector clock is [2, 0, 0]. When process 2

receives the message from process 0, it updates its vector clock to reflect both

that an event occurred (the receive) and that it is now dependent on process

0 executing at least two events. So, process 2’s clock becomes [2, 0, 1]. When

process 2 then sends a message to process 1, it increments its vector clock

to [2, 0, 2] to reflect another event (the send). Immediately before process 1

receives the message, its vector clock is [1, 2, 0]. Upon receiving the message,

process 1 increments its element in its vector clock to reflect the receive, and

then sets its element for process 2 to 2 to show that it depends on process 2

executing at least two events. Process 1 also sets its element for process 0 to
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the maximum value of its element for process 0 and that of process 2. Since

process 1 had previously only depended on the first event of process 0 and

process 2 depends on the first two, then process 1 updates its clock to reflect

a dependence on the first two. Therefore, process 1’s vector clock becomes

[2, 3, 2].

Given vector clocks, a valid recovery line can be determined using the

following formula [153], which states that the recovery line is not valid if process

j requires more events on process i than process i’s clock reflects.

∀i, j : 1 ≤ i ≤ n, 1 ≤ j ≤ n : V C(ei)[i] ≥ V C(ej)[i]

Using communication information gleaned in the previous phase, our

compiler creates a vector clock for each node. For each communication call, our

compiler iterates through each process that executes that call and updates that

process’s vector clock. We assume that each non-blocking receive occurs at its

associated wait; all other events occur at their calls. To assist the recovery line

generation algorithm, the state of each process’s vector clock is saved at each

communication call for the algorithm to reference. Unfortunately, this storage

is expensive, sized O(P 2) at each communication call, where P is the number

of processes. These vector clocks are sparsely populated, so we represent them

as sparse matrices to reduce their size, reducing the memory footprint of our

compiler when analyzing the NAS parallel benchmark BT [51] configured to

use 64 processes by 75%.
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5.5 Algorithm Phase Three: Generating Useful Recov-

ery Lines

The third phase of our algorithm generates recovery lines; we carefully

design this phase to eliminate redundant work and reduce the search space. To

appreciate the algorithm used by this phase, it is important to first understand

why a more obvious näıve algorithm does not work efficiently. Thus, we begin

by explaining a näıve algorithm.

In all of the algorithms that we discuss, checkpoint locations are limited

to dependence-generating events. Adjusting the checkpoint locations in the

generated recovery lines relative to those checkpoint locations we consider

may both increase the separation of the checkpoints and reduce the amount of

data checkpointed—both of which can further reduce network and file system

contention. However, we defer such considerations to future work.

5.5.1 Näıve Algorithm

A näıve algorithm, which is depicted in Figure 5.5, uses exhaustive

depth-first search and employs backtracking when a recovery line is found to

be invalid.

Since the search space is so large, this algorithm, which has a complexity

of O(P 2 ∗ LP ), where P is the number of processes and L is the number of

checkpoint locations, is infeasible for even small values of P . Even though

it performs simple pruning by backtracking, this algorithm also performs a

large amount of redundant work: any time the same two {process, checkpoint
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location} pairs are assigned to a recovery line, the validity of that combination

of pairs is checked. The combination of those pairs is considered valid if the

two pairs could exist in a valid recovery line. For example, assume that the

combination of pairs {P0, L3} and {P3, L0} is invalid. When the algorithm is

ready to assign a location for P3, P0’s checkpoint location is already set, as are

the checkpoint locations of P1 and P2. The algorithm attempts to assign P3 to

checkpoint at L0 and it finds that the line is invalid; the algorithm proceeds to

another checkpoint location for P3 (if one exists) or returns to P2. Either way,

the algorithm will eventually return to P2 since this is an exhaustive depth-first

search. When it returns to P2, assume that it finds another checkpoint location

that is valid with those of P0 and P1. Then the algorithm continues to P3.

It will first attempt to let P3 checkpoint at L0—even though the checkpoint

location for P0 has not changed and that combination has already tested invalid

once. Hence, this algorithm is inefficient [146].

5.5.2 Our Algorithm

We now describe our algorithm, which employs several techniques to

reduce the search space. We explain each technique separately, beginning

with our foundation algorithm, which eliminates portions of the search space

that contain no valid recovery lines. Then we present techniques used to

reduce the number of considered checkpoint locations, L. Next, we describe

two heuristics. The first reduces the number of considered processes, P , and

prunes large numbers of invalid recovery lines and also may eliminate some
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straight_rl_gen(0, NULL);

// recurse for every process in the system

straight_rl_gen(process ,recovery_line) {

//location is valid for every process

if(process == system_size) //valid found!

add recovery_line to set of valid recovery lines

//for each checkpoint location

for(loc = 0; loc < location_num; loc++)

{

//add process checkpointing at

//loc to recovery_line

if(line is still valid)

straight_rl_gen(process + 1, recovery_line);

//remove addition from recovery_line

}

}

Figure 5.5: Pseudocode for a näıve algorithm

valid recovery lines. The second heuristic produces recovery lines that yield

lower checkpoint overhead; this heuristic may prune both valid and invalid

recovery lines from consideration.
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5.5.2.1 Foundation Algorithm

Our algorithm is a constraint-satisfaction solution synthesis algorithm1

that builds valid recovery lines by combining valid {process, checkpoint loca-

tion} pairs into ever larger partial valid recovery lines until a valid recovery

line is generated. This technique eliminates redundant comparisons of invalid

{process, checkpoint location} pair combinations. Each invalid combination

is immediately pruned from further consideration and, once pruned, is not

regenerated.

Our algorithm begins by placing processes into partitions of size k. For

each partition, the algorithm generates all partial valid recovery lines. It then

merges j partitions to create a new partition. It combines the partial valid

recovery lines from each source partition to form new recovery lines, storing

the valid ones. The algorithm repeats these steps until all processes are in the

same partition and the generated valid recovery lines are complete. k and j

are parameters to the algorithm. In our experiments, we found the algorithm

to be fastest and generate the best results for k = 2 and j = 2.

Figure 5.6 shows an example of how processes are placed into partitions

that are merged; the example reflects k = 3 and j = 2. At the lowest level

are the processes themselves, which are then placed into partitions of size

3. For each partition, the algorithm generates all partial valid recovery lines

then merges it with another partition to create a new partition. At the top

1It is based on the basic Essex solution synthesis algorithm [208]. It uses upward
constraint-propagation to build a lattice representing the minimal problem.
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{{P1,L2},{P2,L1},{P5,L1},{P0,L0},{P3,L2},{P4,L2}}

P0

L0, L1 L0, L2

P3

L0, L2

P1

L0, L1

P2

L0, L1

P4P5

L0, L2

{{P1,L0},{P2,L0},{P5,L0}}

{{P1,L2},{P2,L1},{P5,L1}}

{{P0,L0},{P3,L0},{P4,L0}}
{{P0,L0},{P3,L2},{P4,L2}}
{{P0,L1},{P3,L2},{P4,L2}}

{{P1,L0},{P2,L0},{P5,L0},{P0,L0},{P3,L0},{P4,L0}}

Figure 5.6: An example of partitioning of processes. At the base of the dia-
gram, each block represents a process and that process’s checkpoint locations.
The algorithm begins at the bottom, merging three blocks into a partition and
finding all partial valid recovery lines for that partition. As the algorithm com-
pletes each level, the partitions of that level are merged to form the partitions
of the next level. In this figure, each line in the merged partitions represents
either a partial valid recovery line or a complete valid recovery line.

partition level, all four processes are in the same partition and the generated

valid recovery lines are complete.

The execution complexity of this algorithm is O(log(P )∗LP−2). In the

next section, we discuss steps taken to reduce the value of L; then we discuss

steps taken to reduce the value of P .

5.5.2.2 Reducing L, the Number of Checkpoint Locations

Since the search space is sized LP , we can reduce the search space by re-

ducing L, the number of checkpoint locations considered. To do this, we divide

the application program into phases, which are sets of checkpoint locations de-

limited by events that synchronize all processes, such as barriers or collective

communication. Since valid recovery lines cannot straddle such events, our al-

gorithm can search within each phase without missing any valid recovery lines.
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The algorithm now must execute once per phase, but L is greatly reduced for

each algorithmic pass. Any application without any synchronizing events is

considered a single phase.

Additionally, in some applications so few local operations, or operations

that execute entirely on the local machine, separate some of the dependence-

generating events that these events will likely occur in close temporal proxim-

ity. Recall that our algorithm considers these events to be checkpoint locations;

separating process checkpoint locations across events that are spaced so closely

will minimize any ability they have to reduce contention and thus checkpoint

overhead. We therefore merge any checkpoint locations that are not separated

by some minimum amount of local operations. The choice of this amount

is important, as it needs to reduce the search space but still allow enough

locations for our algorithm to find useful recovery lines. Merging too many

checkpoint locations can cause so few checkpoint locations a useful line cannot

be found but not merging checkpoint locations that are too close together to

successfully reduce contention needlessly increases the search space. The min-

imum number of instructions that must separate two locations is a parameter

to our algorithm. Increasing the number of instructions results in fewer pos-

sible checkpoint locations and a faster algorithm execution time. Decreasing

the number provides more possible valid recovery lines. For our results, our

algorithm merges any locations not separated by more than a two million local

operations. We discuss this choice in the evaluation of our algorithm.

The execution complexity of the algorithm remains the same as that of
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the foundation algorithm O(log(P ) ∗LP−2, but the value of L is now reduced.

5.5.2.3 Reducing P , the Number of Independent Processes

Since the number of checkpoint locations in a given phase is typically

much smaller than the number of processes, multiple processes will have to

checkpoint at the same checkpoint location. If we intentionally select the

processes that checkpoint together to also be the ones that communicate, then,

since recovery line constraints are generated by communication, the number of

invalid recovery lines will be reduced. Thus, our algorithm reduces the search

space by generating clumps: clumps are sets of processes that communicate

between two consecutive checkpoint locations. Our algorithm considers each

clump as a single entity when it generates a recovery line, and so every process

in a clump checkpoints at the same checkpoint location.

Any processes that communicate between two consecutive checkpoint

locations form a clump. For example, in Figure 5.7, the clump between check-

point locations 0 and 1 is (process 0, process 1). All processes are in the

same clump between checkpoint locations 1 and 2. Between checkpoint lo-

cations 2 and 3, the clumps are (process 0, process 1) and (process 2,

process 3). In the algorithm, all clumps are associated with their defining

checkpoint locations. The recovery line algorithm considers clumps as indivis-

ible, and thus the processes within a clump checkpoint at a single location.

Once all clumps have been formed, alike clumps, or clumps that have

the same member processes, are identified and combined across checkpoint
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Figure 5.7: An example of process communication. Each ©# represents a check-
point location.

intervals. In other words, only one clump with a particular member set will

be saved, but that clump can checkpoint at any of the checkpoint locations

between which any of its like clumps were found. So, in the example in Fig-

ure 5.7, the clump containing (process 0, process 1) between checkpoint

locations 0 and 1, and the clump containing (process 0, process 1) be-

tween checkpoint locations 2 and 3 will be combined into a single clump with

member processes 0 and 1; this clump will checkpoint a locations 0, 1, 2, and

3. Table 5.1 shows the clumps relating to the example in Figure 5.7.

Once the clumps have been consolidated, they are further combined into

clump sets. A clump set is a group of clumps where each process is represented

exactly once, such that when a recovery line is formed using every clump in a

clump set that recovery line is complete. Our recovery line algorithm operates
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Clump Processes Checkpoint

Locations

Characteristic

a (process 0, process 1) 0,1,2,3 strongly connected

b (process 2, process 3) 2,3 strongly connected

c
(process 0, process 1,
process 2, process 3)

1,2 connected

Table 5.1: Clumps for the example shown in Figure 5.7.

Clump Set Clumps

0 clump a, clump b

1 clump c

Table 5.2: Clump sets for example in Figure 5.7.

on each clump set, and it places each of its member clumps in a recovery

line, reducing P by treating each clump as a process. Clump constraints are

represented in the same way as process constraints, and clumps are partitioned

in the same way as processes in the basic algorithm. Table 5.2 shows the

clumps sets resulting from the example in Figure 5.7.

Using clumps and clump sets reduces algorithmic complexity to O(log(C)∗

LC−2), where C is the number of clumps in a clump set. The algorithm does

now execute multiple times—once per clump set for each phase—but that only

affects the coefficients of the reduced complexity.

5.5.2.4 The Effects of Clumps on the Search Space

By carefully determining which processes checkpoint together, clump-

ing eliminates large numbers of invalid recovery lines. It may also eliminate
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some (but fewer) valid ones. To understand how this effect occurs, we consider

clumps as directed graphs, and then we identify clumps whose members are

strongly connected and those whose members are not. In such a graph, the

processes in the clump are the graph nodes and the communication between

them forms the directed edges. If every process in the clump sends and receives

between two consecutive checkpoint locations, then the graph (or clump) is

strongly connected in that interval. In this case, clumping only eliminates

invalid recovery lines because each process is constrained by each other pro-

cess. In Table 5.1, the clumps are identified as either connected or strongly

connected based on the communication in Figure 5.7.

However, if at least one process does not send and receive in a par-

ticular checkpoint interval, then the clump is not strongly connected, and

clumping eliminates both valid and invalid recovery lines. Consider the exam-

ple in Figure 5.7: with the communication shown, processes 0, 1, 2, and 3 will

be clumped between checkpoint locations 1 and 2. However, the checkpoint

location of process 0 does not completely constrain the possible checkpoint lo-

cations of processes 1, 2, and 3. For instance, if process 0 saves its checkpoint

at location 2, then we know processes 1,2, and 3 can save their checkpoints at

location 2, but they can also save their checkpoints at location 1. So, by forc-

ing the processes to checkpoint at the same location, the algorithm eliminates

valid recovery lines.

Fortunately, the recovery lines eliminated by this method are still largely

invalid since the processes in the clump are still connected. To understand this,
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let’s look again at the example from Figure 5.7. This time, let us begin by

considering the possible checkpoint locations of process 2. If process 2 saves its

checkpoint at location 2, then processes 0 and 1 must save their checkpoints at

location 2 or later, since process 2 relies on the message from process 1, forcing

process 1 to save its checkpoint at location 2, and then process 1 relies on the

message from process 0, forcing process 0 to save its checkpoint at location

2. If process 2 saves its checkpoint at location 1, then process 3 must also

save its checkpoint at location 1, since if process 3 were to save its checkpoint

at locations 2 or 3, it would save the message from process 2 that happens

after location 1 and is thus not saved by process 2. By forcing these processes

to save their checkpoints at the same location, the algorithm never considers

the invalid recovery lines that could result when they save their checkpoints

separately.

5.5.2.5 Pruning Invalid Solutions

Although our aforementioned techniques greatly reduce the number of

invalid partial recovery lines in the search space, some still exist. We would

like to prune these as quickly as possible.

The dependences that are generated by an application’s communica-

tion are strictly increasing, so when the algorithm finds that two clumps form

an invalid partial recovery line at a combination of checkpoint locations, it has

information that can be used to prune other lines without additional depen-

dence checks. Since the line is invalid, one clump must rely on more events
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at its checkpoint location than the other clump is saving at its checkpoint

location. So if clump a is saving fewer events than clump b needs, then for

any partial recovery line where clump a is checkpointing at that checkpoint

location, clump b cannot checkpoint at its current location or at any later

location.

For instance, combining Figure 5.7 with the clump information from

Tables 5.1 and 5.2, if clump b tries to checkpoint at location 2, while clump a

is checkpointing at location 0, that is an invalid recovery line. The algorithm

can use this information to also prune lines where clump a is checkpointing at

location 0 and clump b is checkpointing at location 3. Our algorithm uses this

technique, which leverages the strictly increasing nature of the vector clock

values, to reduce the search space.

5.5.2.6 Optimizations

Although checking recovery line constraints is time consuming and stor-

ing generated recovery lines is memory intensive, our algorithm is fast and

bounds memory usage. For speed, our algorithm performs only one validity

check before generating a line; it compares the first checkpoint locations for

the first clump in each of the source partial valid recovery lines—if they are

compatible, then the line is generated. Our algorithm generates many recov-

ery lines for each partition and then performs the complete validity checks.

This method allows the algorithm to leverage the constraint information de-

scribed above: once a recovery line has proven invalid, the algorithm can delete
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all other recovery lines in the list that exhibit the invalidating characteristic.

However, to bound memory usage, it does not necessarily generate all recovery

lines from a partition simultaneously. Instead, the algorithm generates lines

until the number generated reaches a threshold, then the algorithm prunes

the invalid ones. This process is iterative and continues until all lines have

been generated: once the algorithm prunes a set of lines, it generates more

lines until the threshold is reached again, and then it initiates another pruning

pass.

5.5.2.7 Branch-and-Bound Using the Wide and Flat Metric

As the algorithm merges partitions, we want it to assemble partial

valid recovery lines that will result in complete valid recovery lines that are

staggered. But the more a line is staggered, the more communication happens

between each checkpoint location in the recovery line—and, thus, the more

constraints are introduced. Hence, earlier in the algorithm, when the partitions

are smaller, the lines that are less staggered have a better chance of forming

valid recovery lines as they are merged to a complete line. However, to bound

memory usage and execution time, the algorithm must limit the number of

partial valid recovery lines it keeps for each partition. Given this tension

between generating valid recovery lines and generating useful recovery lines,

we must be careful which partial valid recovery lines are kept and which are

discarded.

To help the algorithm choose lines, we introduce a metric to help us
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evaluate the amount of staggering contained in each line. The Wide and Flat

(WAF) metric statically estimates the usefulness of both partial and complete

recovery lines by quantifying the interval of the checkpoint locations (width)

and the number of processes that checkpoint at each (flatness). Currently,

this metric is a simplified form of the circular string edit distance [88] from

the generated line to a perfectly staggered one, and our goal is to find solutions

with low WAF values, which indicate that fewer edits are needed to convert

that solution to the perfectly staggered line, and thus that the solution is more

staggered.

We use the branch-and-bound search strategy [29] in conjunction with

our WAF metric to find useful recovery lines. In this strategy, heuristics are

used to prune preliminary results based on the likelihood that the partial

result will yield the desired solution—those recovery lines that are both valid

and staggered. At each partition level, the algorithm determines which lines

to prune by separating the recovery lines, or partial recovery lines, into bins

based on their WAF values. During pruning, a minimum number of lines is

saved from each of the bins; this number decreases as the algorithm nears

completion. The details of this policy are discussed in the next section.

Until now, our techniques have primarily pruned large amounts of in-

valid recovery lines. The branch-and-bound search strategy may also eliminate

arbitrary numbers of valid recovery lines as it attempts to identify lines that

lead to low checkpoint overhead.
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5.5.2.8 Pruning Policy

Our pruning policy is designed to reduce the memory usage and ex-

ecution time of our algorithm. There are several parameters that affect its

performance—here we discuss each. The settings we use for our results are

displayed in Table 5.3. These settings are based on the memory available on

the machines on which the compiler executes. Those settings are the same for

all results we present in this chapter. Quantitative results and analysis for this

parameter are included in Section 5.7.2.

As explained in Section 5.5.2.5, the algorithm generates some thresh-

old number of recovery lines, the Line Check Threshold, before performing

validity checks, eliminating invalid lines, and evaluating the remaining ones.

This number is important since the higher it is, and thus the more lines that

are checked for validity at once, the more potential exists for the algorithm to

leverage information from lines that prove invalid. However, a higher threshold

also means more lines must be stored, because when this threshold is higher

it reduces the number of pruning interruptions. Reducing the number of in-

terruptions decreases the algorithm execution time. When this threshold is

lower, it reduces the algorithm’s memory usage.

After the invalid lines are eliminated, if the number of remaining lines

is above the Pruning Threshold, the algorithm begins deleting lines. To choose

which lines to prune, the algorithm calculates each line’s WAF value and places

it into the bin representing that value. (Section 5.5.2.9 discusses these bins

in detail.) All existing lines are evaluated and sorted before the algorithm
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begins pruning. When pruning begins, it proceeds from the bin representing

the highest WAF value to that representing the lowest.

The algorithm prunes lines until the total number of lines is some factor

of the pruning threshold, called Lines to Keep. Reducing the lines below the

pruning threshold ensures that when the algorithm resumes the number of

lines does not immediately reach the pruning threshold again. The algorithm

leaves a minimum number of lines in each bin (Minimum Lines in Each Bin)

and deletes the rest; this minimum helps ensure that valid lines are found,

since it preserves lines in the higher bins and those lines are more likely to

form complete valid lines. This minimum is determined by a formula that

weighs how close the algorithm is to complete, and it approaches zero as the

algorithm nears completion.

5.5.2.9 Adaptive Bins

The bins in our algorithm are used in two places: 1) in recovery line

development, where their function is to save a particular distribution of lines

with a variety of WAF values during each pruning stage, and 2) during the

final line choice, where their function is to identify which line(s) to place in the

application. In both places, the lines are mapped to bins by the lines’ WAF

values. Since the WAF values are simplified circular string edit distances, their

magnitude varies based on the application and the number of processes; it also

increases as the algorithm progresses and there are more processes in each line.

So we use an algorithm that adapts the mapping of the lines to the bins to
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Variable Value Effect

Pruning Threshold
32,768

(sizeofcurrentlines)

increase to generate
more recovery lines and
reduce execution time;
decrease to reduce
memory

Line Check Threshold
2048 ∗

(pruningthreshold)

increase to maximize
leveraging and reduce
execution time;
decrease to reduce
memory

Lines to Keep (pruningthreshold)
5

increase to keep more
lines between pruning
phases; decrease to
reduce number of times
pruning is initiated and
thus time

Target Number of Bins 100

increase to keep more
lines with higher WAF
and have more
differentiation between
WAF values; decrease

to keep more lines with
lower WAF and collapse
WAF values into larger
ranges

Minimum Lines in Each
Bin

Closeness∗(linestokeep)
(numberofbins)

where Closeness < 1

increase to keep more
lines with less
staggering; decrease to
keep more staggered
lines

Table 5.3: Parameters of the Pruning Policy

the changing WAF values.

We map WAF values to bins as follows. We set a target number of
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bins (called Target Number of Bins). Then, we divide the WAF value of the

first line to be evaluated during that pruning pass by ten until its magnitude

is less than the magnitude of the target number of bins. Every other line in

that pruning pass has the magnitude of its WAF value reduced by the same

amount, even if that means we exceed our target number of bins. Setting the

magnitude reduction this way ensures an even comparison between the lines.

The number of bins affects how the lines are pruned: more bins results

in a larger number of lines left in bins representing higher WAF values, since

more bins represent those values and a minimum number of lines are left in

each bin. Our algorithm currently sets the target number of bins to 100.

5.5.2.10 Correctness Considerations

Some programs delegate communication to wrapper functions, so the

context of a function call determines which processes execute the communica-

tion. Thus, to ensure correctness, our algorithm requires the context-sensitive

placement of recovery lines. To place context-sensitive recovery lines, the com-

piler inserts a single integer variable in the application text. This variable is

modified to produce a unique value for each context during execution [225].

Process checkpoints are guarded by a condition checking for the appropriate

context.

Additionally, a recovery line must either reside entirely inside a loop

body or entirely outside of a loop body.
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5.6 Implementation

This algorithm has been implemented using the Broadway [91] source-

to-source ANSI C compiler. Broadway performs context-sensitive interproce-

dural pointer analysis and thus provides a powerful tool for our analysis.

Our implementation makes more assumptions than our algorithm. Our

implementation assumes the application is written in C and uses the MPI

communication library. It also assumes that any variables analyzed during

the symbolic expression or control-dependence analyses are regular variables

or single-dimension arrays. The variables that are analyzed must not be not

pointers, multi-dimensional arrays, or loop induction variables. Loops that

must be evaluated by our analysis must have a fixed trip count.

This implementation assumes that the number of processes the appli-

cation uses is statically known and that all communication is deterministic.

Deterministic communication is communication that depends only on input

values or the process’s rank: it disallows the use of MPI ANY SOURCE. The al-

gorithm allows for the relaxing of this condition.

5.6.1 Benchmarks

For our results, we are using application benchmarks to illustrate the

potential for staggered checkpointing. BT, SP, and LU are FORTRAN codes

from the NAS Parallel Benchmark Suite [51] that we convert to C using

for c [4]. Ek-simple is a well-known computational fluid dynamics bench-

mark.
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These example applications are simplified—for example, command-line

arguments are set to be constants and function pointers are replaced with

static function calls. These simplifications do not affect the overall behavior

of the benchmark.

5.7 Evaluation

To evaluate our algorithm, we consider many facets of our solution. We

begin by presenting an evaluation of our algorithm, including its scalability,

ability to find useful recovery lines, and sensitivity to its parameters. An evalu-

ation of the the Wide-and-Flat metric is also included. We finish by presenting

a performance evaluation of recovery lines identified by our algorithm.

5.7.1 Algorithm

In this section, we report the results for our algorithm for our four

application benchmarks, each using several process sizes. We report the ef-

fects of each optimization technique, which in addition to reducing algorithm

complexity, significantly reduce the search space. The execution times for the

results presented here are on the order of minutes for 1,024 and 4,096 pro-

cesses, hours for 16,384 processes, and days for 65,536 processes. Since our

algorithm is context-sensitive, the recovery lines reported here are dynamically

unique but may not be statically unique.

Generating useful recovery lines for large parallel applications is chal-

lenging as the execution complexity of the naive algorithm shows: its com-
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plexity is O(LP ), where P is the number of processes and L is the number

of checkpoint locations. We design a new algorithm that uses a number of

techniques to reduce this complexity to: O(log(C)∗LC−2), where L represents

the number of merged checkpoint locations in a phase, and C represents the

number of clumps in a clump set and C is necessarily less than or equal to

P . This complexity shows that our algorithm’s execution time is not directly

related to the number of processes or the problem sizes, and is thus scalable.

Our results show that algorithm successfully places recovery lines in all four

benchmarks when they are configured to use 16,384 processes, and in most of

them when they are configured to use 65,536 processes.

Our algorithm is able to identify useful recovery lines in such large

applications because it intelligently reduces the very large search space, which

begins as LP . The large numbers in Table 5.4 define the original valid recovery

line search space, as this table reports the number of checkpoint locations

and potential recovery lines existing in the benchmarks without any of our

reduction techniques. In addition, this table shows the problem size used

for each benchmark. In the reporting of these results, the problem size only

effects the number of checkpoint locations that are merged and the WAF

execution times. The problem sizes reflect approximately fifteen minutes of

local execution time for each chosen phase.

As phases are introduced, the search space begins to narrow. In Ta-

ble 5.5, we report the number of phases discovered for each benchmark. The

rest of our results are presented for a single phase: the phase chosen is ei-
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ther representative of the phases for that benchmark or is the phase with the

majority of the communication.

Our algorithm reduces L, the number of considered checkpoint loca-

tions and the base of our search space calculation, by merging checkpoint

locations that are too closely spaced for our goals. These results are shown

in Table 5.6. For the problem sizes shown in these tables, most checkpoint

locations are separated by a sufficient number of local operations to remain

individual locations. However, Ek-simple’s results show several merged loca-

tions.

While reducing L does reduce the search space, reducing P , the number

of considered processes and the exponent of our search space calculation, helps

much more. In Table 5.7, we report on the results of dividing the processes into

clumps and subsequently treating each clump as a process in the recovery line

algorithm. Clump sizes are relatively even within a configuration, though there

is often one clump containing all processes (usually the result of a collective

communication call). Clumps reduce the search space dramatically; the space

for LU with 1,024 processes is reduced by over 800 orders of magnitude. Also,

the number of clumps does not increase linearly with the number of processes

but at a slower rate, indicating that the clump concept is scalable in practice.

Once the clumps are combined into clump sets, as we see in Table 5.8, the

search space is reduced even further. The number of clump sets is factored

out of the exponent of the search space and has instead become a multiplier:

the number of possible recovery lines for LU with 1,024 processes has now been
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reduced by another 25 orders of magnitude.

Although we have significantly reduced the search space (a summary

of the reductions can be seen in Table 5.9), it is still very large; LU with 1,024

processes still has a possible 1.6 ∗ 1025 recovery lines. In this space, however,

our synthesis algorithm can find useful recovery lines. By leveraging constraint

information, first by not propagating invalid constraints in the synthesis al-

gorithm, then by reducing the number of checks required to determine if a

recovery line is valid (usually an average of P 2/2), and finally by pruning re-

covery lines less likely to reduce contention, we convert an originally intractable

problem into manageable one. Although our branch-and-bound tactic prunes

valid and invalid lines, we still find valid recovery lines with low contention.

Table 5.10 reports the results for each reduction technique employed by our

synthesis algorithm. The first column represents those lines eliminated through

our initial validity check performed between just two clumps before the line is

generated. The next three columns respectively report the number of recovery

lines generated, the number eliminated as invalid after being fully investigated

for validity, and those eliminated as invalid without checking by leveraging

the strictly increasing nature of the recovery line constraints. Last, the table

shows the number of lines pruned by our branch and bound strategy and the

number of valid recovery lines produced by our algorithm. Notice that for

Ek-simple the number of lines is reduced by exactly half as the number of

processes increases; this phenomena is a result of our pruning policy which

adjusts for the amount of memory used to store each line.
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Benchmark Processes
Number of

Phases
Checkpoint
Locations

Possible
Recovery Lines

BT

1,024 11 14L 141024

4,096 11 14L 144096

16,384 11 14L 1416384

65,536 11 14L 1465536

Ek-simple

1,024 7
992P : 20L,
961P : 4L,
31P : 8L

20992 + 4961 + 831

4,096 7
4032P : 20L,
3969P : 4L,
63P : 8L

204032 + 43969 +
863

16,384 7
16256P : 20L,
16129P : 4L,

127 : 8L

2016256 +
416129 + 8127

65,536 7
65280P : 20L,
65025P : 4L,
255P : 8L

2065280 +
465025 + 8255

LU

1,024 17
1024P : 1L,
992P : 8L

11024 + 8992

4,096 17
4096P : 1L,
4032P : 8L

14096 + 84032

16,384 17
16384P : 1L,
16256P : 8L

116384 + 816256

65,536 17
65536P : 1L,
65280P : 8L

165536 + 865280

SP

1,024 9 14L 141024

4,096 9 14L 144096

16,384 9 14L 1416384

65,536 9 14L 1465536

Table 5.5: Phase Results. Each benchmark consists of several phases; we chose
one phase from each benchmark to report. The P : L syntax shown in this
table describes the number of processes that execute a particular number of
checkpoint locations. Where P is absent, all processes execute that location.
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Benchmark Processes Checkpoint Locations Possible Recovery Lines

BT

1,024 14L 141024

4,096 14L 144096

16,384 14L 1416384

65,536 14L 1465536

Ek-simple

1,024 992P : 13L, 961P : 3L, 31P : 6L 13992 + 3961 + 631

4,096 4032P : 13L, 3969P : 3L, 63P : 6L 134032 + 33969 + 663

16,384 16256P : 13L, 16129P : 3L, 127P : 6L 1316256 + 316129 + 6127

65,536 65280P : 13L, 65025 : 3L, 255P : 6L 1365280 + 365025 + 6255

LU

1,024 1024P : 1L, 992P : 8L 11024 + 8992

4,096 4096P : 1L, 4032P : 8L 14096 + 84032

16,384 16384P : 1L, 16256P : 8L 116384 + 816256

65,536 65536P : 1L, 65280P : 8L 1655536 + 865280

SP

1,024 14L 141024

4,096 14L 144096

16,384 14L 1416384

65,536 14L 1465536

Table 5.6: Checkpoint Reduction Numbers. These numbers represent the
checkpoint locations and search space that remain after our algorithm has
merged any closely-spaced checkpoint locations.
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Benchmark Processes Clump Sets Set Size Possible Recovery Lines

BT

1,024 4 3S : 32C, 1S : 1C 3(532) + 21

4,096 4 3S : 64C, 1S : 1C 3(564) + 21

16,384 4 3S : 128C, 1S : 1C 3(5128) + 21

65,536 4 3S : 256C, 1S : 1C 3(5256) + 21

Ek-simple

1,024 2 2S : 32C 121 + 112 + 101 + 930 + 630

4,096 2 2S : 64C 121 + 112 + 111 + 1062 + 662

16,384 2 2S : 128C 121 + 112 + 101 + 9126 + 6126

65,536 2 2S : 256C 121 + 112 + 101 + 9254 + 6254

LU

1,024 2 2S : 32C 2(632)
4,096 2 2S : 64C 2(664)

16,384 2 2S : 128C 2(6128)
65,536 2 2S : 256C 2(6256)

SP

1,024 4 3S : 32C, 1S : 1C 3(532) + 11

4,096 4 3S : 64C, 1S : 1C 3(564) + 21

16,384 4 3S, 128C, 1S : 1C 3(5128) + 21

65,536 4 3S : 256C, 1S : 1C 3(5256) + 21

Table 5.8: Clump sets. S represents the number of sets. The S : C syntax
shown in this table denotes the number of sets containing a particular number
of clumps.
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Recovery Lines

Skipped Pruned Valid
Benchmark Processes Initially Generated Investigated Leveraged by WAF Found

BT

1,024 18,606 4,603,597 4,603,597 0 4,588,183 620
4,096 50,262 9,325,092 9,325,092 0 9,293,840 432

16,384 77,206 18,731,170 18,731,170 0 18,668,236 442
65,536 156,414 37,759,736 37,759,736 0 37,632,812 408

Ek-simple

1,024 401,967 2,465,869 924,627 1,541,242 193,270 408
4,096 1,187,522 8,243,283 2,850,232 5,393,051 2,819,754 204

16,384 3,598,557 10,667,118 3,620,224 7,046,894 3,571,133 102
65,536 3,889,674 22,989,972 8,860,009 14,129,963 8,763,342 50

LU

1,024 1,056 3,233,318 2,615,253 618,065 2,603,302 409
4,096 2,046 6,603,040 5,604,553 998,487 5,580,103 203

16,384 128,655 13,129,553 10,591,018 2,538,535 10,542,142 103
65,536 8,382 26,464,194 19,406,505 7,057,689 19,308,542 191

SP

1,024 22,573 4,600,329 4,600,329 0 4,584,915 614
4,096 45,352 9,331,318 9,331,318 0 9 299,935 538

16,384 91,860 18,927,310 18,927,310 0 18,863,945 188
65,536 179,544 39,437,768 39,437,768 0 39,308,070 169

Table 5.10: Actual search space reduction performed by our algorithm for
the our benchmarks configured to use five different process sizes. The third
column, “Skipped Initially”, indicates the number of partial and complete re-
covery lines that are eliminated as invalid through a single validity check before
the lines are generated. The fourth column, “Generated”, reports the number
of lines generated, and then the fifth column, “Investigated”, displays the num-
ber of lines that are checked for validity after generation. The fifth column,
“Leveraged”, indicates the number of lines that are eliminated after generation
but without validity checks: recovery lines constraints are strictly increasing,
and our algorithm leverages that information. The last two columns, “Pruned
by WAF” and “Valid Found”, report the number of lines eliminated by our
branch-and-bound methodology and the number of lines produced by the al-
gorithm, respectively.
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Checkpoint Time
WAF value 4 MB 32 MB

418 698s 4,026s
3,958 249s 4,689s
7,008 1,080s 5,561s
7,361 1,141s 5,613s

Table 5.11: The simulated checkpoint times on Ranger for recovery lines in
the BT benchmark with 4,096 processes and local execution of approximately
three minutes.

5.7.1.1 Wide-and-Flat Metric

Our WAF metric separates the useful recovery lines from the other

generated lines. We first evaluate the WAF metric by placing recovery lines in

our synthetic benchmark and estimating their performance in our simulator.

When we consider total execution time, the WAF metric ranks 83% of the

fastest third of the lines into the smallest third of the bins. While the metric,

which is designed to reduce checkpointing time, does not perfectly predict the

relative execution times of the lines, it still strongly correlates with execution

time. The WAF metric is not as effective when the application does not execute

enough instructions to sufficiently separate the number of processes writing an

amount of data. We examine this circumstance in Chapter 4.

To test the usefulness of our algorithm, we compare lines with a few

WAF values for several configurations of each benchmark. The WAF metric

works best for larger configurations. Even for smaller configurations, the WAF

metric always identifies a line faster than the line in which every process check-

points at approximately the same time. However, the line from the lowest bin

may not be the fastest. In smaller configurations, less separation of checkpoint

147



locations can still reduce contention for the file system sufficiently such that

the file system does not saturate. We see this phenomenon in Table 5.11,

which reports the simulated checkpointing times on Ranger for recovery lines

with 4,096 processes in a phase of the BT benchmark with a local execution

time of approximately three minutes. In this table, we see that the second

line is faster than the first for 4 MB of data. However, when the size of the

checkpoint data is increased to 32 MB, the first line is faster than the second.

To better handle smaller configurations, the WAF metric could be mod-

ified to account for both the amount of live data and the maximum throughput

of the file system. However, this change would result in a system-dependent

metric and assumes that the file system is not in use by any other application

also executing on the system.

Since the WAF metric varies each pruning pass, WAF values cannot be

compared across lines from different benchmarks, phases, or pruning passes.

5.7.1.2 Foundation Algorithm Parameters

In addition to testing the overall algorithm, we also tested the behavior

of the foundation algorithm as the parameters that affect the creation of the

partitions vary. Recall that we have identified two parameters: one, j, controls

the number of partitions merged to form a new partition, and the other, k,

controls the number of processes included in the initial partition. Table 5.12

displays how our algorithm performs with values of j from 2 to 8 while k

remains constant. The reported results are for a single clump set in the SP
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Number WAF percentages Compile
j of Lines 10% 25% 33% 50% Time

2 1,516 8.45% 24.11% 32.81% 49.81% 1h20m
4 3,001 2.75% 15.76% 24.89% 43.47% 2h30m
8 3,133 2.30% 12.41% 22.39% 41.75% 6h38m

Table 5.12: The results of our algorithm when run with varied values of j,
the parameter the determines how many partitions are merged to form a new
partition at each step. In this table, the number of processes in the initial
partition, k, remains constant at 4. The first column reports the value of
j, and the second column reports the number of recovery lines found by the
algorithm for that configuration. The “WAF percentages” columns report the
percentage of found lines that are in a particular percentage of the lowest WAF
bins. So, for instance, the column labelled “10%” displays the percentage of
lines found in the lowest 10% of the bins. The final column, “Compile Time”,
reports the execution time for our compiler. All numbers are for a single clump
set of the SP benchmark with 4,096 processes and a 1,632 problem size.

benchmark, but these results are representative. The results show that the

algorithm finds more complete recovery lines for higher values of j. However,

the algorithm also then requires more time. When j is smaller, the algorithm

finds fewer complete recovery lines but the number of useful recovery lines is

larger. In addition, the lines that are useful are more staggered. Thus, the

algorithm performs more effectively when j is smaller.

In Table 5.13, we report results gathered with varied values of k and

j = 2. Again, the results are reported for a single clump set, but are indicative

of the overall results. The results show that while all configurations find a

similar number of useful recovery lines, the algorithm takes significantly longer

as k increases. We conclude that the algorithm performs more effectively when

k is smaller.
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Number WAF percentages Compile
k of Lines 10% 25% 33% 50% Time

2 1,568 9.05% 24.53% 33.25% 49.93% 53m
4 1,516 8.45% 24.11% 32.81% 49.81% 1h20m
8 2,244 9.01% 24.42% 33.14% 50.29% 3h55m

16 2,998 4.96% 20.32% 29.46% 47.47% 14h37m

Table 5.13: The results of our algorithm when run with varied values of k, the
parameter that determines how many processes comprise the initial partitions.
In this table, the number of partitions merged to form a new partition at each
step, j, remains constant at 2. The first column reports the value of k, and the
second column reports the number of recovery lines found by the algorithm for
that configuration. The “WAF percentages” columns report the percentage of
found lines that are in a particular percentage of the lowest WAF bins. So,
for instance, the column labelled “10%” displays the percentage of lines found
in the lowest 10% of the bins. The final column, “Compile Time”, reports the
execution time for our compiler. All numbers are for a single clump set of the
SP benchmark with 4,096 processes and a 1,632 problem size.

5.7.2 Pruning Policy Parameters

Here we present a quantitative analysis of each of the parameters of our

pruning policy. Our results show that most of the parameters affect memory

usage and compiler execution time without greatly affecting the WAF distri-

bution. However, we see the parameter that affects the number of lines to

survive a pruning pass (Lines to Keep) also affects the WAF distribution due

to its interaction with the minimum number of lines that are saved in each

bin (Minimum Lines in Each Bin). Since these parameters interact, a change

to one can be offset by a change in the other. This interaction also applies to

the Target Number of Bins and Minimum Lines in Each Bin parameters. If

the algorithm is unable to identify useful recovery lines and a constant mem-

ory usage and execution time are desired, the Minimum Lines in Each Bin
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Pruning Number WAF percentages Compile Memory
Threshold of Lines 10% 25% 33% 50% Time Usage

16,384 162 62.11% 73.29% 76.40% 81.99% 10m34s 1.0 GB
32,768 321 62.50% 73.44% 76.56% 82.19% 14m38s 1.1 GB
65,336 614 70.80% 79.28% 81.73% 86.13% 35m6s 1.2 GB

Table 5.14: The results of our algorithm for SP when run with varied values
of the pruning threshold. In this table, the first column reports the value
of the pruning threshold. As the pruning threshold increases, more lines are
stored before the next pruning pass. The second column shows the number of
recovery lines found by the algorithm. The “WAF percentages” columns report
the percentage of found lines that are in a particular percentage of the lowest
WAF bins. So, for instance, the column labelled “25%” displays the percentage
of lines found in the lowest 25% of the bins. The final columns, “Compile
Time” and “Memory Usage”, report the execution time for our compiler and
the amount of memory it consumes.

parameter should be increased.

Recall that our initial settings are based on the amount of memory

available on the machines we use to execute the compiler. We explore the space

on either side of our initial parameters. In all tables, the initial parameter is

indicated in bold.

We conduct these experiments using the SP benchmark with 4,096 pro-

cesses and a problem size of 1,632, and the LU benchmark with 4,096 processes

and a problem size of 6,528 and 256 processes with a problem size of 816. In

each experiment, we vary only the parameter being discussed and the other

parameters are set to their initial values. We report the results that best

illustrate the effects of the parameters.
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Pruning Threshold. The pruning threshold parameter controls how many

valid recovery lines are stored before the algorithm performs a pruning pass.

As the parameter increases, more lines are stored before the pass begins, re-

sulting in more memory usage but reducing the number of pruning passes that

must be performed and thus execution time. In Table 5.14, we see that as the

parameter is increased, the compiler execution time and memory usage in-

crease, as expected. The compiler execution time increases by 142% when our

initial setting is doubled, and the memory usage increases by 9%. In addition,

we see that as the parameter increases more recovery lines are identified and

they are more useful, as more lines are found in the lower bins. The number of

lines increases because the pruning threshold is higher, which also increases the

number of lines that survive each pass. Thus, the algorithm can keep more

lines. The distribution is better since our pruning policy keeps a minimum

number of lines in each bin that is a percentage of the lines to survive each

pass, and more lines implies that more lines may be kept in lower bins.

Line Check Threshold. The line check threshold parameter controls how

many lines are generated before the algorithm checks them for validity. Its

value is a multiple of the pruning threshold. For example, in Table 5.15 we

see that the initial value for this threshold is 2,048, indicating that the algo-

rithm will generate 2,048 times more lines than the pruning threshold before it

checks them for validity. This initial value is high—the machines on which the

compiler executes have lots of memory, and the higher the line check thresh-
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Number of Line Check Number WAF percentages Compile Memory
Processes Threshold of Lines 10% 25% 33% 50% Time Usage

256
1 819 38.07% 39.90% 39.90% 42.35% 2m22s 270 MB
4 819 38.07% 39.90% 39.90% 42.35% 2m20s 271 MB

2,048 819 38.07% 39.90% 39.90% 42.35% 2m53s 310 MB

4,096
1 278 5.42% 44.40% 49.56% 59.57% 20m37s 3.0 GB
4 281 7.17% 45.88% 50.90% 60.93% 19m55s 3.0 GB

2,048 280 7.17% 44.09% 50.54% 61.29% 13m50s 3.0 GB

Table 5.15: The results of our algorithm on the LU benchmark when run
with varied values of the line check threshold. In this table, the first column
reports the number of processes for that configuration, and the second column
reports the value of the line check threshold. As the line check threshold
increases, more lines are available to be leveraged by the algorithm. The
third column shows the number of recovery lines found by the algorithm. The
“WAF percentages” columns report the percentage of found lines that are in
a particular percentage of the lowest WAF bins. So, for instance, the column
labelled “25%” displays the percentage of lines found in the lowest 25% of the
bins. The final columns, “Compile Time” and “Memory Usage”, report the
execution time for our compiler and the amount of memory it consumes.

old, the more lines are available to be leveraged. As is shown in the 4,096

process case in the table, as the threshold increases the execution time of the

algorithm decreases. However, as we see in the 256 process case, the memory

usage increases significantly as this parameter increases. The 4,096 process

case uses too much memory to see this effect; the 256 process case executes

too quickly to see the execution time change. The WAF distribution remains

essentially the same, as this parameter only controls the pruning of invalid

recovery lines. The distribution varies a little since the pruning threshold is

only checked after the lines have been checked for validity.
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Lines To Number WAF percentages Algorithm Memory
Keep of Lines 10% 25% 33% 50% Time Usage

10 141 7.14% 43.57% 50.00% 60.71% 12m35s 2.9 GB
5 280 7.17% 44.09% 50.54% 61.29% 13m50s 3.0 GB
1 1,042 5.76% 55.43% 60.61% 69.26% 1h12m 3.0 GB

Table 5.16: The results of our algorithm for LU with 4,096 processes when run
with varied values of Lines to Keep. In this table, the first column reports
the value of the Lines to Keep parameter. This parameter is a divisor and
the number of lines kept is equal to the pruning threshold divided by it. As
parameter decreases, more lines are stored between pruning passes. The second
column shows the number of recovery lines found by the algorithm. The
“WAF percentages” columns report the percentage of found lines that are in
a particular percentage of the lowest WAF bins. So, for instance, the column
labelled “25%” displays the percentage of lines found in the lowest 25% of the
bins. The final columns, “Algorithm Time” and “Memory Usage”, report the
execution time for the recovery line algorithm and the amount of memory it
consumes.

Lines To Keep. The Lines to Keep parameter controls the number of lines

that survive a pruning pass. It is a factor of the pruning threshold and is

controlled by the divisor displayed in Table 5.16. Since this number is a divisor,

as it decreases more lines survive the pruning pass and as it increases fewer

lines survive. The more lines that are kept between pruning passes result in the

pruning passes being triggered more often, and thus increase execution time,

as we see in the table. Execution time is drastically increased if the number of

lines kept after each pass is equivalent to the pruning threshold. However, the

more lines that are kept each time, the better the WAF distribution should

look since more lines will be kept in lower bins. In our example, this is not

true for the lower 10% of the bins, but it can be clearly seen in the other three

divisions. The number of lines found also increases as the divisor decreases
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Lines To Number WAF percentages Compile Memory
Keep of Lines 10% 25% 33% 50% Time Usage

10 247 8.94% 22.36% 63.82% 63.82% 13m53s 3.0 GB
100 280 7.17% 44.09% 50.54% 61.29% 13m50s 3.0 GB

1,000 232 6.06% 22.94% 31.60% 52.38% 14m 3.0 GB

Table 5.17: The results of our algorithm for LU with 4,096 processes when
run with varied values of Target Number of Bins. In this table, the first
column reports the target number of bins. This parameter is a divisor and
the number of lines kept is equal to the pruning threshold divided by it. As
this parameter decreases, more lines are stored between pruning passes. The
second column shows the number of recovery lines found by the algorithm.
The “WAF percentages” columns report the percentage of found lines that
are in a particular percentage of the lowest WAF bins. So, for instance, the
column labelled “25%” displays the percentage of lines found in the lowest 25%
of the bins. The final columns, “Compile Time” and “Memory Usage”, report
the execution time for our compiler and the amount of memory it consumes.

since more lines can survive a pruning pass.

Target Number of Bins. The target number of bins gives our algorithm a

finer granularity for separating the WAF values of the lines. A larger number

of bins will result in more lines with higher WAF values surviving, as more bins

mean more lines are kept under the Minimum Lines in Each Bin parameter.

As we see in Table 5.17, the target number does not affect compiler execution

time or memory usage. Our initial value works well in our experiments, and

we expect there is little reason to vary this parameter.

Minimum Lines in Each Bin. Minimum Lines in Each Bin controls the

number of lines that must be left in each higher bin. In our settings, this

value is determined by how close the algorithm is to completion, such that
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Minimum Lines Number WAF percentages Compile Memory
in Each Bin of Lines 10% 25% 33% 50% Time Usage

Half 205 11.27% 61.27% 65.69% 73.04% 14m17s 3.0 GB
Initial 280 7.17% 44.09% 50.54% 61.29% 13m50s 3.0 GB
Double 368 8.17% 36.51% 43.87% 56.13% 14m16s 3.0 GB

Table 5.18: The results of our algorithm for LU with 4,096 processes when
executed with varied values of Minimum Lines in Each Bin. In this table, the
first column reports the value for Minimum Lines in Each Bin as it relates
to our initial parameter. As this parameter increases, a higher percentage of
the lines to survive a pruning pass are kept in the lower bins. The second
column shows the number of recovery lines found by the algorithm. The
“WAF percentages” columns report the percentage of found lines that are in
a particular percentage of the lowest WAF bins. So, for instance, the column
labelled “25%” displays the percentage of lines found in the lowest 25% of the
bins. The final columns, “Compile Time” and “Memory Usage”, report the
execution time for our compiler and the amount of memory it consumes.

the percentage of lines stored in higher bins is higher at the beginning of

the algorithm and lower at the end. We tested this parameter by adding

a coefficient that either halved or doubled the percentage. Increasing this

parameter increases the percentage of the lines to survive a pruning pass that

will be in higher bins, and this parameter should be increased to increase the

algorithm’s ability to find valid lines and decreased to increase the algorithm’s

ability to find staggered lines. Since this value is a percentage of Lines to

Keep, changing this value does not effect the algorithm execution time or the

memory usage, as we see in Table 5.18. However, this value greatly affects the

WAF distribution.

Minimum Number of Instructions that Must Separate Checkpoint

Locations. Another parameter to our algorithm is the minimum number of
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instructions that must separate two checkpoint locations for those locations

to be considered independently in the algorithm. Otherwise, the locations are

merged. Although this parameter is not really a parameter to our pruning pol-

icy but is instead part of our search space reduction, we include it here since

it affects the algorithm’s ability to find useful recovery lines. In the experi-

ments presented here, the value is two million instructions. Given the average

number of cycles per instruction in our benchmarks, this value translates to

approximately .001 seconds of real time, which is a small amount of time in

which to separate checkpoints. As this parameter is increased it affects the

algorithm’s ability to stagger. As the parameter is decreased, it can affect

the WAF metric’s ability to determine if the line is staggered. For our bench-

marks, however, we did not see that the algorithm was particularly sensitive

to its exact value. The separation of checkpoint locations typically varies by

orders of magnitude.

5.7.3 Staggered Checkpointing

We evaluate lines identified by our algorithm using both simulated and

measured performance. Our numbers are for two supercomputers located at

the Texas Advanced Computing Center [2], Ranger [205] and Lonestar [204].

Lonestar is older, as it was installed in 2004 and is currently number 123 in

the Top 500 list [8]. It consists of local hardware with 2.66 GHz processors,

a Myrinet network for communication, and a Lustre file system featuring 4.6

GB/s throughput. Ranger is the newer, more modern supercomputer. It was
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installed in 2008 and is currently ranked 11 in the Top 500 list. It consists

of local hardware with four 2.3 GHz processes with four cores each, an Infini-

band network for communication, and a Lustre file system featuring 40 GB/s

throughput.

We test lines identified by our algorithm using our four application

benchmarks. These benchmarks are indicative of the larger applications in

use today and evaluating the performance of staggered checkpointing in the

face of their communication is useful. These benchmarks typically have short

execution times, so we perform experiments with larger than typical problem

sizes. These problem sizes result in live data sizes that are very large, so we

evaluate staggered checkpointing based on checkpoint sizes that our simula-

tor can evaluate. We limit the execution to one iteration for three of our

benchmarks to better understand how an iteration is affected by staggered

checkpointing. For Ek-simple, we report results with 100 iterations. To per-

form these tests, we modify the line placement in our algorithm so that it

places a line from both the lowest bin and a line from the highest bin.

We evaluate a line identified by our algorithm as having a low WAF

value, or a staggered line, against a line identified by our algorithm as hav-

ing a high WAF value. The lines with high WAF values typically perform

simultaneous checkpointing, which occurs when all processes write their check-

points at the same location in the application text. This technique differs from

synchronous checkpointing since it does not require synchronization.

Our simulator performs optimistically in the face of network and file
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system saturation, so we do not present the results for configurations that cause

both staggered and simultaneous checkpointing to saturate the file system.

The configurations that are presented in the tables are configurations that are

inside the fidelity of our simulator. For Ranger, we present configurations of

1,024 processes each writing up to 256 MB, 4,096 processes each writing 32 MB,

and 16,384 processes each writing 4 MB. For Lonestar, these configurations

are smaller: 1,024 processes each writing 32 MB of data, and 4,096 processes

writing 4 MB of data. Unlike our algorithm, our simulator scale with the

number of processes. As such, our simulator cannot simulate in a reasonable

amount of time two of our application benchmarks with 16,384 processes or

any of the application benchmarks with 65,536 processes. Thus, these results

are also not presented.

Our results show that our WAF metric works well when simultaneous

checkpointing saturates the file system. In addition, when a sufficiently small

number of processes write a sufficiently small amount of data such that the file

system is not saturated, simultaneous checkpointing is better than staggered

checkpointing, since staggered checkpointing can disrupt communication.

Simulated Results. In Tables 5.19-5.22, we present data supporting both

our claim that staggered checkpointing improves performance and our claim

that our WAF metric identifies useful recovery lines. Each of these tables

presents the improvement in checkpointing time realized by the staggered line

over the simultaneous line. This improvement is adjusted for the average
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error of our simulator, and these tables also display the confidence interval

around the mean and the tolerance interval. In addition, each table displays

the adjusted improvement in the total execution time and the corresponding

statistical information. We apply the error of the appropriate file system to

the checkpoint times and the error of the appropriate benchmark to the total

execution times.

Since we increase the local execution time of the phase of interest by

scaling the problem size of the benchmark, the total execution time of the

benchmark increases as well. Thus the total execution time improvement

percentage is typically less for the larger interval size.

The results shown are for each machine when the checkpoint locations

are staggered within three and fifteen minutes of local execution time. These

time periods translate to three or fifteen minutes without a synchronization

point or a collective communication, respectively.

Checkpoint Time. When checkpoint locations are separated within

approximately three minutes of local execution, the staggered lines placed by

our algorithm reduce checkpoint time by an average of 26% on Ranger (Ta-

ble 5.19) and 35% on Lonestar (Table 5.20). Lonestar’s percentage is higher

in part because the highest improvements tend to be in the smaller config-

urations, and the Lonestar results have fewer large configurations. In these

results, two Ranger configurations, BT and Ek-simple with 4,096 processes

writing 4 MB of checkpoint data, become feasible. Two Lonestar configura-
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tions also become feasible: 1,024 processes writing 32 MB of data each and

4,096 processes writing 4 MB of data each, both with Ek-simple. In general,

the checkpoint time results are unsurprising and are expected from our solu-

tion space analysis. Here, we can conclude that the WAF metric can identify

useful recovery lines even at this small interval size.

If we increase the amount of local execution time in which the check-

point locations can be staggered to approximately fifteen minutes (Tables 5.21

and 5.22), we see that the staggered lines now show improvement in larger pro-

cess configurations and almost all configurations show a large increase in the

percentage improvement in checkpointing time over that shown in the three

minute case.

In addition, the staggered lines placed by our algorithm make check-

pointing some configurations feasible that are not with the simultaneous line,

pointing to the usefulness of both staggered checkpointing and our WAF met-

ric. On Ranger, simultaneous checkpointing is infeasible for 1,024 processes

writing 256 MB (requires 1 hour 21 minutes), 4,096 processes writing 4 MB

(requires 19 minutes) and 32 MB (requires 1 hour 34 minutes), and 16,384

processes writing 4 MB (requires 4 hours 57 minutes). For BT with 4,096 pro-

cesses writing 4 MB, checkpointing using the staggered line requires only 12

minutes, an improvement of 7 minutes. For Ek-simple with 4,096 processes

writing 4 MB, the staggered line reduces the checkpoint time to 38 seconds,

an improvement of over 18 minutes; when this configuration writes 32 MB,

the checkpointing time is reduced to 5 minutes from over an hour and a half.
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On Lonestar, simultaneous checkpointing requires over fifteen minutes for the

following configurations that we consider: 1,024 processes writing 32 MB (57

minutes) and 4,096 processes writing 4 MB (24 minutes). Staggered check-

pointing makes checkpointing feasible in the former configuration for BT (11

minutes) and Ek-simple (4 minutes), and in the latter configuration for BT (5

minutes), Ek-simple (18 seconds), and SP (13 minutes).

In results not presented here, we see that the good lines identified by

our algorithm are useful with a time interval in which to stagger that is much

smaller than three minutes. The results show large percentages but small ab-

solute times, so staggered checkpointing will be useful in these cases only if

the application checkpoints frequently. For instance, with approximately 20

seconds in which to stagger in a phase in BT, the line with staggered check-

pointing reduces checkpointing time by 30 seconds for 1,024 processes writing

4 MB of data, which is 28% of the checkpoint time. LU shows even more im-

provement for just over one minute local execution time: 51% or 36 seconds.

The total execution time for these configurations, which with simultaneous

checkpointing is approximately five minutes in the BT case and ten minutes

for the LU example, is reduced by 9% for BT and 7% for LU.

Total Execution Time. The results that are particularly interesting

in these tables are the total execution time results. The total execution time

is important because staggered checkpointing can disrupt communication: our

results show that the staggered line is more likely to improve performance even
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in that case. However, the execution time is improved by a smaller number

of seconds than the checkpointing time, a possible side-effect of communica-

tion disruption. Unfortunately, improving the execution time by a significant

percentage is difficult since that time includes the entire benchmark. Thus,

the percentage change is often not large enough to still exist once the simula-

tor error is applied. However, we can glean interesting insights by evaluating

the predicted improvement from the configurations that do show statistically

significant results.

When checkpoints are staggered within a three minute interval size

during communication, we would expect the total execution time to suffer since

the communication is being disrupted during so compact an interval. However,

in the Ranger results (Table 5.19), we see that our simulator typically predicts

an improvement in total execution time, though that improvement is often

not enough to place the lower end of the confidence and tolerance intervals in

the positive. The configurations with a change large enough to be statistically

significant are for BT with 4,096 or 16,384 processes and all amounts of data,

and for 1,024 processes with 32 MB of data. In these cases, the staggered line

exhibits a large improvement in checkpointing time and that improvement is

reflected in the total execution time.

Although our simulator usually predicts 0% change for Ek-simple in

the three minute case, for Ek-simple with 1,024 processes checkpointing 256

MB, our simulator predicts a 23% gain in total execution time. A possible

cause is that Ek-simple has more irregular communication that the rest of
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the benchmarks, so its clumps tend to not be strongly connected, making

Ek-simple more susceptible to communication disruption.

In the fifteen minute case, our simulator generally predicts an improve-

ment in total execution time with the staggered line for three of our bench-

marks: BT, LU, and SP. On Ranger, these benchmarks typically show improve-

ment in process sizes greater than 1,024: a finding in keeping with our solution

space results which show little improvement on Ranger for process sizes less

than or equal to 1,024. On Lonestar, these benchmarks always show improve-

ment. Unlike the other benchmarks, Ek-simple either exhibits no change or a

small increase in the total execution time. However, this tradeoff is reasonable

since the percentage change is generally small and in many cases checkpointing

with the staggered line causes checkpointing Ek-simple to be feasible.

Measured Results. Our measured results show that we can expect an im-

provement in the total execution time. Table 5.23 shows that staggered check-

pointing improves the execution time of one iteration of the LU benchmark by

an average of 41%, even for these small configurations.

5.8 Conclusions

We show that staggered checkpointing is an effective checkpointing

technique and that it is most effective for large numbers of processes. As

file systems become faster, staggered checkpointing will become effective for

even larger numbers of processes and sizes of checkpoint data; we expect the
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size of applications will grow due to the current support for capability com-

puting, which encourages application developers to use more processes per

application. For instance, the original RedStorm allocation policies set aside

80% of the compute-node hours to be used by applications using a minimum

of 40% of the computer nodes [147]: RedStorm initially had 10,880 processors,

and now has 38,400. As the applications use more processes, the need for

staggered checkpointing will increase as will its effectiveness.

We develop a scalable and efficient recovery line generation algorithm

that enables staggered checkpointing and thus relieves programmer burden.

This algorithm uses a constraint-based search to eliminate redundant work and

several techniques to reduce the search space, including the WAF metric. For

our benchmarks, our algorithm successfully finds and places useful recovery

lines in applications configured to use 16,384 processes that are up to 52%

faster than the equivalent numbers of processes simultaneously writing an

equivalent amount of data. Our algorithm is the most useful for applications

with large amounts of point-to-point communication. If the application instead

consists of local execution separated by collective communication, staggered

checkpointing is trivial and our algorithm is less effective.

Currently the algorithm analyzes and places a recovery line in every

phase of an application. A possible extension would consider the length of

each phase and only place a recovery line in the longest phase. This extension

would reduce execution time.

The WAF metric is currently a simplified circular string edit distance
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and it works well. However, it could be extended to also consider the amount

of data that would need to be saved at each location. This extension could

potentially reduce checkpoint size.

In addition, checkpoint locations are currently limited to dependence-

generating events. Due to this constraint, it is possible to further optimize the

recovery line by adjusting the checkpoint locations in the generated recovery

lines relative to the checkpoint locations we consider. Such adjustments may

both increase the separation of the checkpoints and reduce the amount of

data checkpointed—both of which will further reduce network and file system

contention.
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Processes Problem Size Data Per Process

Total
Execution
Time with
Staggered

Checkpointing

Total
Execution
Time with
Simultaneous
Checkpointing

Percent
Improvement

16 204
4MB 29s 46s 37%
32MB 145s 322s 55%

64 408
4MB 40s 59s 38%
32MB 209s 323s 35%

Table 5.23: Measured total execution time for one iteration of the LU bench-
mark on Lonestar for executions checkpointing with either staggered or simul-
taneous checkpointing
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Chapter 6

Conclusions and Future Work

In this thesis, we have provided a compiler-assisted checkpointing tech-

nique that reduces programmer work, reduces network and file system con-

tention, and does not require process synchronization. Our solution is a form of

staggered checkpointing that places process checkpoint calls at different loca-

tions in the application text at compile-time while guaranteeing that the saved

checkpoints will form a consistent state. Our technique eliminates dynamic

inter-process coordination and creates a separation in time of each process’s

checkpoint, which reduces contention at the file system.

6.1 Contributions

In this dissertation we have presented an efficient and scalable compile-

time algorithm that identifies staggered checkpoint locations in parallel appli-

cations. We have also identified application and system characteristics where

staggered checkpointing reduces checkpoint overhead, and presented a sim-

ulator that efficiently simulates parallel applications. We have shown that

staggered checkpointing is effective and that is is poised to become more effec-

tive in the future as applications use more processes and file systems become
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faster. We now review our contributions.

6.1.1 Algorithm for Compiler-Assisted Staggered Checkpointing

Identifying desirable checkpoint locations in an application is difficult

since there are many possible locations and the state saved must be consistent.

To ensure a consistent state, our solution identifies valid recovery lines [153].

It is a challenge to statically differentiate the desired valid recovery lines from

those that are invalid because the number of possible solutions is enormous.

This number grows as LP , where L is the number of possible checkpoint loca-

tions and P is the number of processes, and the number of valid recovery lines

is typically less than 1% of the total. Recovery lines that are useful—a useful

recovery line is both valid and sufficiently staggered to reduce contention—are

even more rare.

We designed and implemented a new compile-time algorithm that gen-

erates and places useful recovery lines in applications that use up to tens

of thousands of processes. This algorithm uses a constraint-based search to

eliminate redundant work and reduces the search space by constraining the

checkpoint locations, considering clumps of processes rather than independent

processes, and performing the search for a useful recovery lines within sets

of clumps where each process is represented exactly once. These techniques

reduce the search space for BT with 1,024 processes from 381024 to 3(532) + 21,

or by 1,594 orders of magnitude. Our pruning policy enables the rapid sorting

of the created recovery lines, and a metric we introduced, the Wide-and-Flat
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(WAF) metric, statically estimates the usefulness of both complete recovery

lines, those that include every process, and partial recovery lines, those that

only include some of the processes.

For our benchmarks, our algorithm successfully finds and places useful

recovery lines in applications that use up to 65,536 processes. The staggered

recovery lines placed by our algorithm checkpoint an average of 37% faster for

all configurations than a recovery line performing simultaneous checkpointing

that writes an equivalent amount of data.

6.1.2 Problem and Solution Spaces for Staggered Checkpointing

We used our simulator to investigate sets of application characteristics,

including the number of processes and checkpoint sizes, and system character-

istics, including network, file system, and processor speeds, where staggered

checkpointing is needed and effective. We identified situations where staggered

checkpointing is needed, which we refer to as the problem space, by determining

sets of application and system characteristics where synchronous checkpoint-

ing causes contention but the checkpointing of a single process does not. We

identified situations where staggered checkpointing is effective, or the solution

space, by determining sets of characteristics for which staggered checkpointing

reduces such contention. We also analyzed how the solution space varies with

machine characteristics such as the ratio of network and file system speeds to

processor speeds.

Within the solution spaces, staggered checkpointing reduces both check-
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pointing time and overall execution time. The solution spaces as presented are

significant spaces for both Lonestar and Ranger; staggered checkpointing is a

useful technique for both these systems. Checkpoint locations only need to be

separated by approximately three minutes for improvements to be realized in

some configurations on both machines. As the time separating the checkpoints

increases, the amount of improvement shown increases.

Our analysis of synchronous checkpointing shows that it can take up

to an hour and 14 minutes for 8,192 processes on Ranger to checkpoint 4 MB

of data each. With three minutes over which to separate the checkpoints,

staggered checkpointing reduces this time by 12 minutes to just over an hour.

With fifteen minutes, staggered checkpointing reduces this time to 1 minute.

The results on Lonestar are similar. These results imply that staggered check-

pointing is a useful technique. Since Ranger is ranked 11 in the Top 500

Supercomputer Sites [8] and Lonestar is ranked 123, staggered checkpointing

is applicable to a large range of supercomputers.

6.1.3 Simulation for Large-Scale Systems

Evaluating large-scale parallel applications in the presence of check-

pointing is difficult to accomplish with both low overhead and good accuracy.

To do so, we developed an event-driven simulator for large-scale systems that

estimates the behavior of the network, global file system, and local hardware

using predictive models. Currently, each model is a formula that encapsulates

the performance of its respective component and thus provides the simula-
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tor with a fast way to estimate that component’s behavior under a variety of

workloads.

Our simulator can simulate applications that use thousands of pro-

cesses. On average, it predicts the execution time our application benchmarks

with checkpointing as 83% of their measured performance, which provides

sufficient accuracy to evaluate synchronous and staggered checkpointing.

6.2 Future Work

Our work provides a technique for identifying and placing useful recov-

ery lines in large-scale applications. To enable this work to be tested more

thoroughly and possibly used in a production environment, it should be com-

bined with a tool that collects and writes the checkpoint data. In addition, a

recovery algorithm needs to be designed and implemented.

Our algorithm currently limits checkpoint locations to dependence-

generating events. Due to this constraint, it is possible to further optimize

the recovery line by adjusting the checkpoint locations in the generated re-

covery lines relative to these dependence-generating events. Such adjustments

may both increase the separation of the checkpoints and reduce the amount of

data checkpointed—both of which will further reduce network and file system

contention.

Our algorithm identifies and places recovery lines in every phase of

an application. The algorithm could be extended to detect the best phase
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for checkpointing and only analyze and place a recovery line in that phase.

Currently, any placed recovery line will checkpoint every time the application

reaches its context. The algorithm could be extended to only allow each placed

line to checkpoint at some interval.

Wide-and-Flat Metric. The WAF metric is currently a simplified circular

string edit distance [88] and it works well. However, it could be extended to

also consider the amount of data that would need to be saved at each location.

This extension could potentially reduce checkpoint size.

In Chapter 5, we showed that our WAF metric performs better when

the checkpoint data size is larger. This phenomena occurs since the WAF

metric assumes that the more staggered a line is, the more desirable it is. If we

modified the metric to consider both checkpoint size and the characteristics

of a system, it could instead identify lines that are sufficiently staggered to

reduce the amount of data being written at any single location to below the

network and file system saturation points. Lines that are staggered more than

that amount can disrupt communication unnecessarily.

6.3 Final Thoughts

Staggered checkpointing extends the viability of checkpointing past the

current state of the art to larger numbers of processes writing larger amounts

of data. Our results on Lonestar and Ranger showed that as we move toward

bigger and faster machines, staggered checkpointing will continue to extend the
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viability of checkpointing. In addition, as applications grow larger, they will

benefit more from staggered checkpointing. However, staggered checkpointing

only extend the viability of checkpointing, so some applications will still not

be able to checkpointing a reasonable amount of time. There are many reasons

why staggered checkpointing might not make checkpointing some applications

viable.

Some applications will need to checkpoint too much data for stag-

gered checkpointing to sufficiently reduce checkpoint time. Those applications

should use techniques to reduce checkpoint data size in addition to staggered

checkpointing. These techniques include carefully identifying the data to be

saved, data compression, and carefully choosing a file format, such as a high-

density one.

Some applications will not have a long enough interval without a col-

lective communication or synchronization point for the checkpoints to be suffi-

ciently separated: staggered checkpointing works best for applications in which

these intervals execute for minutes at a time. Unfortunately, many current

applications have more closely spaced synchronization and collective commu-

nication. Although as file systems become faster, staggered checkpointing will

be more effective with smaller intervals, it will always be more beneficial with

more time over which to separate the checkpoints. To gain a larger benefit

from staggered checkpointing, application developers would need to carefully

design their applications to limit the use of synchronization and collective

communication.
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Some applications will have too many constraints for staggered check-

pointing. Our algorithm statically guarantees a consistent state by analyzing

the dependences introduced by an application’s communication and then plac-

ing the checkpoints in such a way that the state saved is consistent. We can

imagine that so many dependences could be introduced that the checkpoints

could not be staggered. Though this case is possible with any communication,

it is more likely to occur when the application performs non-deterministic

communication, and our algorithm is forced to conservatively estimate the

dependences.

Checkpointing large parallel applications still faces these and other chal-

lenges. This thesis contributes to the understanding of these challenges and

takes steps to address some of them. In particular, it introduces compiler-

assisted staggered checkpointing which extends the viability of checkpointing

past the current state of the art.
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[36] Aurélien Bouteiller, Franck Cappello, Thomas Herault, Géraud Krawezik,
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